Understanding Hurricane-induced Water Quantity and Quality Dynamics using Machine Learning and Environmental Data Analytics Approaches.

dc.contributor.advisorNatalie Nelson Sagues, Chair
dc.contributor.advisorAngela Harris, Minor
dc.contributor.advisorRyan Emanuel, Member
dc.contributor.advisorBarbara Doll, Member
dc.contributor.authorFidan, Emine Nur
dc.date.accepted2023-01-18
dc.date.accessioned2023-01-19T13:30:21Z
dc.date.available2023-01-19T13:30:21Z
dc.date.defense2022-11-15
dc.date.issued2022-11-15
dc.date.released2023-01-19
dc.date.reviewed2022-12-07
dc.date.submitted2022-11-18
dc.degree.disciplineBiological & Agri Engineering
dc.degree.leveldissertation
dc.degree.nameDoctor of Philosophy
dc.identifier.otherdeg31724
dc.identifier.urihttps://www.lib.ncsu.edu/resolver/1840.20/40245
dc.titleUnderstanding Hurricane-induced Water Quantity and Quality Dynamics using Machine Learning and Environmental Data Analytics Approaches.

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
etd.pdf
Size:
15.49 MB
Format:
Adobe Portable Document Format

Collections