Relevant intensity measures for seismic damage prediction with artificial neural networks
dc.contributor.author | Konstantin Goldschmidt (Technische Universität Kaiserslautern, Paul-Ehrlich-Straße 14) | |
dc.contributor.author | Hamid Sadegh-Azar (Technische Universität Kaiserslautern, Paul-Ehrlich-Straße 14) | |
dc.contributor.author | Mani Mohtasham Miavaghi (Technische Universität Kaiserslautern, Paul-Ehrlich-Straße 14) | |
dc.date.accessioned | 2023-04-12T01:13:56Z | |
dc.date.available | 2023-04-12T01:13:56Z | |
dc.date.issued | 2022-07-10 | |
dc.identifier.uri | https://www.lib.ncsu.edu/resolver/1840.20/40582 | |
dc.publisher | IASMiRT | |
dc.relation.ispartofseries | D07 - Safety, Reliability, Risk and Safety Margins | |
dc.relation.ispartofseries | D07-We.4.E - D07 - Seismic Fragility Assessment - Method Developments | |
dc.relation.ispartofseries | 00 - SMiRT 26 - Berlin/Potsdam, Germany. July 10-15, 2022 | |
dc.title | Relevant intensity measures for seismic damage prediction with artificial neural networks | |
dc.type | Conference Proceeding |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- We.4.E.1.pdf
- Size:
- 487.41 KB
- Format:
- Adobe Portable Document Format