Unsupervised Learning Models for Dual-Domain Data with Proximal Geographic Clustering.

dc.contributor.advisorMansoor Haider, Chair
dc.contributor.advisorRalph Smith, Member
dc.contributor.advisorKevin Flores, Member
dc.contributor.advisorArvind Krishna Saibaba, Member
dc.contributor.advisorGavin Conant, Graduate School Representative
dc.contributor.authorMcMahon, Mallory Elise
dc.date.accepted2020-06-17
dc.date.accessioned2020-06-18T12:30:51Z
dc.date.available2020-06-18T12:30:51Z
dc.date.defense2020-04-24
dc.date.issued2020-04-24
dc.date.released2020-06-18
dc.date.reviewed2020-04-29
dc.date.submitted2020-04-29
dc.degree.disciplineApplied Mathematics
dc.degree.leveldissertation
dc.degree.nameDoctor of Philosophy
dc.identifier.otherdeg21194
dc.identifier.urihttps://www.lib.ncsu.edu/resolver/1840.20/38024
dc.titleUnsupervised Learning Models for Dual-Domain Data with Proximal Geographic Clustering.

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
etd.pdf
Size:
5.98 MB
Format:
Adobe Portable Document Format

Collections