Relations between Characters of Lie Algebras and Symmetric Spaces

Abstract

Let Φ be an irreducible root system. The Classification Theorem, ([Hum72, Section 11.4]), then states that its Dynkin diagram must be one of A[subscript n], B[subscript n], C[subscript n], D[subscript n], E₆, E₇, E₈, F₄, or G₂. This is fundamental to the study of finite-dimensional semisimple Lie algebras over algebraically closed fields. In [Helm88] A. G. Helminck established an analogous result for local symmetric spaces where he identified twenty-four graphical structures called involution or θ-diagrams. Implicit in each of these diagrams are two root systems Φ(a) and Φ(b) with a a maximal torus in a local symmetric space p and t ⊃ a a maximal torus in the corresponding semisimple Lie algebra g which contains a. In Chapter 2 we describe Φ(a) as the image of Φ(t) under a projection π derived from an involution θ on φ (t). The weight lattices associated with φ(t) and φ(a) are denoted by Λ[subscript t] and Λ[subscript a], respectively. We consider a linear extension of π from φ(t) to the lattice Λ[subscript t]. It was shown, again in [Helm88], that π(Λ[subscript t]) ⊆ Λ[subscript a] for cases where φ(a) is not of type BC[subscript n]. In this thesis we prove the converse of this result. For cases where φ(a) is of type BC[subscript n] it was shown in this same paper that &#960(Λ[subscript t]) = Λ[subscript a] = R[subscript a]. For these cases we offer a direct proof and for both cases provide explicit formulas for the characters of each in terms of the other.

Description

Keywords

representations, Lie algebras, characters, symmetric spaces

Citation

Degree

PhD

Discipline

Mathematics

Collections