Bayesian Calibration and Machine Learning-based Validation of Distributed Fiber Optic Sensors for Advanced Temperature Sensing in Nuclear Reactors.

dc.contributor.advisorXu Wu, Chair
dc.contributor.advisorIgor Bolotnov, Member
dc.contributor.advisorJohn Zino, Member
dc.contributor.authorKohler, Lauren
dc.date.accepted2025-04-07
dc.date.accessioned2025-04-17T12:30:33Z
dc.date.available2025-04-17T12:30:33Z
dc.date.defense2025-03-18
dc.date.issued2025-03-18
dc.date.released2025-04-17
dc.date.reviewed2025-03-25
dc.date.submitted2025-03-20
dc.degree.disciplineNuclear Engineering
dc.degree.levelthesis
dc.degree.nameMaster of Science
dc.identifier.otherdeg41701
dc.identifier.urihttps://www.lib.ncsu.edu/resolver/1840.20/45283
dc.titleBayesian Calibration and Machine Learning-based Validation of Distributed Fiber Optic Sensors for Advanced Temperature Sensing in Nuclear Reactors.

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
etd.pdf
Size:
4.72 MB
Format:
Adobe Portable Document Format

Collections