Data-driven Mathematical Models and Inverse Problem Methods with Applications in Spatially Heterogeneous Populations.

dc.contributor.advisorKevin Flores, Chair
dc.contributor.advisorHien Tran, Member
dc.contributor.advisorErica Rutter, External
dc.contributor.advisorOrlando Arguello-Miranda, Member
dc.contributor.advisorRalph Smith, Member
dc.contributor.authorNguyen, Kyle Cuongthe
dc.date.accepted2024-03-26
dc.date.accessioned2024-03-30T12:30:38Z
dc.date.available2024-03-30T12:30:38Z
dc.date.defense2024-03-06
dc.date.issued2024-03-06
dc.date.released2024-03-30
dc.date.reviewed2024-03-18
dc.date.submitted2024-03-13
dc.degree.disciplineBiomathematics
dc.degree.leveldissertation
dc.degree.nameDoctor of Philosophy
dc.identifier.otherdeg36790
dc.identifier.urihttps://www.lib.ncsu.edu/resolver/1840.20/41625
dc.titleData-driven Mathematical Models and Inverse Problem Methods with Applications in Spatially Heterogeneous Populations.

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
etd.pdf
Size:
50.64 MB
Format:
Adobe Portable Document Format

Collections