Single-molecule Surface Studies of Fibrinogen and DNA on Semiconductors

Abstract

Understanding of protein adsorption onto non-biological substrates is of fundamental interest in science, but also has great potential technological applications in medical devices and biosensors. This study explores the non-specific interaction, at the single molecule level, of a blood protein and DNA with semiconductor surfaces through the use of a custom built, non rastering electron emission microscope and a scanning probe microscope. The specifics and history of electron emission are described as well as the equipment used in this study. The protein examined in this study is human plasma fibrinogen, which plays an important role in haemostatis and thrombosis, and deoxyribonucleic acid (DNA) is also studied. A novel technique for determining the photothreshold of biomolecules on single molecule level is developed and applied to fibrinogen molecules adsorbed on oxidized silicon surfaces, using photo-electron emission microscopy (PEEM). Three theoretical models are employed and compared to analyze the experimental photothreshold data. The non-specific adsorption of human plasma fibrinogen on oxidized p- and n- type silicon (100) surfaces is investigated to characterize both hydrophobic interactions and electrostatic forces. The experimental results indicate that hydrophobic interactions are one of the driving forces for protein adsorption and the electrostatic interactions also play a role in the height of the fibrinogen molecules adsorbed on the surface. PEEM images establish a photo threshold of 5.0 ± 0.2 eV for fibrinogen on both n- type and p- type Si (100) surfaces. We suggest that the photothreshold results from surface state associated Fermi level (EF) pinning and there exists negative charge transfer from the adsorbed fibrinogen onto the p- type silicon substrates, while on n-type silicon substrates negative charge is transferred in the opposite direction. The adsorption of deoxyribonucleic acid (DNA) on mica and silicon is studied in liquid and ambient environments with atomic force microscopy (AFM). Its interactions with fibrinogen proteins co-adsorbed on surfaces exhibit an interesting desorption effect. The photoelectric imaging of DNA adsorbed on silicon is studied in ultra-high vacuum. A contrast reversal is observed on Si (111) depending on different surface pretreatments, which we suggest is due to the surface states induced photoemission. Several semiconductor materials, including Si(100), Si (111), diamond-like carbon (DLC) films, single crystal diamond (SCD) (100), nano-crystalline diamond (NCD) films, silicon carbide (SiC) (0001), and graphene, are examined for biocompatibility in applications such as medical implants and biosensors. In conjunction with other studies in the literature, we suggest that DLC, NCD, and SiC are suitable for biosensor applications.

Description

Keywords

biosensors, proteins, blood, surfaces, silicon, diamond, adsorption, biomaterials

Citation

Degree

PhD

Discipline

Physics

Collections