Model-Agnostic Variable Selection Through Measurement Error Model Selection Likelihoods.

dc.contributor.advisorLeonard Stefanski, Co-Chair
dc.contributor.advisorYichao Wu, Co-Chair
dc.contributor.advisorDennis Boos, Member
dc.contributor.advisorEric Laber, Member
dc.contributor.advisorChristopher Healey, Graduate School Representative
dc.contributor.authorWhite, Kyle Ross
dc.date.accepted2017-08-24
dc.date.accessioned2017-08-28T12:31:59Z
dc.date.available2017-08-28T12:31:59Z
dc.date.defense2017-08-04
dc.date.issued2017-08-04
dc.date.released2017-08-28
dc.date.reviewed2017-08-08
dc.date.submitted2017-08-04
dc.degree.disciplineStatistics
dc.degree.leveldissertation
dc.degree.nameDoctor of Philosophy
dc.identifier.otherdeg7036
dc.identifier.urihttp://www.lib.ncsu.edu/resolver/1840.20/34539
dc.rights
dc.titleModel-Agnostic Variable Selection Through Measurement Error Model Selection Likelihoods.

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
etd.pdf
Size:
2.85 MB
Format:
Adobe Portable Document Format

Collections