Properties of Polymer Blends Filled with Mixtures of Conductive Fillers

Abstract

High-density polyethylene (HDPE), ultrahigh molecular weight polyethylene (UHMWPE) and blends thereof are used to produce ternary and quaternary conductive polymer composites (CPCs) containing carbon black (CB), graphite (G), carbon fiber (CF) and selected mixtures thereof to discern if polymer blends and mixed fillers yield appreciable advantages over CPCs composed of single polymers and/or single fillers. The effects of polymer blend composition and filler type, concentration and composition on electrical conductivity, composite morphology, mechanical properties and thermal behavior have been examined and correlated to establish meaningful structure-property relationships that can facilitate the rational design of efficient CPCs. Enhanced conductivity due to double-percolation is observed in ternary CPCs containing CB or G, whereas the concept of bridged double percolation is proposed to explain substantial conductivity increases in quaternary composites.

Description

Keywords

Citation

Degree

PhD

Discipline

Materials Science and Engineering

Collections