Black Box Linear Algebra with the LinBox Library
No Thumbnail Available
Files
Date
2002-07-02
Authors
Journal Title
Series/Report No.
Journal ISSN
Volume Title
Publisher
Abstract
Black box algorithms for exact linear algebra view a matrix as a linear operator on a vector space, gathering information about the matrix only though matrix-vector products and not by directly accessing the matrix elements. Wiedemann's approach to black box linear algebra uses the fact that the minimal polynomial of a matrix generates the Krylov sequences of the matrix and their projections. By preconditioning the matrix, this approach can be used to solve a linear system, find the determinant of the matrix, or to find the matrix's rank.
This dissertation discusses preconditioners based on Benes networks to localize the linear independence of a black box matrix and introduces a technique to use determinantal divisors to find preconditioners that ensure the cyclicity of nonzero eigenvalues. This technique, in turn, introduces a new determinant-preserving preconditioner for a dense integer matrix determinant algorithm based on the Wiedemann approach to black box linear algebra and relaxes a condition on the preconditioner for the Kaltofen-Saunders black box rank algorithm.
The dissertation also investigates the minimal generating matrix polynomial of Coppersmith's block Wiedemann algorithm, how to compute it using Beckermann and Labahn's Fast Power Hermite-Pade Solver, and a block algorithm for computing the rank of a black box matrix.
Finally, it discusses the design of the LinBox library for symbolic linear algebra.
Description
Keywords
black box linear algebra, Wiedemann method, block Wiedemann method, linear algebra, randomized algorithm, LinBox library
Citation
Degree
PhD
Discipline
Computational Mathematics