Data-driven Methods for Partial Differential Equations and Discrete Convolution.

dc.contributor.advisorAlina Chertock, Co-Chair
dc.contributor.advisorSemyon Tsynkov, Co-Chair
dc.contributor.advisorMarguerite Moore, Graduate School Representative
dc.contributor.advisorMohammad Farazmand, Member
dc.contributor.advisorArvind Krishna Saibaba, Member
dc.contributor.authorLeonard, Christopher
dc.date.accepted2022-11-15
dc.date.accessioned2022-11-27T13:30:20Z
dc.date.available2022-11-27T13:30:20Z
dc.date.defense2022-10-26
dc.date.issued2022-10-26
dc.date.released2022-11-27
dc.date.reviewed2022-11-01
dc.date.submitted2022-11-01
dc.degree.disciplineApplied Mathematics
dc.degree.leveldissertation
dc.degree.nameDoctor of Philosophy
dc.identifier.otherdeg31344
dc.identifier.urihttps://www.lib.ncsu.edu/resolver/1840.20/40178
dc.titleData-driven Methods for Partial Differential Equations and Discrete Convolution.

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
etd.pdf
Size:
3.3 MB
Format:
Adobe Portable Document Format

Collections