Mechanical and physical properties of electrospun nanofibers

No Thumbnail Available

Date

2009-08-13

Journal Title

Series/Report No.

Journal ISSN

Volume Title

Publisher

Abstract

The process of electrospinning was utilized to fabricate randomly aigned nylon6 nanofibers and aligned nylon6 nanofibers. Polymer concentration affecting electrospinning was investigated. This parameter was evaluated using degree of crystallinity by differential scanning calorimetry (DSC) as well as visual images produced by scanning electron microscopy (SEM). DSC data demonstrated that more crystals were formed with lower polymer concentrations; SEM images revealed that slimmer fibers were produced by lower concentrations. The mechanical properties of unoriented fibers and aligned fibers were tested on Instron 5544. The result of tensile tests indicated higher Young’s modulus and tensile strength of aligned nanofibers than that of unaligned fibers. The SEM images at broken edges of fibers illustrated different broken mechanisms of these two forms of nanofibers. The broken mechanism of aligned nanofibers was further confirmed by crystallinity parameters obtained from DSC and fiber diameter shown from SEM images.

Description

Keywords

mechanical properties, aligned nanofibers, electrospinning

Citation

Degree

MS

Discipline

Textile Chemistry

Collections