Development of HVAC Optimal Control Algorithms for Cooling Energy Efficiency Improvement in Commercial Buildings Using Machine Learning and Digital Twin Technologies.

dc.contributor.advisorSoolyeon Cho, Chair
dc.contributor.advisorJianxin Hu, Member
dc.contributor.advisorStephen Terry, Member
dc.contributor.advisorXipeng Shen, Member
dc.contributor.authorSeo, Byeongmo
dc.date.accepted2023-07-21
dc.date.accessioned2023-07-22T12:30:32Z
dc.date.available2023-07-22T12:30:32Z
dc.date.defense2023-06-14
dc.date.issued2023-06-14
dc.date.released2023-07-22
dc.date.reviewed2023-06-29
dc.date.submitted2023-06-23
dc.degree.disciplineDesign
dc.degree.leveldissertation
dc.degree.nameDoctor of Philosophy
dc.identifier.otherdeg34373
dc.identifier.urihttps://www.lib.ncsu.edu/resolver/1840.20/41175
dc.titleDevelopment of HVAC Optimal Control Algorithms for Cooling Energy Efficiency Improvement in Commercial Buildings Using Machine Learning and Digital Twin Technologies.

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
etd.pdf
Size:
6.75 MB
Format:
Adobe Portable Document Format

Collections