Internet of Water: Research and Development Toward a Linked Data System and Foundational Knowledge Network for the Internet of Water: Final Report

No Thumbnail Available

Date

2023-10-31

Advisors

Journal Title

Series/Report No.

WRRI Project;21-19-W
UNC-WRRI;508

Journal ISSN

Volume Title

Publisher

NC WRRI

Abstract

Internet of Water: Research and Development Toward a Linked Data System and Foundational Knowledge Network for the Internet of Water is a project designed to improve the discoverability of water-related datasets. The main objective of this project was to establish a foundational framework for a contributor-based system that facilitates regular harvesting and cross-referencing of metadata through two key components: (1) facilitating the Internet of Water community in publishing detailed, machine-readable, and cross-referenced metadata (linked data); and (2) developing a centralized crawler/harvester to catalog all the linked data into a single knowledge graph, serving as a part of the index for eventual Internet of Water search utilities. The project built on previous efforts to continue and enhance the development of Geoconnex, a linked data system and foundational knowledge network for water data. Geoconnex can be conceptualized as an operationalization of the Open Geospatial Consortium Environmental Linked Features Interoperability Experiments for the United States in the domains of water science and management. Our methods encompassed data-publisher-oriented research and engagement, development of Geoconnex architecture, and implementation of the Geoconnex system. The results of this project include a performant infrastructure leveraging semantic technology and open, modern API standards that allow data providers to independently publish metadata on the web in a manner that results in their data becoming linked to other providers’ data where spatially, hydrologically, and topically relevant. If adopted by data providers at a wide scale, this infrastructure would enable users to easily find water information across a variety of topics and geographies via user-friendly search applications. Through this project, we have concluded that further work is needed to encourage participation in the system and use of the infrastructure. We recommend that future work include the development of a user-friendly interface, technical advancements to improve the usability of the system and enable scaling, a promotional campaign to build the userbase, and the development of a governance structure. Potential future work could also establish best practices to use the same technologies to enable the automatic translation of observation and model data across data systems, fostering improved interoperability of data in addition to the improved discoverability already enabled by the currently implemented infrastructure.

Description

Keywords

Citation

Degree

Discipline

Collections