Synthesis and Characterization of Orthogonally Self-Assembled Nanoparticle Heterodimers
dc.contributor.advisor | Dr. Christopher B. Gorman, Committee Chair | en_US |
dc.contributor.advisor | Dr. David A. Shultz, Committee Member | en_US |
dc.contributor.advisor | Dr. Edmond F. Bowden, Committee Member | en_US |
dc.contributor.author | Walker, Brandon | en_US |
dc.date.accessioned | 2010-04-02T18:12:01Z | |
dc.date.available | 2010-04-02T18:12:01Z | |
dc.date.issued | 2007-05-16 | en_US |
dc.degree.discipline | Chemistry | en_US |
dc.degree.level | thesis | en_US |
dc.degree.name | MS | en_US |
dc.description.abstract | This project involved the synthesis of novel bifunctional linear linker molecules that were used to bind gold and platinum nanoparticles using orthogonal self-assembly. These heterodimers were created as a model for the possibility of using similar bimetallic structures as molecular electronic components. The binding affinities of the terminal thiol and isonitrile functional groups on planar surfaces and nanoparticles were analyzed using surface and transmission Fourier-transform infrared spectroscopy. It was found, qualitatively, that the binding affinity of the binding groups differed significantly depending on whether the functional group was binding to a planar surface or a nanoparticle. The linking of two nanoparticles to form a heterodimer was also studied using transmission electron microscopy (TEM) and size-exclusion chromatography (SEC). While unable to provide quantitative results on heterodimer formation, TEM provided a straight-forward, though limited, method for demonstrating that some heterodimer formation did occur. The main limiting factor of TEM was the relative size difference of the particles in the heterodimer. SEC provided a more quantitative view of the heterodimer sample, but this technique introduced many variables that control the separation of nanoparticles and heterodimers. Results from the SEC experiments support the formation of heterodimers, but many of the variables inherent to the technique must be overcome for it to become a viable technique for routine analysis of nanoparticle arrays. | en_US |
dc.identifier.other | etd-05072007-110126 | en_US |
dc.identifier.uri | http://www.lib.ncsu.edu/resolver/1840.16/2290 | |
dc.rights | I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dis sertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to NC State University or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report. | en_US |
dc.subject | molecular electronics | en_US |
dc.subject | nanoparticles | en_US |
dc.subject | orthogonal self-assembly | en_US |
dc.title | Synthesis and Characterization of Orthogonally Self-Assembled Nanoparticle Heterodimers | en_US |
Files
Original bundle
1 - 1 of 1