Algorithmic Enhancements to the VULCAN Navier-Stokes Solver
No Thumbnail Available
Files
Date
2003-08-15
Authors
Journal Title
Series/Report No.
Journal ISSN
Volume Title
Publisher
Abstract
VULCAN (Viscous Upwind aLgorithm for Complex flow ANalysis) is a cell centered, finite volume code used to solve high speed flows related to hypersonic vehicles. Two algorithms are presented for expanding the range of applications of the current Navier-Stokes solver implemented in VULCAN. The first addition is a highly implicit approach that uses subiterations to enhance block to block connectivity between adjacent subdomains. The addition of this scheme allows more efficient solution of viscous flows on highly-stretched meshes. The second algorithm addresses the shortcomings associated with density-based schemes by the addition of a time-derivative preconditioning strategy. High speed, compressible flows are typically solved with density based schemes, which show a high level of degradation in accuracy and convergence at low Mach numbers (M < 0.1). With the addition of preconditioning and associated modifications to the numerical discretization scheme, the eigenvalues will scale with the local velocity, and the above problems will be eliminated. With these additions, VULCAN now has improved convergence behavior for multi-block, highly-stretched meshes and also can accurately solve the Navier-Stokes equations for very low Mach numbers.
Description
Keywords
Navier-Stokes, Preconditioning, VULCAN
Citation
Degree
MS
Discipline
Aerospace Engineering