Predicting Location and Time of Anomalies in Large-Scale Computing Systems via Log Mining.

dc.contributor.advisorRainer Mueller, Chair
dc.contributor.advisorGuoliang Jin, Member
dc.contributor.advisorXipeng Shen, Member
dc.contributor.advisorMichela Becchi, Member
dc.contributor.authorDas, Anwesha
dc.date.accepted2019-07-11
dc.date.accessioned2019-07-15T12:30:57Z
dc.date.available2019-07-15T12:30:57Z
dc.date.defense2019-06-07
dc.date.issued2019-06-07
dc.date.released2019-07-15
dc.date.reviewed2019-06-18
dc.date.submitted2019-06-17
dc.degree.disciplineComputer Science
dc.degree.leveldissertation
dc.degree.nameDoctor of Philosophy
dc.identifier.otherdeg17712
dc.identifier.urihttp://www.lib.ncsu.edu/resolver/1840.20/36800
dc.rights
dc.titlePredicting Location and Time of Anomalies in Large-Scale Computing Systems via Log Mining.

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
etd.pdf
Size:
5.37 MB
Format:
Adobe Portable Document Format

Collections