Hemostatic Mechanisms of Common Textile Wound Dressing Materials

No Thumbnail Available

Date

2010-05-04

Journal Title

Series/Report No.

Journal ISSN

Volume Title

Publisher

Abstract

The objective of this research is to develop a series of material treatments and modifications, and, using a standardized set of tests, determine the extent of the ability of the modified material to enhance coagulation. This research focuses on materials commonly used in traditional textile based wound dressings; utilizing Streaming Potential studies, Scanning Electron Microscopy (SEM) and Thrombin Assays. The materials tested can be classified into 4 groups: control materials, modified PLA, SAMs treated glass, and TEOS treated materials. The control materials included: spun cotton and rayon yarn; continuous filament Nylon, Polypropylene (PP), and Polyethylene terephthalate (PET); heat cleaned glass (control glass); and PLA staple fibers. Contact angle measurements showed that both the control glass and the PET showed an increase in contact angle when treated with TEOS. This corresponds to a decrease and no improvement, respectively, in thrombogenicity for these materials in the thrombin assay. The remaining materials tested showed no change or a decrease in contact angle after TEOS treatment, and a corresponding increase in thrombogenicity. These results support previous studies that indicate an increase in wettability contributes to the enhancement of coagulation (16). While the streaming potential studies showed no correlation between thrombin formation or contact angle data, these tests provided an important launching platform for future studies utilizing the Streaming Potential Jar. Future work could benefit from the use of more physiologically relevant solutions, such as CaCl2, NaCl, or other blood substitutes (15). While no definitive correlations between test methods were elucidated, the results garnered from this research created a strong launching platform from which future materials research can continue.

Description

Keywords

surface treatment, fiber modification, contact angle, hemostasis, wound dressing, thrombin, streaming potential

Citation

Degree

MS

Discipline

Biomedical Engineering

Collections