
ABSTRACT

GAMBLE, JENNIFER PAMELA. Complex and Dynamic Network Analysis: A Topological Perspective.
(Under the direction of Dr. Hamid Krim.)

This dissertation develops and applies topological methods for the analysis of complex and

dynamic networks. In contrast to the term ‘topology’ used in traditional network analysis, here

we use the term in the sense of algebraic topology. The field of topological data analysis (TDA) has

blossomed in recent years, allowing researchers to analyze point cloud data sets using methods that

take into account the ‘shape’ of the data. This includes geometrical features, as well as topological

features such as connected components, loops, and voids. These methods have been applied with

great success to data sets which are naturally embedded in a metric space (such as Euclidean space),

because distances between points can be used to form a parameterized sequence of spaces, and

studying the changing topology of this sequence gives information about both the topology and

geometry of the data under analysis.

In our setting, the input data are simply graphs, consisting of vertices connected by (undirected,

unweighted) edges, with no underlying metric other than the graph distance between vertices. We

demonstrate how one can still consider the ‘shape’ of such objects in a topologically-informed way,

using a simplicial complex representation, and that such a viewpoint has great advantages.

We first apply this methodology to analyzing coverage properties in dynamic sensor networks.

The dynamic sensor network under consideration is studied through a series of snapshots, and is

represented by a sequence of simplicial complexes, built from the communication graph of the

network at each time point. A method from TDA called zigzag persistent homology takes this se-

quence of simplicial complexes as input, and returns a ‘barcode’ containing the birth and death

times of topological features in this sequence. We derive useful statistics from this output for ana-

lyzing time-varying coverage properties.

In addition, we develop a method which returns specific representative cycles for these homo-

logical features, at each point along the birth-death intervals. These representative cycles are then



used to track coverage holes in the network, and obtain size estimates for individual holes at each

time point. A weighted barcode, incorporating the size information, is then used as a visual and

quantitative descriptor of the dynamic network coverage.

Finally, we take a topologically-motivated approach to social network analysis, through the lo-

cal property of node dominance (which was developed in relation to a strong homotopy collapse

of a simplicial complex). By iteratively applying node dominance collapses, we are able to obtain

a core-periphery decomposition of a network, where the nodes in the core are essential for net-

work flow, community structure, and the global structure of the network. Additionally, the periph-

eral components are seen to have applications for community detection, and we propose an algo-

rithm which uses them to obtain “candidate sets” which are meant to approximate communities

or unions of communities. This community detection method is seen to have better performance

than a state-of-the-art algorithm for overlapping community detection on two large, real-world

networks with ground-truth community information.
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CHAPTER

1

INTRODUCTION

The fundamental viewpoint motivating this work is that incorporating topological features when

analyzing complex data can yield surprising and informative results about the data’s structure,

which are not obtainable from other methods. In the case of network analysis, the use of higher-

order information, such as n-tuple relationships between nodes, is encoded using simplicial com-

plexes. This allows for topological information to be considered, which opens access to a wealth of

mathematical tools.

Here, we apply this philosophy to two problems in complex network analysis. The first is the

study of coverage properties in time-varying sensor networks, and the second is community detec-

tion and core-periphery decomposition in social networks. These seemingly disparate problems

both have topologically-informed solutions. In the first case, we are able to obtain a quantification
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CHAPTER 1. INTRODUCTION

of the time-varying coverage of a network in a completely coordinate-free manner, using only the

adjacency matrix for the communication graph at each time point. In the second case, the local

property of node dominance yields a distributed algorithm for computing a core-periphery de-

composition of a social network, where the core is shown to be essential for the network in terms

of network flow and global structure, and additionally the peripheral components give information

about the community structure that yields an effective algorithm for community detection.

“Topological data analysis” (TDA), is a somewhat broad term which can be meant to describe

any data analysis methods which use a topological space (or sequence of spaces) built from the

data, and use features of this space (topological, geometric, or other) to describe the data set. This

is often interpreted as studying the ‘shape’ of the data, because topological features include things

like the number of connected components, loops, or voids in a space, and because the topological

space is usually constructed using a function on the metric space the data lie in (incorporating ge-

ometric information). As a field of study, TDA was not born until nearly the turn of the 21st century.

Prior to that, algebraic topology was viewed as a pure form of mathematics, or ’math for math’s sake’,

without express purpose for real-world applications. Since it is a field of mathematics which uses al-

gebraic objects to study topological spaces, algebraic topology is very broad and can become quite

abstract. Later on, when we discuss the special case of simplicial homology theory in Section 2.2.1,

we see that it will become quite concrete (reducing to linear algebra computations), and extremely

useful for our applications.

The advent of the persistent homology algorithm [16] [45] and its mathematical formalization

[62] are often considered the turning point, which allowed topological features to be considered

applicable to the study of data sets (although some earlier methods in computational geometry

[17] and size theory [19] had a topological flavor as well). Many of the relevant notions had been

available for years: a Čech or Vietoris-Rips complex could be used to turn a data set into a simpli-

cial complex; and simplicial homology theory could be used to compute the topological features

(or homology) of a given simplicial complex. The problem was that building the simplicial com-

2



CHAPTER 1. INTRODUCTION

plex required a choice of parameter value, and that the resulting topological features are extremely

non-robust to perturbations in the underlying data set. The key to persistent homology, was that it

took a multi-resolution approach by considering a sequence of simplicial complexes, over a range

of parameter values. Studying the changing homology of the sequence gave information about the

topology and geometry of the data set, and the summary for this changing sequence of spaces (cru-

cially) also had good stability properties [12] [11]. A second algorithm which has become synony-

mous with TDA is the mapper algorithm [49], which also builds a simplicial complex to represent a

dataset, but in this case the complex obtained is dependent on the choice of a function, so one may

study a single data set through different “lenses” by using different choices of functions. For some

excellent survey articles of persistent homology and topological data analysis, see Ghrist [23] and

Carlsson [6]. Currently, the theory and applications of TDA are predominantly oriented towards the

persistent homology and mapper algorithms and their generalizations. It is important to note that

these methods are motivated by applications in data analysis, where the data lie in a metric space

(often �n ), and it is natural to use parameter and function values relative to this metric.

In this dissertation, the data structures we consider are fundamentally different from the point

cloud data in typical TDA applications. We consider network (or graph) structures, which consist

only of vertices, and edges connecting them. They are combinatorial in nature, and for our applica-

tions the edges are unweighted, undirected, and connect two distinct vertices, so the only notion

of distance between two vertices is the graph distance between them. We propose and explore ap-

plications of methods for network analysis which are topologically-motivated, and we see that, as

in the case with traditional TDA methods on point cloud data, the incorporation of topological fea-

tures and ideas into the existing network analysis toolbox yields greater insights into the structure

of our data, with fewer assumptions for the input (in the sensor network case) and more computa-

tional efficiency (in the social network setting).

First, in Chapter 2 we consider the problem of localizing and tracking coverage holes in dy-

namic sensor networks, with the additional constraint that no node locations or inter-node dis-

3



CHAPTER 1. INTRODUCTION

tances (edge lengths) are known. Only binary information about which nodes are within commu-

nication range at each time point is available, and through a combination of methods from com-

putational topology, along with a novel algorithm, we are able to obtain a quantitative descriptor

of the dynamic network coverage, which includes the number of holes at each time point, as well

as estimated hole size and duration.

The algorithm is described in detail in Chapter 3. It takes the sequence of simplicial complexes,

and chooses specific representative cycles for the homology classes at each time point, which are

geometrically-relevant.

Finally, in Chapter 4 we turn our attention to study large-scale social networks. Here, we use

topology-preserving collapses [4] [54] of the network to identify nodes which belong to a ‘core’, and

develop theoretical results involving the properties of this core and the remaining periphery. The

nodes in the core are seen to be very important to the global structure of the network, as well as

network flow. Moreover, the peripheral components are related to the community structure of the

network, and we propose an algorithm for their use in community detection, which is seen to per-

form well against a state-of-the-art method for overlapping community detection in large networks.

Results are placed in the context of existing theories of social network structure, and support the

view that overlapping communities yield a core-periphery network structure.

In Chapter 5, we conclude by discussing the implications of our work, and propose some direc-

tions for future research.
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CHAPTER

2

COORDINATE-FREE QUANTIFICATION

OF COVERAGE IN DYNAMIC SENSOR

NETWORKS

The paper this chapter is based on was published in Signal Processing. See [22] or arXiv:1411.7337.

2.1 Introduction

Wireless sensor networks gained attention and popularity when technological advances allowed

for the development of small, low-cost wireless sensors. These simple devices could be distributed

5
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NETWORKS

over a region, with each sensor (or ‘node’) gathering data about its local environment for purposes

of monitoring, detecting or reporting. In recent years, the study of wireless sensor networks has sig-

nificantly increased, with research into methodologies for the different layers of the sensor network

protocol stack (physical, data link, network, transport and application layers), each developing into

their own sub-field. Areas of application include military, industrial, and environmental monitor-

ing and tracking. See [3] and [60] for surveys of the field.

A particular problem in sensor networks which quickly gained research interest is the so-called

‘coverage problem’ [28]. Given a set of (typically homogeneous) sensors, each with the ability to

sense some region of immediate proximity to it, one wishes to make statements about the sensing

ability of the entire network, taken as a whole. An initial question is whether every point in a region

of interest is covered by at least one sensor. As sensor networks developed, it was no longer realistic

to assume a static network, and node mobility became a factor in network analysis and design. It

became clear that mobility of nodes could be considered for initial deployment [44] [27], as well

as for improving coverage over time [36]; thus, the development of methods to study dynamic, or

time-varying sensor networks has become increasingly important.

A number of methods for determining area coverage were developed, and for efficiently de-

ploying nodes to provide complete or optimal coverage, see [50] for a survey. Such methods require

geometric information about the locations of the sensors, or their distances from each other, in

addition to information about the geometry of the coverage area for each sensor. Methods from

computational and stochastic geometry have been used to study the coverage properties of dy-

namic sensor networks when complete geometric information is available [43]. The coverage is

described using statistics such as the proportion of uncovered area at each time point, or the pro-

portion uncovered over a time interval (where a point is considered covered if it is covered at any

time during the interval). These descriptors have been used to analyze and compare various mo-

bility models for dynamic networks, to determine advantages and disadvantages of each, as well

as optimal strategies for intruder detection [37].
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The availability of geometric information, such as global coordinates for the nodes, or distances

between them, is often an overassumption. Instead, ‘coordinate-free’ methods compute network

properties using only local, binary information about which nodes are within communication range

of each other. De Silva and Ghrist [47]were the first to propose a rigorous method for determining

coverage which did not require location or distance information, by invoking tools from simplicial

homology theory (see Section 2.2 for details). Such homological methods are able to give guaran-

tees that a network is covered at a single time point, or over a time interval, using only coordinate-

free data.

Other researchers have used coordinate-free data to study network coverage by detecting ap-

proximate boundaries of coverage holes in static networks. Some methods (such as in [30] or [35])

define interior nodes using specifically structured sub-graphs (‘flowers’ or ‘3MeSH rings’, respec-

tively), while another method defines boundary nodes by using breaks in iso-contours formed by

hop distance from a base node [20]. One method estimates the boundary by using a multi-step

procedure built using the cuts in a shortest path tree which ‘forks’ around coverage holes [51]. All

of these methods can obtain good experimental results, but are relatively dependent on the net-

work having a high density, so the holes are large compared to the distances between neighboring

sensors [29].

In this chapter, we consider the study of coverage properties of sensor networks which are both

coordinate-free and time-varying. Information from the network is available as a series of discrete-

time snapshots, where each node returns a list of other nodes which are within its local area. In so

doing, we compute the number of coverage holes at each time point, as well as information about

estimated hole sizes, and how the holes persist over time. This information is summarized in a ‘bar-

code’ describing the birth and death times of homological features in the network over time, and

we describe the relationship between these features and the coverage properties. The barcode is

obtained by employing a method from the mathematical field of computational topology, called

zigzag persistent homology ([8], [7]). We also propose an additional algorithm which returns spe-
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cific cycles in the network characterizing the coverage holes over time, which aid in estimating the

size of the holes.

The method we describe here is the only one currently available which can quantify the cover-

age dynamics in a coordinate-free network. We will also see that it correlates well with other cover-

age measures which utilize full geometric information. Further, the barcode includes information

about how coverage holes form, merge, split and close in the time-varying network, which is not

available using existing methods (whether geometric information is included or not). In the past,

homological methods have been able to give guarantees that a network is covered at a single time

point, or over a time interval, while geometric methods have been used to obtain summary statis-

tics which describe the time-varying nature of the network coverage. Here, we use homological,

coordinate-free methods to obtain a descriptor of the dynamic network coverage.

As our primary contributions, we propose how the ‘barcode’ output from zigzag persistence can

be used as a quantitative descriptor of time-varying coverage in a network, and moreover describe

an algorithm we developed for choosing a specific geometrically-relevant cycle for each coverage

hole in the network at each time point. The utility of the barcode is illustrated by using it to quantify

and compare coverage dynamics for different models of sensor mobility. Our novel representative

cycles are used in conjunction with a hop distance-based method to obtain size estimates for the

holes, and this information is incorporated back into the barcodes, giving a visual and quantitative

summary of the dynamic network coverage. Further examples demonstrate the effectiveness of this

descriptor in tracking small coverage holes appearing in dense networks, in identifying expanding

failure regions, and in monitoring the maintenance of a protective barrier of mobile sensors around

a guarded region.

The organization of this chapter is as follows: In Section 2.2 we will first describe the basics of

simplicial homology, and how it has been effectively used to give global coverage guarantees for

both static and dynamic coordinate-free networks. In Section 2.3 we will outline our primary com-

putational tool, zigzag persistent homology, and describe the additional types of coverage results
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it allows. Section 2.4 details the hop distance-based filtration, and its use in estimating hole sizes

for a given simplicial complex. Section 2.5 provides an outline of our method for obtaining specific

representative cycles (which will be described in full detail in Chapter 3), and how these cycles can

be used with the hop distance filtration to enhance the barcode with estimated size information

for each bar at each time point. This is followed by examples illustrating the utility of the method,

and by concluding remarks.

2.2 Preliminaries

The adopted sensor network coverage model assumes homogeneous, isotropic sensors with sens-

ing radius r , so that each sensor is at the center of its associated coverage region, which is a disk

of radius r . This ‘Boolean disk coverage model’ is the most widely used sensor coverage model in

the literature [50]. Throughout this chapter, we will assume that the network consists of n sensors,

indexed 1 through n . If sensor i is located at xi ∈�2, then denote the disk of radius r centered at xi

as B (xi , r ). Then the coverage region� , for the entire network, is the union of all such disks:

� =
n⋃

i=1

B (xi , r ). (2.1)

To study the coverage holes appearing in� two concepts are useful: the concept of homology,

and that of representing a sensor network with a simplicial complex. Homology is a mathematical

method which, intuitively, is used to define and categorize holes in spaces, (which are exactly the

features of interest here, and are called topological features). Thus, coverage analysis reduces to

analysis of the topology of the space� . The tools for this analysis are well established in algebraic

topology, and aim at quantifying the topology of a space by assigning algebraic invariants called

homology groups. Representing a space as a simplicial complex (which can be achieved using local

information only), provides a discrete combinatorial representation enabling computations of the

homology groups. Thus in a sensor network setting, guarantees can be made about coverage for
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the entire network [47], using reasonably coarse local information. The local information required

at each sensor is simply a list of the other nodes within a known communication range.

2.2.1 Simplicial homology

The theory of homology has a long and rich history, with results available in much greater gener-

ality than necessary for our purposes here (see [25] for a good introduction to algebraic topology,

including homology theory). The situation we will be considering is when the spaces under analy-

sis are simplicial complexes, yielding matrix calculations for computing homology. First, we define

a simplicial complex, and its homology.

Definition: A k -simplex is a set of k + 1 vertices, or singleton elements. Any subset of the k + 1

vertices forming a simplex is called a face of the simplex, where each face is, itself, also a simplex.

A simplicial complex, K , is a set of simplices such that any simplex in K also has all of its faces

in K .

A simplicial complex can be thought of as a higher-dimensional analogue to a graph. Although

simplicial complexes can be represented purely abstractly as a collection of sets of vertices (as

above), they are also often defined or visualized as being embedded in a Euclidean space. These

geometric simplicial complexes must additionally satisfy the requirement that the intersection of

any two simplices is a face of each of them. The geometric setting is useful because vertices are rep-

resented as specific coordinate points, and simplices as their convex hull. In that case, a 0-simplex

is a vertex (also called a node), a 1-simplex is an edge between two vertices, a 2-simplex is a trian-

gle, and higher dimensional simplices are defined analogously. For computational purposes the ab-

stract combinatorial representation is used, because its discrete nature lends itself well to compact

storage and calculations. In particular, this representation allows for straightforward computation

of homology. Figure 2.1 shows 0-, 1-, 2-, and 3-dimensional simplices (left), and an example of a

small simplicial complex (right), with vertices labeled and orientations indicated on the edges.
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Definition: (Homology) Given a simplicial complex K we build the chain spaces C0, C1, C2, . . .,

where Ck is the vector space formed by using the k -simplices as basis elements. We then encode

information about the specific structure of the simplicial complex in the boundary maps ∂1, ∂2, . . .,

where

∂k : Ck →Ck−1

describes explicitly how the k -simplices are connected to the (k −1)-simplices. For k -simplexσ =

[v0, v1, . . . , vk ], the boundary map ∂k mapsσ onto the alternating sum of its faces:

∂kσ =
k∑

i=0

(−1)i [v0, . . . , v̂i , . . . , vk ]

where v̂i indicates the vertex vi removal. Note that the above definition of the boundary operator

depends on the initial ordering of the simplex, which is referred to as orientation. The simplices

are assigned arbitrary orientations. Then the k t h homology group is defined to be

Hk (K ) = ker(∂k )/im(∂k+1)

and the k t h Betti number (denoted βk ) of the simplicial complex K is the rank of Hk (K ).

To understand this definition, let us look at what ker(∂k ) and im(∂k+1) mean individually. In

general, ∂k maps a k -simplex σ onto its boundary (which is made up of (k − 1)-simplices), so if

σ = [vi , v j ] is an edge, then ∂1σ = v j − vi is the difference ofσ’s vertices. Similarly, ifσ = [vi , v j , vk ]

is a triangle (a 2-simplex), then ∂2σ = [v j , vk ]− [vi , vk ] + [vi , v j ] is the alternating sum of its edges.

An element c in the chain space Ck is just a linear combination of k -simplicesσ1, . . . ,σnk
,

c =
nk∑

i=1

aiσi
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and can be written as a vector c = [a1, . . . , ank
]of length nk = (# of k -simplices in K ). The coefficients

ai come from a field� (such as the real numbers), but we choose to perform our computations over

the field �2 = {0, 1} (in this case, the interpretation is that simplices with nonzero coefficients are

the ones present in the chain c ). The boundary operator ∂k is written as a nk−1×nk matrix, so the

computation of the boundary for any chain reduces to the matrix multiplication ∂k c . Any chain

with boundary zero (i.e. any c such that ∂k c = 0) is called a cycle, and so ker∂k is the set of all k -

cycles. In particular, the boundary of a simplex will form a cycle, which implies that all boundaries

are themselves cycles (i.e. im∂k+1 ⊆ ker∂k ). This also implies the general property that ∂k∂k+1 = 0.

We can now reinterpret the definition of homology as “cycles which are not boundaries”.

Definition: Two cycles c1 and c2 are homologous (written c1 ∼ c2) if their difference can be written

as a linear combination of boundaries. The set of all cycles that are homologous to a given cycle

(say c ) is called a homology class (denoted [c ]). All cycles in the same homology class will surround

exactly the same hole (or set of holes). When a specific cycle is chosen to represent an entire homol-

ogy class, it is called a representative cycle. The span of the homology classes defined by k -cycles

form the k t h homology space.

It is in this sense that the rank of the k t h homology group (the Betti number βk ) counts the

number of k -dimensional ‘holes’ in the simplicial complex. Intuitively, β0 counts the number of

connected components, β1 counts the number of ‘holes’ as we normally think of them (empty

regions that one can form a loop around), β2 counts the number of enclosed voids, and higher-

dimensional homology is defined analogously.

In Figure 2.1, the cycle formed by edges [v2, v3], [v3, v4], and [v2, v4] is the boundary of the triangle

[v2, v3, v4], and thus is equivalent to zero (trivial) with respect to homology. The cycle formed by

edges [v1, v2], [v2, v4], [v4, v5], and [v1, v5], which we denote by c , cannot be written as the boundary

of triangles, and is thus non-trivial with respect to homology. Note also that the non-trivial cycle c ,

is homologous to the cycle formed by edges [v1, v2], [v2, v3], [v3, v4], [v4, v5], and [v1, v5].

12



2.2. PRELIMINARIES
CHAPTER 2. COORDINATE-FREE QUANTIFICATION OF COVERAGE IN DYNAMIC SENSOR

NETWORKS

Figure 2.1 Simplices and a small simplicial complex

c ∼ 0

c1

c2 c1+ c2

Figure 2.2 Topological space with first homology of dimension two.
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A final concept to highlight is that of a homology basis. As seen in the above definitions, given

a simplicial complex K , the k t h homology group Hk (K ) is a vector space of dimension βk , and

therefore any linearly independent set of βk homology classes form a basis for Hk (K ). As an ex-

ample, consider Figure 2.2, which illustrates a space with two holes (so β1 = 2). The cycle c does

not surround any holes, and is homologous to zero (i.e. it is trivial). The homology class [c1] con-

tains all cycles which surround only the righthand hole, and is represented by cycle c1. Similarly, c2

represents the homology class of cycles surrounding the lefthand hole. Note that the cycle c1 + c2

is homologous to the sum of the cycles c1 and c2. Thus, this space has three distinct, non-trivial

homology classes: [c1], [c2], and [c1 + c2], any two of which form a basis for the first homology (eg.

{[c1], [c2]} form a basis, as does {[c1], [c1 + c2]}). Given a compact region of the plane, such as the

one shown, there exists a canonical basis for its first homology, namely the basis with one homol-

ogy class surrounding each of the holes ([c1] and [c2] in our example). This result is a specific case

of the more general principle of Alexander Duality (see, for example Ch. 5 of [39]). The concept of

a canonical homology basis will become relevant for us again in Section 2.5, where we describe

our method for choosing a set of representative cycles in an attempt to approximate the canonical

basis for the coverage area of a sensor network.

2.2.2 Simplicial complex representation of a sensor network

For the purposes of analyzing the coverage region of a sensor network, we are interested in comput-

ing the homology of� (the coverage region for the network - defined in Equation (2.1)). Specifically,

we are interested inβ1 = rank(H1(� )), the rank of the first homology group, to determine how many

holes are present in the network. Given a set of sensors, proceed to build a simplicial complex by us-

ing the sensors as vertices, and adding higher dimensional simplices (edges, triangles, etc) between

them on the basis of the distances between the sensor vertices. Two common ways to build a sim-

plicial complex from a set of points entail the use of the Čech, and the Vietoris-Rips complexes. For

the following definitions, we assume vertex vi corresponds to sensor i , which has location xi ∈�2,
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and the disk of radius r centered at xi is denoted B (xi , r ).

Definition: A Čech complex contains the k -simplex formed by vertices

{v0, v1, . . . , vk }whenever
k⋂

i=0

B (xi , r ) �= �.

Definition: A Vietoris-Rips complex (also referred to as a Rips complex) includes the k -simplex

formed by vertices {v0, v1, . . . , vk }whenever

B (xi , r )∩B (x j , r ) �= � for all 0≤ i < j ≤ k .

In other words, the Čech complex contains the higher-dimensional simplex formed by a group

of sensors whenever all the coverage disks of those sensors have a nonempty intersection, and the

Rips complex contains the higher-dimensional simplex whenever the coverage disks of a group

of sensors all intersect pairwise. The coverage region formed by the union of coverage disks for a

sensor network is shown in Figure 2.3 (left), with the associated Rips complex (right). Note that com-

putation of the (k + 1)-wise intersection of disks in the Čech definition requires precise geometric

information about the relative locations xi of the sensors. For the Rips complex, on the other hand,

once edges are formed between all sensors of distance less than 2r , the information about which

higher-dimensional simplices to include directly follows. This is equivalent to requiring only the

binary information contained in the adjacency matrix for the communication graph (where sen-

sors can communicate whenever they are within distance 2r from each other). Both the Čech and

Rips complexes depend on the choice of parameter r , and for a given value of r , the two complexes

will differ precisely when a set of sensors are all pairwise within 2r , but do not all intersect at any

point. A 2D example of when the Čech and Rips complexes will differ is shown in Figure 2.4. Since

the three coverage disks intersect pairwise, but have no triplet-wise intersection (leaving a small

area uncovered), the associated triangle will be in the Rips complex, but not in the Čech (thus, the
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Čech complex reflects the true homology of the coverage region).

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.3 Coverage region and Rips complex for a sensor network.

The configuration displayed in Figure 2.4 also illustrates one of the properties of the Čech com-

plex: it has the exact same homology (number of holes) as the coverage region � , while the Rips

complex can ‘miss’ such small coverage holes. The worst-case detection of missed area is when

the three nodes form an equilateral triangle with edge lengths 2r , is witnessed network-wide when

the sensors lie on a hexagonal lattice. In this case the holes account for ∼ 7% of the total area, and

are not detected by the Rips complex. In practice, when the nodes are distributed uniformly and

randomly, we found the holes missed by the Rips complex amount to� 1% of the total area (sim-

ulations over a range of network sizes and node densities showed instances where the area of the

‘missed’ holes was up to 0.15% of the total area, but more typically they accounted for less than

0.03% of the total area).

The results by De Silva and Ghrist [47] use this simplicial complex representation of a sensor

network, and describe a precise relationship between the sensing radius and the communication

radius of each node which allows coverage guarantees to be made. The sensing radius defines the

coverage region, and the communication radius is used to build the Rips complex used for com-

puting the homology, so their results allow very coarse binary information about pairwise com-
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Figure 2.4 Illustration of ‘missed’ coverage hole.

munication to infer whether global coverage is achieved. They additionally consider a problem in

dynamic networks: does an evasion path exist and allow an intruder to remain undetected over a

time interval?. Their results give conditions which will guarantee that no such evasion path exists.

For our purposes, we will understand that although the holes detected by the first homology

of the Rips complex do differ from the holes in the coverage region (in exactly the way described

above), the holes which are missed are extremely small relative to the size of the network. We will

therefore use the homology computed using the Rips complex as a sufficient approximation. This

is a particularly safe assumption in the time-varying case, because a very small hole which remains

very small over time is justifiably ignored. Throughout, when we discuss ‘network coverage’, we are

referring to the coverage as characterized by the Rips complex.

An additional note on the use of the Rips complex in characterizing a network: the only assump-

tion that is really required is that whenever three sensors can communicate pairwise, then the en-

tire triangle that they define is considered covered. The assumption that the coverage region is the

union of identical coverage disks centered at each node, is thus somewhat stricter than necessary.
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We now consider a time-varying network, which again has only pairwise communication infor-

mation at each time point. We next present a method which, in addition to detecting global cov-

erage, will track homological features over time, and provide information about the number and

duration of coverage holes.

2.3 Coverage properties of dynamic networks

2.3.1 Zigzag persistent homology

Zigzag persistent homology is a recently developed computational method to track homological

features (such as those described in Section 2.2) through a sequence of spaces. In our problem

setting, where sensor networks are represented by simplicial complexes, and the first homology

detects coverage holes, we employ this method to tell us about coverage holes in a time-varying

sensor network. While we give a brief summary here, we defer to [8] and [7] for complete mathe-

matical and algorithmic details (respectively) of zigzag persistence.

We use zigzag persistent homology to study a sequence of simplicial complexes

K1↔ K2↔ . . .↔ Kn .

Call this sequence , and assume each map ‘↔’ is an inclusion: either ‘forward’ as Ki → Ki+1

or ‘backward’ as Ki ← Ki+1. This sequence is studied by computing the associated homology spaces

to obtain the zigzag persistence module

Hp ( ) =Hp (K1)↔Hp (K2)↔ . . .↔Hp (Kn ) (2.2)

One of the main theorems in the theory of zigzag persistent homology, is that such a module

can be uniquely decomposed. Each Hp (Ki ) is a vector space, and the module in Equation (2.2) can

be decomposed into a set of ‘interval modules’, each consisting of one-dimensional vector spaces,
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for some range [b , d ], where 1≤ b ≤ d ≤ n , and zeros outside of this range (see [8] for details). The

intervals in this decomposition are interpreted as the lifetimes of individual homological features

in the sequence, which are summarized by their birth and death times (b and d ). In the sensor net-

work setting, the decomposition of the zigzag persistence module for the first homology gives a list

of birth and death times of the one-dimensional homological features in the sequence. These ho-

mological features describe the time-varying coverage of the network, in a way described precisely

in Section 2.3.2. The multi-set of birth and death times

Pers( ) = {[bj , d j ],}

is the zigzag persistence of our sequence of spaces, and is represented pictorially in two common

ways. The first is a barcode where the x -axis represents time t , the y -axis represents individual

homological features, and each feature is depicted as a horizontal line from its birth time (bi ) to

death time (di ). The second visual representation is a persistence diagram, which plots the points

(bi , di ) on two-dimensional coordinate axes. Thus, all points lie above the diagonal (death occurs

after birth), and points further from the diagonal indicate longer lifetimes. Figure 2.5 shows the

barcode (left) and persistence diagram (right) corresponding to Pers( ) = {[2, 9], [4, 7], [6, 8], [9, 10]},
as an example.

This output of a discrete set of birth and death times for homological features can be used to

quantify the time-varying coverage for a given dynamic sensor network, as described in the follow-

ing section.

2.3.2 Barcodes as descriptors of coverage

Here we describe how the framework of zigzag persistent homology may be adapted to describe in-

formation about time-varying coverage in a dynamic sensor network. Section 2.2.2 described how a

sensor network is represented as a simplicial complex derived from the communication graph, and
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Figure 2.5 Barcode and persistence diagram.

the first homology of this complex is used to determine coverage of the network. We now consider

a time-varying sensor network, whose communication graph (and thus its associated simplicial

complex) is available at a sequence of discrete time points. It is assumed that each sensor has a

unique node identification number in {1, . . . , n}, and so a correspondence can be made between

the simplicial complex at one time point and the next.

Given simplicial complexes at two consecutive time points ti and ti+1, we do not have a direct

inclusion map Kti
→ Kti+1

or Kti
← Kti+1

, because there may be a number of simplices that are

present in Kti
but not in Kti+1

, and vice versa. To employ the machinery of zigzag persistent homol-

ogy, we require inclusion maps (either forward or backward) between consecutive spaces. To that

end, we map through the union space Kti
∪Kti+1

, with each of the simplicial complexes Kti
and Kti+1

mapping by inclusion into Kti
∪Kti+1

, as shown in Equation (2.3). Note that the union Kti
∪Kti+1

is

obtained using the abstract simplicial complexes Kti
and Kti+1

by identifying vertices that corre-

spond to the same sensor. For a set of T snapshots at time points t1, t2, . . . , tT , we thus obtain the

sequence of simplicial complexes:
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(Kt1
∪Kt2

) (Kt2
∪Kt3

) (KtT−1
∪KtT

)

↗ ↖ ↗ ↖ ↗ ↖
Kt1

Kt2
· · · KtT

(2.3)

and the associated zigzag persistence module:

H1(Kt1
∪Kt2

) H1(Kt2
∪Kt3

) H1(KtT−1
∪KtT

)

↗ ↖ ↗ ↖ ↗ ↖
H1(Kt1

) H1(Kt2
) · · · H1(KtT

)

See Figure 2.6 for Rips complexes of four time points in a dynamic network (top row), with the

union complexes used for mapping through (bottom row). From the zigzag persistence module

above, the Pers( ) = {[bj , d j ]} containing the lifetimes of the homological features can be com-

puted. At this stage it is worth noting the distinction between homology classes and coverage holes,

as well as the lack of a straightforward definition of what a ‘time-varying coverage hole’ is.

One characterization of a time-varying coverage hole is known as an ‘evasion path’, which means

that there exists a spatiotemporal path which remains uncovered. This can be thought of as a path

that an intruder could travel in order to avoid detection. Homological methods have been used

[48] to give necessary conditions for such an evasion path to exist, using the same coordinate-free

setting assumed here. More recently, it has been further shown [1] that the opposite implication

does not hold. Specifically, the presence of interval [b , d ] in the zigzag persistence output, does not

imply that there exists an evasion path over that same interval. Because of this, there is not a one-

to-one relationship between birth-death intervals and evasion paths. Further, when a hole opens,

travels around in space, and eventually closes, it is clear what is meant by ‘time-varying coverage

hole’, but in some cases a single hole may split into two, or two holes may merge into one. Because

of the ambiguity introduced about ‘which hole’ is obliterated or preserved during these processes,

it is unclear what constitutes a single coverage hole over time. The tracking of lifetimes of homolog-
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Figure 2.6 Sequence of Rips complexes and their union complexes.

ical features in zigzag persistence can, however, be done unambiguously, and although these are

not interpreted as individual time-varying coverage holes, they are related to the coverage region

in the following ways:

1. If a coverage hole appears at time b and remains isolated (does not split or merge with any

other holes) until it disappears at time d , then the exact interval [b , d ] will be present in

Pers( ). This means that in the case where a time-varying coverage hole is well defined, its

lifetime is exactly represented in the barcode.

2. If an evasion path exists over interval [b , d ], then there exists an interval in Pers( ) contain-

ing [b , d ]. This means that no evasion paths will be missed.

3. If Pers( ) = {[bj , d j ] | j ∈ 1, . . . , m} are the intervals output from zigzag persistence, then

define Λi = { j ∈ 1, . . . , m | bj ≤ i ≤ d j } to index the set of intervals which are ‘alive’ at time i .
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Then

|Λi |=β1(Ki )

(the number of intervals alive at any time point is equal to the number of holes in the simpli-

cial complex at that time).

In light of this, we propose the use of the barcode/persistence diagram from zigzag persistent

homology as a descriptor of the coverage of a network over time. In general, more bars and longer

bars correspond to worse coverage. Since the computation only requires the Rips complexes (i.e. ad-

jacency matrices of the communication graph) at each time point, this measure can be computed

without requiring coordinates or distances between the sensors. In particular, summary statistics

such as maximum and mean lifetimes of homological features can be computed, in addition to

analysis of the barcode/persistence diagram as a whole. Metrics (such as the Wasserstein or bottle-

neck distances on persistence diagrams - see [12], [11]) have also been developed to compute pair-

wise distances between two persistence diagrams, which allows for quantification of differences

between the coverage patterns of multiple time-varying networks.

At present, the only methods [37] available for analyzing coverage in dynamic sensor networks

are to measure the coverage directly (using geometric information), and compute the proportion

of uncovered area at each time point, or the proportion uncovered over a time interval (including

a point as covered if it has been covered at any time during the interval).

In the following sections we describe how Pers( ) can be used effectively to quantify cover-

age in mobile sensor networks, and we illustrate its use in comparing mobility models. We further

propose a method which is used in conjunction with the current zigzag persistence algorithm, and

obtains, for each bar, specific representative cycles which are adaptively tracked over time, and can

be used to obtain coarse size information about the holes present in the network.

23



2.3. COVERAGE PROPERTIES OF DYNAMIC NETWORKS
CHAPTER 2. COORDINATE-FREE QUANTIFICATION OF COVERAGE IN DYNAMIC SENSOR

NETWORKS

2.3.3 Comparing mobility models

We present here some results on how the output from zigzag persistence can be used to character-

ize the coverage obtained by different mobility models for dynamic sensor networks. The analysis

of coverage properties of mobility models previously used geometric descriptors to derive analyt-

ical results about the network, such as the limiting distribution of the nodes, the expected time-

until-coverage for uncovered points, or expected proportion of uncovered area [37]. Ours is the first

method which can additionally describe the dynamics of the coverage, in terms of the formation,

duration, and behavior of coverage holes over time.

The two models we discuss are based on Brownian motion, and straight-line motion. For each

of these, it is assumed that the nodes move independently from one another.

2.3.3.1 Mobility patterns: Discrete Brownian and Straight Line

Discrete Brownian: One model used to approximate the random movement of nodes in a large scale

sensor network assumes the moves of each node to be independently and identically distributed

(i.i.d.) according to a Brownian motion (eg. [43]). This is modeled in discrete-time by allowing each

sensor to move according to a 2-dimensional Gaussian distribution at each time step (with variance

proportional to the time increment).

Straight Line: A second commonly-used i.i.d. mobility model has each node choose an initial

random direction and velocity, and then proceed (indefinitely) along this course ([36], [37]). In this

setting, at t = 0 each node randomly chooses a direction θ ∈ [0, 2π) according to some distribution

described by fΘ(θ ), and randomly chooses a speed v ∈ [vm i n , vm a x ] according to a distribution de-

scribed by fV (v ). Typically fΘ(θ ) and fV (v ) are uniform distributions over their respective intervals,

but other distributions are also possible. To compare the experimental results for the two cases, we

choose the initial vector describing the velocity and direction for the Straight Line model from the

same 2-dimensional Gaussian distribution used for each time step in the Discrete Brownian.
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2.3.3.2 Simulations

Simulations were performed in a bounded region [0, 1]2, and for both mobility patterns the initial

positions of the nodes were drawn from a uniform distribution over the region. When the move-

ment of a sensor causes it to reach the boundary of the region, it bounces off with elastic (billiard-

like) collisions, which will cause a change in the direction but not the speed.

Using n = 100 nodes, over an interval of T = 50 time points, 50 replications were generated for

each mobility pattern. The simulations were paired, in that the initial coordinates of the sensors

were the same for the two patterns, and were generated independently for each replication. All

pairings for computing differences between the patterns, and computing the Wilcoxon signed rank

were done by pairing the two replications (one from each mobility pattern) with the same initial

configuration of sensors. The 2-dimensional Gaussian distribution used to initialize the movement

in Straight Line pattern, and at each time point for the Discrete Brownian, had a mean zero and

standard deviation equal to 0.1r (where r = 0.977 is the radius of the coverage disk for each sensor.

This was chosen so that the communication graph would have an average degree of 15). A trace

of one sensor following each of the mobility patterns for T = 20 (top row) and 1000 (bottom row)

time points is shown in Figure 2.7, with the Discrete Brownian mobility pattern on the left, and the

Straight Line mobility pattern on the right.

For each replication, the sequence of T simplicial complexes K1, . . . , KT (representing the sen-

sor network at time points 1, . . . , T ) are used along with the union complexes Ki ∪ Ki+1 for i =

1, . . . , T − 1 to build the sequence , as in Equation (2.3). This is used as an input to compute the

zigzag persistence birth-death intervals Pers( ) = {[b j , d j ]} and associated representative cycles.

A statistical analysis was performed to test for differences in the coverage properties of the two pat-

terns, using both traditional coverage measures and descriptors obtained from our homological

methods. The variables used for analysis are described in Section 2.3.3.3.

Due to the spatial distribution of the nodes being stationary in time (uniformly distributed on
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Figure 2.7 Discrete Brownian and Straight Line mobility patterns.
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Table 2.1 List of the summary statistics extracted from the barcodes.

Variable Description
barcode An m-by-2 matrix containing the set of birth-death pairs for a given simula-

tion run (the number m will vary, run to run). This is the main descriptor of
the tracked homological features using zig-zag persistence.

LTcounts A T -length vector with the counts of how many bars have length (lifetime)
t , for t = 1, . . . , T in a given simulation run. i.e.) LTcounts(1) is the number
of bars that persist for only a single timepoint, LTcounts(2) is the number of
bars with a lifetime of 2,. . ., LTcounts(T ) is the number of bars that persist
over the entire simulation run.

# of bars (scalar) The number m of birth-death intervals {[b j , d j ] | j = 1, . . . , m} in a
barcode for a given simulation run.

sum of bars (scalar) The sum
∑m

j=1(d j − bj ) of all bar lengths (lifetimes) in a given simu-
lation run.

interval coverage A T -length vector giving the proportion of the simulation region covered by
time t , for t = 1, . . . , T in a given simulation run. A point in the simulation
region is considered covered by time t , if it is covered at any point in the
interval [0, t ].

[0, 1]2), all point-wise coverage statistics, such as the average proportion of uncovered area or aver-

age number of coverage holes at any time point, should be the same for the two mobility patterns

[31]. What we expect might differ between the two groups, is the way in which coverage holes form,

merge, split, and close, which can be detected in differences in the distribution of lifetimes of ho-

mology classes (the number and lengths of the intervals in Pers( ). i.e. bars in the barcode).

2.3.3.3 Coverage statistics

The output of zigzag persistent homology on the sequence of simplicial complexes gives a set of

birth-death intervals Pers( ) = {[b j , d j ] | j = 1, . . . , m} for each replication (each represented as a

barcode). Statistical analysis is performed using 50 barcodes for the Discrete Browian simulation

runs, and 50 barcodes for the Straight Line simulations. The summary statistics extracted from the

barcodes are described below, with results of the statistical analysis on theses variables detailed in

Section 2.3.3.4.
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Example barcodes from one simulation run and for each mobility pattern are shown in Figure

2.8 (Discrete Brownian - left, Straight Line - right). The colors of the bars will be later used when

identifying bars with specific representative cycles. Note that a quick look at a single pair of bar-

codes does not unveil a clear indication of whether there is a difference between the time-varying

first homology of the two patterns, thus justifying a more careful statistical analysis. Since the mo-

bility patterns are time-stationary, the variables involving the lifetimes of the homological features

are of greatest interest, in contrast to those which depend on the specific birth or death time. The

statistically insignificant differences in the barcodes led us to look at lifetimes of the homological

features.
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Figure 2.8 Barcodes for realizations of Discrete Brownian and Straight Line.

2.3.3.4 Results

The results given in this section are each followed by a set of brackets containing the mean and

standard deviation (in parentheses) for each group, followed by the p -value obtained from the

nonparametric Wilcoxon signed rank test. This test was used as a result of the invalid normality

assumption necessary for a paired samples t-test.
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Comparing the Discrete Brownian motion and Straight Line mobility patterns, there is no statis-

tically significant difference between the two groups for # of bars [DB=42.42(10.52), SL=42.6(6.42),

p = 0.70], or sum of bars [DB=201.96(48.19), SL=197.58(25.50), p = 0.71]. There is however a statisti-

cally significant difference in the variance of the two patterns for both # of bars (p < 0.001) and sum

of bars (p < 0.0001), with the Discrete Brownian pattern having larger variability than the Straight

Line. Figure 2.9 shows histograms for the distribution of # of bars (left) and sum of bars (right) for

the Discrete Brownian (top row) and Straight Line (bottom row) mobility patterns.

The counts of lifetimes are distributed differently for the two groups. The Discrete Brownian

mobility pattern has a significantly higher number of very short lifetimes (for t = 1, p < 0.0001),

and very long lifetimes (for t = 50, p < 0.001). A few long lifetimes (t = 19 and 22) are also more

frequent in the Discrete Brownian pattern, with moderate significance (p < 0.05). The Straight Line

mobility pattern has a significantly higher number of short-medium length lifetimes (t = 4, . . . , 13,

all have 0.001 < p < 0.05). Even after a Bonferroni correction for multiple hypothesis testing, the

differences for t = 1 and 50 are still statistically significant (at the level p < 0.001). Histograms of

LTcounts for the two mobility patterns are shown in Figure 2.10, with the lifetimes that show statis-

tically significant differences highlighted. The Discrete Brownian (top left) and Straight Line (bot-

tom left) mobility patterns, as well as the paired difference in LTcounts (right) are shown, with the

lifetimes whose frequency has a statistically significant difference between the groups highlighted.

The lifetimes that occur more frequently in the Discrete Brownian pattern (t = 1, 19, 22 and ,50) are

highlighted in red in the top plot, and those that occur more frequently in the Straight Line pattern

(t = 4, . . . , 13) are highlighted in green in the bottom plot.

The variable interval coverage is a more traditional coverage measure, and we see that over time,

the Straight Line mobility pattern will sweep out coverage of a greater proportion of the total area

than the Discrete Brownian model. The proportion of area covered over time interval [0, t ] for each

of the two mobility patterns, are shown in Figure 2.11, with all simulation runs overlaid as dot-

ted lines. Mean interval coverage is shown as a thick solid line for each mobility pattern (Discrete
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Brownian in red, Straight Line in green). The difference between the two mobility patterns in inter-

val coverage is statistically significant for time points t = 7, . . . , T (p < 0.001). This is in agreement

with previous work [36], as well as the fact that a sensor traveling a path of fixed total length will

cover the greatest area if it travels in a straight line. We additionally note that the time-point-wise

coverage, measured by proportion of covered area, as expected shows no statistically significant

difference between the patterns, see Figure 2.12. Again, all simulation runs are overlaid as dotted

lines, with mean coverage shown as a thick, solid line for each mobility pattern (Discrete Brownian

in red, Straight Line in green)
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Figure 2.9 Histograms comparing number of bars in two mobility patterns.

2.3.3.5 Discussion

While it may appear by the above results that the two mobility patterns both have the same sta-

tionary distribution, and the same average energy expenditure at each time point, there is a dif-

ference in the time-varying coverage pattern displayed by the two models. For the Discrete Brow-

nain mobility pattern, the erratic movement of the sensors results in many quickly appearing and

disappearing small holes (usually present for only a single time-point). Additionally, this mobility
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Figure 2.10 Comparison of counts of lifetime lengths for the two patterns.
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Figure 2.11 Mean interval coverage for the two patterns.
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Figure 2.12 Proportion of area covered over time for the two patterns.

pattern displays significantly more long-lasting coverage holes, which typically correspond to large

holes that are present in the initial configuration (i.e. the mobility pattern does not fill in existing

holes quickly). For the Straight Line mobility pattern, since the sensors are each following a smooth

trajectory, the coverage holes seem to appear, grow, shrink and disappear smoothly, instead of ap-

pearing and disappearing rapidly, or remaining uncovered for longer periods. In light of this, the

Straight Line mobility model would be preferable in situations such as surveillance, or intruder

detection, where it is important to quickly cover holes present in the initial deployment, and long-

lasting coverage holes would prove costly. The Discrete Brownian model might be more desirable

in circumstances where a thorough inspection takes precedence over time, such as in geographical

surveying or environmental monitoring.

2.4 Coordinate-free estimation of hole size

The barcode obtained from zigzag persistence gives us a quantitative descriptor for the time-varying

coverage of a network. Just as knowing the Betti number (number of holes) for a given simplicial

complex tells us nothing about the hole sizes, the presence of a long bar in the barcode may or may
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not correspond to a large hole geometrically. Given that our network is described as a sequence of

adjacency matrices (describing the simplicial complex at each snapshot, but without coordinate

information), the best available estimate is the hop-length of the shortest cycle surrounding a hole.

This can be obtained without having to compute the shortest cycle explicitly, by performing a hop-

distance filtration on the simplicial complex (at each time point). For a simplicial complex K , the

hop distance filtration is a nested sequence of simplicial complexes K 1 ⊆ K 2 ⊆ . . . defined as fol-

lows:

Definition: The hop distance filtration on a simplicial complex K , performed up to a maximum

hop distance of m , is a nested sequence of simplicial complexes K 1 ⊆ K 2 ⊆ . . . K m , defined induc-

tively:

1. K 1 is the original complex K

2. K h contains all of the simplices of K h−1, and adds edges between any nodes that were h hops

apart in K , as well as all possible higher-dimensional simplices (i.e. if three edges forming a

triangle are present in K h , the associated 2-simplex will be added to K h as well).

A hop distance filtration for a simplicial complex consisting of a single loop is shown in Fig-

ure 2.13. The original complex, K , consisting of a single loop is shown on the left, followed by the

complexes K 2 (center) where there is still a non-trivial homology class, and K 3 (right) where the

hole is completely filled in. Since the loop has a hop-length of 7 hops, it becomes ‘filled in’ by a

triangle at a depth of 3 in the hop distance filtration (when edges are added between nodes that

are three hops apart). Table 2.2 gives the relationship between the hop-length of the shortest cycle

surrounding a hole, and its persistence in the hop distance filtration. For a given simplicial com-

plex, each of its holes will have a corresponding ‘depth’ to which they persist in the hop distance

filtration. The depths themselves can be taken as measures of the sizes of the holes, or alternatively

the depths squared may be used (since the depth is a length-based measurement, its square will be

proportional to area). This one measure may be used as an overall relative measure of persistence.
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1 hop (original complex) 2 hops 3 hops

Figure 2.13 Illustration of hop distance filtration.

Hop-length of shortest Persistence of hole in
cycle surrounding hole hop distance filtration

4, 5, 6 1
7, 8, 9 2

10, 11, 12 3
...

...
3k +1, 3k +2, 3k +3 k

Table 2.2 Hole size (in hop-length) and corresponding depth in hop-distance filtration.
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To illustrate the benefit of incorporating hop-distance size estimates, we compare various possi-

ble homological descriptors of timepoint-wise coverage with the true geometric coverage informa-

tion. This was carried out for each time point in all of the simulation runs for the Discrete Brownian

model described in the previous section (for 50×50= 2500 points), the results of which are shown

in scatterplots in Figure 2.14. The plots shown are: left - first betti number (r = 0.176); middle - sum

of hole sizes (measured using depth in hop distance filtration, r = 0.505); right - sum of squared

hole sizes (measured using depth in hop distance filtration, r = 0.747). For a given sensor network

we measure the geometric coverage by the proportion of total area contained inside the coverage

holes (ignoring uncovered area along the boundary of the simulation region, which is undetectable

by the simplicial complex), and refer to this measure as coverage hole area. The homological cov-

erage descriptors based on coordinate-free data only are:

1. The number of holes in the complex (first Betti number)

2. The sum of the hole sizes (measured by depth in the hop distance filtration)

3. The sum of the squared hole sizes (i.e. sum of squared depths)

As mentioned above, the number of holes in a simplicial complex (the first Betti number) does not

describe the hole sizes at all. By combining information about the number of holes along with their

estimated sizes, we are able to obtain a coordinate-free descriptor which correlates well with the

true geometric information about the size of the coverage holes. This is rather surprising, since the

coordinate-free information is very coarse relative to the geometric.

A note on the computational complexity of performing the hop distance filtration is in order,

since the simplicial complexes K h grow large quickly as h increases. The filtration does not gen-

erate any new first homology, and all holes are present in the original complex, so only the death

times need to be computed. This may be accomplished by computing the first Betti number for

each of the subsequent complexes, yielding the number of holes ‘killed’ at each depth. A topology-

preserving simplicial collapse [54] is performed on each of the complexes before computing the

35



2.4. COORDINATE-FREE ESTIMATION OF HOLE SIZE
CHAPTER 2. COORDINATE-FREE QUANTIFICATION OF COVERAGE IN DYNAMIC SENSOR

NETWORKS

0 1 2 3 4 5 6 7 8 9 10
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
(Correlation 0.17979)

Number of holes (β
1
)

C
ov

er
ag

e 
ho

le
 a

re
a 

(p
ro

po
rt

io
n)

0 2 4 6 8 10 12
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
(Correlation 0.50828)

Sum of hole sizes (hop dist)

C
ov

er
ag

e 
ho

le
 a

re
a 

(p
ro

po
rt

io
n)

0 2 4 6 8 10 12 14 16 18 20
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
(Correlation 0.74768)

Sum of squared hole sizes (hop dist)

C
ov

er
ag

e 
ho

le
 a

re
a 

(p
ro

po
rt

io
n)

Figure 2.14 Coverage hole area vs homological features.

first homology, to increase efficiency of the computations. An alternative method to improve effi-

ciency would be to compute persistent homology of the filtration using the Morse theoretic col-

lapse algorithm presented in [40].

In addition to using the hop-distance filtration as a measure of the sizes of the holes present in

the network at each time point, we would like to link the hole sizes present at time i , with the bars

(obtained from zigzag persistence) at time i , for each time point i . The hop depth information can

be combined with the zigzag persistence, to enhance a barcode with estimated size information

for each bar at each time point. To that end, we need to make a choice for the homology class corre-

sponding to each bar, as well as a specific representative cycle for that homology class. Observing

when the inclusion of the cycle becomes trivial in the hop-distance filtration will tell us the size of

the largest hole that cycle encircles. Unlike the set of birth-death intervals, the choice of homology

class for each bar is not unique, so we would like our choice to be geometrically-motivated, and

as close as possible to the ‘canonical basis’ described at the end of Section 2.2.1, thus having each

homology class surrounding exactly one hole. The method we propose to achieve this is described

in the following section.

To obtain the set of depths for a given complex, it is not necessary to use persistent homology

to compute explicitly the depth of each hole in the hop distance filtration. Since all the holes are

present at h = 1 (the original complex), simply computing the first Betti number for each of the
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subsequent complexes, until the first homology is trivial, will yield the number of holes that are

‘killed’ at each depth. Since the sizes of the complexes grows large quickly as h increases, this can

be obtained efficiently by performing a topology-preserving simplicial collapse method [54] before

computing the homology.

2.5 Tracking representative cycles

Given the set of intervals {[bj , d j ]} obtained from zigzag persistence, we want to have a choice of

representative cycle for each interval, at each time point. The homology classes for this set of cycles

should form a basis for the homology, and the choice of representative cycles over time should map

into each other in a meaningful way. We propose a method, to be computed alongside the zigzag

algorithm, which returns such representative cycles. The method is briefly described here, with a

detailed mathematical and algorithmic description reserved for Chapter 3.

Intuitively this method aims to compute a ‘canonical basis’ (described at the end of Section

2.2.1), where there is one representative cycle surrounding each hole. Given the Rips complex for

a static sensor network, without an embedding or geometric information, such a canonical basis

is impossible to obtain. In the time-varying setting however, a small amount of ‘canonical’ infor-

mation is available: when a coverage hole is first formed by the removal of a 2-simplex (triangle),

the boundary of that triangle is known to surround exactly the hole of interest. The idea behind

our method is then to use that boundary as the representative cycle for the homology class at its

birth time, and propagate that information forward through the sequence of complexes as best as

possible. The representative cycles we choose need to also be compatible with the interval decom-

position in the zigzag algorithm, (the technical detail of this compatibility is described in [21]).

When applying this method alongside the zigzag algorithm, each bar in Pers( ) = {[b j , d j ]} is

associated with a specific representative cycle at each time point. This associates each bar with a

specific hole (or set of holes) that it surrounds, even though this information is not directly avail-
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able to us. We can obtain size estimates for the hole(s) by including the representative cycle in the

hop-distance filtration of the complex (at each time point), as described in Section 2.4. If the rep-

resentative cycles did indeed form a canonical basis, then the size information about each hole

over time would be attached one-to-one with a corresponding bar. Although guarantees of a true

canonical basis are impossible, when implemented in practice the method gives representative cy-

cles that are geometrically quite meaningful. Short-lived holes are typically surrounded by a tight

cycle at their boundary, and holes that begin with the removal of a triangle and then grow in size

are also well-tracked.

2.5.1 Examples

Here, we present a number of examples where the representative cycles and associated size esti-

mates give useful and interesting results, unavailable through other methods. Recall that all of the

results and computations discussed in this section are obtained using only the communication

graph of the network at each time point, with no information about coordinates or distances be-

tween neighboring sensors.

2.5.1.1 Tracking holes in a dense network

Figure 2.15 illustrates a network which is initially fully covered, and has a number of small coverage

holes appearing over time, one of which is persistent. The barcode displaying lifetimes of homolog-

ical features can be seen in the top left, with the bars color-coded to correspond to their associated

representative cycles in the other figures. It can be seen that each representative cycle remains rel-

atively tight around one coverage hole, and the set of cycles does correspond to a canonical basis

at each time point. Overall, when a network is sufficiently dense that its coverage holes appear

and disappear in an isolated fashion (as opposed to splitting and merging with other holes), this

method performs very well.
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Figure 2.15 Tracking representative cycles in a dense network.
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2.5.1.2 Detecting and evaluating severity of expanding failure region

In dense networks, the coverage holes are typically small and short-lived, so the representative cy-

cles themselves provide fairly accurate tracking. Cases where the representative cycle itself does not

‘tightly’ surround a hole, its inclusion in the hop-distance filtration will still accurately reflect the

size of the hole. This is especially useful for holes that are persistent over time, to better understand

whether the hole is of increasing severity (perhaps due to a malicious attack or systematic failure).

To compute dynamic size estimates for the hole(s) associated with each bar, the persistence in the

hop-distance filtration for each representative cycle is attached to its corresponding bar at each

time point. This is visualized in the barcode by thickening the bar by an amount proportional to

the depth its representative cycle persists in the hop-distance filtration at that time. Figure 2.16

shows snapshots of a time-varying network with an expanding failure region, and the associated

thickened barcode is shown in Figure 2.17 (with hop-distance computed up to a maximum depth

of 3). It can be seen that the hole which is growing in time is easily observed in the barcode as a bar

which thickens over time.

2.5.1.3 Maintaining perimeter around a guarded region

Representative cycles can also be used to determine whether an existing cycle remains unbroken

over time. This can be of particular use when there is an area which needs to remain isolated, while

guards roam about the region surrounding it. Without requiring precise locations of the guards, we

can determine whether there remains an unbroken cycle surrounding the protected area, by track-

ing the persistence of the cycle that is initially present. Figure 2.18 shows a set of sensors/guards

which initially surround a protected area tightly (top row), and then begin randomly moving about

the environment. After some time, the guards still form a cycle (drawn in red, bottom left) which

has been continuously enclosing the protected area, but eventually when the guards wander too

far apart we detect the breaking of the cycle (bottom right).
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Figure 2.16 Network with an expanding failure region.
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Figure 2.17 Weighted barcode for expanding failure region.

Figure 2.18 Tracking perimeter formed by mobile guards.
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2.6 Conclusions and Future Work

We have presented strategies of exploiting computational topology to describe time-varying cover-

age in a dynamic sensor network, while using only local information about which nodes neighbor

each other at each time step.

Zigzag persistent homology takes the sequence of simplicial complexes (representing the dy-

namic network), and outputs a barcode of birth and death times of homological features in the

sequence. We described the relationship between these birth-death intervals and the time-varying

coverage holes in the network, and demonstrated how the barcode output is a useful quantitative

descriptor to detect coverage differences when comparing sensor network mobility patterns.

We developed a method to obtain a specific set of geometrically-meaningful representative cy-

cles for each birth-death interval, at each time point. This set of representative cycles is then used

to track coverage holes over time, as well as to obtain size estimates (in conjunction with a hop-

distance filtration) for the holes at each time point. This size information is then incorporated into

the barcode, for a more complete description of the dynamic coverage of the network. While this

method was developed with applications to dynamic sensor networks in mind, the algorithm may

be also adapted to obtain an adaptive choice of representative cycles in any dimension, for any

persistent homology or zigzag persistent homology computation, thus providing an area for future

research.

A surprising amount of information can be gleaned about the time-varying coverage of the net-

work using homological methods; and, all of this is achieved in a setting where no coordinate or

edge-length information is required, and only a binary adjacency matrix for the network at each

time point is used.
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CHAPTER

3

ADAPTIVE TRACKING OF

REPRESENTATIVE CYCLES IN ZIGZAG

PERSISTENT HOMOLOGY

For the article this chapter is based on, see [21] or arXiv:1411.5442.

3.1 Introduction

The field of topological data analysis [6]has been blossoming in recent years, and many more statis-

ticians, computer scientists and engineers are beginning to use topological tools to study their data.
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The most popular and successful of these tools is persistent homology, a method which character-

izes a space (or object) by using a multi-scale description of its topological features. These include

characteristics like the number of connected components, holes, or voids. A variant of regular per-

sistent homology is zigzag persistent homology, which describes the topological features as they

vary over a sequence of spaces.

In this chapter, we propose an algorithm for obtaining specific representative cycles to track

homological features over a sequence of simplicial complexes in a geometrically meaningful way.

In Section 3.2, we build up the foundational terminology and required notations for our discus-

sion. This includes brief descriptions of simplicial homology and zigzag persistence. In Section 3.3

we describe our method, and propose an algorithm for implementing it on a sequence of simplicial

complexes. Section 3.4 proves the correctness of our algorithm, as it was applied in the examples

in Sections 2.3.3 and 2.5.

3.2 Terminology and notation

3.2.1 Simplicial complexes and homology

We will use ideas from simplicial homology theory throughout, using the same basic definitions

and notations introduced in Section 2.2.1 for simplicial complexes, homology groups and classes.

For a general reference on algebraic topology (including simplicial homology), see [24].

When writing an equation about the homology of a space, we use a general notation of �(K ),

which can be taken to mean that the total homology H∗(K ), or a specific Hp (K ), could be inserted

into the equation in the place of �(K ). Similarly, we use β (K ) = rank(�(K )) as a general notation

for the associated Betti number. For the later applications to sensor networks, and for visualization

purposes, it is convenient to think of�(K ) to mean H1(K ).
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3.2.2 Zigzag persistence

The theory of zigzag persistent homology is concerned with how the homology changes over a

sequence of spaces. There are mathematical results [8] showing that the changing homology of such

a sequence can be expressed uniquely in terms of birth and death times of homological features

in the sequence. There is also an algorithm [7] for computing this birth-death decomposition for

a given sequence of simplicial complexes. In this section we expand on the brief introduction to

zigzag persistence given in Sections 2.3.1 and 2.3.2.

Consider a sequence of simplicial complexes K1, K2, . . . , Kn , connected by either forward inclu-

sion maps Ki → Ki+1 or backward inclusion maps Ki ← Ki+1. We write this sequence as

K1←→ K2←→ . . .←→ Kn .

The inclusion maps induce linear maps between the associated homology spaces Vi = �(Ki ),

which we write as the zigzag persistence module

�= V1
p1←→ V2

p2←→ . . .
pn−1←→ Vn

pn−→ Vn+1, (3.1)

where Ki −→ Ki+1 induces the forward map Vi
fi−→ Vi+1, and Ki ←− Ki+1 induces the backward map

Vi
gi←− Vi+1. Regardless of the direction, we use i (·) to denote the inclusion map between consec-

utive simplicial complexes. We further assume that consecutive simplicial complexes Ki and Ki+1

differ by exactly one simplex, so Ki+1 = Ki ∪ {σ} (in the forward case), or Ki+1 = Ki − {σ} (in the

backward case).

When σ is a d -simplex, its addition results in either an increase in the dimension of the d -

dimensional homology space, or a decrease in the dimension of the (d −1)-dimensional homology

space. Similarly, the removal of a d -simplexσ results in either an increase in the (d−1)-dimensional

homology, or a decrease in the d -dimensional homology. When the dimension of the homology
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Table 3.1 The affected homology space when d -simplex added/removed.

Case Vi
pi←→ Vi+1

1. Birth by addition Hd (Ki )
fi−→Hd (Ki+1)

2. Birth by removal Hd−1(Ki )
gi←−Hd−1(Ki+1)

3. Death by addition Hd (Ki )
fi−→Hd (Ki+1)

4. Death by removal Hd−1(Ki )
gi←−Hd−1(Ki+1)

space increases, we refer to this as a birth, and when the dimension decreases, we refer to this as a

death.

B i r t h : dim(Vi+1) = dim(Vi ) +1

D e a t h : dim(Vi+1) = dim(Vi )−1

Each inclusion between simplicial complexes will induce maps between the homology spaces

of all dimensions, but these maps will be simple identity maps in all dimensions except for one.

This will depend on whether the addition or removal of d -simplex σ results in a birth or a death.

For the addition or removal of a d -simplexσ, the map Vi
pi←→ Vi+1 on the corresponding homology

zigzag module, will be interpreted as a forward or backward linear map between the appropriate-

dimensional homology spaces, as summarized in Table 3.1.

A main result from the theory of zigzag persistence, is that a zigzag module such as in Equation

(3.1) has an interval decomposition,

�∼= �(b1, d1)⊗ �(b2, d2)⊗ . . .⊗ �(bm , dm ), (3.2)

which is unique up to isomorphism, and is equivalently expressed as the multiset of pairings of

births and deaths in the sequence, and represented as integer intervals, called the zigzag persis-

tence of � [8]
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Pers(�) = {[bj , d j ] | j = 1, . . . , m}. (3.3)

These are interpreted as birth and death times of homological features in the sequence.

3.2.3 Right filtration

Given a zigzag module � as in Equation (3.1), the zigzag persistence algorithm [7] computes the

interval decomposition in Equation (3.2) by keeping track of a right filtration R (�) on the spaces.

The right filtration R (�) is computed incrementally, and results in a filtration (a nested sequence

of subspaces) on Vn , along with a birth time associated to each quotient space, as detailed below.

A right filtration on Vi is denoted

�i = (R
0
i , R 1

i , . . . , R i
i ), (3.4)

where R 0
i ≤R 1

i ≤ . . .≤R i
i and R i

i = Vi . The quotients R 1
i /R

0
i , R 2

i /R
1
i , . . ., R i

i /R
i−1
i are each associated

with a birth time b
j

i (for j = 0, . . . , i ), which are recorded in the vector

bi = (b
1
i , b 2

i , . . . , b i
i ). (3.5)

We may write the quotients as

�′i = (R 1
i /R

0
i , R 2

i /R
1
i , . . . , R i

i /R
i−1
i ).

The computation of a right filtration is defined inductively, depending on whether the map from

Vi to Vi+1 is a forward map
fi−→ or a backward map

gi←−. For a single vector space V1, we have the

base case of i = 1, and we define

�1 = (0, V1) and b1 = (0).
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In the inductive step, if we are given�i and bi as in Equations (3.4) and (3.5) above, then

• If Vi
fi−→ Vi+1, then

�i+1 = ( fi (R
0
i ), fi (R

1
i ), . . . , fi (R

i
i ), Vi+1), (3.6)

bi+1 = (b 1
i , b 2

i , . . . , b i
i , i +1).

• If Vi
gi←− Vi+1, then

�i+1 = (0, g −1
i (R

0
i ), g −1

i (R
1
i ), . . . , g −1

i (R
i
i )), (3.7)

bi+1 = (i +1, b 1
i , b 2

i , . . . , b i
i ).

Since we assume that consecutive simplicial complexes differ by at most one simplex, the change

in dimension between Vi and Vi+1 is at most 1. Similarly, the dimension of the quotient space

Ri /Ri+1 is either 0 or 1, for i = 1, . . . , n , with their total dimension equaling that of Vi . The dimension

of Vi is the rank of the homology group for Ki (the Betti number, β (Ki )), which is at most i :

dim(Vi ) = rank(�(Ki )) =β (Ki )≤ i .

For example, the dimension of the quotient spaces will be a sequence of 0’s and 1’s

dim(R 1
i /R

0
i , R 2

i /R
1
i , . . . , R i

i /R
i−1
i ) = (0, 0, 1, 1, 0, . . ., 1, 0).

Note that choosing one homology class from each of the nonzero quotient spaces results in

a basis for Vi . The right filtration on Vi can then be described using the unique subspaces in the

right filtration (which have corresponding quotient spaces of dimension 1). Indexing the nonzero

quotient spaces by j1, . . . , jβ (Ki ), define W k
i = R

jk
i for the spaces R

j1
i , . . . , R

jβ (Ki )

i to obtain a more

49



3.2. TERMINOLOGY AND NOTATION
CHAPTER 3. ADAPTIVE TRACKING OF REPRESENTATIVE CYCLES IN ZIGZAG PERSISTENT

HOMOLOGY

compact representation of the right filtration� :

�i = (W 1
i , . . . , W

β (Ki )
i ) (3.8)

= (R j1
i , . . . , R

jβ (Ki )

i ),

where the R
jk

i are those with dim(R jk
i /R

jk−1
i ) = 1, therefore the quotient spaces W

j
i /W

j−1
i are all

one-dimensional. We say that a basis {[w j
i ]}β (Ki )

j=1 for Vi is compatible with the right filtration�i if

there is one basis element in each quotient space:

[w j
i ]∈W

j
i /W

j−1
i ,

for j = 1, . . . ,β (Ki ). We return to this concept in Section 3.3.2.

Additionally, let

bW
i = (b

j1
i , b j2

i , . . . , b
jβ (Ki )

i ),

contain the birth times of the non-zero quotient spaces, which is the birth vector for� . So bW
i is a

subset of the birth vector bi for the full right filtration� .

The zigzag persistence algorithm is implemented by determining whether a birth or a death

is occurring with each simplex addition or deletion. The right filtration and birth vector are then

updated accordingly, and when a death occurs, the quotient space R
j

i /R
j−1

i corresponding to it is

determined, and the associated birth time b
j

i used to output the interval [b j
i , i ].

While the output of intervals {[bj , d j ] | j = 1, . . . , m} is unique, there may be more than one

way to choose homology classes corresponding to each interval. In Section 3.3 we will propose a

method for choosing a homology class (by choosing a specific representative cycle for it) for each

interval at each time point in a way that is geometrically motivated, all the while compatible with

the right filtration.
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3.3 Tracking representative cycles

3.3.1 Motivation

Our interest in choosing and tracking representative cycles over a sequence of spaces stems from

analysis of coverage holes in time-varying sensor networks. The idea of using homological methods

to study coverage in sensor networks was proposed by de Silva and Ghrist ([48], [47]), and the use

of zigzag persistent homology allows some of these ideas to be employed in the dynamic network

setting. The set of intervals output from the zigzag persistence algorithm describes the birth and

death times of homological features, and these features do not necessarily correspond to individual

coverage holes [1]. Ideally, we are interested in tracking coverage holes over time, but this is not

possible in general, given the constraints on the limited geometric information available with the

adopted sensor network model. Instead, we try and obtain a ‘good’ representative cycle for a hole

as it appears in the network, and then propagate this cycle over time as best as possible. Below

we describe in more detail the model for the sensor network (3.3.1.1), the representative cycles we

would ideally like to obtain (Section 3.3.1.3), and those that we are able to compute (Section 3.3.1.4).

3.3.1.1 Homology for sensor networks

A network consists of a set of sensors, each at the center of an isotropic coverage disk of radius r .

The union of the disks yields the coverage region for the entire network, and we are interested in

making statements about coverage properties of this network, as the sensors are allowed to move

over time. A communication graph is constructed by connecting any two sensors by an edge when

they are less than a distance 2r from one another, and the homology of the Rips complex of this

graph is used to approximate the homology of the coverage region of the network. Figure 3.1 shows

the coverage region (left), communication graph (center) and associated Rips complex (right) for a

given sensor network. Note that a Rips complex is the maximal simplicial complex that can be built
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from a given graph, but since we are only interested in computing the first homology we only need

to consider the 2-skeleton of the Rips complex. The Rips complex includes a 2-simplex defined by

three sensors whenever their coverage disks have nonempty pairwise intersections, so if the disks

have no triplet-wise intersection then a small hole may be present in the coverage region which is

not detected by the Rips complex. See Figure 3.2 (left) for such an example. For our purposes we

designate such holes as too small to be of importance, and work with the homology as it is defined

by the Rips complex. We refer to [48] for an alternative approach, which allows false alarms (holes

in the complex which do not exist in the coverage region), but is able to give coverage guarantees.

A final key result that we mention is by Chambers et al. [9], who show that the first homology

of the Rips complex (a combinatorial object) is the same as the first homology of the projection

of the Rips complex onto the plane (this projection is referred to as the Rips shadow). The Rips

shadow corresponding to the sensor network from Figure 3.1 is shown in Figure 3.2 (right). For a

Rips complex K , we denote its shadow by K S .

Figure 3.1 The coverage region and communication graph for a sensor network.
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Figure 3.2 The Rips complex and Rips shadow of the communication graph.

3.3.1.2 Zigzag persistence for dynamic networks

In a time-varying network (represented by a sequence of simplicial complexes Kt1
, . . . , KtT

), homol-

ogy classes may be tracked over time using zigzag persistent homology by mapping through the

union complexes. So the sequence of simplicial complexes in Equation (2.3) gives rise to an associ-

ated zigzag persistence module.

For implementational and theoretical purposes the sequence in Equation (2.3) is broken down,

with each forward map re-written as a series of single simplex additions, and each backward map

as a series of single simplex deletions. This refinement induces the analogous refinement on the

zigzag module.

3.3.1.3 Canonical basis

Given a compact region in the plane such as the Rips shadow K S , there exists a ‘canonical basis’ for

its first homology space, where each basis homology class surrounds a single hole. Consider K S ,

the complement of K S in�2, then the number of separate components in K S (ignoring the infinite

component) is equal to the number of holes in K S (i.e. the rank of H1(K S )). This result is a specific
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case of the more general principle of Alexander Duality (see, for example Ch. 5 of [39]), which for a

certain class of spaces, relates the k -th reduced homology of a space to the n−k−1-th cohomology

of the complement of the space (where n is the embedding dimension). We do not go into details

here, but the salient point is that a canonical basis exists for the first homology of a space in the

plane, with one homology class surrounding each hole.

Since the Rips complex K and its Rips shadow K S have the same homology, a desirable goal

would be to have a homology basis for the Rips complex, where projection of this basis onto the

Rips shadow gives the canonical basis. In particular, we would like a representative cycle for each

homology class in the basis, where the projection of the representative cycle onto the Rips shadow

is homologous to the boundary of one of the holes. In general, this desirable goal is not possible. The

Rips complex itself is not embeddable in two dimensions, so Alexander Duality cannot be applied

to obtain a canonical basis for its first homology. Moreover, although K has the same homology as

K S , it is impossible to know whether a given homology basis for K corresponds to the canonical

basis or not (without knowing coordinates for the vertices, or the projection map from K onto K S ).

We will see in Section 3.3.1.4 that taking the dynamic nature of the network into account, there

are some cases where it is possible to make a canonical choice for a homology class (with corre-

sponding representative cycle) at its birth or death time. In Section 3.3.2 we present a method for

obtaining these cycles, and for updating them as the network evolves over time, along with an ex-

plicit algorithm for doing so.

3.3.1.4 Partial canonical information

As described in Table 3.1, a homology class can be born by either the addition or removal of a sim-

plex, and similarly a death is caused by either the addition or removal of a simplex, resulting in four

distinct cases for how the homology can change. In this section we illustrate the two cases corre-

sponding to ‘births’, and how one of them allows a canonical choice of homology class. Our discus-

sions here are with respect to the first homology, but the same principles hold for d -dimensional
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homology.

In the sequence of simplicial complexes, the birth of a homology class occurs at time i when

either the forward map Vi
fi−→ Vi+1 has nonzero cokernel, or the backward map Vi

gi←− Vi+1 has

nonzero kernel. Of these two cases, ker(gi ) �= 0 is the only one which indicates the specific homology

class that is being born.

Consider the case where the birth is in first homology. If a hole is formed by the removal of a

2-simplex, then there is a unique homology class (the one surrounding the hole) which is born.

This homology class also the unique homology class in ker(gi ) (i.e.: the only homology class that is

nontrivial in Ki+1 but trivial in Ki ). On the other hand, if a hole is formed by the addition of an edge,

there are many choices for which homology class is being born, with no choice being canonical.

For example, if a hole is split into two by the addition of an edge, then which of them is the ‘new’

hole? See the first two rows of Figure 3.3 for an illustration of these cases.

Our approach then, is to maintain a basis for the homology at each time point, making the

canonical choice of homology class whenever available, and tracking that choice through the se-

quence of complexes as best as possible. Our method for implementing this, along with the specific

basis we maintain and its relation to the zigzag algorithm, is detailed in Section 3.3.2.

3.3.2 Algorithm

As mentioned in Section 3.4, a zigzag module� (Equation (3.1)) has unique interval decomposition

Pers(�) = {[bj , d j ] | j = 1, . . . , m}, which describes the birth and death times of homological features

in the sequence. This decomposition is determined through the maintenance of a right filtration

�i (Equation (3.8)) on the space Vi , and a birth vector bi for i = 1, . . . , n . The zigzag persistence

algorithm performs this task by determining whether a birth or a death is occurring for each sim-

plexσ being added or removed, and updating the right filtration and birth vector accordingly (and

outputting the appropriate birth-death interval whenever a death occurs).

At each stage in our algorithm, we maintain a basis for the homology that attempts to approx-
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Ki Ki+1 Updated cycle
Birth by Addition

Birth by Removal

Death by Addition

Death by Removal

Figure 3.3 The four first homology changes, and corresponding representative cycles.
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imate the canonical basis as best as possible. Further, the basis homology classes are compatible

with the right filtration�i , in the sense that the j t h basis homology class is an element of the j t h

quotient space W
j

i /W
j−1

i . This means that the span of the first j homology classes in the basis

is equal to the j t h subspace W
j

i in the right filtration �i . This property is necessary if we wish

to interpret our basis homology classes as corresponding to particular intervals in the birth-death

decomposition. The intervals are really describing specific quotient spaces in the right filtration

that have persisted over the sequence, so our homology classes need be assigned one-to-one to

the quotient spaces. The proof that this property is maintained during the algorithm is presented

in Section 3.3.2.

The method we present here is computed using the regular zigzag persistent homology algo-

rithm, but keeps an explicit record of the homology basis chosen for the right filtration at each

time point. The homology basis is stored by choosing a specific representative cycle for each basis

homology class. The choice of basis homology classes is not unique, so it is made in a geometrically

meaningful way, attempting to approximate the canonical basis. The zigzag persistence algorithm

supplies information about whether the addition or removal of a simplex σ is causing a birth or

a death. If it is a birth, σ is called a positive simplex, denoted σ+, and if it is a death, σ is called a

negative simplex, denotedσ−.

When a birth occurs, we must add a new representative cycle to our list. As mentioned in Sec-

tion 3.3.1.4, when a birth occurs due to the removal of a simplex σ, there is a canonical choice

available for the new homology class. We choose the boundary ∂ σ of the removed simplex as the

representative cycle for this homology class, since it is the shortest cycle surrounding the new hole.

When the birth occurs due to the addition of a simplexσ, there is no canonical choice for which is

the ‘new’ homology class, but any cycle containingσ will have its homology class in coker( fi ). For

practical reasons, we choose the shortest cycle containingσ as the new representative cycle.

When a death occurs, we must remove a representative cycle from our list. Analogous to the

two ways in which a birth can occur, a death occurs when either the forward map Vi
fi−→ Vi+1
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has nonzero kernel, or the backward map Vi
gi←− Vi+1 has nonzero cokernel. Of these two cases,

ker( fi ) �= 0 is the only one which indicates the specific homology class [c ] = ker( fi ) that is being

killed (becoming trivial). In this case, the death occurs due to the addition of a simplex, and we

reduce the matrix storing the representative cycles with respect to the boundary matrix ∂ , and re-

move the cycle which becomes trivial. If the death occurs on account of the removal of a simplex

σ, then the first representative cycle containing σ is removed, and a change of basis is performed

to removeσ from any remaining representative cycles. This is done in the same way as the change

of basis operation in the regular zigzag persistence algorithm.

We store the representative cycles for time i in the matrix Wi , which is retained for all time

points. The algorithm is summarized below.
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Algorithm for choosing and updating representative cycles

%N o t a t i o n
w l

i = column l of Wi

w
j

i [σ] = coefficient ofσ in w
j

i
∂d = boundary matrix

%I ni t i a l i z e
W0 = n ×0 matrix
b0 = empty vector

%P e r f o r m up d a t e s
for i = 1 to n

if Ki = Ki−1−{σ} %s i mp l e x r e mo v a l
ifσ+ %b i r t h

Wi = [∂ σi Wi−1] %p r e p e nd ∂ σ
bi = [bi−1 i ]

else ifσ− %d e a t h
l = index of first nonzero entry in rσ
cl = rσ(l ), the coefficient ofσ in wl

for j = 1 to (# columns of Wi−1) %c ha ng e o f b a s i s
c j = rσ( j ), the coefficient ofσ in w j

w j =w j − c j

c wl

end
Wi =Wi−1 with column l and row rσ removed
bi = bi−1 with entry l removed

end
end
if Ki+1 = Ki ∪σ %s i mp l e x a d d i t i o n

ifσ+ %b i r t h
Wi = [Wi−1 (C u −σ)] %a p p e nd C u −σ
bi = [bi−1 i ]

else ifσ− %d e a t h
l = index for col of Wi−1 trivial when [∂d Wi−1] reduced
Wi =Wi+1 with column wl removed

end
end

end
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3.4 Correctness

Consider a sequence of simplicial complexes

K1←→ K2←→ . . .←→ Kn .

connected by forward and backward inclusion maps, assuming without loss of generality that

consecutive complexes differ by exactly one simplex. Each space Vi in the zigzag persistence mod-

ule (Equation (3.1)) of this sequence has right filtration�i (Equation (3.8)), with the j t h space in

�i denoted by W
j

i .

The adaptive representative cycles obtained using the algorithm described in Section 3.3.2 are

stored as column vectors w k
i in a matrix Wi

Wi = [w
1
i w 2

i . . . w β (Ki )
i ].

Proposition 3.4.1. The homology classes represented by the cycles w k
i form a basis for Vi , and moveover,

their order in Wi corresponds to the order of the right filtration�i (Equation (3.8)). In other words,

the span of the homology classes of the first j representative cycles is equal to the j t h space W k
i in the

filtration�i of Vi .

i.e.:

span{[w k
i ]} j

k=1 =W j
i , (3.9)

for i = 1, . . . , n and j = 1, . . . ,β (Ki ).

In the remainder of this section, we prove Proposition 3.4.1 by induction on i .

We begin with the base case of a single vector space � = V1, which results from a simplicial

complex of one vertex K1 =σ. This yields
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�1 = (V1),

W1 = [w 1
1 ],

where w 1
1 = [1] is the column vector of length 1 representing the cycle consisting of the vertex σ.

The homology class [w 1
1 ] spans the one-dimensional homology space W 1

1 = V1.

In the inductive step, we assume that for

�i = (W 1
i , . . . , W

β (Ki )
i ), (3.10)

Wi = [w 1
i w 2

i . . . w
β (Ki )
i ], (3.11)

we have (for j = 1, . . . ,β (Ki ))

span{[w k
i ]} j

k=1 =W j
i ,

We will show then that (for j = 1, . . . ,β (Ki+1))

span{[w k
i+1]} j

k=1 =W
j

i+1, (3.12)

for all four of the cases described in the algorithm (Section 3.3.2). In all cases we use σ to denote

the d -simplex being added or removed, and the updates are performed on the representative cycles

and right filtration of appropriate dimension (see Table 3.1).

1. Birth by addition. The map Vi
fi−→ Vi+1 has coker( fi ) �= 0, and the new right filtration is

�i+1 =
�

fi (W
0

i ), fi (W
1

i ), . . . , fi (W
β (Ki )

i ), Vi+1

�
,
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where Vi+1/ fi (W
β (Ki )

i ) = coker( fi ).

The new list of representative cycles is

Wi+1 = [W
σ+

i wn e w ],

where Wσ+

i is the matrix Wi with an additional row of zeros added, corresponding to simplexσ (so

the cycles are now written in terms of simplices of Ki+1 instead of simplices of Ki ), and wn e w is a

cycle in Ki+1 containing σ. There is no canonical choice for which cycle containing σ should be

chosen, and our proof holds regardless of the choice. As mentioned in Section 3.3.2, we make this

choice based on shortest hop length.

Since w k
i+1 = w k

i as chains (with the appropriate row for σ added containing a 0 coefficient),

we get [w k
i+1] = fi ([w k

i ]), for k = 1, . . . ,β (Ki ) because fi is the map induced by inclusion. Therefore

W
j

i+1 = fi (W
j

i )

= fi

�
span{[w k

i ]} j
k=1

�

= span{ fi ([w
k
i ])} j

k=1

= span{[w k
i+1]} j

k=1,

for j = 1, . . . ,β (Ki ).

Finally, we must show that [wn e w ] is nontrivial and is in coker( fi ), and therefore linearly inde-

pendent from {[w j
i ]}β (Ki )

j=1 , so they together span the β (K1) + 1= β (Ki+1)-dimensional vector space

Vi+1 = W
β (Ki+1)

i+1 . First, note that having a nonzero coefficient for σ in wn e w : that [wn e w ] �= 0; and

that any cycle c in the same homology class [wn e w ]will also have a nonzero coefficient forσ. These

are due to the fact thatσ is not contained in the boundary of any other simplex, and the difference

between homologous cycles must be written as a linear combination of boundaries (therefore the

coefficient forσ is zero in the difference c −wn e w , but is nonzero in wn e w , so must also be nonzero
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in c ). Moreover, note that [wn e w ] �⊆ im( fi ), since any homology class in im( fi ) must have a repre-

sentative cycle in the image under inclusion i (Ki )⊂ Ki+1, and all cycles in [wn e w ] containσ �∈ i (Ki ).

Therefore, we have

W β (Ki+1)
i+1 = Vi

= im( fi )⊕ coker( fi )

=
�
span{[w k

i+1]}β (Ki )
k=1

�⊕ [wn e w ]

= span{[w k
i+1]}β (Ki+1)

k=1 ,

as desired.

2. Birth by removal. The map Vi
gi←− Vi+1 has ker(gi ) �= 0, and the new right filtration is

�i+1 =
�
ker(gi ), g −1

i (W
1

i ), g −1
i (W

2
i ), . . . , g −1

i (W
β (Ki )

i )
�

.

This is because in the full right filtration

�i+1 =
�
0, g −1

i (R
0
i ), g −1

i (R
1
i ), . . . , g −1

i (R
i
i )
	

,

if R
j

i /R
j−1

i were nontrivial in�i , then g −1
i (R

j
i )/g

−1
i (R

j−1
i ) will be nontrivial in�i+1 for j = 1, . . . , i .

This means that if W
j

i is a subspace in�i then g −1
i (W

j
i ) is a subspace in�i+1. Also, the new term

g −1
i (R

0
i )/0= g −1

i (0)/0= ker(gi )/0= ker(gi ),

is nontrivial, and yields the first term ker(gi ) in�i+1.

The new list of representative cycles is

Wi+1 = [∂ σWi ],
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where ∂ σ are the simplices that make up the boundary ofσ, but considered in Ki+1, instead of Ki .

First we note that span{[∂ σ]} = ker(gi ). This is because under the backward inclusion map

inclusion map Ki+1
i←− Ki , the image i (∂ σ) is the boundary of simplex σ in Ki and hence homol-

ogous to zero, thus

gi ([∂ σ]i+1) = [∂ σ]i = 0,

which means [∂ σ] ⊆ ker(gi ). The cycle ∂ σ is also nontrivial in Ki+1, because if there exists a d -

chain c in Ki+1 that had ∂ σ as its boundary, then in Ki the union of σ with i (c ) in Ki would form

a d -cycle, and the removal of σ would result in the death of that d -cycle, instead of the birth of a

(d − 1)-cycle, which is a contradiction. Therefore, [∂ σ] spans a one-dimensional subspace of the

one-dimensional space ker(gi ), so span{[∂ σ]}= ker(gi ).

Now we show that W
j

i+1 = span{[w k
i+1]} j

k=1 for j = 1, . . . ,β (Ki+1). First note the index change, so

w k+1
i+1 =w k

i ,

for k = 1, . . . ,β (Ki ). Consider the representative cycle w k
i , and another cycle c which is homologous

to w k
i in Ki . Since c and w k

i are both (d −1)-cycles, they are also present in Ki+1. Then [c ]i = [w k
i ]i

implies [c ]i+1 = [w k
i ]i+1 +a [∂ σ]i+1, where a = 0 or 1. Therefore

g −1
i ([w

k
i ]) = [w

k+1
i+1 ]⊕ [∂ σ].

So

W j
i+1 = g −1

i (W
j−1

i )

= span{g −1
i [w

k
i ]} j−1

k=1

= span


[w k+1

i+1 ]⊕ [∂ σ]
� j−1

k=1
,
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for j = 2, . . . ,β (Ki+1). Combining this with

W 1
i+1 = ker(gi ) = [∂ σ] = [w

1
i+1],

we obtain

W
j

i+1 = span{[w k
i+1]} j

k=1,

for j = 1 . . . ,β (Ki+1), as desired.

3. Death by addition. For the map fi : Vi → Vi+1 we get ker( fi ) = [∂ σ] with a similar proof to

that of case 2 above.

Since ker( fi ) �= 0, we have coker( fi ) = 0, so Vi+1/ fi (Vi ) = 0. Also, there exists an index l ∈ {1, . . . ,β (Ki )}
such that [∂ σ] ∈W l

i , but [∂ σ] �∈W l−1
i (using the convention W 0

i = 0), so

fi (W
l

i /W
l−1

i ) = 0.

This gives

�i+1 =
�

fi (W
1

i ), . . . , fi (W
l−1

i ), fi (W
l+1

i ), . . . , fi (W
β (Ki )

i )
�

,

so we have

W
j

i+1 =

⎧⎨
⎩

fi (W
j

i ) if j < l ;

fi (W
j+1

i ) if j ≥ l .
(3.13)

Considering now the representative cycles, we need to determine the index l . Since the ele-

ments {[w k
i ]}β (Ki )

k=1 form a basis for Vi , we can write uniquely

[∂ σ] =
β (Ki )∑
k=1

αk [w
k
i ]. (3.14)
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Then [∂ σ] ∈ span{[w k
i ]}lk=1 = W l

i , but [∂ σ] �∈ span{[w k
i ]}l−1

k=1 = W l−1
i implies that αl is the last

nonzero coefficient in this sum. We now define

wr e m o v e =w l
i ,

and obtain

Wi+1 = [w
1
i . . . w l−1

i w l+1
i . . . w

β (Ki )
i ],

noting that all of the simplices in the (d − 1)-cycles w k
i are present in Ki+1. Therefore the corre-

sponding homology classes are related by

[w j
i+1] =

⎧⎨
⎩

fi ([w
j

i ]) if j < l ;

fi ([w
j+1

i ]) if j ≥ l ,

for j = 1, . . . ,β (Ki+1), since fi is the map induced by inclusion. This, together with Equation (3.13)

yields

W
j

i+1 = span{[w k
i+1]} j

k=1,

for j = 1, . . . ,β (Ki+1), as desired.

Note that the index l indicating the last nonzero coefficient in Equation (3.14) also determines

the birth-death interval: [bW
i [l ], i ].

4. Death by removal. The map Vi
gi←− Vi+1 has coker(gi ) �= 0. There exists an index l such that

W
j

i ⊆ im(gi ), for all j < l , but W l
i �⊆ im(gi ). Then

g −1
i (W

l
i /W

l−1
i ) = 0,

so

�i+1 = (g
−1
i (W

1
i ), . . . , g −1

i (W
l−1

i ), g −1
i (W

l+1
i ), . . . , g −1

i (W
β (Ki )

i )).
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We note that the image of this in Vi is

gi (�i+1) = �i /coker(gi ) (3.15)

= (W 1
i , . . . , W l−1

i , W l+1
i /coker(gi ), . . . , W

β (Ki )
i /coker(gi )).

Considering now the representative cycles, l is the index of the first representative cycle w l
i

which containsσ. To see that this is the same index l as described above, note that since w k
i doesn’t

contain σ for k < l , we have [w k
i ] ∈ im(gi ), and span{[w k

i ]} j
k=1 = W j

i ⊆ im(gi ), for all j < l , but

span{[w k
i ]}lk=1 =W l

i �⊆ im(gi ).

Denoting the coefficient forσ in representative cycle w k
i by w k

i [σ], we consider another set of

representative cycles in Ki

ŵ k
i =w k

i −
w k

i [σ]

w l
i [σ]

w l
i .

By definition, σ is not present in any ŵ k
i , so we are able to define

w k
i+1 =

⎧⎨
⎩

ŵ k
i if k < l ;

ŵ k+1
i if k ≥ l ,

to be our representative cycles in Ki+1, with the row corresponding toσ removed. Then

Wi+1 = [ŵ 1
i . . . ŵ l−1

i ŵ l+1
i . . . ŵ β (Ki )

i ],

= [w 1
i+1 . . . w l−1

i+1 w l
i+1 . . . w

β (Ki+1)
i+1 ].

We proceed by showing that the ŵ k
i completely determine the quotiented filtration�i /coker(gi )

in Equation (3.15), in the sense that

W
j

i /coker(gi ) = span{[ŵ k
i ]} j

k=1, (3.16)

67



3.4. CORRECTNESS
CHAPTER 3. ADAPTIVE TRACKING OF REPRESENTATIVE CYCLES IN ZIGZAG PERSISTENT

HOMOLOGY

for j = 1, . . . ,β (Ki+1).

To show that Equation (3.16) holds, we show it separately for j < l , j = l , and j > l . For the first

case, note that when w k
i does not contain σ, we have ŵ k

i = w k
i . In particular, for k < l we have

ŵ k
i =w k

i , therefore

W
j

i /coker(gi ) =W
j

i = span{[w k
i ]} j

k=1 = span{[ŵ k
i ]} j

k=1,

for j = 1, . . . , l −1.

By assumption W l
i �⊆ im(gi ), but W l−1

i ⊆ im(gi ), so

W l
i /coker(gi ) =W l−1

i = span{[ŵ k
i ]}l−1

k=1 = span{[ŵ k
i ]}lk=1,

since ŵ l
i = �0.

For j > l , we first note that the homology elements {[ŵ k
i ]} are linearly independent for k ∈

{1, . . . , l − 1, l + 1, . . . ,β (Ki )}. This is because each [ŵ k
i ] is a subset of [w k

i ]⊕ [w l
i ] (but not equal to

[w l
i ]), and the {[w k

i ]} are linearly independent. So {[ŵ k
i ]} j

k=1 span a ( j−1)-dimensional space when

j > l (since [w l
i ] is trivial). Also, because all the ŵ k

i have a zero coefficient forσ, they are not in the

coker(gi ). So

span{[ŵ k
i ]} j

k=1 ⊆W
j

i /coker(gi ).

Moreover, we note that W
j

i /coker(gi ) is also a ( j −1)-dimensional space for j > l . So span{[ŵ k
i ]} j

k=1 =

W
j

i /coker(gi ).

It now follows that since

gi ([w
k
i+1]) =

⎧⎨
⎩
[ŵ k

i ] if k < l ;

[ŵ k+1
i ] if k ≥ l ,
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then

W
j

i+1 =

⎧⎨
⎩

g −1
i (W

j
i ) = g −1

i (W
j

i /coker(gi )) if j < l ;

g −1
i (W

j+1
i ) = g −1

i (W
j+1

i /coker(gi )) if j ≥ l

= span{[w j
i+1]} j

i+1,

completing the induction.

3.5 Conclusion

Persistent homology and zigzag persistent homology represent the dynamic homology of a se-

quence of spaces by computing a set of intervals, describing the birth and death times of homolog-

ical features in the sequence. In this chapter we presented a method for assigning a representative

cycle at each time point to each interval in this decomposition. The original choice and method for

updating these representative cycles are geometrically motivated, so they are interpreted as ‘track-

ing’ homological features. To be compatible with the birth-death decomposition obtained from

zigzag persistent homology, there must exist an ordering on the representative cycles such that

they form a basis for each space in the right filtration, and we proved that our representative cycles

do, in fact, satisfy this property.

Some applications of the method to track coverage holes in time-varying sensor networks were

presented in Section 2.5. For spaces in the plane, this method of tracking attempts to approximate

the canonical basis for the first homology (where one homology class surrounds each hole), as

best as possible, while still being compatible with the birth-death decomposition. Having chosen

a specific representative cycle for each interval at each time point, additional features (such as esti-

mates of hole size) can be attached onto the barcode, for a more comprehensive description of the

dynamic coverage of the network.
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CHAPTER

4

NODE DOMINANCE: REVEALING

CORE-PERIPHERY STRUCTURE IN

SOCIAL NETWORKS

4.1 Introduction

In this chapter, we present the local property of node dominance as a method for network analysis.

We will show why node dominance is such a useful criterion, by defining a node-dominance-based

algorithm for the core-periphery decomposition of a network, as well as by deriving its relation to

the network community structure.
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For our settings, the node dominance criterion may be checked by simply considering the

neighbor set of two nodes. A node v is dominated by node w if all nodes that share and edge with v ,

also share an edge with w . The formal definition of node dominance is based on a simplicial com-

plex (as opposed to graph) structure, and will be discussed in detail later. If we iteratively collapse

dominated nodes, the resulting set (the network core) is shown to consist of nodes that are im-

portant with respect to the network flow, community structure, and global network structure. One

especially important property of the core is the preservation of shortest paths, so a shortest path be-

tween any two nodes in the core is also a shortest path between them in the original network. The

network periphery (the complement to the core, consisting of dominated nodes) is seen to consist

of many disconnected components, including all the nodes in the network through which no short-

est paths pass. These peripheral components also play a key role in the community structure of the

network.

The intuitive notion that a network naturally decomposes into a core and periphery has ap-

peared many times in the social network literature over the decades. Researchers have proposed

different interpretations about what such a decomposition should look like, but it is commonly

suggested that a ‘core’ should be central to the network (with respect to information flow, or short-

est paths) [26], have high average degree [13], and be relatively well-connected both internally, and

to the periphery [5] [61]. In contrast, the periphery should be connected to the core, but extremely

sparsely connected amongst itself.

Borgatti and Everett [5]were the first to attempt to analytically describe these intuitive proper-

ties. They proposed an ‘idealized core-periphery’, wherein every core node is connected to every

other core node, each peripheral node is connected to the core, and no peripheral nodes are con-

nected to each other. They would then learn the core-periphery structure for a given network by

assigning each node as ‘core’ or ‘periphery’ in the way that best correlated with this idealized struc-

ture. This method assumes explicitly that the probability of two nodes being joined by an edge is

only a function of their ‘core-ness’, as opposed to some other characteristics, such as community
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membership. In this sense, the traditional core-periphery network model is in contrast to more

common network models based on community structure. Both core-periphery and community

network structures can be expressed using a stochastic blockmodel approach [61], but with differ-

ent parameters, so under these models a given network will not display both structures simultane-

ously.

Another approach, by Rombach et al. [46] presents a more flexible generalization of Borgatti

and Everett’s philosophy, where a core score is computed for each node, using a range of possible

core sizes and continuous/discrete transitions between core and periphery. Here, they admit that

both core-periphery and community structure are often present in real-world networks, but still

propose the core-periphery decomposition as an alternative/complementary analysis to the more

common community detection methods. In Della Rossa et al. [14], an approach to periphery de-

tection based on random walks is taken, where is it assumed that due to the extremely sparse con-

nectivity of the periphery, a random walk will exit the set of peripheral nodes very quickly. Thus,

a core-periphery profile for the network, along with a coreness value for each node, is computed

using a greedy algorithm that adds nodes to the periphery one-by-one in a way that minimizes the

expected time until a random walk exits the set. Again, this method focuses very heavily on the spar-

sity of the periphery, and is somewhat unrelated to any community structure that may be present

in the network. For a good review of existing methods of core-periphery network decomposition,

see the survey by Csermely et al. [13], or the introductory sections in [46].

Traditionally, approaches to community detection in networks have assumed that communi-

ties form a partition of the network, with each node belonging to exactly one community. A foun-

dational method has been the Girvan-Newman algorithm [42], where communities are detected

though iterative removal of nodes with high centrality. They defined the notion of ‘modularity’ as

a stopping criterion for their algorithm, and many subsequent algorithms attempt to partition a

network in such a way that optimizes (usually approximately) modularity [41], or cut ratio (approx-

imated using spectral clustering) [10]. Fortunato provides an excellent overview of the breadth and

72



4.1. INTRODUCTION
CHAPTER 4. NODE DOMINANCE: REVEALING CORE-PERIPHERY STRUCTURE IN SOCIAL

NETWORKS

depth of approaches to the community detection problem in his 100 page survey paper [18]. In

more recent years, researchers are determining that partition-based methods are often somewhat

unrealistic, since real-world networks with ground-truth communities typically display overlap-

ping community structure [57], where one node may have multiple community memberships. See

Xie et al. [55] for a survey of methods for overlapping community detection, including clique per-

colation, link clustering, and fuzzy detection methods using mixed-membership stochastic block

models, or nonnegative matrix factorization.

A particularly realistic model for overlapping community detection is Yang and Leskovec’s com-

munity affiliation graph model (AGM) [56] [59]. This model considers communities as ‘overlapping

tiles’, and its distinguishing feature is that regions of community overlaps are more densely con-

nected than regions involving single communities. Precisely, the probability of an edge existing be-

tween two vertices is based on the communities they share, with higher probability when they have

more community memberships in common. This assumption is validated on data sets with ground-

truth community memberships available, where higher edge densities are observed in community

intersections [56]. AGM, and the other methods for overlapping community detection are more

realistic than the partition-based methods, but they do not scale up well to networks larger than

a few thousand nodes. A recent relaxation of AGM, referred to as Cluster Affiliation Model for Big

Networks (BIGCLAM) [58], allows nodes to have continuous-valued community memberships, in-

dicating their degree of involvement in a given community. This reduces the combinatorial opti-

mization in AGM to a continuous optimization that can be solved using nonnegative matrix fac-

torization. Therefore BIGCLAM is scalable to networks with hundreds of thousands, or millions of

nodes. We will return to this model in Section 4.4.3.

In the current chapter, we will see how a core-periphery structure and a community structure

are both present in real-world networks, and how node dominance informs us about both. The re-

lationship between the core-periphery and community structure of a network has been touched

upon previously by Leskovec et al. [34], where they also noted the presence of a network periph-
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ery, defined in terms of whiskers (clusters of nodes that are separable from the main network by

removing a single edge), which were interpreted as small communities, weakly connected to the

remaining network “core”. In the AGM model mentioned above [59], Yang and Leskovec refer to the

overlapping portions of communities as the “core” of the network. We will see that this interpre-

tation does in fact concur with our notion of core and periphery, where in networks with ground-

truth communities available, the nodes in the core obtained using node dominance typically have

multiple community memberships, while the nodes in the periphery have fewer community mem-

berships (often just one).

Iterative node dominance collapses were originally proposed independently by Wilkerson et al.

[54] and Barmak and Minian [4], as a homology/homotopy-preserving simplification of a simplicial

complex, with the distributed version described in [53]. Here, we explore much more deeply the use

of this simplification as a network core, and describe the relationship between the core-periphery

decomposition, and the community structure, global structure, and network flow properties.

In Section 4.2, we will first describe the relevant information for the simplicial complex rep-

resentation of a network, and the background and definition of the node dominance criterion.

We follow this in Section 4.3 by statements and derivations of the resulting properties of our core-

periphery decomposition, and propose an algorithm for the use of peripheral components in com-

munity detection. In Section 4.4, we illustrate our method with two real-world network data sets

which contain ground-truth community information. We not only observationally verify the impor-

tance of core nodes with respect to network flow and global structure, but see that our proposed use

of the peripheral components for community detection performs very well (better than BIGCLAM,

considered the state-of-the-art method for overlapping community detection in large networks).

Finally, in Section 4.5 we draw some conclusions, and discuss the limitations of our method, as

well as some directions for future research.

74



4.2. BACKGROUND
CHAPTER 4. NODE DOMINANCE: REVEALING CORE-PERIPHERY STRUCTURE IN SOCIAL

NETWORKS

4.2 Background

4.2.1 Simplicial homology

In the fields of graph theory or network analysis, a graph G = G (V , E ) is defined by a list, V , of its

vertices, as well as a list, E , of the pairs of vertices that are joined by an edge. An implicit assumption

in this is that an edge e = (vi , v j ) ∈ E can only be present in G if both of its vertices vi and v j are

in V . The notion of a simplicial complex is exactly a higher-order generalization of a graph, while

similarly preserving this ‘closed under subsets’ property.

Definition (Simplicial complex): A k -simplex σ = (v0, v1, . . . , vk ) is a set of (k + 1) singleton ele-

ments (called vertices). A simplicial complex K is a set of simplices (i.e. a set of sets of vertices)

such that

(i) ifσ,τ ∈ K , then σ∩τ ∈ K

(ii) if τ≤σ, then τ ∈ K

where ≤ indicates the subset relation. If τ≤σ, we call τ a face ofσ.

A simplexσ is maximal if there are noτ ∈ K such thatσ≤ τ. A k -simplex has dimension k . The

dimension of simplicial complex K is the maximum dimension of any simplex in K

dim(K ) =max
σ∈K

dim(σ).

A subset K ′ of a simplicial complex K is called a subcomplex, if K ′ is itself a simplicial complex (sat-

isfying properties (i) and (ii) above). The k -skeleton of K is the subcomplex formed by all simplices

in K with dimension at most k

k -skeleton of K = {σ ∈ K | dim(σ)≤ k}
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Given a graph G =G (V , E ), we can think of G as the 1-skeleton of a simplicial complex, whose

higher-dimensional simplices have not been directly observed. The maximal simplicial complex

whose 1-skeleton is equal to G is called the flag complex.

Definition (Flag complex): Given a graph G =G (V , E ), the simplicial complex

X (G ) = {σ= (vi0
, vi1

, . . . , vidimσ
) | (vi j

, vik
) ∈ E for all 0≤ j , k ≤ dimσ}

contains a simplex σ whenever all pairs of vertices in σ are connected by an edge in E . X (G ) is

called the flag complex of G .

As we will see in Section 4.2.2.1, if we have additional information about the k -tuple relations

in G , we may build a simplicial complex using that information, adding k -simplexσ whenever its

vertices satisfy a k -tuple relation, and all faces of the simplex are also present. In the absence of

such information, when only the graph G is given, we propose the use of the flag complex, and see

that it can be very informative. Note that the Rips complex described in Section 2.2.1 was simply

the flag complex on the communication graph of our sensor network.

A final notion we will review here is the definition of the homology of a simplicial complex.

Definition (Homology): We encode the structure of simplicial complex X through boundary maps

{∂k }dim(X )
k=1 , where ∂k gives the oriented connectivity information between k -simplices and (k − 1)-

simplices. Then the k -th homology group of X is

Hk (X ) = ker(∂k )/ im(∂k+1)

See Section 2.2.1 for a more detailed definition. Intuitively, the dimension of the k -th homology

space counts the number of k -dimensional “holes” in the simplicial complex. These can be thought

of as (k+1)-dimensional voids enclosed by k -simplices, so H1 counts the number of loops which are
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not “filled-in” by triangles, and H2 counts the number of voids. The interpretation of H0 is slightly

different: it counts the number of connected components of X (which may be interpreted as cycles

of dimension zero).

For our purposes, we will not be computing any homology directly, but we will see that by pre-

serving homology during our node dominance collapse, we will in fact be preserving important

global structure of the network.

4.2.2 Node dominance

We will be representing a network using its flag complex, and in that setting, node dominance is

characterized by the following definition.

Definition (neighbor set): The neighbor set of a node v , is the set of all nodes sharing an edge with

v , as well as v itself:

� (v ) := {u ∈V | (u , v ) ∈ E }∪ {v }.

A node v is dominated by one of its neighbors w , if and only if

� (v )⊆� (w )

i.e.) all the neighbors of v are also neighbors of w .

To understand the importance and relevance of this definition, we will explore a bit of its history,

and related concepts.

4.2.2.1 Homology of a relation

Definition (relation): A relation on two sets A and B is a function r : A × B → {0, 1}. We say that

elements ai , a j ∈ A are related (through element b ) if there exists an element b ∈ B such that

r (ai , b ) = 1 and r (a j , b ) = 1. Similarly, bi , bj ∈ B are related if there exists an a ∈ A such that
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r (a , bi ) = 1 and r (a , bj ) = 1. For A and B finite, the relation r can be represented by an |A| × |B |
binary matrix R = (ri j ), where ri j = r (ai , bj ).

As an example, the elements of set A could be actors, and the elements of set B could be movies,

with r (a , b ) = 1 whenever actor a appears in movie b .

Given a relation, there are two ways to encode its structure as a simplicial complex. The first

way, which we will denote as XR (A, B ), the elements of A are represented as vertices, and vertices

{ai0
, ai1

, . . . , aik
} are spanned by a k -simplex whenever there exists a b ∈ B such that r (ail

, b ) =

1 for all l = 0, 1, . . . , k . The second way, which we will denote as XR (B , A), the elements of B are

represented as vertices, and {bj0
, bj1

, . . . , bjk
} are similarly spanned by a k -simplex whenever they

are all related by the same a ∈ A. Note also that for any simplicial complex X (even if it wasn’t

constructed using a relation) one may form its dual complex X̂ , by letting each maximal simplex in

X correspond to a vertex in X̂ . In that case, a set of vertices in X̂ are spanned by a simplex if their

associated simplices in X all had a vertex in common.

In the example with actors and movies, this means that we can represent their relationships

by building a simplicial complex where actors are vertices, and simplices are formed between ac-

tors who are in the same movie; or alternatively, we can encode it by using movies as vertices and

spanning a set of movies by a simplex when they all feature the same actor.

Note that these two simplicial complexes may have drastically different structure (different

number of vertices, different dimension), but Dowker [15] proved that the two complexes have

exactly the same homology (in the sense that the k t h homology groups of the two complexes are

isomorphic, for all k ).

Theorem 4.2.1 (Dowker). If R is a relation on sets A and B , with associated simplicial complexes

XR (A, B ) and XR (B , A), then

Hk (XR (A, B ))∼=Hk (XR (B , A)) for all k
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4.2.2.2 Node dominance and equivalent notions

In light of the dual simplicial complexes presented in Section 4.2.2.1, we can now give the more

general definition of node dominance.

Definition (Node dominance): Given simplicial complex X and its dual complex X̂ , each vertex

v ∈ X has an associated simplexσv ∈ X̂ . We say a vertex v is dominated by vertex w , ifσv is a face

ofσw . This occurs exactly when the set of simplices incident to (i.e. containing) v is a subset of the

set of simplices incident to w (in X ).

When the simplicial complex of interest is a flag complex, we know that the presence of a higher

dimensional simplex is determined by the presence of its constituent edges. This is why we are

able to check the node dominance criterion using only the neighbor sets of our vertices, in the flag

complex setting: if the neighbors of v are all neighbors of w , then the set of simplices incident to v

is a subset of the set of simplices incident to w .

To illustrate the concept of node dominance using the example of actors and movies, consider

two actors, represented by separate vertices ai and a j in XR (A, B ). If the movies featuring actor ai

is a (proper) subset of the movies featuring actor a j (i.e. ai is dominated by a j ), then in the dual

complex XR (B , A), the simplex σai
will be a (proper) face of simplex σa j

. Thus, removing actor

ai (and all its incident simplices) completely, will not change the simplicial structure of the dual

complex XR (B , A) at all, and thus will not change the homology of the original complex XR (A, B ).

The insight that removing dominated nodes does not change the homology of the simplicial

complex, suggests an algorithm, as originally proposed (independently) by [54] and [4], to simplify

a simplicial complex by iteratively removing such vertices. In the work by Barmak and Minian [4],

they term the removal of a dominated node a strong homotopy collapse, node dominance is a

stricter condition than that required for a regular homotopy-preserving simplicial collapse [52].

In Figure 4.1, vertex v is dominated by vertex w , where vertex w could have additional connec-

tions in the network which are not shown. The removal of vertex v does not create or destroy any
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connected components, loops, or voids (preserves homology), and does not affect shortest path

lengths between other nodes (see Section 4.3.1).

v

w w

Figure 4.1 Node v dominated by node w .

One more definition we will note is that of a 2-hop neighbor set, which is the neighbor set of a

node that also contains all “friends of friends”, instead of just immediate neighbors:

�2(v ) = {u ∈ V | (u , v ) ∈ E , or (u , vi ) ∈ E for some vi ∈� (v )}

Performing the node dominance collapse using the 2-hop neighbor set can allow greater collapsabil-

ity in networks with few dominated nodes. It also allows small holes in the flag complex (i.e. those

with hop length ≤ 6) to be “filled in”, so only larger homological features are preserved. We will use

this version of the node dominance collapse on one of the data sets in Section 4.4.

4.2.2.3 Distributed algorithm for flag complexes

Assuming a flag complex structure, the node dominance collapse can be performed referring only

to its 1-skeleton (the original graph under analysis). Moveover, the criterion for determining node

dominance requires only local information, making the algorithm of distributed nature. This algo-

rithm was first presented in [53].

Each node v has the list of its neighbor set� (v ), and it then executes the following steps during

each iteration:
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Distributed algorithm for node dominance collapse

Broadcast� (v ) to neighbors

for vi ∈� (v ), vi �= v

Receive� (vi )

if� (vi )⊆� (v )
Broadcast OFF to vi

if OFF received from vi

Handshake to determine if v or vi turns off

end if

end if

end for

if OFF received OR Handshake determined v turns off

v designated OFF

else

Update� (v ), omitting OFF neighbors

A very similar distributed algorithm is also possible in the non-flag complex setting, where there

exists some a priori information about which k -tuples of simplices are related. An example of this

would be the list of movies and actors, or some other relation (eg. authors/papers). In that case

three actors (vertices) are only spanned by a triangle when there is a single movie they all appeared

in together, not only if they had all appeared in movies together pairwise, as in the flag complex case.

To compute node dominance in that setting, we only need to assume that each node has access to

its list of maximal simplices (eg. an actor has its movie list, an author has its paper list, etc.). Then

the algorithm above can proceed exactly as written, with � (v ) replaced by the maximal simplex

list of v .
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4.3 Properties of core and periphery

In this section, we will outline both the theoretical and observed properties of the core-periphery

decomposition obtained through the iterative node dominance collapse. Examples of the observed

properties on real-world data sets are presented in Section 4.4.1.

Analytical properties:

1. Shortest paths in the core are shortest paths in the original network. (Network flow)

2. Nodes with betweenness centrality zero are not in the core (Network flow)

3. A node is dominated (with high probability) by a node sharing its community membership(s)

(Community structure)

4. The homology of the flag complex of the core is the same as the homology of the flag complex

of the entire network (Global structure)

5. The structure of the core is unique (all possible cores for a given network are isomorphic as

simplicial complexes) (Global structure)

Observed properties:

• Core nodes typically have high degree and high betweenness centrality. ‘Hub’ nodes are in

the core. (Network flow)

• Nodes with multiple ground-truth community membership labels tend to be in the core,

while nodes with just one (or no) community labels are usually in the periphery. (Commu-

nity structure)

• Using the peripheral groups, we can obtain candidate sets that are seen to contain a large

proportion of ground-truth communities. See Section 4.4.3 for details, and our use of these

candidate sets for community detection. (Community structure)
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• The core is stable. In real-world networks, a very high proportion of nodes in the core are

always there, regardless of random order collapses are executed in. (Global structure)

Throughout this section, for a graph G =G (V , E ), the core GC =G (VC , EC ) is the graph induced

by the set of nodes VC ⊆ V which remain upon an iterative and total removal of dominated nodes

from V . Note that the set VC (and thus the core itself) is not necessarily unique, because of a po-

tential random ‘handshake’ in the Algorithm from Section 4.2.2.3. The statements given below are

valid for any core obtained by the procedure of iterative node dominance collapse. As we will dis-

cuss further in Section 4.3.3 below, all possible cores obtained from the same initial graph have the

exact same structure (are isomorphic) [38].

4.3.1 Network flow

The properties in this subsection involve statements about shortest paths between given nodes

in the network. An outline of a proof similar to Property 4.3.1 is given in [54], and we include the

complete proof here for completeness.

Definition (Shortest paths): Given a graph G ′ = G (V , E ), for any pair of points vi , v j ,∈ V , a path

p = (vi = v1, v2, . . . , vl = v j ) is a sequence of vertices such that (vk , vk+1) ∈ E for all k = 1, . . . , l − 1.

The path has length |p | = l , and p is a shortest path if l ≤ |p ′| for any other path p ′ from vi to v j .

The set of all shortest paths from vi to v j , in the graph G ′ is denoted SPG ′ (vi , v j ).

Property 4.3.1 (Shortest paths in the core are shortest paths in the original network.). For v1, v2 ∈
VC , if p ∈SPGC

(v1, v2), then p ∈SPG (v1, v2).

Proof. For any graph G ′, let v j be dominated by its neighbor vi . Consider any shortest path p =

(. . . , vk , v j , vl , . . .) passing through v j . Note that k , l �= j [Proof by contradiction: p = (. . . , vi , v j , vl , . . .)

could be replaced by shorter path (. . . , vi , vl , . . .), since� (v j ) ⊆� (vi ) so vl ∈ � (v j )⇒ vl ∈ � (vi )].

So p = (. . . , vk , v j , vl , . . .) can be replaced by p ′ = (. . . , vk , vi , vl , . . .), which is the same length as p , but
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doesn’t contain v j .

Therefore, the length of all shortest paths in G ′ (where v j is not the source or destination) are pre-

served when v j is removed.

Definition (Betweenness centrality): The betweenness centrality of a node v is a measure of the

number of shortest paths passing through v . It is defined as the proportion of shortest paths be-

tween nodes s and t that pass through v , summed over all pairs s , t �= v . i.e.)

bc(v ) =
∑

s ,t �=v

|{p ∈ SPG (s , t )|v ∈ p}|
|SPG (s , t )|

Property 4.3.2 (Nodes with betweenness centrality zero are not in the core).

bc(v ) = 0⇒ v �∈ Vc

This can be equivalently stated as: nodes with betweenness centrality zero are dominated.

Proof. Using the definition of betweenness centrality above, we can see that

b c (v ) = 0⇒ |{p ∈ SPG (s , t )|v ∈ p}|= 0 ∀s , t �= v.

Therefore, either

(i) deg(v ) = 1

(ii) ∀s , t ,∈� (v ), (s , t )∈ E (so that . . . , s , v, t , . . . will not be in any shortest path)

If (i), then v is dominated.

If (ii), then� (v ) is a clique, so for any w ∈� (v )with w �= v ,� (v )⊆� (w ), so v is dominated.

Therefore v �∈ VC .
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Both of these properties speak to the ‘centrality’ of the nodes in the core, with respect to the

original network. Property 4.3.1 tells us that there is no way to shortcut through the periphery when

traveling between two nodes in the core, and Property 4.3.2 says the nodes that are not involved in

any shortest paths are guaranteed to be contained in the periphery. Together, we can conclude that

the node dominance collapse only has local effects (with respect to shortest paths in the network),

in that only shortest paths beginning or ending at the dominated node are affected.

Empirically we see that nodes with high betweeness centrality and nodes with high degree will

lie in the core (see Section 4.4.1 for concrete examples). These are ‘hub’ nodes, in terms of network

flow properties, so removal of nodes in the core have a much greater impact on network informa-

tion flow than removal of nodes from the periphery.

4.3.2 Community structure

The community affiliation graph model (AGM) proposed by Yang and Leskovec [56] assumes that

the probability of an edge forming between two nodes depends on the community membership(s)

of the nodes under consideration. This is similar to the traditional stochastic blockmodel (which

require communities to form a partition of the network), or generalizations [2] of the stochastic

blockmodel that allow for overlapping communities, with the notable exception that under AGM

the edge density in the intersections of communities is higher than the edge density in the non-

overlapping portions of communities.

For notation, consider the set C = {ck }mk=1 defining the m communities in the network, where

ck is the set of nodes belonging to the k t h community. Note that each node in V may belong to

zero, one, or multiple communities. For two nodes u , v ∈ V , let Cu v = {c ∈ C | u , v ∈ c } denote

the set of communities containing both u and v . We will also use the more general notation CS =

{c ∈ C | ∃v ∈ S s.t. v ∈ c } to denote the set of community memberships for nodes in a given set S .

Under AGM, an edge forms between u and v , independently, with probability pc for each of the

communities c ∈ Cu v . In other words, denoting the probability of an edge between u and v by
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p (u , v ) = P [(u , v ) ∈ E ], we have

p (u , v ) = 1− ∏
c∈Cuv

(1−pc ). (4.1)

Further, Yang and Leskovec define a baseline edge probability ε = p (u , v ) for u , v with no commu-

nities in common. They choose ε = 2|E |
|V |(|V |−1) , which is typically a number of orders of magnitude

smaller than the pc probabilities. For the proof of the following result, we assume the AGM model

for network community structure, however the result would still hold for any model that bases the

probability of an edge between two nodes on the community membership of the nodes, where the

probability of an edge is significantly higher for nodes sharing communities than nodes not sharing

communities.

Property 4.3.3 (Nodes are dominated, with high probability, by nodes that share the community

memberships of their neighbor set). If v is dominated by w , then with high probability, C� (v ) ⊆Cw .

Proof.

P [v dominated by w ] =
∏

vi∈� (v )
p (w , vi )

=

⎛
⎜⎜⎝
∏

vi∈� (v )
Cw vi

�=�

⎡
⎣1− ∏

c∈Cw vi

(1−pc )

⎤
⎦
⎞
⎟⎟⎠
∏

vi∈� (v )
Cw vi

=�
ε

In other words, v will be dominated by w , only if there exist edges between w and all vi ∈ � (v ).
Each of these edges occurs independently, with probability p (w , vi ), with the value given in Equa-

tion (4.1) if w and vi share community membership(s) (i.e. if Cw vi
�= �), and p (w , vi ) = ε otherwise.

Since ε� pk for all k ,

P [(w , vi ) ∈ E | Cw vi
�= �]� P [(w , vi ) ∈ E | Cw vi

= �]
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Therefore

P [v dominated by w | C� (v ) ⊆Cw ]� P [v dominated by w | C� (v ) �⊆Cw ]

Observationally (as described in Section 4.4.1), nodes in the periphery typically have one (or

no) community membership(s), while nodes in the core have multiple community memberships,

and lie in the intersections of communities. In Section 4.4.3, we will take this interpretation further,

by proposing a method for using the peripheral components to obtain candidate sets which are

likely to contain communities of the network. We can think of the peripheral components as the

non-overlapping portions of the communities, in which case the true network communities would

consist of a peripheral component, along with adjoining nodes in the core. It is also possible that a

single community could have non-overlapping portions which “stick out” from the core in multiple

places, on account of which we propose a method of combining peripheral components according

to which core nodes they connect to. This yields an algorithm for obtaining “candidate sets” which

intended to contain the true network communities. This method is discussed further in Section

4.4.3.

4.3.3 Global structure

As described in Section 4.2.2, when the flag complex representations of the original network and

the core network are used, the core is seen to have the exact same homology as the original complex,

in the sense that their homology spaces are isomorphic in all dimensions.

Property 4.3.4 (Homology is preserved in the core).

Hk (X (GC ))∼=Hk (X (G )) for all k
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Proof. This property follows immediately from the result of Dowker’s Theorem (that a simplicial

complex and its dual complex have the same homology), combined with the observation that if a

vertex is dominated, its corresponding simplex in the dual complex will be a face of the simplex

corresponding to the dominating node, and thus will not contribute to the structure of the dual

complex.

An alternative formulation and proof is available in [4].

A corollary of Property 4.3.1 is that at least one shortest cycle for each homology class is retained

in the core. Thus, not only is the dimension of each homology space preserved, but the ‘hole loca-

tions’ in the network are also preserved. It is this additional property that truly allows us to interpret

the core as the global scaffolding for the network.

Property 4.3.4, together with Property 4.3.3 tell us that nodes with diverse friend sets (including

bridging ties) will be in the core. If they are not, it is only because they are dominated by another

node with all the same diverse connections. In real-world networks, we see that the average clus-

tering coefficient for nodes in the core is much lower than in the network as a whole (see Section

4.4.1), which supports the ‘diverse friend set’ interpretation, because the friends of a core node are

usually not friends with each other.

4.4 Analysis of real-world networks

We will use two data sets in this section as a running illustration, both obtained from the Stanford

SNAP network database [32]. The first is a coauthorship network built from the DBLP computer sci-

ence bibliography, and the second is a co-purchasing network from Amazon. The networks were

originally analyzed by Yang and Leskovec [57] in one of the first papers to systematically analyze the

properties of ground-truth communities (abbreviated in figures as GTCs) in real-world networks.

Both communities have ground-truth community labels: 13,477 ground-truth community labels

in DBLP, defined as connected components of authors within the same publication venue; and
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271,570 ground-truth community labels in Amazon, defined using product categories. Addition-

ally, Yang and Leskovec labeled 5000 of the communities in each data set as “best” in terms of

having community-like properties such as low conductance or high triangle-participation ratio.

We computed the core-periphery decomposition for both networks using the iterative node domi-

nance collapse algorithm described in Section 4.2.2.3. For the Amazon co-purchasing network, the

periphery consisted of 70716 nodes (accounting for only 21% of the nodes in the network), each

of which were singletons, connected only to the core and not to other peripheral nodes. To allow

further collapse, we re-computed the core using the 2-hop neighbor sets �2(v ) described in Sec-

tion 4.2.2.2. This yielded 193,195 nodes in the periphery (57.7% of the nodes in the network), with

70716 peripheral components, of which 20136 were non-singletons (of varying sizes). All analysis

presented below uses the regular node dominance collapse on the DBLP data set, and the node

dominance collapse based on 2-hop neighbor sets for the Amazon data set.

Descriptive statistics for the networks, as well as for their associated core-periphery partitions,

are presented in Table 4.1. For the computations of average degree and clustering coefficient, the

values were computed with respect to the entire network, and again with respect to the induced

subgraph under consideration (either the core or periphery).

To verify the stability of the core under multiple realizations of the node dominance collapse al-

gorithm, we performed the following randomization: For one realization of the iterated node dom-

inance collapse, we would compute the set of dominated nodes, pick one at random to collapse,

add the newly dominated nodes to the set of dominated nodes, randomly pick the next dominated

node to collapse, and so on. After performing 100 realizations of the core-periphery decomposition

on the two data sets, we found that 99.58% (DBLP) and 99.43% (Amazon) of the nodes in the core

were present in the core on every realization. The set of nodes that appeared in the core on some

(but not all) realizations was 0.89% (DBLP) 1.24% (Amazon) the size of the core. Thus, not only is

the shape of the core unique, but the actual nodes composing it are very stable in these real-world

data sets.
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Table 4.1 Descriptive statistics for real-world networks.

DBLP Amazon
Nodes in core: 71,018 141,688
Nodes in periphery: 246,062 193,195
Nodes (total): 317,080 334,863
Edges within core: 318,741 347,527
Edges within periphery: 274,367 218,237
Edges between core and periphery: 456,758 360,108
Edges (total): 1,049,866 925,872
Mean degree:

Entire network 6.62 5.53
Core (w.r.t entire network) 15.41 7.45
Core (w.r.t. core) 8.98 4.91
Periphery (w.r.t entire network) 4.09 4.12
Periphery (w.r.t periphery) 2.23 2.26

Clustering coefficient:
Entire network 0.632 0.397
Core (w.r.t entire network) 0.285 0.219
Core (w.r.t. core) 0.255 0.182
Periphery (w.r.t entire network) 0.733 0.527
Periphery (w.r.t periphery) 0.385 0.293

Communities (total):
Number 13,477 271,570
Average size 53.41 11.67
Standard deviation of size 257.58 273.66

Communities (best):
Number 5000 5000
Average size 22.45 13.49
Standard deviation of size 201.08 17.52
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4.4.1 Relationship of core-periphery to network structure

For both data sets, we observe (Table 4.1) that nodes in the core have higher degree than nodes in

the periphery, with the difference especially pronounced in the DBLP network. Additionally, nodes

in the core have lower clustering coefficient, which corroborates our intuition that core nodes have

“diverse friend sets”, so their friends are not all friends with each other. Along with their high degree,

this is also interpretable as having reach outside of their local community.

Scatterplots showing the natural logarithm of betweenness centrality versus node degree are

shown in Figure 4.2, with the two plots of the same data alternating whether core or periphery is

plotted on top, to help display the region of overlap. As mentioned in Section 4.3.1, all nodes with

betweenness centrality of zero (i.e. nodes through which no shortest paths pass) are guaranteed

to be in the periphery, and we observe that additionally, all of the nodes with highest betweenness

centrality are in the core. For example, in Figure 4.2, it can be seen that in the DBLP data set there

is a threshold betweenness centrality value (around ln(bc) = 17), above which all nodes are in the

core, while in the Amazon data set, it is the nodes with both high degree and high betweenness

centrality that appear exclusively in the core.

Figure 4.3 shows the number of ground-truth community (GTC) assignments per node in the

core and periphery. Out of all the nodes in the periphery, 22.11% had no ground-truth community

membership labels, 57.39% had exactly one, and 20.49% had more than one GTC membership label.

On the other hand, out of the nodes in the core 85.02% had multiple GTC membership labels, while

12.65% had a single community, and only 2.33% had no GTC label. From another perspective, the

periphery contained 97.05% of the nodes without a GTC label, 94.02% of the nodes with a single

label, but 45.51% of the nodes with multiple labels (however of those nodes multiply labeled, the

average number of labels was 2.9 in the periphery, but 7.0 in the core). A similar behavior is observed

in the Amazon network, albeit to a lesser extent, and is likely due to the average number of labels

per node being much higher.
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Figure 4.2 Log betweenness centrality vs degree (DBLP-top, Amazon-bottom).
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Figure 4.3 Number of community memberships (DBLP-top, Amazon-bottom)
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4.4.2 Role of core in network flow

To demonstrate the key role our core nodes play in information flow over the network, we computed

their contribution to the shortest paths of the network. For each network, we randomly chose 1000

pairs of nodes, and computed shortest paths between them. Since 100% of these paths contain at

least one node from the core, we computed the proportion of each path that is in the core. It is

worth noting here that for any two nodes which do not belong to the same peripheral component,

all shortest paths between them will pass through the core. For comparison, we chose three sets

of nodes, each with the same number of nodes as the core: chosen uniformly randomly; using the

nodes of highest degree; and using the nodes with highest betweenness centrality. Then, using the

same 1000 shortest paths, we computed the proportion of nodes from each path belonging to each

of these sets. Taking the average over all 1000 paths, the mean proportion of each path contained

in the four sets (Core, Highest BC, Highest Degree, and Random) are shown in Table 4.2. Since

betweenness centrality measures how many shortest paths pass through a node, the nodes with

highest betweenness centrality should be the optimal choice for this measure (if considering all

shortest paths in the entire network), so it is not surprising that they have the highest proportion of

shortest path nodes. What is somewhat more surprising, is that for both data sets, the nodes in the

core out-perform the nodes with highest degree, so a greater proportion of nodes in shortest paths

belong to the core, than belong to the equal-sized set of highest degree nodes. The proportion of

nodes in the shortest paths that belong to the Random set give us a baseline probability from which

to compare the other choices of “important” nodes. Recall also, that betweennness centrality is very

computationally expensive, requiring global information, so it is useful that the distributed core-

periphery computation be nearly comparable at obtaining nodes central to network flow.
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Table 4.2 Proportion of important nodes in shortest paths.

Proportion of nodes in shortest paths
belonging to important sets

DBLP Amazon
Highest BC 0.785 0.892
Core 0.753 0.841
Highest degree 0.739 0.698
Random 0.222 0.427

4.4.3 Community detection

The findings of this study are consistent with the community affiliation graph model (AGM) of Yang

and Leskovec [56, 59], in the sense that it supports an overlapping community model for social

and information networks where the probability of an edge between two nodes is related to their

common community membership(s), with higher probabilities of edges between nodes that have

multiple communities in common. Under this model, we showed that nodes are only dominated

(with very high probability) by nodes which share their community memberships. Interpreting our

peripheral components with respect to this model, they appear to be the ‘non-overlapping’ parts

of communities that stick out of the network. Figure 4.4 shows embeddings of some peripheral

components from the DBLP data set as examples, where the peripheral component is drawn in

black, while the core nodes and connecting edges are grey. The internal structure and connectivity

to the core can vary considerably between peripheral components.

In light of the interpretation of peripheral components as non-overlapping portions of commu-

nities, we propose an algorithm which consists of taking unions of these peripheral components,

along with their neighboring nodes in the core, to obtain candidate sets for community detection.

More precisely, let P C = {p ci }|P C |
i=1 denote the set of peripheral components in the network,

where each node in the periphery is in exactly one peripheral component, p ci . Then define the
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Figure 4.4 Example peripheral components.

extended peripheral components P C + = {p c +i }|P C |
i=1 where

p c +i = {v ∈ Vc | ∃ v j ∈ p ci s.t. (v j , v )∈ E }∪p ci ,

so each extended peripheral component additionally contains all the nodes in the core that share

an edge with a vertex of the peripheral component. The extended peripheral components are meant

to approximate ground-truth communities in the data set, however there are large numbers of very

small size (such as those consisting of an isolated peripheral node and its single neighboring core

node). We consolidate extended peripheral components into “candidate sets” by taking, for each

v ∈ VC , the union of all extended peripheral groups that include v . So we obtain {c sv }v∈VC
, where

c sv =
⋃

p c +i ∈P C +

v∈p c +i

p c +i .

For example, if there were many peripheral nodes connected to a single core node (but not con-

nected amongst each other), this group would be consolidated into a single candidate set. We then

remove any candidate sets c sv that are repetitions or subsets of other candidate sets, to obtain our

final set of maximal candidate sets: C S . Intuitively, our candidate sets are meant to approximate

ground truth communities, or unions of ground truth communities (that overlap on common core
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nodes).

To judge the performance of our candidate sets for the purposes of community detection, we

also ran the BIGCLAM algorithm [58] on the DBLP data set. Popular methods for detection overlap-

ping communities include clique percolation, link clustering, and fuzzy detection methods using

mixed-membership stochastic block models (see [55] for a survey), however none of these methods

scale up well to networks with hundreds of thousands or millions of nodes. The recent exception to

this is Yang and Leskovec’s BIGCLAM algorithm, which can estimate the overlapping community

structure for large networks. Their algorithm (available in the SNAP C++ package [33]) allows the

user to input the expected number of communities, but runs into memory problems if the num-

ber of communities is larger than a few hundred. It also has an option for the algorithm to learn

the appropriate number of communities, with a default to test between 5 and 100 communities.

Therefore, to obtain a set of communities of the same order as the number of ground-truth commu-

nities (13,477 for the DBLP data set), we performed BIGCLAM in a nested manner. First obtaining

100 communities, and then further subdividing each of these, where the optimal number of sub-

communities was most often also 100. This yielded a total of 9904 detected communities from the

BIGCLAM algorithm. We used the same method for analysis of the Amazon data set, yielding 8899

BIGCLAM communities, even though that network has a much larger number of ground-truth com-

munities (271,570). For both data sets, the number of candidate sets obtained using our method

was around 40,000 (47,134 for DBLP and 37,449 for Amazon).

To measure the fit of the candidate sets and BIGCLAM communities to the ground-truth com-

munities, we used precision, recall, and average F1 score. For a detected community C1 and ground

truth community C2 (the target), the precision is the proportion of detected nodes that belong to

the target:

p r e c i s i o n (C1, C2) =
|C1 ∩C2|
|C1| ,
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the recall is the proportion of target nodes captured in the detected community:

r e c a l l (C1, C2) =
|C1 ∩C2|
|C2| ,

and the F1-score is the harmonic mean of precision and recall:

F 1(C1, C2) =
2 ·p r e c i s i o n (C1, C2) · r e c a l l (C1, C2)
(p r e c i s i o n (C1, C2) + r e c a l l (C1, C2))

.

These three values for a given ground-truth community are obtained by maximizing each over all

candidate sets (or BIGCLAM communities), and an average precision, recall, and F1-score for the

ground-truth communities is obtained. Similarly, the three values are obtained for each candidate

set (or BIGCLAM community) by thinking of it as the “target” community, and maximizing preci-

sion, recall, and F1-score over all ground-truth communities, and then taking the average of these

maxima.

Using all three of these values (precision, recall, and F1-score) helps offset some of the discrep-

ancies caused by the varying numbers of ground-truth communities, candidate sets, and BIGCLAM

communities. Since the matching of ground-truth communities onto detected communities, but

also the matching of detected communities onto ground-truth communities, are considered, hav-

ing more candidate sets than BIGCLAM communities will not necessarily be an advantage.

Table 4.3 gives the values for recall, precision and F1-score when comparing the ground-truth

communities to our candidate sets (left three columns), and to the BIGCLAM communities (right

three columns). The performance using candidate sets and BIGCLAM communities are compared

for each measure (eg. “ground-truth community recall”, or “ average precision”), with the values in

boldface indicating the method (candidate sets or BIGCLAM) with superior performance in that

measure. The column “ground-truth” gives the average values for the ground truth communities

(when maximized over the detected communities), and the column “detected” gives the average
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Table 4.3 Detection of all GTCs by candidate sets and BIGCLAM communities.

DBLP (all 13,477 communities)
Candidate sets BIGCLAM

ground-truth detected average ground-truth detected average
Recall 0.7620 0.5401 0.6511 0.7418 0.4478 0.5948
Precision 0.4319 0.4960 0.4640 0.2366 0.6261 0.4314
F1-score 0.4233 0.2565 0.3399 0.2696 0.2721 0.2709

Amazon (all 271,570 communities)
Candidate sets BIGCLAM

ground-truth detected average ground-truth detected average
Recall 0.8481 0.8721 0.8601 0.9213 0.8203 0.8708
Precision 0.2545 0.8728 0.5636 0.1124 0.9861 0.5492
F1-score 0.3218 0.4815 0.4017 0.1611 0.4685 0.3148

for the detected communities (when maximized over ground-truth communities).

Our candidate sets give better overall community detection performance than the BIGCLAM

communities (as measured by the average F1-score). For the DBLP data set, the ground-truth com-

munities were contained in the candidate sets (based on higher ground-truth recall scores), more

so than the candidate sets found strongly-matching ground-truth communities (although it is worth

noting, as Yang and Leskovec did, that not all “true” ground-truth communities necessarily have

ground-truth community labels in this data set). The performance on the Amazon data set is quite

good, with very high ground-truth recall and detected recall and precision for both the candidate

sets and the BIGCLAM methods, although our candidate sets out-performed BIGCLAM in detected

recall, as well as ground-truth, detected and average F1-scores.

The analysis was repeated using only the 5000 “best” ground-truth communities, and again

the candidate sets resulted in higher average F1-scores than the BIGCLAM communities. The main

difference was that recall for the ground-truth communities increased (on average, each ground-

truth community had a candidate set it was 94% contained in), while recall and precision for the
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Table 4.4 Detection of 5000 best GTCs by candidate sets and BIGCLAM communities.

DBLP (5000 best communities)
Candidate sets BIGCLAM

ground-truth detected average ground-truth detected average
Recall 0.9414 0.2559 0.5987 0.9054 0.2678 0.5866
Precision 0.4313 0.3121 0.3717 0.3065 0.4216 0.3640
F1-score 0.5221 0.1446 0.3333 0.3840 0.1913 0.2877

Amazon (5000 best communities)
Candidate sets BIGCLAM

ground-truth detected average ground-truth detected average
Recall 0.9893 0.0222 0.5058 0.9072 0.0728 0.4900
Precision 0.4781 0.0404 0.2593 0.4535 0.1224 0.2880
F1-score 0.5753 0.0241 0.2997 0.5100 0.0753 0.2927

candidate sets decreased (since there were fewer ground-truth communities to match to, fewer

detected had a well-matched ground-truth community). It is also worth noting that for the DBLP

data set 81.7% of the best ground-truth communities were completely contained in at least one

candidate set, while 73.8% of the best ground-truth communities were completely contained in at

least one BIGCLAM community. For the Amazon data set, these values were 94.8% for the candidate

sets, and 82.8% for the BIGCLAM communities.

The challenge of detecting many thousands of overlapping communities from a large network

is formidable. Currently there are no available methods which achieve excellent performance when

comparing detected to ground-truth communities. Based on the analysis of two large, real-world

data sets with ground-truth community information, our proposed algorithm of obtaining can-

didate sets from the peripheral components of the core-periphery decomposition, yielded better

community detection results than the state-of-the-art BIGCLAM algorithm for overlapping com-

munity detection.
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4.5 Conclusion

This study posed the question “How does the concept of node dominance relate to local and global

properties of a network?”. Previous work determined that iteratively removing dominated nodes

is a homology-preserving way to perform a collapse/simplification of a simplicial complex [4] [54].

This was extended into a distributed algorithm for the case of flag complexes [53]. Here, we under-

took an investigation of the theoretical and practical properties of performing such a collapse on

social and information networks, and discovered that it has implications for both a core-periphery

decomposition of the network, as well as uncovering network community structure.

The properties of the core and periphery that we developed in Section 4.3, and observed in

Section 4.4, lead to the interpretation that nodes in the core obtained using node dominance col-

lapse are important with respect to network flow, to the global structure of the network, and to the

network community structure.

The core nodes are essential to network flow because of two properties: a shortest path be-

tween any two points in the core is contained in the core; and nodes with betweenness centrality

zero (through which no shortest paths pass) are never in the core. Observationally, ‘hub’ nodes are

contained in the core, and core nodes often have high degree and high betweenness centrality.

The global structure of the network is preserved in the core because the homology of the core is

the same as the homology of the entire network, when considering the respective flag complexes.

This can be interpreted as node dominance collapses only having ‘local’ effects, and that nodes with

diverse neighbor sets (including bridging ties) are members of the core, maintaining a scaffolding

for the global structure of the network. The observation that each core node typically has a diverse

neighbor set (their friends are not all friends with each other) is also quantified by their relatively

low clustering coefficient values.

Finally, the core is related to the community structure of the network because under commu-

nity membership models where within-community connections have significantly higher proba-
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bility than cross-community connections, we see that nodes are dominated (with high probabil-

ity) by nodes that share their community membership(s). In real-world networks with overlapping

ground-truth community labels, this is observed through nodes with multiple community mem-

berships typically residing in the core, and through nodes with single (or no) community labels

occupying the periphery.

The result relating the core-periphery to the community structure of the network gives us an

additional application: the use of the peripheral components to generate “candidate sets” which

are likely to contain the true network communities. Many state-of-the-art community detection

algorithms which allow for overlapping communities, are not scalable past network sizes of a few

thousand nodes. The notable recent exception is Yang and Leskovec’s BIGCLAM algorithm, which

our method is shown to outperform on their DBLP and Amazon data sets.

Implications of this work may be of interest not only to researchers explicitly interested in a core-

periphery decomposition of complex networks, but to anyone studying community structure, or

key nodes for network flow. Hopefully this work will also serve to further popularize the node dom-

inance collapse for use in general contexts where data is represented using a simplicial complex

structure.

One limitation of our method is that some networks don’t collapse significantly using node

dominance. For example, on Facebook there are very few people who have a friend list completely

contained in the friend list of another person. One option for future research in this direction would

involve performing the node dominance collapse locally on ego networks, and consolidating the re-

sulting communities. Another potential drawback is the nondeterministic nature of the node dom-

inance collapse algorithm. Perhaps under some circumstances it would be wise to consider the

set of nodes that are “ever in the core”, or “always in the core”, under repeated realizations of the

algorithm. In practice however (Section 4.4.1), we have seen that these two sets are quite similar.

One other area for future research is in the study of the core under a graph evolution. Either us-

ing observed or model-generated dynamic networks, studying how the core varies over time could
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be used to help evaluate or predict community structure and key players in the network.
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CHAPTER

5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

This dissertation explored how a computational topology approach can be used to study dynamic

and complex networks. We showed how techniques such as simplicial complex representations,

in computing and tracking homology classes, and in performing homology-preserving simplifica-

tions, can be greatly fruitful in the context of network analysis.

In a sensor network setting, we developed a method for choosing specific representative cycles

when tracking the homology of a time-varying sensor network with zigzag persistent homology.

The barcode output of zigzag persistence can be used as a descriptor of the dynamic coverage of

the network, and we showed that it can be used to distinguish between types of stochastic mobil-
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ity patterns for the mobile nodes. Additionally, using our chosen representative cycles along with

a hop-distance filtration, we were able to attach size estimates onto the bars at each time point,

thus providing a richer quantitative descriptor of the dynamic network coverage, as well as an in-

formative visualization tool in the weighted barcode. All of this was carried out while only analyzing

the network through a series of snapshots of its communication graph, with no information about

coordinates, or edge lengths.

Turning to social networks, we found that the node dominance condition [54] (i.e. strong ho-

motopy collapse [4]) and the iterative application of node dominance removal for network simplifi-

cation [53] resulted in a core-periphery decomposition of a network that had very relevant features.

As summarized in Section 4.5, nodes in the core, display both theoretical and observational impor-

tance with respect to network flow, and form the global scaffolding of the network. The peripheral

components are seen to be related to the overlapping community structure of a network, in that

they are the non-overlapping parts sticking out from the core, thus yielding an algorithm for using

the peripheral components and their adjoining nodes in the core. This, in turn, builds “candidate

sets” which are seen to perform better than a state-of-the-art method for overlapping community

detection in large networks.

In both cases, using the flag complex representation of the network, and studying properties

related to its homology, gave us insights into the data that would not have been possible using the

traditional graph and network analysis viewpoint.

5.2 Future Work

The methods presented here have been developed specifically for network data, because tradi-

tional methods from topological data analysis were more geared towards point cloud data observed

in a metric space (such as �n ). Perhaps somewhat paradoxically, we are now considering whether

these methods for network analysis could be extended back for purposes of general data analy-
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sis. First, consider a setting where the networks under analysis have edge weights. This naturally

induces a filtration, or nested sequence of graphs, by including all edges with weights below (or

above) some threshold, and obtaining the resulting flag complexes. Persistent homology analyzes

such a nested sequence through the changing homology. Perhaps without explicitly computing the

homology, simply studying the core-periphery decomposition at each level in the filtration, would

be informative. Indeed, such a procedure could be applied to the nested sequence of simplicial

complexes obtained from point cloud data.

Similarly, the method of tracking representative cycles through a (regular or zigzag) persistence

computation, has a clear geometric interpretation for sensors roaming in the plane, but could

still prove useful for more general settings. For a regular persistent homology analysis, the semi-

canonical choice of representative cycles is only available (through Alexander Duality) in the (top-

minus-one)-dimensional homology, so situations where features of this dimension are of interest

seem to have the greatest potential for applications. For example, instead of studying cycles in the

plane, as was done for the coverage problem, it could be applied to studying voids in data that is

innately three-dimensional (which is often of interest in materials science).

In terms of social network analysis, there are a number of generative models for network growth

and change over time. Studying the evolution of the core under such models can shed light on how

“key players” in a network develop over time. Additionally, comparing the model-based evolution

of the core to the evolution of the core observed in real-world networks, could highlight aspects

which may be unrealistic, or help validate the generative model.
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