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ABSTRACT: The correlation analysis for a forced vibration test of a 1/4-scale
containment SSI test model constructed in Hualien, Taiwan was carried out for the case
of after backfilling. Prior to this correlation analysis, the structural properties were
revised to adjust the calculated fundamental frequency in the fixed base condition to that
derived from the test results. A correlation analysis was carried out using the “Lattice
Model", which was able to estimate the soil-structure interaction effects with
embedment. The analysis results coincide well with test results and it is concluded that
the mathematical soil-structure interaction model established by the correlation analysis
is efficient in estimating the dynamic soil-structure interaction effect with embedment.
This mathematical model will be applied as a basic model for simulation analysis of
earthquake observation records.

1 INTRODUCTION

A Large Scale Seismic Test (LSST) Program has been conducted in Hualien, Taiwan
(Tang et al. 1991), to investigate soil-structure interaction effect during strong
earthquakes, and to verify several analytical theories through earthquake observations.
Before starting earthquake observations, forced vibration tests were conducted in 1992
before backfill and in 1993 after backfill to define basic dynamic characteristics of the
soil-structure system. Test results were reviewed and it was concluded that this soil-
structure interaction system had principal axes (Morishita et al. 1993). The directions of
the major and minor axes were off-set from the NS and EW directions due to soil
inhomogeneity. Based on this conclusion, two models were established which
correspond to each principal axis (D;, D2). The blind prediction and post-correlation
analysis for the forced vibration test were carried out as the analytical phases of an
International LSST Program. This paper describes the results of correlation analyses for
forced vibration tests after backfill with first floor (FF) horizontal excitations conducted
in the Hualien LSST Program.

2 DYNAMIC CHARACTERISTICS OF MODEL STRUCTURE

2.1 Dynamic characteristics with fixed base condition

The dynamic characteristics of the model structure with fixed base were derived from
forced vibration tests (Ishibashi et al. 1994). These tests yielded pure structure
characteristics which exclude soil-structure interaction effects.

For first floor excitation, the dynamic equation of motion for sway(z), rocking(6) and
elastic deformation(x) is given as EQ (1) and the elastic deformation vector (x) is given
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by EQ (2).
MG +Z+HG)+Cxk+Kx=0 ; x-iann 1), @

n=}

where M, C, K are mass, damping and stiffness matrix and I, H are unit and height vector,
respectively. X, is the n-th mode vector and q, is the n-th time function. Multiplying
by the transposed first mode vector from the left side (X7 x ), and considering the
orthogonal condition for different mode vectors, the dynamic equation of motion of the
first mode is given by :

XTMX,§ + XTMIZ + XTMHB + XTCX,q + XTKX,q = 0 (3)
Following expressions are then introduced for simplicity.
= XIKX, kg = XTcx, o XT™MI oy XTMH (4)
XTMX, XTMX, XTMX, XTMX,
Furthermore, steady state time functions are expressed as :
q=Qe'*, zmZe™, OwBe™ )

Applying these expressions to EQ (3), the first mode response of elastic deformation
component for sway and rocking input motion can be derived as :
0*(aZ+v0) - 6
Q ®? -0’ +2ihoo ©
The dynamic equation of motion with only elastic deformation (fixed base condition) is
given by EQ (7) and elastic deformation vector (X) is given by EQ (8).

M(3+15,)+ CX+KE=0 ; =Y X,4, M. ®
a=l
where q, is the n-th time function. Multiplying by the transposed first mode vector
from the left side (X[ x ), and considering the orthogonal condition for different mode
vectors, the dynamic equation of motion of the first mode is given by :
XTMX,q + XTMIZ, + XTCX,q + XTKX,G= 0 ©
Applying EQs (4), (5) to EQ (9), it is concluded that the first mode response of the
elastic deformation component of the dynamic system with only elastic deformation
(fixed base condition) for unit base sway acceleration input (z,=1) is given by :
ey ~0Zy (' 1)
Q ®! -0’ +2ihoo (19
Comparing EQ (6) and EQ (10), the first mode response of the elastic deformation
component with fixed base condition for unit base sway acceleration input (Q ) is given
by the first mode response of the elastic deformation component of the dynamic system
with sway, rocking and elastic deformation for sway and rocking input motion (Q) as :

~ -aio('l) —L
Q= iz rv0) ~ 0 (a2 +10) an

2.2 Mathematical model of structure

Fig.1 shows a cross-section of the test structure. The mass matrix and the height vector
of the model structure are evaluated from design drawing geometry, and are shown in
Fig.2. The mode shape for the elastic deformation component is represented by the ratio
of rotational angle (0) to horizontal displacement (u) at the roof floor (RF). The
observed mode ratio (6/u) derived from the test results are shown in Fig.3. It is nearly
equal to 0.00055 (rad./cm), except in the frequency range below SHz, which is used as a
first mode vector of elastic deformation ( X, ). Using these data, values of « and y defined
by EQ (4) are obtained. From EQ (11), resonance curves with fixed base condition (Q)
are obtained by applying measured sway (Z), rocking (®) and elastic deformation
resonance curves (Q). Resonance curves with fixed base condition derived from the test
results after backfill are shown in Fig.4, in which regression results for the one-degree-
of-freedom resonance curve are also shown. Natural frequencies and damping factors
obtained by the regression method are summarized in Table 1. As averaged values of the
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test results with first floor excitation, natural frequency and damping factor are 9.59 Hz
and 1.4 %, respectively.

Calculated mode ratio by the flexural and shear beam model is shown in Fig.5, in
which the geometrical coefficient for shear deformation (k) is considered as a parameter.
From this figure, the value 0.00055 rad./cm of mode ratio is derived when the
geometrical coefficient for shear deformation (x) is equal roughly to 0.5. Calculated
fundamental frequency for the fixed base condition at the foundation top is shown in
Fig.6, in which Young's modulus is Eq = 288 ton/cm” and the geometrical coefficient for
shear deformation (k) is considered as a parameter. From this figure, the fundamental
frequency is 10.37 Hz when the geometrical coefficient for shear deformation (x) is
equal to 0.5. _

To adjust the calculated fundamental frequency (10.37Hz) to that derived from the
test results (averaged to 9.59Hz) as aforementioned, Young's modulus is revised to
effective Young's modulus (E,) as follows :

E. =1 X Eo = 0.86 X 288 ton/cm” = 246 ton/cm’
n=(9.59Hz/10.37 Hz ) =0.86 1 : apparent stiffness reduction factor

3 CORRELATION ANALYSIS FOR FORCED VIBRATION TEST
3.1 Analytical model

There are many soil structure interaction analysis models. One that was used, or will be
used in the near future, for aseismic design of nuclear power plants is selected. Here, the
Lattice Model is selected for the correlation analysis of the forced vibration test for
horizontal excitation after backfilling. The analytical model and the general concept of
the Lattice Model are shown in Fig.7.

Unified physical constants of soil for the simulation analysis were proposed by the
Technical Management Committee of the Hualien Project as shown in Fig.8. These
constants were employed directly in the D, direction cerrelation analysis. D;-Equivalent
rocking stiffness (Krgrip;;) was obtained by an axi-symmetric FEM model under
supporting layer (GL-5.15m). For the D, direction, the rocking stiffness of the
supporting soil is derived from that of the D; direction (Krrpz) = Kgrrip13X 1.20). The
revised stick model of the structure which was established in previous chapter was used.

3.2 Correlation analysis results

Calculated resonance and phase lag curves for the D; and D, directions for first floor
horizontal excitation are shown with the test results in Figs. 9~10. Calculated peak
frequencies and deformation ratios are summarized and compared with the test results in
Table 2. Calculated peak frequencies, damping factor, peak amplitude and deformation
ratios correlated well to the test results. Impedance functions of the soil derived from the
test results is compared with those of the simulation analysis models in Figs. 11~12.
They showed reasonably good agreement.

4 CONCLUSIONS

The concluding remarks obtained from the analysis results are summarized as follows ;

1. The dynamic characteristics of the model structure with the fixed base condition
are derived from test results, and the mathematical model of the structure was revised.

2. The results of the correlation analysis coincide well with the test results in peak
frequency, damping factor, peak amplitude, deformation ratios (sway, rocking and
elastic deformation) and impedance functions of the soil.

3. The mathematical model discussed in this paper is efficient for estimating a
dynamic soil-structure interaction effect with embedment in forced vibration tests.
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Fig.2 Lumped mass model of model structure
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Table 1 Natural frequency and damping factor for fixed base condition
D, direction D, direction Average
fo h fo h fo h fy: Natural frequency (Hz)
9.47 1.0 9.71 1.8 9.59 1.4 h : Damping factor (%)
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Fig.7 Analytical model (Lattice Model)
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Table 2 Calculation results for horizontal excitation at foundation

Peak Damping Peak Deformation ratio (%)
frequency factor amplitude Sway Rocking Elastic
(Hz) (%) (jtm) deformation
Calculation (D)) 6.14 8.2 10.9 42 55.1 40.7
Test result (D;) 6.5 8.6 9.7 5 55 40
Calculation (Dy) 6.38 8.3 9.9 4.4 51.1 44.5
Test result (D,) 6.6 8.1 10.4 6 43 46
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Fig.11 Impedance functions of soil

(¢) Coupling impedance

(D,-direction)

144

Fig.12

(c) Coupling impedance

Impedance functions of soil
(D,-direction)



