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Abstract

A nonlinear model-based control method for magne-
tostrictive actuators is presented in this paper. Such ac-
tuators utilize the realignment of magnetic moments in
response to applied magnetic fields to generate strains
in the material. Strains and forces generated in this
manner are significantly larger than those produced by
many other smart materials but also exhibit significant
nonlinearities and hysteresis. To utilize the full poten-
tial of these materials in control transducers, these in-
herent nonlinearities and hysteresis must be accurately
characterized and incorporated in the control law. An
energy-based model is employed to characterize the hys-
teresis in a manner amenable to structural applications.
Nonlinear optimal control theory is then used to deter-
mine appropriate inputs to the system. The effective-
ness of this nonlinear model-based control method is
demonstrated through a numerical example.

1. Introduction

Recent advances in the construction of magnetostric-
tive materials have led to the advent of actuators which
have great potential in many structural applications.
These actuators utilize the property that strains and
forces sufficiently large to drive systems comprised of
thick structures and heavy components are generated
in response to applied magnetic fields. For many ap-
plications, the magnitude of the generated strains and
forces makes the magnetostrictive transducers advan-
tageous over other smart material transducers such as
piezoceramics and electrostrictives. The difficulty asso-
ciated with magnetostrictive actuators, however, lies in
the hysteresis and nonlinearities inherent to the mate-
rials. In this paper, an energy-based model based upon
domain wall interactions is used to characterize the dy-
namics of a magnetostrictive actuator coupled to a thin
structure. This model is then discretized to obtain a
finite dimensional ODE system with nonlinear control
inputs. Finally, optimal control theory is used to derive

a control law which utilizes the inherent nonlinearities
and hysteresis.

To illustrate certain issues which must be addressed
when developing a model-based control method, we
consider a typical magnetostrictive transducer as de-
picted in Figure 1. As detailed in [3], the primary com-
ponents of the transducer include a magnetostrictive
rod, a wound wire solenoid, and a cylindrical permanent
magnet. The sensor/actuator capabilities of the magne-
tostrictive material are provided by magnetic moments
which rotate in the presense of an applied magnetic
field. As depicted in Figure 2a, the moments are pri-
marily oriented perpendicular to the longitudinal rod
axis in the absence of an applied field. Prestressing
the rod with the spring washer serves to increase the
number of moments perpendicular to the axis (see Fig-
ure 2b). When a field is applied in the direction of the
rod axis, moments align in the sense depicted in Fig-
ure 2¢ and significant strains and forces are generated.
The driving field H(t) is generated through a time-
dependent current Z(¢) applied to the solenoid along
with the field Hy generated by the permanent magnet.
To model the transducer for structural applications, it
1s necessary to characterize the relationship between the
current Z applied to the solenoid, the resulting field H,
the associated magnetization M, and finally the gener-
ated strains e. As noted in Figure 3, the relationships
are highly nonlinear and exhibit significant hysteresis.

A domain wall model characterizing the hysteresis
and material nonlinearities i1s outlined in Section 2 and
incorporated in an Euler-Bernoulli thin beam model in
Section 3. This illustrates the modeling of the fully
coupled transducer dynamics in a typical structural ap-
plication. A spline-based Galerkin method is employed
in Section 4 to obtain an approximating vector ODE
system. The application of optimal control theory to
obtain an open loop nonlinear control input is outlined
in Section 5 and illustrated through a numerical exam-
ple. This example demonstrates the effectiveness of the
control law and the capabilities of the transducers when
nonlinear model-based control methods are employed.
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Figure 1. Cross section of a typical Terfenol-D mag-
netostrictive transducer.
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Figure 2. Magnetic moments in the Terfenol-D rod;
(a) Orientation of moments in unstressed rod in absence
of applied magnetic field; (b) Orientation of moments
in prestressed rod with no applied field; (c) Orientation
of moments in prestressed rod when field is applied in
direction of longitudinal rod axis.

2. Domain Wall Dynamics

The model used here is developed through considera-
tion of domain wall theory for ferromagnetic materials.
This theory is based upon the observation that below
the material’s Curie temperature, moments are highly
aligned in regions termed domains. The boundaries be-
tween domains, in which a transition of the moment
orientation occurs, are typically referred to as domain
walls. For a material which is free from defects, the do-
main wall movement is reversible which leads to anhys-
teretic (hysteresis free) behavior. Most materials, how-
ever, contain defects which impede domain wall move-
ment and introduce hysteresis. Details regarding the
physics underlying this phenomenon can be found in

[4, 5, 8].
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Figure 3. (a) Relationship between the magnetic field
strength H and the magnetization M; (b) Applied mag-
netic field H and resulting strain distribution e.

To characterize the magnetization M, we consider
first the effective field within the material. For rods
subjected to a constant prestress og, the effective field
is given by

Hepp(t) = H(t) + aM(t)

where
H(t) = nZ(¥)

denotes the magnetic field generated by a solenoid hav-
ing n turns per unit length with an input current Z(¢).
The parameter o quantifies magnetic and stress inter-
actions. Through thermodynamic considerations, the
anhysteretic magnetization is then defined in terms of
the Langevin function

Man() =, ot (220 ) — ()|

Here M, denotes the saturation magnetization of the
material and a is a parameter which characterizes the
shape of the anhysteretic curve. Energy balancing (see
[5]) is then used to quantify the irreversible and re-
versible magnetizations through the expressions
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and

Mrey(t) = e[Man(t) = Mirr (1)) (3)

(0 = %1 while the constants ¢ and k are estimated from
the experimental hysteresis curves). Finally, the total
magnetization is given by

M(t) = Myeo (1) + Mirs (1) (4)
To first approximation, the strains generated by the
material are given by the bulk magnetostriction

- I VR

At = 55 M) (5)

where A; denotes the saturation magnetostriction (see
[4] for details). In combination, (1)-(5) characterize the
relationship between the input current Z and the strains
generated by the transducer. Details regarding the well-
posedness of the model are given in [9].

3. Structural Model

To illustrate the use of magnetostrictive actuators in
a structural application and provide a setting in which
to pose the control problem, we consider a cantilever
beam with end-mounted actuators as depicted in Fig-
ure 4. As detailed in [2], this setup has been experimen-
tally employed to ascertain properties and capabilities
of the actuators.

For modeling purposes, the beam is assumed to
have length ¢, width b, and thickness h. The den-
sity, Young’s modulus, Kelvin-Voigt damping coeffi-
cient and air damping coefficient for the beam are de-
noted by py, Ep, cp, and =, respectively. The cross-
sectional area of the Terfenol rod is denoted by Ay,qy
while the Young’s modulus and damping coefficient for
the Terfenol rod are denoted by E* and ¢X. The length
and width of the connecting bar are denoted by ¢, and
b., respectively, while the bar density i1s given by p,.
Finally, the transverse beam displacement is given by
w while f(¢,#) denotes an exogenous surface force to
the beam.

Moment and force balancing yields the strong form
of the Euler-Bernoulli equations
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along with appropriate initial conditions, as a model
for characterizing the transverse beam dynamics. As

Figure 4. Cantilever beam with magnetostrictive ac-
tuators.

detailed in [8], the composite density and internal bend-
ing moment are given by

p(l‘) = pohb + QprTETde(l‘)

8w Bw
./\/lim(t, l‘) = E[(l‘)w(t, l‘) + Cpfm(t, l’)
where the characteristic function y,.q delineates the
location of the rods and
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For the case when the Terfenol rods are driven diametri-
cally out-of-phase, the external moment 1s derived from
(5) and is given by

Mipag(t, &) = KM M (1) + 2M (1) M]Xroa(2)

where KM = (3\,/M2)Apmag BT (h/2 4 £,)°. The in-
clusion of the weighted magnetization 2M ()M, pro-
vides the bias necessary to attain bidirectional strains.

In order to obtain a weak form of the model, we take

the state to be the displacement w in the state space
X = L?(0,¢) with the inner product

4
(¢, ¥)x :/0 po de .

The space of test functions i1s taken to be V =
H?(0,6) = {¢ € H*0,£)]|¢(0) = ¢'(0) = 0} with the

inner product

¢
<¢>,1/)>V:/0 EI¢" 4" dx .

It should be noted that with these choices, V' is contin-
uously and densely embedded in H. Hence one has the
Gelfand triple

Ve X~ Xy

with the pivot space X.



A weak form of the model is then given by

£ £ ‘
/pi'[n/)dx—i—/ 'yuﬂ/}dx—l—/ Mt dx
0 0 0
. s (6)
= [ Moyt e+ [ pode
0 0

for all ¥ € V. It is in this form that we develop the
approximation method and formulate the control prob-
lem.

4. Approximation Method

A necessary step for constructing an implementable
control law is the approximation of the infinite dimen-
sional system (6). We employ a Galerkin approximation
in the spatial variable to obtain a semidiscrete ODE sys-
tem in time which is amenable to control formulation.
Specifically, the spatial basis is taken to be {B; };71:‘"11
where Bj(z) denotes the j®* cubic B-spline modified to
satisfy the fixed left boundary condition. Approximate
solutions

m+1
whta) = 3 w05 ()

are then considered in the subpace V™ = span{B;}. To
obtain a vector ODE system, the infinite dimensional
system (6) is restricted to V™ and posed in first-order
form to yield

y(t) = Ay(t) + [B(w)](t) + F(1)
(7)
y(O) =Y.

The component system matrices have the form

0 I
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4
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Note that u(t) = Z(t) denotes the control input to the
system. The system (7) provides the constraints em-
ployed in the control problem.

5. Control Problem

We consider here the problem of controlling the non-
linear system

y(t) = Ay(t) + [B(w)](?)
y(to) = yo

(8)

on the time interval [fg,t;]. As detailed in [6, 7], an
appropriate performance index for this case 1s

ty 1
s = [ L u. 0 d+ 50T )G O
to
where the Lagrangian is given by

[v" )Qu(t) + Ru*(t)] .

N | =

L(y(t), u(t), t) =

The positive definite matrix ¢ and positive constant R
weight the state and control input, respectively, while
the nonnegative matrix G penalizes large terminal val-
ues of the state. In the examples which follow, () and
G were chosen to be multiples of the mass matrix and
identity, respectively. Finally, the Hamiltonian associ-
ated with this system is

H(y, A u,t) = Ly, u,t) + AT [Ay(t) + [B(u))(t)]

where A € IR™*! is the adjoint variable or Lagrange
multiplier. It should be noted that the state equation
(8) satisfies
. 0H
TN
Enforcement of the necessary conditions for minimiz-
ing (9) yields the adjoint system

Alty) = =Gyliy)
and the stationary condition

oy,

Ju
Note that the terminal condition on the adjoint variable
1s chosen to satisfy the transversality constraint for the
system. When combined with the state constraints, this
yields the optimality system

y(t) |
At |

Ay(t) + [B(w)](1) ]
—ATA(1) + Qu(t)



where the optimal control satisfies
ut(t) = —R7HBY (u)])(1) A(t).

Equivalently, this two point boundary value problem
can be expressed as

(1) = F(t, 2)
Boz(to) = yo (10)
Brz(ty) = —Gy(ty)

Pl 2) = Ay(t) + [B(u)](t)

T AT + Qut)
PR [0
ool > o 1 |”

The solutions to the system (10) can be approxi-
mated through a variety of methods including finite dif-
ferences and nonlinear multiple shooting. To illustrate
a finite difference approach, we consider a discretiza-
tion of the time interval [tp,f;] with a uniform mesh
having stepsize At and points %g,¢1, - -,txy = ty. The
approximate values of z at these times are denoted by
zo, -, zn. A forward difference approximation of the
temporal derivative then yields the system

1 1
Az [zj41 — 2] = 3 [F'(tj,25) + Ftj41,2j41)]
Bozo = [yo,0]7 (11)

Byzo = [0, —Gy(ts)]"

for j = 0,---, N — 1. The determination of a solution
vector zp = [zg,- -, zn] to (11) can then be expressed
as the problem of finding z; which solves

]-"(zh) =0 (12)

where F is defined through the difference method and
boundary conditions. The reader is referred to [1] for
details.

A quasi-Newton iteration of the form zi"'l = zﬁ —|—€§,
where 5’5 solves

F' () & ==F (2h), (13)

was used to approximate the solution to the nonlinear
system (12). Details regarding the efficient solution of
the solution (13) by utilizing an analytic LU decompo-
sition of the Jacobian F'(zF) will appear in a future
paper. We note that for the example presented here,
systems having in excess of 20,000 unknowns were re-
solved with 3-4 Newton iterations.

Numerical Example

To illustrate the performance of the control method,
we considered a cantilever beam which was excited by
a uniform (in space) force

f(t’x):{ (1)00sin(107rt) ,

t < .45
t> .45

for 0.45 seconds and was then allowed to freely decay.
Control was provided by a pair of end-mounted actua-
tors as depicted in Figure 4. The system was modeled
through the modified Euler-Bernoulli model described
previously and the dynamics were approximated by nu-
merically integrating the system (7). The dimensions
and physical parameters for the system are summarized
in Table 1.

The control inputs were computed using the approx-
imation method (11) for the two point boundary value
problem (10) on the time interval [to, ;] = [0.45, 2.45].
To illustrate the attenuation yielded by the open loop
optimal control method, the uncontrolled and con-
trolled beam displacements at the point & = 3¢/5 are
plotted in Figure 5. The corresponding relationship
between the input magnetic field and output magne-
tization is plotted in Figure 6. It is noted that the
model-based nonlinear control law very adequately in-
corporates the inherent hysteresis in the transducer and
provides complete attenuation within 0.5 seconds of be-
ing invoked. Both experiments and numerical simula-
tions have demonstrated that linear feedback laws are
inadequate in this regime since they do not quantify
the energy losses and time delays due to the hysteresis.
This illustrates both the necessity for using a nonlin-
ear control method and the effectiveness of the method
considered here.

Displacement

0 015 i 1.‘5 ‘2
Time
Figure 5. Uncontrolled and controlled beam trajecto-

ries at the point & = 3¢/5; (uncontrolled), m—
(controlled).




Beam Actuator Terfenol

£ = 4573 m £, = .0254 m a="7105A/m
h = .0016 m b, = .002m k=17002 A/m
b =.0203m Amag = 0064 m? a = .007781

Ey, =17.0861 x 101° N/m? EH =7.0x10'° N/m? | ¢=10.3931

pp = 2863 kg/m? pr = 8524 kg/m? M = 1.3236 x 10° A/m
cp, = 9.3663 x 10° Ns/m? | ¢ = 0.0 As = 9.96 x 10~

v =.013 Ns/m?

Table 1. Dimensions and parameters for the beam and Terfenol transducer.
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Figure 6. Input magnetic field H = nZ and output
magnetization M.

6. Concluding Remarks

This paper illustrates the development of a model-
based nonlinear control method for magnetostrictive
materials. The model is developed through an energy
formulation for magnetic domain and domain wall dy-
namics. This provides a characterization which incor-
porates the material nonlinearities and hysteresis inher-
ent to the materials. Both experiments and numerical
simulations have demonstrated that due to this hystere-
sis, linear control methods fail at the high drive levels
which utilize the full capabilities of the materials. For
such regimes, we consider a nonlinear optimal control
method which incorporates the hysteresis and nonlin-
ear transducer dynamics. While this method yields an
open loop control input which is not robust with regard
to perturbations, it provides a means of quantifying the
control capabilities of the magnetostrictive materials at
high drive levels. It also provides a first step toward the
development of robust feedback methods which can be
experimentally implemented.
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