
A Nonlinear Model-Based Control Method forMagnetostrictive ActuatorsRalph C. SmithDepartment of MathematicsIowa State UniversityAmes, IA 50011rsmith@iastate.eduAbstractA nonlinear model-based control method for magne-tostrictive actuators is presented in this paper. Such ac-tuators utilize the realignment of magnetic moments inresponse to applied magnetic �elds to generate strainsin the material. Strains and forces generated in thismanner are signi�cantly larger than those produced bymany other smart materials but also exhibit signi�cantnonlinearities and hysteresis. To utilize the full poten-tial of these materials in control transducers, these in-herent nonlinearities and hysteresis must be accuratelycharacterized and incorporated in the control law. Anenergy-based model is employed to characterize the hys-teresis in a manner amenable to structural applications.Nonlinear optimal control theory is then used to deter-mine appropriate inputs to the system. The e�ective-ness of this nonlinear model-based control method isdemonstrated through a numerical example.1. IntroductionRecent advances in the construction of magnetostric-tive materials have led to the advent of actuators whichhave great potential in many structural applications.These actuators utilize the property that strains andforces su�ciently large to drive systems comprised ofthick structures and heavy components are generatedin response to applied magnetic �elds. For many ap-plications, the magnitude of the generated strains andforces makes the magnetostrictive transducers advan-tageous over other smart material transducers such aspiezoceramics and electrostrictives. The di�culty asso-ciated with magnetostrictive actuators, however, lies inthe hysteresis and nonlinearities inherent to the mate-rials. In this paper, an energy-based model based upondomain wall interactions is used to characterize the dy-namics of a magnetostrictive actuator coupled to a thinstructure. This model is then discretized to obtain a�nite dimensional ODE system with nonlinear controlinputs. Finally, optimal control theory is used to derive

a control law which utilizes the inherent nonlinearitiesand hysteresis.To illustrate certain issues which must be addressedwhen developing a model-based control method, weconsider a typical magnetostrictive transducer as de-picted in Figure 1. As detailed in [3], the primary com-ponents of the transducer include a magnetostrictiverod, a wound wire solenoid, and a cylindrical permanentmagnet. The sensor/actuator capabilities of the magne-tostrictive material are provided by magnetic momentswhich rotate in the presense of an applied magnetic�eld. As depicted in Figure 2a, the moments are pri-marily oriented perpendicular to the longitudinal rodaxis in the absence of an applied �eld. Prestressingthe rod with the spring washer serves to increase thenumber of moments perpendicular to the axis (see Fig-ure 2b). When a �eld is applied in the direction of therod axis, moments align in the sense depicted in Fig-ure 2c and signi�cant strains and forces are generated.The driving �eld H(t) is generated through a time-dependent current I(t) applied to the solenoid alongwith the �eld H0 generated by the permanent magnet.To model the transducer for structural applications, itis necessary to characterize the relationship between thecurrent I applied to the solenoid, the resulting �eld H,the associated magnetizationM , and �nally the gener-ated strains e. As noted in Figure 3, the relationshipsare highly nonlinear and exhibit signi�cant hysteresis.A domain wall model characterizing the hysteresisand material nonlinearities is outlined in Section 2 andincorporated in an Euler-Bernoulli thin beam model inSection 3. This illustrates the modeling of the fullycoupled transducer dynamics in a typical structural ap-plication. A spline-based Galerkin method is employedin Section 4 to obtain an approximating vector ODEsystem. The application of optimal control theory toobtain an open loop nonlinear control input is outlinedin Section 5 and illustrated through a numerical exam-ple. This example demonstrates the e�ectiveness of thecontrol law and the capabilities of the transducers whennonlinear model-based control methods are employed.
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Figure 2. Magnetic moments in the Terfenol-D rod;(a) Orientation of moments in unstressed rod in absenceof applied magnetic �eld; (b) Orientation of momentsin prestressed rod with no applied �eld; (c) Orientationof moments in prestressed rod when �eld is applied indirection of longitudinal rod axis.2. Domain Wall DynamicsThe model used here is developed through considera-tion of domain wall theory for ferromagnetic materials.This theory is based upon the observation that belowthe material's Curie temperature, moments are highlyaligned in regions termed domains. The boundaries be-tween domains, in which a transition of the momentorientation occurs, are typically referred to as domainwalls. For a material which is free from defects, the do-main wall movement is reversible which leads to anhys-teretic (hysteresis free) behavior. Most materials, how-ever, contain defects which impede domain wall move-ment and introduce hysteresis. Details regarding thephysics underlying this phenomenon can be found in[4, 5, 8].
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Figure 3. (a) Relationship between the magnetic �eldstrength H and the magnetizationM ; (b) Applied mag-netic �eld H and resulting strain distribution e.To characterize the magnetization M , we consider�rst the e�ective �eld within the material. For rodssubjected to a constant prestress �0, the e�ective �eldis given by Heff (t) = H(t) + �M (t)where H(t) = nI(t)denotes the magnetic �eld generated by a solenoid hav-ing n turns per unit length with an input current I(t).The parameter � quanti�es magnetic and stress inter-actions. Through thermodynamic considerations, theanhysteretic magnetization is then de�ned in terms ofthe Langevin functionMan(t) =Ms �coth�Heff (t)a �� � aHeff (t)�� : (1)Here Ms denotes the saturation magnetization of thematerial and a is a parameter which characterizes theshape of the anhysteretic curve. Energy balancing (see[5]) is then used to quantify the irreversible and re-versible magnetizations through the expressionsdMirrdt = ndIdt � Man(t)�Mirr(t)k� � �[Man(t)�Mirr(t)] (2)



and Mrev(t) = c[Man(t)�Mirr(t)] (3)(� = �1 while the constants c and k are estimated fromthe experimental hysteresis curves). Finally, the totalmagnetization is given byM (t) =Mrev(t) +Mirr(t) : (4)To �rst approximation, the strains generated by thematerial are given by the bulk magnetostriction�(t) = 32 �sM2s M2(t) (5)where �s denotes the saturation magnetostriction (see[4] for details). In combination, (1)-(5) characterize therelationship between the input current I and the strainsgenerated by the transducer. Details regarding the well-posedness of the model are given in [9].3. Structural ModelTo illustrate the use of magnetostrictive actuators ina structural application and provide a setting in whichto pose the control problem, we consider a cantileverbeam with end-mounted actuators as depicted in Fig-ure 4. As detailed in [2], this setup has been experimen-tally employed to ascertain properties and capabilitiesof the actuators.For modeling purposes, the beam is assumed tohave length `, width b, and thickness h. The den-sity, Young's modulus, Kelvin-Voigt damping coe�-cient and air damping coe�cient for the beam are de-noted by �b; Eb; cDb and , respectively. The cross-sectional area of the Terfenol rod is denoted by Amagwhile the Young's modulus and damping coe�cient forthe Terfenol rod are denoted byEH and cHD . The lengthand width of the connecting bar are denoted by `r andbr, respectively, while the bar density is given by �r .Finally, the transverse beam displacement is given byw while f(t; x) denotes an exogenous surface force tothe beam.Moment and force balancing yields the strong formof the Euler-Bernoulli equations�(x)@2w@t2 (t; x) +  @w@t (t; x) + @2Mint@x2 (t; x)= f(t; x) + @2Mmag@x2 (t; x)w(t; 0) = @w@x (t; 0) = 0Mint(t; `) = @Mint@x (t; `) = 0 ;along with appropriate initial conditions, as a modelfor characterizing the transverse beam dynamics. As

Figure 4. Cantilever beam with magnetostrictive ac-tuators.detailed in [8], the composite density and internal bend-ing moment are given by�(x) = �bhb+ 2�rbr`r�rod(x)Mint(t; x) = EI(x)@2w@x2 (t; x) + cDI @3w@x2@t (t; x)where the characteristic function �rod delineates thelocation of the rods andEI(x) = Ebh3b12 + 2AmagEH (h=2 + `r)2 �rod(x)cDI(x) = cDbh3b12 + 2AmagcHD (h=2 + `r)2 �rod(x) :For the case when the Terfenol rods are driven diametri-cally out-of-phase, the external moment is derived from(5) and is given byMmag(t; x) = KM [M2(t) + 2M (t)Ms]�rod(x)where KM = (3�s=M2s )AmagEH (h=2 + `r)2. The in-clusion of the weighted magnetization 2M (t)Ms pro-vides the bias necessary to attain bidirectional strains.In order to obtain a weak form of the model, we takethe state to be the displacement w in the state spaceX = L2(0; `) with the inner producth�;  iX = Z `0 �� dx :The space of test functions is taken to be V =H2L(0; `) � f� 2 H2(0; `) j�(0) = �0(0) = 0g with theinner product h�;  iV = Z `0 EI�00 00 dx :It should be noted that with these choices, V is contin-uously and densely embedded in H. Hence one has theGelfand triple V ,! X ' X� ,! V �with the pivot space X.



A weak form of the model is then given byZ `0 � �w dx+ Z `0  _w dx+ Z `0 Mint 00 dx= Z `0 Mmag 00 dx+ Z `0 f dx (6)for all  2 V . It is in this form that we develop theapproximation method and formulate the control prob-lem. 4. Approximation MethodA necessary step for constructing an implementablecontrol law is the approximation of the in�nite dimen-sional system (6). We employ a Galerkin approximationin the spatial variable to obtain a semidiscrete ODE sys-tem in time which is amenable to control formulation.Speci�cally, the spatial basis is taken to be fBjgm+1j=1where Bj(x) denotes the jth cubic B-spline modi�ed tosatisfy the �xed left boundary condition. Approximatesolutions wm(t; x) = m+1Xj=1 wj(t)Bj (x)are then considered in the subpace V m = spanfBjg. Toobtain a vector ODE system, the in�nite dimensionalsystem (6) is restricted to V m and posed in �rst-orderform to yield_y(t) = Ay(t) + [B(u)](t) + F (t)y(0) = y0 : (7)The component system matrices have the formA = " 0 IeQ�1K eQ�1C #[B(u)](t) = �M2(u) + 2M (u)Ms� (t)" 0eQ�1 eB #F (t) = " 0eQ�1 ~f(t) #where y(t) = [w1(t); � � � ; wm+1(t); _w1(t); � � � ; _wm+1(t)]and[ eQ]ij = Z `0 �BiBj dx [ eB]i = KM Zmag B00i dx[K]ij = Z `0 EIB00i B00j dx [ ~f(t)]i = Z `0 f(t; x)Bi dx[C]ij = Z `0 cDIB00i B00j dx :

Note that u(t) = I(t) denotes the control input to thesystem. The system (7) provides the constraints em-ployed in the control problem.5. Control ProblemWe consider here the problem of controlling the non-linear system _y(t) = Ay(t) + [B(u)](t)y(t0) = y0 (8)on the time interval [t0; tf ]. As detailed in [6, 7], anappropriate performance index for this case isJ(u) = Z tft0 L(y(t); u(t); t) dt+ 12yT (tf )Gy(tf ) (9)where the Lagrangian is given byL(y(t); u(t); t) = 12 �yT (t)Qy(t) + Ru2(t)� :The positive de�nite matrix Q and positive constant Rweight the state and control input, respectively, whilethe nonnegative matrix G penalizes large terminal val-ues of the state. In the examples which follow, Q andG were chosen to be multiples of the mass matrix andidentity, respectively. Finally, the Hamiltonian associ-ated with this system isH(y; �; u; t) = L(y; u; t) + �T [Ay(t) + [B(u)](t)]where � 2 lRm+1 is the adjoint variable or Lagrangemultiplier. It should be noted that the state equation(8) satis�es _y = @H@� :Enforcement of the necessary conditions for minimiz-ing (9) yields the adjoint system_� = �@H@y�(tf ) = �Gy(tf )and the stationary condition@H@u = 0 :Note that the terminal condition on the adjoint variableis chosen to satisfy the transversality constraint for thesystem. When combined with the state constraints, thisyields the optimality system�" y(t)�(t) #= " Ay(t) + [B(u)](t)�AT�(t) +Qy(t) # ; y(t0) = y0�(tf ) = �Gy(tf )



where the optimal control satis�esu�(t) = �R�1[BTu (u�)](t)�(t):Equivalently, this two point boundary value problemcan be expressed as_z(t) = F (t; z)B0z(t0) = y0BT z(tf ) = �Gy(tf ) (10)where z = [y; �]T andF (t; z) = " Ay(t) + [B(u)](t)�AT�(t) +Qy(t) #B0 = " I 00 0 # ; Bf = " 0 00 I # :The solutions to the system (10) can be approxi-mated through a variety of methods including �nite dif-ferences and nonlinear multiple shooting. To illustratea �nite di�erence approach, we consider a discretiza-tion of the time interval [t0; tf ] with a uniform meshhaving stepsize �t and points t0; t1; � � � ; tN = tf . Theapproximate values of z at these times are denoted byz0; � � � ; zN . A forward di�erence approximation of thetemporal derivative then yields the system1�t [zj+1 � zj ] = 12 [F (tj; zj) + F (tj+1; zj+1)]B0z0 = [y0; 0]TBf z0 = [0;�Gy(tf )]T (11)for j = 0; � � � ; N � 1. The determination of a solutionvector zh = [z0; � � � ; zN ] to (11) can then be expressedas the problem of �nding zh which solvesF(zh) = 0 (12)where F is de�ned through the di�erence method andboundary conditions. The reader is referred to [1] fordetails.A quasi-Newton iteration of the form zk+1h = zkh+�kh ;where �kh solves F 0 �zkh� �kh = �F �zkh� ; (13)was used to approximate the solution to the nonlinearsystem (12). Details regarding the e�cient solution ofthe solution (13) by utilizing an analytic LU decompo-sition of the Jacobian F 0(zkh) will appear in a futurepaper. We note that for the example presented here,systems having in excess of 20,000 unknowns were re-solved with 3-4 Newton iterations.

Numerical ExampleTo illustrate the performance of the control method,we considered a cantilever beam which was excited bya uniform (in space) forcef(t; x) = ( 100 sin(10�t) ; t � :450 ; t > :45for 0:45 seconds and was then allowed to freely decay.Control was provided by a pair of end-mounted actua-tors as depicted in Figure 4. The system was modeledthrough the modi�ed Euler-Bernoulli model describedpreviously and the dynamics were approximated by nu-merically integrating the system (7). The dimensionsand physical parameters for the system are summarizedin Table 1.The control inputs were computed using the approx-imation method (11) for the two point boundary valueproblem (10) on the time interval [t0; tf ] = [0:45; 2:45].To illustrate the attenuation yielded by the open loopoptimal control method, the uncontrolled and con-trolled beam displacements at the point �x = 3`=5 areplotted in Figure 5. The corresponding relationshipbetween the input magnetic �eld and output magne-tization is plotted in Figure 6. It is noted that themodel-based nonlinear control law very adequately in-corporates the inherent hysteresis in the transducer andprovides complete attenuation within 0:5 seconds of be-ing invoked. Both experiments and numerical simula-tions have demonstrated that linear feedback laws areinadequate in this regime since they do not quantifythe energy losses and time delays due to the hysteresis.This illustrates both the necessity for using a nonlin-ear control method and the e�ectiveness of the methodconsidered here.
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Figure 5. Uncontrolled and controlled beam trajecto-ries at the point �x = 3`=5; (uncontrolled),(controlled).



Beam Actuator Terfenol` = :4573m `r = :0254m a = 7105 A=mh = :0016m br = :002 m k = 7002 A=mb = :0203 m Amag = :0064m2 � = :007781Eb = 7:0861� 1010 N=m2 EH = 7:0� 1010 N=m2 c = 0:3931�b = 2863 kg=m3 �r = 8524 kg=m3 Ms = 1:3236� 105 A=mcDb = 9:3663� 105 Ns=m2 cHD = 0:0 �s = 9:96� 10�4 = :013 Ns=m2Table 1. Dimensions and parameters for the beam and Terfenol transducer.
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nFigure 6. Input magnetic �eld H = nI and outputmagnetizationM .6. Concluding RemarksThis paper illustrates the development of a model-based nonlinear control method for magnetostrictivematerials. The model is developed through an energyformulation for magnetic domain and domain wall dy-namics. This provides a characterization which incor-porates the material nonlinearities and hysteresis inher-ent to the materials. Both experiments and numericalsimulations have demonstrated that due to this hystere-sis, linear control methods fail at the high drive levelswhich utilize the full capabilities of the materials. Forsuch regimes, we consider a nonlinear optimal controlmethod which incorporates the hysteresis and nonlin-ear transducer dynamics. While this method yields anopen loop control input which is not robust with regardto perturbations, it provides a means of quantifying thecontrol capabilities of the magnetostrictive materials athigh drive levels. It also provides a �rst step toward thedevelopment of robust feedback methods which can beexperimentally implemented.AcknowledgementsThis research was supported in part by the AirForce O�ce of Scienti�c Research under grant AFOSRF49620-95-1-0236.
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