-

CONDITIDONAL RATE DERIVATION IN THE PRESENCE OF

INTERVENING VARIABLES USING & STUOCHASTIC MODEL
by
Richard H. Shachtman
John R. Schoenfelder
Carol J. Hogue

Department of Biostatistics
University of North Carolina at Chapel Hill

Institute of Statistics Mimeo Series No. 1292
June 1980



. CONDITIONAL RATE DERIVATION IN THE PRESENCE OF
XS INTERVENING VARIABLES USING A STHOCHASTIC MODEL

Richard H. Shachtman (1), John R. Schoenfelder (1), Carol J. Hogue (2)

ABRSTRACT
When conducting inferential and epidemiologic studies, Tesearchers
are often interested in the distribution of time until the occurrence of
‘ some specified eveﬁt. a form of incidence calculation. Furthermore, their
interest will often extend to the effects of intervening factors on this
length. In this paper we impose the assumption that the phenomena being
investigated are governed by & stationary Markov chain and review how one
may estimate the above distribution. We then introduce and rvelate two
interpretatively different methods of investigating the effects of
intervening factors. In particular, we show how an investigator may
evaluate the effect of potential intervention programs. Finallq,iwe

demonstrate the proposed methodology vusing data from a population study.
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CONDITIONAL RATE DERIVATION IN THE PRESENCE OF
INTERVEMING VARIABLES USING A STOGCHASTIC MODEL

Richard H. Shachtman, John R. Schoenfelder, Carol J. Hogue

'Biological and epidemioleogical outcome investigations often assess the
relationship between characteristic variables (e.g., personal or demographic
variables, often called risk factors) and condition variables (e.g..
development of disea%e. oFten.called response factors) to determine whether
the condition occurs more freguently among those individbals exhibiting the
characteristic. For example, in a study of thé relationchip between smoking
and lung cancer, the characteristic variable is smoking status and the
condition variable denotes whether lung cancer develops. A researﬁher would
compare the incidence (new case) rate of lung cancer for smokers to that of
nen-smokers,

Frequently, research will investigate more than JUStrthE characteristic
and condition; that is, one will want to consider intervening variables. In
the above example, an intervening variable with epidemioliogical iéplications
might be occupational exposure to asbestos pouwder. In this paperf we
investigate two ways of incorporating such variables —— as posterior or
prior factors. After noting that traditionasl epidemiolog{cal approaches
to both methods of intervening variable analysis often exert an unreasonably
large data demand, we show how & Markov chain (MC) may be used to
significantly vreduce the data requirements.‘ First, however, we
conceptually define two methodologies for incorporating intervening
variables. Subsequently, we will provide mathematical definitions and

derive telationships for the two techniques.
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Consider & cohort (homogeneous group) of smokers demarcated at time
ievo. We may consider asbestos pouder (the intervening variable) either
as a POSTERIOR factor (we consider all smckers at time zero and later
compute the lung cancer rate among those who, as:an additional constraint,
have not been exposed to ;sbestos powder as time proceeds) or as a PRIOR
factor (we consider only the subset of smokers who will not be exposed to
ashestos powder and compute their lung cancer rate).

_For a specific individual, treating asbestos powder exposure as a
posterior factor éonsiders the probability that s/he will develop lung cancer
without being accupationallg exposed to ashbestos powder GIVEN that s/he was
initially smoking. Treating this same intervening variable as a prior factor
considers the probability that a specific individual wili develop lung
cancer GIVEN that s/he was initially smoking and will not experience asbesztos
powder exposure. These approaches differ in the way they handle the
intervening variable constraints. _The posterior conditioning analysis
treats the intervening variable as a condition which may or may not occur
dufing the period of observation whereas the prior conditioning controls
for it before observation begins. The resulting incidence rates may
differ significantly and, as will be seen, require distinct formulae.

Researchers may analyze intervening constraints in a direct
epidemiological analysis by using characteristic and intervening véfiables
to partition_the‘data into distinct cohorts: they then compute ;dhort
specific rates. In our example, treatiﬁg ashestos powder exposure as a
POSTERIOR factor is exemplified by the comparison of workers in an industrial
setting which may, but need not, involve asbestos powder exposdre (e.g. .
shipbuilding). At the termination of the sfudg, one computes lung cancer
rates within each cohort (smoker, non—~smoker) separately for those

individuals who do (do not) experience asbestos powder exposure.
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Considering asbestos powder exposure as a PRIOR factor requires that

the subcohorts of smokers, for éxample. be demarcated at the initiation of

the study. One subcohort consists of those smokers who will be exposed fo
ashestoz powder during the period of observation and the other of those who
will not. When the studgvterminates, one computes the appropriate lung
cancer Tate within each subcohort; & comparison of those rates serves to
assess the effect of exposure to asbestos powder on the incidence of lung
cancer within a cohort of smokers. By defining similar subcohorts of
non-smokers we may complete the analysis of smoking and lung cancer while
controlling:, in a PRIDR sense, for the effect of asbestos powder exposure.

From this example it is clear that both of these traditional approaches
necessitate a large amount of data in order to obtain acﬁurate estimates of
the rates under consideration. The data demanﬁ becomes & maJjor concern
when the condition and/or intervening variable is rare or when & number of
intervening variables are considered simultaneously; the latter situation
requires the formation of many subcohorts, each of which must be "reasonably"
large.

Efficiency criteria, or simply the problem of obtaiﬁing sufficient
information, indicate the advantage of using anaigtic models rather than
following up multiple cohorts; the time-dependent, probabilistic nature of
many empirical processes implies that such analytic models be stocﬁéstic
processes. }nvéstigators may then use these models to estimate the
probability distributions of (i) the time until the process arrives at a
predetermined state (e.g., a disease condition), (ii) the length of stay of
the pfoceﬁs in certain states, and (iii) the number of visit§ to key states.
The scientist may condition all of these digtributions by intervening

variables as previously stipulated, thereby vtilizing the model to account

"for various confounding or. concomitant variables.
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In Section 2 we assume that the wnderlying process is a stationary
(time—-homogeneous) MC, present formal analytic definitions of both
types (prior and posterior) of intervening variable analyses, and derive
a relationship between them. We then show how a researcher may perform
both analyses: as well as the ordinary (non—intervening variable) analuysis,
vsing functions of the MC +¢ransition matrix. Tﬁus all analyses demand
only sufficient data to estimate the transition mastrix. To illustrate
these concepts, we will present & numerical example based on an MC model
for a study of induced abortion. We employ a 72 state, time—homogeneous

model described in Shachtman and Hogue (2).

1. CONDITIONING THE RATES

A. TRANSITION FUNCTIONS WITHOUT INTERVENING VARIABLES
Assuming that the phenomena under investigation are representable

by a stationary MC, let p = P(X =k } X = 3} be the probability
Jk n n-1

that the underlying protess is in state k at time n given that it was in

state j at time n-1; note that because of stationarity these probabilities

do not depend on n. The chain’‘s transition matrix is then P = {((p ). We
Jk
may obtain the n-step transition probabilities, p (n) =PX =k | X = 3,
Jk n - o
n
by the expression P = ({p (n) )); that is, p (n) is the (j, k)-th element
Jk Jk

of the n-th power of the transition matrix. Finally, we express the first

passage time prbbabilities, f (n} =P(X =ki X /=ks 1 <=m<=n-11X= ))
Jk n m 0

by

]
[

p (n) = SUM/m(1,n) & (m) p <(n-m) , n >
Jk . Jk k k
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and hence may obtain them iteratively by the formula
£ (1) = p
gk Jk
£ tn) = p (n) - SUM/m(L,n-1) ¥ (m)p (n-m) . n >= 2.
Jk Jk : Jk kk

(The symbol /= means unequal and SUM/m(1,n) represents the sum from
m=1 %o m=n.) Using these probabilities, a researcher mag employ knoum
technihues to compute such quantities as mean time necessary to "travel”
between any two states, mean number of visits to any state, and mean
length of stay in a given state.

To be definite let us row suppose the researcher is interested in the
distributién of the time vrequired to reach state k from state . As
expressed in Shachtman, Schoenfelder, and Hogue (3) this distribution is

given by (C F (n): n=0,1,... )) where F (n) = SUM/m(i,m)} £ (m) is
- Jk Ik Jk

the probability that the process visits state k by time n given that
it was in state J§ at time O©. The unconditioned probability of visiting

state k by time n is then expressible as 6 (n) = 8UM/y a (0) F (n},
k J Jk

where the summation is over all states of the chain and

(( a (0) =P(X = y): all states J )) constitutes the initisal probability
..J 0
distribution. Thus. for example, if n indexes months and states k,

represent diagnosis of lung cancer and performing a "pulmonary function”

task respectively, then F (n} will be the probability that a person is
Jk

diagnosed to have lung cancer by month n given that he was performing

a “"pulmonary function" task at time O. The quantity €& (n) probability
k

probability that a person develops lung cancer by month n irrespective

of his status at time ‘0.
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These distributions are of particular interect when state k is absorbing

In this situation (( F (n): n=0,1,... )) 1is the distribution for time
Jk
~to absorptien from state j and (( G (m): n = 0.1,... )} i=z the time
k
to absorption distribution. Moreover, F (n) =p (n) for k absorbing.
: Jk Jk ’

Throughout the remainder of this paper we will, for ease of expression,
treat k as if it were an absorbing state; we will, however, make no
explic&t use of the assumption. Hence it could he dropped, in which case
we would be computing "time to visit" rather than "time to absorption®

distributions.

B. TRANSITION FUNCTIONS WITH INTERVENING VARIABLES AS POSTERIOR FACTORS
As previously mentioned, interest will often extend beyond an analysis
of initial and absorbiﬁg states; that is, a researcher will want to know the
probability of absorption without visiting one or more prespecified states.
Letting h represent such a taboo state, an informative conditional
probébilitg, called a post-conditioned taboo probability (POSTAB) is given by
p (n) =P(X =k X /=h, 1 L=n{=n-11 X = ),
h gk n m o
the‘ﬁrobabilitg of being in state k at time n without having entered
state h given that the process started in state . The correspbnding
post~conditioned first passage probability (FOSTAB) is

£ (n) =P(X =&k X /= h:k o+ 1 <=m<=n-11 X = ;).
h Jk n m 0

Note that for h =%k, £ (n) = §f (n) , the ordinary, unconditioned
h gk Jk

first passage time probability.
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Analogous to the non~taboo situation, the probability distribution

(¢ F «(ni: n o= 0,1,... )}, where F o(n) = 8UM/m(l,n) £ (m), is the
h gk h gk h gk

post-conditioned taboo time to absorption from state J distribution.

Likewise ({ & (n): n = 0,1.... )}, where G (n) = 8UM/7y a (O F (n),
h k . h k J h gk

is the post-conditioned taboo time to absorption distribution

LEMMA: The POSTABs and FOSTABs follow the same functional relation-
ships as unconditioned probabilitiesi in particular, assuming h /= &k,

we have

(i) p (1) = £ (1) = ¢ = p
h gk h Jk - Jk Jk
p (n) = SUM/m(i.,n) & (m) p (n-m) ., n 2= 2.
h Jk h Jk h kk
(ii) p (n)y = 8UM/v(r /= h) p (n—1i) p r on >= 2
h gk h gr rk

PROOF: Obvious by inspection.

By virtue of part (ii) of this lemma one may easily derive
POSTABs from the unconditioned transition probabilities whenever h /= k.
(Recall that for h = k , the PUSTABs are the usual first-passage time

*
probabilities. ) Define P to be the matrix formed by replacing the

h-th row of P, the row corresponding to the tsboo state, by zeroes.
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1 n n—-1
LEMMA: The sequence of matrices defined by R =P, R =R P, n 2= 2,
n .
is such that R = (( p (n) ).
h gk
PROOF: Obvious by inspection.
u]

n
Note that R is this the matrix of n-step POSTABS.

c. TRANSITION FUNCTIONS WITH INTERVENING VARIABLES AS PRIOR FACTORS

We have previouslg suggested another way of incorporating intervening
variables into an analysis. Rather than being interested in time to
absorption For a “"subcohort" which does not visit a taboo state during the
time of observation, the researcher may want to know the time to absorption
distribution for a cohort which is explicity restricted from visiting a taboo
state during the period of observation. In this case the taboo restriction
is placed behind rather than in front of the conditioning bar.

These probabilities are expressed as

r (n) =P(X =%k i X /= h 1 <=m<=n~1:; X = 3)
h gk n m 0

the pre-conditioned taboo probability (PRETAB), and

s (n) =P(X =%k { X /= h,k ., 1 <= m <= n-1; X = 3)
h gk n ) 0

the pre-conditioned first passage taboo probability (FRETAE’. We define

T (1) = s (1) =p
h Jk h gk Jk

~



D. RELATING THE PRE-

To this point we have introduced two methods of defining

transition functions for intervening variable analysis.

AND POST-CONDITICMED RATES
n~-step

As discussed

in the introduction each has a distinct interpretation invelving either

prior or posterior conditioning.

The following theorem, relating pre-

conditioned and post-conditioned first passage prbbabilities, provides a

direct comparison of these types of taboo conditioning.

Eprthermore, by expressing the

FOSTABs, the latter being
transition probabilities,
computing the former.

relates PRETABs ¢to

unconditioned transition probabilities, so are the former.

FRETABs as a function of the
iteratively obtainable from the unconditioned

this theorem also provides s convenient method of

Although not explicitly stated, a similar theorem

POSTABs;: since the latter are obtainable from the

Hence all

taboo probabilities and distributions discussed are computsble as

functions of the initial transition matrix governing the MC.

THEOREM:

(i) s (n)} = ¢

h gk h gk

where
- T Ji

(ii) If for all n

it follows that 3

(FRETABs from

F (n) = S8UM/m(i,n} § (m),

i

k, we have

FD8TABs) Assuming that h /

tn) 7 (1 - F (n-1) - F (n-1) )
h gk k gh -
ihr = hok & n >= 2.
rogi

SUM/m(L,n) ¢ £ (m) + £ (m) ) <

h gk k gh

>= 1 we have

(n) >= £ (n).
h gk h gk

1,
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PROOF:

(i) Define the following sets: A = ({( X = &k J))

m
C=((X =342
0. .
Note that by definition we have
£ (m) = P(X = ki X /=h:/ks 1 €=y =m1 1 X = j4)
h gk m u 0O
= P{X = k for the first time and no h has occurred | X = ;3
m (o]
Similarly,
£ (m) = P(X = h for the first time and no &k has occurred | X = j).
k Jh m O

Now, define d as the union of states h and k. Then, since h /= k, it

follows that X =k ==> X /= h and X = h ——> X /= k, we see
m m m m
£ (o) + ¢ (m) = P(X = d for the first time;i X =k | X = )
h gk k Jh m m 0
+ P(X = d for the first time; X = h | X = )
m om 0
= P(X = d for the first time | X = ).
m o)
Hence,
F (n) + F (n) = SUM/m{1,n) € £ (m) + £ (m)) R
h gk k gh h Jk k Jh
= 8UM/m{i,n) P(X = d for the first time " X = J)
m . 0
= P(X =d forseme m 1 <=m<=ni{ X = j).
m ]

and



1t - F (n) — F (n) =1-P(X =4d for some m 1 <=m<=n 1] X = 3
h gk k Jh m O
=P(X /=d, 1 <=m<=nti X = )2
m 4]
=P(X /= h,k, 1 <=m<=n !t X =)
m o
Now,
P(BIC) = P(X /= h,k: 1 <=m<=n-1 1 X = j)
m (¢)
. =1~ F (n-1) - F (n-1).
h gk k 4h
Then
¢ (n) = P(A!BC) = P(ABC)/P(BC) = P(ABICIP(C)Y/P(BICIP(C) = P(ABIC)Y/P(RIC)
h Jk
= ¢ (n) /¢ 1 - F (n=1) - F (n-1) ).
h gk k gh b gk
(ii}) Obvious as O <1 - F (n-1) - F (n-1) <= 1.
k jh h gk
(8l
The condition necessary to have s (n) » £ (n) is that neither
: h 3k h Jk

state h nor %k be absorbing, or, if they are, that there be an infinite
"wajiting time" before absorption. One may extend this theorem and the

corresponding analyses: to a collection H of taboo states rather than

the single state h.

COROLLARY: I# h = ks then (i) reduces to

s (n)=+% (n) / (1 —F (n} )
k gk Jk ‘ Jk

PROOF: vaious.bg inspection.
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E. TRANSITION FUNCTIONS WITH INTERVEMING VARIABLES AS DUAL PRIDOR AND
POSTERIOR FACTORS

In many epidemiological investigations a researcher is interested
in particular intervention strategies which may be time dependent.
For instance, one may ask what is the probability of absorption in state k
without visiting state h (or k) for the first t time units? To answer
this question we consider a combination of the taboo conditioned
proﬁagilities described above. These probabilities, meveging FRE~- and
FOSTABs, are called dual-conditioned taboo probabilities and, for the case

of the first passage times, are written as

£ (nit) =P(X =k X /= h.k ., t+1 <=y <= n-1 |
hk gk n V)

Using the following corollary to the previous theorem we relate this

dual~conditioned probability to the FOSTABs, thereby cobtaining an iterative

method fer computing the former.

COROLLARY: fs (nit) = £ n) /7 C1 - F (%) - oot n >= t+1.
hk gk h gk k Jh h Jk .
u}
Thus the distribution formed by summing the fs (nit) probabilities
' hk gk -

over n »= t+1 gives the desired dual-conditioned taboo time to absorption

from state j distributions, FS  (Ni1t) = 8UM/n(t+1, N) fs (nit).
hk gk hk Jk

By computing this distribution for all initial states and averaging over
the initial distribution, we arrive at the general (irrespective of

initial state ) dual-conditioned toboo time to absorption distribution,
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€8 (Nit) = 8UM/y a (0) FE8 (NIt). By varying the value of ¢,
hk k J hk gk

the researcher may assess the efficacy of a proposed intervention strategy

of explicitly preventing a visit to the taboo state as a function of time.
By altering the conditioning statements, 2 researcher may obtain

interesting variations of the above dual—éonditiqned taboo probabilities,

e. 0., one may consider one of the following expressions:

(i) P{X = ki X /= k, 1 <= v = n-1 | X /= k:, 1 <= v <= t; X = g
‘ n v ) 0
n =t
(ii) VP(X = ki X /= h,k, 1 <=v {=n-1 1 X /= &k, 1 <=y <= t; X = j4),
n \'% u Q
n >= ¢t
(iii) P(X = ki X /= hsk, 1 <= v {=n-1 | X /= h, | <= u <= &; X = 4,
n v u &
n »>= t

One may express each of these taboo probabilities in terms of the initial

transition probabilities and post—conditioned taboo probabilities by deriving

an appropriate corollary to the previous theorem. To obtain (i} one replaces

the .numerator of the theorem by £ (n) and the denominator by 1-F (%);
.. gk - . Jk

to obtain (ii) and (iii) one replsces the denominator of the theorem by

1~-F  (£) and 1-F (t), respectively. ,
gk Jh .

2. AN APPLICATION TDO POPULATION EPIDEMIOLOGY.

To demonstrate these techniques we consider ean MC model originally
designed for an inferential study of the effect of induced abortion on
subsequent pregﬁancg outcome (2). Data vsed in this example come from a

historical prospective study of Macedonian women residing in Skopje,
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Yugecslavia who aborted their first pregnancy during 1968-6%. Hogue (1).
Interviews conducted in 1972 produced, for each woman, a chronelogical
record of her reproductive behavior between the beginning of menstruation and
the interview date. Quality checks verified that the women interviewed
were indeed reﬁresentative of the target population of Yugoslavian women (1),

The interval between the initial abortion aﬁd the first delivery is an
important consideration to both population epidemiologists and demographers
Let a represent an induced abortion, d a delivery, and assume that the
total mass of the initial distribution is concentrated on a. Then the

basic time to delivery distribution is (( F (n} )} where
ad

F (n) = SUM/m(1,n) £ (m) and n indexes months since the initial
ad ad

abortion. This distribution, which appears in column 2 of Table 1,
necessarily reflects diverse contraceptive use patterns; consequently:

further invéstigation is warranted. The state space of this MC partitions

all types of contraception into one of three states: i = ineffective method
(e.g.. vhythm or coitus interruptus), m = moderately effective method (e.g..
condom), and e = effective method (e.g., birth contrel pills). By treating

each of these states as a taboo state, the cnrresponding_bost—conditioned
tahoo time to delivery distribution assesses the probability of a delivary
by month n without having resorted to the taboo type of cuntracebtion.
These distributions are listed in columns 3-5 of Table 1. T .

The duel—conditionihg technique provides an assessment of a t—month
Jimited intervention. For example, suppose a researcher wishes to evaluate
a program which would explicitly prevent the use of ineffective methods cof
tontraception for t months. .Consequently, women who desire to employ a
method of contraception must use either an effective or moderately effective

method. (NOTE: This is mot to imply that the women who avoid ineffective

contraceptive methods will continually, or even temporarily, employ other,
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more effective methods. ) By treating 1 as a taboo state and evaluating

the dual-conditioned taboo time to delivery distribution FS (Nit), we
id ad

may assess the effect of such a policy on those women who do not deliver

during the first ¢ months. We list these distributions in Table 2.

Tables 1,2

This applicétion addresses epidemiologic questions about the effect of
different patterns of contfaceptive use on the distribution of time to
delivery. By computing the post—conditioned time to delivery distributions
(Table 1) we are able to obtain insight into the population dynamics of
cohorts of women electing to use different levels of contraception. Note
the large magnitude of the relative decrease in the unconditioned time to
delivery distribution (18% = (100%) X (.5344 - .43&6)/.5344 by month &0O)
which results when ineffective contraceptive methods, i, are regarded as
taboo. Thus the women who avoid i are less likely to deliver during
a set period of time than the group as a whole; possibly this is because
the members of this subgroup who elect to use cnntraceptive methods
employ a method which is at least mo&eratelg effective. Even more
surprising is the similarity of the distributions which result when
moderately effective and effective contraceptive practices are tr;atea
as taboo. As expected; however, both of the associated subgroups, the
avoiders of m and the avoiders of e, are more likely to deliver than
the subgroup which avoid i.

Finally, by computing the dual-conditioned taboo time to delivery
distribution using i as the taboo state (Table 2) we are able to assess
the efficacy of preventing ineffective contraceptive practices. Note that

the taboo time to delivery distribution following the termination of this
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implementation policy appears to be invariant across the duration of that
policy. For example, the probability of a delivery less than 24 manths
following termination of policy is approximately 0.29 for all three values
of ¢ studied. Also note that these t-month limited distributions
in columns 2,3,4 are not the unconditioned (column 2) distribution with
a t-month delay.

Clearly, states other than i may be of interest as the taboo state
in the dual-conditioning investigation. Of particulér concern might be
the.state of susceptibility to pregnency; similar distribution calculations
would give insight into the efficacy of an implementation program encouraging
all women to employ some type of contraceptive practice. These distributions
would previde benchmarks of total acceptance against which family planning
administrators could compare actual practice. Furthermore. by modifying
dval—-condition representations, one may calculate similar distributions for

more complicated patterns of contraceptive switching within cohorts of users.

3. SUMMARY

We have made use of a typical epidemiologic problem -to illustrate the use
of conditional rate information. Using a traditional cobort farmulation such
an {nvestigation would have required large amounts of data —-- an expensive
proposition, even if data were available. Alternatively, we are able “to
employ the concepts of pre~ and post-conditioned probabilities and the theorem
relating them.

In the example presented above, the MC was submitted to formal goodness—
of—fit tests in order to verify the Markov progerty (23}, Depending on the
application, the researcher may prefer to (i) employ structural assumption
validation, i.e.., verify the Markov property by comparing probabilities

for all pairs of states visited over appropriate time lengths, (ii) sccept
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the model as a reasonable approximation to the e&pirical process under
study, or (iii) loosely validate the property by examining functions of the
transition matrix (e.g., those leading to the time to absorption in = state)
and seeing if these functions replicate equivalent empirical distribution
functions derived directly from the underlying dats. We cauvtion that the
latter is not a strong validation since, as seen ;n (3), distinctly
different populations may produce similar functions from their respective
trans;tion matrices.

Making use of an MC offers the additional advantage of employing partial
path information which is unavailable in cohort studies. That is, we may
follow an individual up to a certain point, lose that person to observation (or
follow~up) and not have use of that "path" for a cohort study. However:, all
transitions made up to the point of loss are valid for computing maximum
likelihood estimators of the chain’s transition probabilities. Hence the
behavior, an example in visiting various combinations of contraceptive
states: of a "lost" individual may be reflected in the transition probability
estimators. When applied to the dval-conditioned taboo probability estimators,
this information is especially advantageous in maximizing the use of
available data. V

In addition, by vusing either a parametric analysis varying particular
transition probabilities or simulation, one may investigate the ef#ects of
alternative assumptions about the magnitude of certain probabilities on
final cumulative distributions. In our example, For.instance. one may wish
to raise or lower estimates of particular contraceptive uses, and/or
probabilities of jumping to “"susceptible" states, and test thé effect on
functions of the transition matrix. while simultoneously taking into account
one or more intervening variables

In summary: we have shown how a stochastic model allows researchers

to assess the effect of implementing intervention in sitvations where
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financial and/or ethital considerations prohibit cohort studies. Fufthermore,
we have established new analytic versions of conditional rates for use in
biolegical and epidemiological studies and have generated various way to
produce such rates in the face of intervening variables. Finally, we have
presented relationships among them thereby further illustrating the use of

a Markov chain as a tool of (statistical) inference.
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TABLE 1
Time to Delivery Distributions®
{initial abortion to delivery;
Month Unconditioned Post-Conditioned
n F (n) F (n) F o (n) Fom)
‘ad i ad m id id
12 0. 0392 0. 0356 0. 0324 0. 0390
24 0. 2047 0.1797 0. 1991 0. 20253
36 0. 3382 0. 2892 0. 3278 0. 3324
48 0. 4465 0. 3727 0. 4314 0. 42684
60 0. 5344 0. 4366 0. 5149 0. 5230
# States
a = induced abortion
d = delivery
i = ineffective contraceptive methods
m = moderately effective contraceptive methods
-e = effective contraceptive methods



21

Table 2

Split-Conditioned Time to Delivery Distributions following an

induced abortion. Taboo state is ineffective contraceptive methods#
Month Unconditioned Gplit—-Conditioned
N F FS (Nit)
ad id ad
t=12 t=24 t=34
i2 .03%2 L.
24 . 2047 B = 3 e
36 . 3382 . 3027 1894 L.
48 . 4465 . 40467 . 2936 L1541
&0 . 5344 . 4878 . 3942 . 2840
# States:
a = induced abortion
d = delivery

ineffective contraceptive methods



