ABSTRACT

FERHATOGLU, CANER. Delineating Precision Agriculture Management Zones Using Satellite
Imagery, Web Soil Survey, and Machine Learning. (Under the direction of Dr. Jeffrey G White).
Precision agriculture is a management strategy based on obseremsgyring and
responding to intrdield spatial variability in soils, crops, pests, and diseases. The goal is to
identify variations in the field and manage them efficiently using variatéetechnologies. Soil
management zones (MZ) represent subfiefians of similar soils and production potential
suitable for uniform management. Using MZ is advantageous because they require fewer soil
samples and analyses compared to grid sampling. The goal of this prageotdelineate soll
management zones aethield level using mulitemporal satellite imagery, the soil survey
geodatabase (SSURGO), and machine learning (Whg.study concerned two sites. The first
was located in Melvin, IL and had 11 fields. The second site was located in Open Grounds (OG)
Farms, Beaufort, NC and had four fieldSeoreferenced soil sample test data were obtained from
grower s. Mont hly satellite images were downl o
spectral bands (red, green, blue, and-n&eared [NIR]) and imagelerived soil and vegetation
indices were used as input for regression analyses. In @AGiI8lap), the soil sample data were
linked with corresponding image pixels. SAS was used to explore relationships of individual
predictors, e.g., spectral bands, with jredns: soil test parameters, which are our foundation
for delineating management zonkslllinois, linear regression Rvere usually high for
correlations of organic matter (OM) with the red and NIR b&Rdg 0.2 to 0.9) The R for
OM or humic matte(HM) versus NIR were most frequently the greatest over different farms
and images in both study sit@’ e 0.2 to 0.9)For the lllinois farms, interpolation of organic

matter point values arglibsequerltnear regression between the interpolated vadnesband



values gave very low®Rvalues. In addition, analyzing all lllinois fields together did not increase

R2. FordelineatingVZ (doneonly for NC), multi-temporal, multispectral images were used as

input to the ML image classification algorithm, IBATA. To examine several delineation

strategieswe variedour input (stacked imagery) for ISODATALh e A Al | Fieldso de
strategy used the entiretwoe ar | mage stack; fAUniformo includ
cropped fields; ueBBBDVtbeandniEA¥MO I mage stack
ASoi | Surveyo used USDA soil survey dddineat.
assess the delineations, outputs were compared®8tHRGOmaps and with a random

delineation. Soil test seilts were analyzed via ANOVA to calculate zonal statistiospare

zone meansand asseghie agronomic impact @nydifferencesamongthem Based on

guidelines from th&lC Department of Agriculture and Consun&srviceswe considered a

difference in értilizer recommendatiors f 10 (b acré' to beagronomically importaniThese

differences were sometimes large enough to warrant different rates of fertilizers being applied to
differentzoneAmong t he delineati on st rdadileagabiiysbest est ed
in al most all cases, meaning it was most ofte
strategies performed very similarly to each other or the saifferent soil parameters often had

different optimal MZ numbers within treame field, indicating that each parameter needed its

own separate delineation. However, in most cases, two MZs was the optimal. In cases where a
particular number of MZs was not always the optimal, different delineations for different soil
parameters cad provide the grower flexibilityManagementzonebased precision agriculture is

effective as it helps optimize crop yield while preventing over or underuse of agricultural inputs

such as fertilizers and pesticides. As a natural result, the environmeat lveoprotected.
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Chapter 1: Introduction to Delineating Precision
Agriculture Management Zones Using Sateille
Imagery, Web Soil Survey, and Machine Learning

Precision Agriculture

Precision agriculture (PA) or sigpecific crop management seeks to observe, identify
and manage with#field spatial variability in soils, crops, pests, and diseases. As the world
experiences increases in the price of agricultural inputs of chemicals and fuel, the need for
precision agriculture to reduce economic and environmental costs is getting more important. The
positive outcomes of PA are expected in two domains: optimizatiprobtability for
agricultural production and the protection of the environni@mang et al., 2002)These two
benefits are accomplished mainly by avoiding over and underuse of nutrients, lime, herbicides,
and pesticides. The importance of PA has been recognized by farmers and farm managers
because it can be quite effinoieco manage withifield variability on a sitespecific basis rather

than the traditional whotéeld approachLi et al., 2008)

Management Zones

Much precision agriculture research has centered on the use of management zones (MZs)
as a technique for viable-rate fertilizer application€Chang et al., 2014A MZ is a subarea of
an agricultural field that has similar characteristics sudo#gertility, which means that a
single rate of fertilizer is suitable to optimize effica@yrindts et al., 2005)Several studies have
demonstrated that MZs can be used in place of grid soil sampling and to manage agricultural
fields with variable rate technologies (VR{Rhosla and Alley, 1999 and Khosla et al., 2002)

Additionally, MZ style agricultural faming requires fewer soil samples and analyses compared
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to grid sampling since each MZ contains similar soils, which can potentially be sampled as

homogenougFlowers et al., 2005)

Delineating Management Zones
To develop a zone map, there are three factors to be considered: information to be used as
a foundation for creating zones, the method for processing the information (i.e., classification),
and the optimum number of MZs within a figleridgen et al., 2004).ack of any of these
factors could result in a failure in delineating MZsang et al., 2002Most research has
focused on predicting yield data by using inputs that are thought to influence yield. As an
example of the nature of these failures, choosing input data that is ned telgield could
result in a failure in delineating MZs. Likewise, utilizing an improper or inadequate method

might cause problems in delineating MZs.

Input

As input information to be processed for MZ delineation, many studies used several years
of soiltest and yield datéLi et al., 2008) Li et al. (2008) used three distinct sources of input in
clustering analysis to delineate MZs. These were maps of: the Normalized Difference Vegetation
Index (NDVI) derived from satellite imagery, soil electrical conductivity (EC), and cotton yield.
Flowers et al. (2005) used several years of yield maps to createdafidsg et al. (2013tated
that vegetation indices (such as NDVI) derived from satellitegas can also be used as input to
delineate MZs when a yield map is not availalleavchenko and Bullock (1998@ndWibawa
et al. (2013used topography and soil map units, respectively, as input for delineating MZs.
Fraisse et al. (2001)sed a combination of soil EC, elevation, and slope to delineate MZs. The

use of soil test data and maps resultigrfiinterpolated soil data is another common approach
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to delimit MZs, especially when there are no yield maps avai({@®ergi et al., 2017yhang et

al. (2010)used the combination of vegetation indexes such as NDVI and the Green NDVI
(GNDVI,) with spectral bands of satellite images as input for delineation of Mg et al.
(1995)attempted to correlate colors in aerial photograglggowing crops with potential MZs.
They concluded that this method was quite accurate to divide a field into MZs for the end
purpose of predicting grain yieltlaghverdi et al. (2015tated that the use of soil EC and
satellite images was appealing because of relatively low cost and ease of colléaiofound

that satellite images can be utilized asuinpformation in unsupervised classification using
Iterative Self Organizing Data Analysis TechniqugSODATA) in order to delineate MZs.
Stenberg et al. (2018und correlations between soil reflectance | MR and soil organic

matter (SOM). They used this correlation to model the SEiMng et al. (201Qreated near
infrared (NIR}based MZs that explained $0Using satellite images as the only input is
promising and might make the delineation process less costly anddimsaming by

eliminating the use of soil data. In addition, over broad extents, satellite imagery may be more
costeffective and valuable€lative to several years of soil and yield data) to determine MZs on
the basis of the spati@mporal changes in crop growth patterns and soil conditions reflected in
time series imager§Basnyat et al., 2005 and Georgi et al., 2017)

Many studies have shown that reflectance of soil is affected by chastictesuch as
organic matter, soil moisture, particle size, soil structure, iron oxide content, soil mineralogy, and
parent materialStoner and Baumgardner, 199B3plal and Henry (198@hvestigated the
relation between some soilameters and NIR soil reflectance. They found that the higher soil
moisture content was in soil, the lower the NIR reflectance. They also had similas fiearssudil

organic C and total N, but these parameters showed small differences in absorbance of NIR



Cierni ewski an ihestigatedheieflueack of e2edallsoil)features on soil

surface reflectance. They found that CaC6ntent of the soinadelittle difference in visible

light reflectance. Howevehigher CaC®content in the soil increased NIR reflectance from the
soil surface. By using the same soil samples with different moisture applications, they also found
that higher water content decreased reflectance for any visible light (red, greblyeggrahd

NIR. In terms of the effect of soil texture on spectral response of soils, many studies found that
higher clay content decreased soil reflectance compared to soils with higher sand content
because clay particles are able hold more water and mattenally absorbs light instead of
reflecting.For exampleThomasson et al. (200&pmpared the light reflectance of fine white

sand, silt, clay (lab samples), and top soil (in the field). They found that fine white sand gave the
highest reectance for any light followed by silt, clay, and top soil. The reflectance patterns of
clay and silt were quite similaGi er ni ews ki a n tunt tha soil reughedss did2 0 1 0)
not clearly influence soil surface reflectance. {mides tend to give orange/rusolor to soils;

the higher the content, the higher the red and NIR reflect@aeman and Montgomery, 1987)
High organic matter content in the soil usually gives darker color tones, thus sotbrefetor

visible lights decrease(Coleman and Montgomery, 198As reported byCierniewski and

KuSni er ePiech(a2dWWhiRe) (1974) found that soil reflecefuar visible light and NIR
increased with decreasing soil particle singing from 2 mm to less than 0.062 nBottcher

et al. (2012)nvestigated the correlation beten soil structure and soil reflectance. They found
increased light reflectance from the upper layer of a soil sample with lower porosity relative to
soils with greater porosityAgbu et al. (1990nvestigated the correlations between soil

properties and satellite spectral dataeyfound significant correlations of the SP&étellite

NIR band with slope form and water content or drainage conditions in soil. They also found
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correlations betweemé Red band of SPOT and soil A horizon color, silt content, and percent
organic C. Andter finding of their study was that the SPOT green band was correlated with A
horizon sand content, upper B horizon color value, and B horizon clay content. Another finding
was thatheorganic C content of the surface soil was significantly correlatddomity the red

and green SPOT spectral bands. They then concluded that most surface soil properties are
correlated with satellite spectral data, thus satellite data can be used to map soil variability.
Escadafal (1993tudied the relation between Munsell Atlas (a color scale for soils pngvidi
information about soil properties) and satellite spectral data (red, green, and blue bands). He
concluded that reflectance curves of visible light from satellite imagery can be modeled from

field Munsell color data.

Methods

There are many methods fmmocessing input information to delineate PA MZs. Use of
classification algorithms has been proven to be effective to delimit potential MZs in a field
(Pedroso et al., 2010 lassification algorithms are able to group individuals with similar
attributegValente etal.,2012) nt o di f ferent classes or O6cl ust e
measured for each individu@fvin et al., 1997) Thus, chssifying algorithms are used to
describe input data in terms of these clusters or grgwyds et al., 1997)
Clustering techniques are utilized extensively for digital image classification and can be either
supervigd or unsupervised. When conducting a supervised classification, the operator must
define the cluster characteristics before the classification process. On the other hand,
unsupervised classification techniques rely on a process that defines the clilstersprior
knowledge other than a target number of clusters. The outcome of unsupervised classification

techniques is the natural groupings of input data in aa@m@ulti-dimensional attribute space.
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These groupings can be used to learn more abostriiture of the data and may result in new
subclasses of input data (Irvin et al. 1997). Unsupervised classification methods are often used to
divide fields into different MZs since it is normally presumed that users might have no prior
knowledge of whichnformation or areas are supposed to be used for trajHiaghverdi et al.,

2015)

There are several unsupervised classification algorithms thabkaweused for
delineating MZs such as the lterative Seliganizing Data Analysis Technique Algorithm
(ISODATA), fuzzy emeans, and a ngmarametric density algorithnGuastaferro et al. (2010)
compared these three methods and concluded that ISODATA was the simplest method to
perform and the fastest to rufraisse et al. (200kgported that ISODATA is advantageous
because it is fast, easy to use, and can easily be automated. Furthermore, ihallsesof
several input layers that may be significant for characterizing the variability seen in the field, for
example, remote sensing images, yield maps, and different soil parameter values. Caution is
required concerning the distribution of the daa norGaussian distribution in input layers
might give misleading resul{&uastaferro et al., 20LA5ODATA isavailable in most
commercial GIS software for image classification and can be used for grouping simitaeaahb
of a field.

The first step of using ISODATA unsupervised classification requires the selection of
variables to be used in the process of @gliimg withinfield MZs (Fraisse et al., 2001The
ISODATA determines the zone boundaries based on the spatial structure of the input data, thus
no user intervention isacessary other than specifying the desired number of classes (natural

groupings)Fraisse et al., 2001Then, the user must decide the optimal number of MZs.



Performance Evaluation and Optimal Number of Management
Zones

As for determining the optimal number of MZs for a field, it might be challenging if
unsupervised classification is used as a delineation method because this technique does not
explicitly provide informabn about the optimal number of M@daghverdi et al., 2015Ddeh
et al. (1992kuggested that using the fuzziness performance index (FPI) andlizedn
classification entropy (NCE) were promising to determine the optimal number. As measures of
cluster performance, FPI and NCE are provided by a MZ delineation software named FuzME
(Minasny and McBratney 2000). The FPI is a measure of the degrehfthnt classes share
membership anthkesvaluesbetweerzero and one. When FPI gets close to one, membership
sharing increases. Whereas, when the FPI approaches zero, classes become rootdyglear
less membership shared. The NCE is a predictioneofjantity of disorderliness made by a
determined number of classes. Both FPl and NCE are constrained to values between zero and
one. When MPE approaches one, disorganization is high, and as MPE approaches zero, it
indicates high organization. Plottingetivalues of FP1 and MPE versus the number of specified
classes is necessary. The optimum number of MZs is that which minimizes both FPl and NCE
(Boydell and McBratney, 2002However, NCE ath FPI sometimes do not converge and the
optimal number of zones suggested by one parameter may be quite different from the one
suggested by the other ofigrock et al., 2005)

In determining the optimal number of MZs for soil nutrient management, there are two
core points to considet) reducing variability in soil fertility factoraithin each MZ and2)
increasing variabilityamongdifferent MZs(Flowers et al., 2005)These two criteria were

satisfied through trial and error in several variance analysgbdyg et al. (2010)The sze of
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their study fields ranged from ~45 to 97 ey created MZs based on satellite images with the

highest NDVI values for the year and found that they correlated well with SOM content. Then,
they evaluated the MZs through statistical variance aralyfsgoil parameter values within MZs
and compared the variance results. They calculated the total statistical variance for soil
parameters for different numbers of MZ delineations. The total wibine variance increased as
they continued to increase thember of MZs. After five M3, the variance did not change
dramatically regardless of increasing the number of MZs. They then determined the optimal
number of zones as that which reduced the variance considerably relative to the initial
variability, but wth little change in the variance when the number of zones was increased
further. Haghverdi et al. (2015lso utilized trial and error through variance analysis and
concluded that dividing a field into more than four to five MZs does not improve clustering
results drasticallyThey worked on a field whose size was approximately 72dditionally, it
was obsrved that there were similar productivity levels across different MZs when the study
area was divided into more than four to five MEmwers et al. (2005Iso usedtte trial and
error method to determine the optimum number of MZs.

Tisseyre and McBratney (2008)ated that small zones are agronomicallyesirdble
and might not be possible to manage because of technological limit&emreso et al. (2010)
considered MZ areas smaller than 0.1 ha as agronomically undesirable. For different cases, this
threshold area may vary depending on the resolution of management possible with available
variade-rate technology and agricultural equipmdntet al. (2008)suggested a ongay
variance analysis on georeferenced soil and yield sampling points as a means to assess how well
delineated MZs reflected the soil properties and productivity |&l@ivers et al. (2005reated

MZs based on yield maps, and resultant MZ delineation had a low wzhia variability and
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high acrosszones variability in different soil propés. By following this approach, the operator
can assess if the average value of soil parameters for different zones are statistically significantly
different. However, this process might be tioensuming although necessary. Another approach

was to visudl compare MZs with yield maps, which was a qualitative compafiSbaddad et

al., 2016)
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Chapter 2: Temporal variability in correlations of
satellite imagery spectral data with soil chemical
properties
Abstract
The basic relationships between satellite spectral data and surface soil properties have

been investigatesh many research papers and correlations have been found. This attracted many
scientists to utilize satellite spectral data in cluster analysis for delineating precision agriculture
(PA) management zones (MZ) that capture variability in soil propertiésg Uisear regression,
we sought to quantify correlations of metkimporal highresolution satellite imagery spectral
data with soil chemical parameters useful in delineating and evaluating MZs. The study was
conducted at two contrasting sites, Melvinwith 11 fields comprising 16 mineral soil map
units, and Beaufort, NC, with four fields comprising eight map uhésconsisted dive
mineralsoilsand three organisoils. Monthly satellite imagery for 2016 and 2017 was provided
courtesy of Plant Lady Inc.Several simple linear regression analyses results showed that there
were, in some instances, substantial correlations of soil properties with spectral bands and NDVI:
R? ranged from 0.10 to 0.9050il organic matter/humic matter gave the highestetations to
the spectral data. Phosphorus, potassium, anttplishoderate correlations. In IL fieldR?
valuesfor all correlationgended to be strongaiith the highest Re 0.9 compared to NC fields
with the highest Re 0.6. In NC, for humic mattecorrelations, the fields that were
predominated by organic soil map units had weaker correlgfre 0.03 to 0.2Yhan those
that had predominantly mineral soil map uiiiRé e 0.03 to 0.6)Despite the fact that we
compared two different years, thavere similarities in correlation levels for the fields with a

dominant mineral map unit within crops across years. There were similar correlation patterns the
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years that soybean was cropped. Analogously, the years that corn was cropped, there were
similar correlation patterns, which were different from those of soylearmelationgor any

given fieldwere rarely constant. Instead they tended to change over time. There were also
instances when correlations were constant over time, but these/hamecorréationswere

weak or where¢here was naorrelation for several months. The correlations were likely affected
by weather and agricultural management practices including crop (corn or soyiiege),and
planting and harvesting dates. These could hasl@lsubstantial impact on soil and crop
reflectance, and consequently on the correlatdfith the eventual aim of using such imagery

to delineate MZs, we hypothesized that delineation success would likely depend, at least in part,
on the existence andehgth of such correlations. If consistent correlation patterns exist,
characterizing them might facilitate MZ delineation by using satellite imagery only from periods

of strong correlation.
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Introduction

Aerial images were first used to map soils in 1%&fice then, the beneficial use of aerial
and satellite imagery in agricultural crop management has been reco(@ezstah et al., 2003)
Creating precision agricultural management zones (MZs) based only on satellite spectral data is
likely dependent on the correlation between satellitetsgdetata and surface soil features and
crop characteristicdoran et al., 1997)Agbu et al. (19903%tated thaalthough it is not possible
to evaluate soil profile features through spatial imagery, it is possible to analyze spectral
characteristics of the earth surface feattimasaredeterminative of topand subsoil conditions.

In addition,Agbu et al. (1990jound significant correlations between s&dil properties and
satellite spectral dat&hen et al. (2000hvestigated the statistical correlation between soll
organic carbon (SOC) arichage intensity values in visible light spectral bands with a
logarithmic linear equation for a 14t field. They found substantial correlations between SOC
and the spectral bands. They then concluded that the procedures theyfikthe correlations
were accurate enough to be used for precision agriculture applications at the fig|Gheveét

al., 2000)

In many studies, soil chemical and physical properties have been found to be correlated
with satellite spectral da{&ullivan et al., 2005Varvel et al. (1999jound correlations between
brightness values of the blue, green, and NIR bands from aerial photographs and both soil
organic matter (SOM) and Phang et al. (2010pund a correlationR? e 0.4) between SOM
and the corresponding soil reflectance values in theinfared (NIR. These correlations have
the potential to be used for improving soil sampling stratdlfiassel et al., 1999)Sullivan et
al. (2005)stated that using the correlation of soil parameters with satellite data could have a high

potential to create precision agriculture MZkang et al. (20103reated precision agriculture
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MZs based on the NIRaniel et al. (2004investigated the correlation between soil organic

matter (SOM) content of sampled soils and the spectral responses at 960, 1100, and 520 nm by
using multiple regressn analyses and polynomial modeling. It was concluded that these
procedures may form the foundation for the integration of spectrometers and satellite sensors
aimed at digitally mapping newvegetated field§Daniel et al., 2004)

In this study, we aimedtinvestigate over time the correlation of player soittest
parameters with satellite mulipectral data. With the eventual aim of using such imagery to
delineate MZs, we hypothesized that delineation success would likely depend, at least in part, on
the existence and strength of such correlations. If consistent correlation patterns exist,
characterizing them might facilitate MZ delineation by using satellite imagery only from periods

of strong correlation.

Materials & Methods
Study Sites

The study wasonducted at two sites. The first was located in Melvin IL and had 11
fields (Figure 1). The second site was located in Beaufort, NC and had four fields (Figure 2). The
fields in IL ranged in size from 31.1 to 80.4 ha and were characterized by siltgatayr silt
loam surficial soil textures (Tablg.1n the IL fields, the crops grown were usually soybean
(Glycine max L.) and corn (Zea mays L.). The fields in NC ranged from 214.2 to 253.6 ha and
hadboth organic and mineral soif$able 3. The fields in NCwere developed by draining
forests and swampg&requently grown crops included wheat (Triticum aestivum L.), corn, and
soybean; for this study we examined only corn and soybean. Natural drainage conditions in the

NC fields ranged from poor to veppor. To get rid of excess water, 1.61-kmile)-long ditches
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had been dug approxi mately every 100 m to cre
consisting of ~16.3 ha (40 ac).

Some of the fieldat both sitesvere entirely cropped with corn 016 and 2017 (Table
3). In 2016, the entirety of Blocks 12 and 45 was cropped with corn. In 2017, Bailey, Cleo, East,
Harris South, Home, Thackery, Block 6, and Block 8 were cropped with only corn. Some of the
fields were entirely cropped with soybear?2016 and 2017 (Table 3). In 2016, Blocks 6 and 8
were cropped with only soybean. In 2017, Harris North, Keegan, North, Block 12, and Block 45
werecroppedwith only soybean. In 2017, otikird of the two fields Buess and Weber were

cropped with soybeanhile the rest of these fields was cropped with corn.

Soil Sampling and Analysis

In the NC fields, grid soil samples had been collected by the grower. Three of the fields
(Blocks 6, 12, and 8) had 144 georeferenced soil samptimgson a roughly 136m triangular
grid. Thefourth field, Block 45, had 189 soil samplipgintswith ~100 m between them. In the
IL fields, the number of georeferenced samples varied from 31 to 76 per field. Soils there were
sampled on a-ha rectangular griccromthe NC fields soil samplesvere analyzed by the North
Carolina Dept. of Agriculture and Consumer Services (NCDA&CS) Agronomic Division Soil
Test Section laboratory for routiseil fertility and chemical properties (Hardy et al., 2014):
Mehlich 3 (Mehlich, 1984a)plant-availableP, K, Ca, Mg, S, Cu, Mn, Zn, Na; cation exchange
capacity and base saturation; pH/acidity/lime requirement (Mehlich et al., 1976); soil class
(mineral, minerabrganic, organic); sieved weigtd-volumeratio; and humic matter (HM,;
Mehlich, 184b). Humic matter as determined by the NCDA&CS method is strongly correlated
with soil organic matter (Blumhorst et al., 1990; Gonese and Weber, 1998). The laboratories

used for the IL samples were unknown, and other than Bray and kairfarfP, the exet
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analyses were unknown as well. Based on common regional lab practice and North Central
Regional Testing and Plant Analysis Committee recommendations (Missouri Agricultural
Experiment Station, 2012), cations and cation exchange capacity (CEC) wolylthdike been
analyzed via an ammonium acetate extraction; pH using a 1:1 ratio with 0.01 b &aC50OM
via Walkley-Black (Walkley and Black, 1934)

In NC and IL, our primary focus was the soil parameters: soil organic matter (SOM) or

humic matter (HM)P, K, and pH.

Satellite Imagery and Data Preparation for Analysis

Satellite imagery was downl oaded courtesy
commercial satellite imagery provid&ensoicalibrated multispectral images had been taken by
sensos on two different satelliteRapidEyeandPlanetscopeOrthorectified, Surface
Reflectance, Radiance, and Basic imagery types were available on the website of Planet. In our
study, we used thelanetscop®©rtho scene product and tRapidEyeOrtho Tileproduct.
Because cloudree images were not available for the entire years of 2016 and 2017 from either
satellite individually, we used images from both satellites.

Planetscop@rthorectified (Ortho) imagery refers to images that are geometrically
correced for topographic relief, lens distortion, and camera tilt. Orthorectified images can be
used to measure true distances since they are a relatively accurate localized representation of the
Earth’s surfacePlanetscop@rtho images had-81 ground resolutio or pixel size and four
spectral bands: blué%5 515 nm) green $00' 590 nm) red 690/ 670 nm) and NIR (780860
nm). The Planetscop®rtho scenewere in GeoTIFF image format. The product orientation was
map north up and product framing was scene basezldimensions of downloaded image

scenes were approximately 25 km by 7 km for dlelnetscop@rtho scene with some
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variability by satellite altitudeThe bit depth of images was 16, which is the number of bits used
to express the color of a single dixea bitmapped image. Geometric corrections had been done
using sensor telemetry and a sensor model for seekted effects. Atmospheric corrections
had been done using 6SV2.1 radiative transfer code. The horizontal datum was WGS84 and the
map projedbn was UTM. The resampling kernel was cubic convolution, which is an
interpolation technique used to correct spatial distorti@igman, 1973 and Bernstein, 1976)

TheRapidEyeOrtho Tile product refers to the images that were orthorectified-ag-25
25 km tiles. This particular product was designed for a widietyaof applications that require
imagery with accurate geolocation and cartographic projection. The imagery had been processed
to get rid of geographic distortions and could be used for many cartographic pufeses.
RapidEyemages had%#n ground resolion or pixel size and five bandstue @40/'510 nm)
green 520590 nm) red 630 685 nm) red edge (69030 nm), and neainfrared (NIR: 760
850 nm).The RapidEyeOrtho Tilescenesvere in GeoTIFF image format. The product
orientation was map north @md product framing was based on a worldwide, fixed UTM grid
system. The dimensions of downloaded image scenes were approximabgh22%&m for each
RapidEyeOrtho Tile sceneFor the most part, image characteristics and processing were similar
to PlaneBcope. Otherwise, bands had beemempstered, and spacecrafiated effects had been
corrected using attitude telemetry and best available ephemeris data. Orthorectification had been
conducted using ground control points and fine digital elevation m¢8@lm to 90 m posting).

We chose images at approximately monthly intervals for 2016 and 2017. Our goal was to
choose imagery that displayed the target fields with a range of cover including: a crop at several
stages of development; bare ground or cesidue; cover crops; snow cover; etc. When

acquiring satellite images, we were cautious to pick cfoeel images, which is especially
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challenging in rainy region&eorgi et al., 2017Yo pick cloudfree images, we always kepiet
cloud cover slider in Planet's user interface at the least cloud cover option (0 to 1%). For the IL
fields, all the images were cloticee, while in NCthere were 11 clouttee images from 2016
and 12 cloudree images from 2017. lwugust 2016, the ailable images were extremely
cloudy, thus it was not possible to use them in the correlation andtybI€, the images from
two months, April and July 2016, had some cloud cover which requiredsmihsamplego be
eliminated for the correlation anaig.In April 2016, 13soil samplesvere eliminated from
Block 6, 42were eliminated from Block 8, and 3&ere eliminated from Block 45. In July 2016,
10 soil samplesvere eliminated from Block 6, and 11 were eliminated from BloclB&2ause
the study aras were quite large, more than one saga® always needed for full coverage
(Figure 3). In ArcMap 10.6.1 (ESRI, Redlands, CA), scenes were then mosaicked together and
this step was shown in the figure of the sequential steps for delineating MZs (Figmckg )3
and clipped to the full extent of each study area, a rectangle encompassing all fields in NC and in
IL, using Mosaic to New Raster and Clip. Subsequently, the resultant images for each month
were split into their individual spectral bands. Thiswlane by doubtelicking the whole image
in the add data dialog box in ArcMap, which made it possible to access the individual spectral
bands of the whole image. After doing this, operator can add the individual bands into the table
of contents in ArcMa@nd analyze it easily. After doing these steps, the images were ready for
further data preparation for conducting simple linear regression analyses.

First, digital pixel values of the spectral bands and their associated vegetation indices
were extracted tthe corresponding georeferenced soil sampling points by using Extract Multi
Values to Points in ArcMap. As a result, only the pixel that contained the soil sampling site was

used for multiple linear regression analyses. The extracted pixel values cantedrmosaicked
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and clipped images in different months of 2016 and 2017. This process output ArcMap attribute

tables (similar to an Excel spreadsheétsoil test results for georeferenced soil sampling points
The attributdables contained the extractealues of individual spectral bands (red, green, blue,
red edge, and NIR) and the vegetation indices (see below) for corresponding soil samples. The

resultant attribute tables were transferre8AS® 9.4 as Excel sheets.

Vegetation Indices: NDVI and SAVI

Two spectral vegetation indices, the Normalized Difference Vegetation Index (NDVI,
Ashley and Rea, 197%nd the Soil Adjusted Vegetation Index (SAVI; Huete, 1988) were
calculated to describe dynamic sedgetation relations from remotely sensed data. NBVI
was calculated for all the fields in both study sites, while SAVI was calculated only for NC
fields. The reason we did so was that both NDVI and S#adthe same results in our analyses
for NC fields. Therefore, we ceased calculating SAVI for dlds. The NDVI is written in the
form:

NDVI = (enir i &red) / (BNIR +Bred)

Whereanir is the reflectance value of the naafrared antbreq is that of the red. Vegetation
naturally has a high NIR reflectance (due to scattering by leaf mesophy)lacelitow red
reflectance (due to absorption byatdphyll pigments The NDVI for healthy, fulcanopy
vegetation will hence tend toward the upper liafibne. By contrast, clouds, water, and snow
have a larger red reflectance than NIR reflectance, and these features thus yield negative NDVI
values. Rok and bare soil areas have similar reflectance in the two bands and result in
vegetation indices near zefidurcom and Harrison, 19983AVI was intended to minimize soll

influence on vegetation spectra by including in the numerator and denominator of the NDVI a
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constantL, a canopy background adjustment factorohiaries depending on the stage of

vegetation and the soil background (Qi et al. 1994). The SAVI was calculated as:

1z
SAVI1 ] Zp

To calcul ate SAaVWwastbhetvabuae sefafnpiar d, 0.

knowledge (Qi et al. 1994).

Data Analysis

Using PROC REG in SA%9.4(SAS Institute, Cary, NC)inear regression analyses
were conducted to investigate the correlations of soil parameters with satellite spectral bands and
vegetation indiced.inea regression analyses were conducted for each soil parameter in each
individual field. This procedure output linear regressidiv&ues for each analysis. For each
field, we then determined the threshold values ofTRble 4) above which all correlationgre
statistically significant at p O 0.05.

The focus was given to the relationshipsaoime ofthe soil paramete(SOM / HM, P,
K, andpH) with the satellite spectral datBhe main reason for doing such statistical analysis
was to support the idea délineating MZs based only on input of spectral bands and vegetation
indices. In the presence of substantial correlation between soil features and satellite spectral data,
one could hypothesize that MZ maps based on satellite spectral data can providatiofn
about the soil variability potentially useful for MZ delineation. To determine temporal patterns in
the correlations of individual soil parameters with each of the satellite spectral bands and indices,
the R of the regressions were plotted on yhaxis versus the month of image acquisition on the
x-axis. In the correlation figures, there were five different lines, each indicating one of the four

spectral bands and NDVI (Figures 5 to 64). Because SAVI and NDVI produced the $ame R
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all the simpldinear regression analyses, we showed SAVI and NDVI with the same line in all

the correlation figures.

Results and Discussion

The correlations of soil properties with spectral bands and NDVI Azdl&es that
ranged from 0.10 to 0.9The temporal varidhty and strength of these correlations are shown
in Figures 5 to 64, with fon the Y-axis and image month on theaxis for each study field.
Generally, the statistical significance thresholds for IL fields were higher than those for NC
fields (Table 4) Although the Rvalues for the correlations in NC fields were generally lower
than those in IL fields, there were many statistically significant correlations in NC because of its
low R? threshold valueln the following section, we compare by time, Iéeat and crop the

temporal patterns of the correlations of the spectral parameters with the soil parameters.

Soil Organic Matter/Humic Matter

There were many statistically significant correlations between HM/SOM and the spectral

parameters across the N@ddlL fields.

lllinois

For SOM, the correlation patterns for 2017 were somewhat similar among IL fields
(Figures 5 15), with the highest correlation tending to the AginloughMay period. In IL,
snow cover typically lasts from November to April. Snogitmay have revealed the soil
surface, hence the high correlation in April and May (Tahl®\& hypothesized that plant
growth in May caused changes in the correlations.

The correlations of SOM versus the spectral bands peaked at &m@t Rbetween

March and May in Bailey. Between January and April, the correlation between NIR and SOM
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was slightly higher than that for the rest of the spectral bands and greater still from June until
August(Figure 5. Bands other than NIR were not correlated with Ski¥veen June and
November. Between September and November, there was no correlation between SOM and any
spectral band. Starting from November through December, correlations with all the spectral
bands peaked to almost R 0.5. The NDVI was not correlated with SOM in Bailey except for
November (Figure o Between May and November, there was crop in the.field

Although both corn and soybean were cropped on only a part of Buess (Table 3; Figure
6), its correlation patternsese similar to those for Bailey (Figure 5). There were some
differences in the patterrssich asn March and April when the correlation was much lower for
Buess than for Bailey (Figures 6 and 5). Another major difference was in December when there
was no orrelation in Buess while there was a high correlation in Bailey (Figures 6 and 5). Cleo
showed similar correlation patterns to Bailey (Figures 7 and 5). However, relative to Bailey, in
Cleo, the correlations were higher in January, and NIR's correlaisthigher than the other
spectral bands (Figure 5 and 7). Between June and October, the correlations were generally
higher in Cleo relative to Bailey. However, in August, the correlation was higher in Bailey
compared to Cleo (Figures 5 and 7). In Decentbercorrelations were much weaker in Cleo
compared to those in Bailey, ranging frorheR0.08 to 0.20. East also showed similar patterns
to Bailey (Figures 8 and 5). However, one difference was that the correlations were higher in
January in East. In addition, there was no correlation between any the spectral parameters and
SOM from July toOctober in East, whereas there were some correlations in Bailey (Figures 8
and 5). Harris North showed similar correlation patterns to Bailey, but there were some
differences (Figures 9 and 5). In January, thedRies were higher in Bailey compared togé

for Harris North (Figures 9 and 5). However, in June the correlations were higher in Harris North
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relative to those in Bailey (Figures 9 and 5). Another major difference was in December when
there was no correlation in Harris North, while there waigla torrelation in Bailey (Figures 9

and 5). Harris South was also similar to Bailey (Figures 10 and 5). However, there were many
fluctuations in R. In February, the correlation between NIR and SOM was higher in Harris

South compared to that in Bailey.teen June and November, there were fluctuations for the
correlations in Harris Southhich resulted in increased Raluesn December compared to

those in June (Figure 10). Between July and September, there was no correlation in Harris South
while therewas a correlation in Bailey (Figures 10 and 5). In December, all correlations in Harris
South were higher than those in Bailey. In December in Harris South and compared to the other
spectral parameters, the correlation between NIR and SOM had the HRftee€t,60. As for

the correlation between NDVI and SOM in Harris South, it happened between April and
September, and between November and December. These correlations were higher in Harris
South than in Bailey, as there was almost no correlation between &oN$SOM for Bailey

except for a few months.

Home also showed similar patterns to Bailey in the case of the correlations between SOM
and the spectral parameters (Figures 11 and 5). There were some differences, though. One
difference occurred in January whihe correlations were higher in Home compared to those in
Bailey and ranged from%R 0.3 to 0.4. There was a decrease 4nnRApril. The correlations for
Home were slightly higher than those in Bailey. In December, the correlations between spectral
bands and SOM were much weaker, wifteR0.2 for all the bands in Home compared to those
in Bailey. There was a high correlation between NDVI and SOM in Home between May and

September, unlike Bailey.
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In Keegan, the correlation patterns were also similar to Bailey with some differences
(Figures 12 and 5). One major difference occurred in 8wyJune when the correlations were
higher in Keegan relative to those in Bailey (Figures 12 and 5). Another major difference was in
December, as there was no significant correlation between SOM and the spectral parameters in
Keegan (Figure 12), while theewas a high correlation in Bailey (Figure 5). In North (Figure
13), the correlation patterns were also similar to Bailey (Figure 5) with some differences. One
major difference occurred in January and February when the correlations were higher in North
(Figure 13) relative to Bailey (Figure 5). Another major difference was in December when there
was no significant correlation in North (Figure 13), while there was a high correlation in Bailey
(Figure 5). Thackery (Figure 14) displayed correlation pattemiasito Bailey (Figure 5).

However, there was a major difference: the correlations in Thackery were much weaker between
February and April compared to those in Bailey. In addition, the correlations were slightly higher
between June and October in Thack@$e 0.3), whereas the correlations were lowergR

0.2, in December compared to those in Bailéye ®.45. The correlation patterns in Weber

(Figure 15) were also similar to those in Bailey (Figure 5). One major difference occurred in
March and April astte correlations between SOM and the spectral parameters were higher in

Bailey (Figure 5) relative to those in Weber (Figure 15).

North Carolina

For the temporal patterns of the correlations of HM with the spectral parameters in 2016
and 2017, Block 6 wasimilar to Block 12 (Figures 16 and 18), and Block 8 was similar to
Block 45 (Figures 17 and 19). These pairings were associated with the soils: Blocks 6 and 12
were the mineral soils, while Blocks 8 and 45 were the organic soils. For the organic Blocks 8

and 45, the correlations were very weak or-egistent. There were no correlations during the
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months of Oct. 2016 through May 2017, and only very weak correlations the other months of
these years. Low variability can decrease the likelihood and streingpirelations and may
explain the weaker correlations in Block 8 and 45 relative to Block 6 and 12. This meant that
there was not enough variation in HM in Block 8 and 45 to yield higiaRies for correlations
with the spectral data. On the other hahdre was higher variation (higher CV) in Block 6 and
12 for HM. This variability provided the potential for highenRlues for the correlations
between HM and satellite spectral data (Table 6). The correlation patterns appeared to be
associated with thgear and not with the crop, i.e., within a year, corn and soybean had similar
correlation patterns. The weak correlations in Block 8 and 45 might be explained by the low
variability in HM as indicated by the coefficient of variation (CV) (Table 6). Thev@Mes for
Block 8 and 45 were lower than those for Block 6 and 12. Low variability can decrease the
likelihood and strength of correlations and may explain the weaker correlations in Block 8 and
45 relative to Block 6 and 12. On the other hand, therenwgaer variation (higher CV) in Block

6 and 12 for HM, which facilitated highef Ralues for the correlations between HM and
satellite spectral data (Table 6).

On the mineral soils (Blocks 6 and 12), the correlations ranged from very weak-or non
existert to R e 0.55. Despite the fact that we compared two different years, there were
similarities in correlation levels for these two blocks within crops across years. There were
similar correlation patterns in the years that soybean was cropped, 2016kr6Rind 2017 in
Block 12 (Figures 16 and 18). Analogously, the years that corn was cropped, 2017 in Block 6
and 2016 in Block 12, there were similar correlation patterns, which were different from those of
soybean. In general, the correlations when saylbess grown were stronger than when corn was

grown. With soybean, the highef Ringed from 0.50 to 0.55, while with corn, the highest R
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was about 0.3. As a result, we concluded that the fields with the same crop created similar
correlation patterns acse different fields at the same site if they had similar or same soil map
units (Tables 1, 2, and 3).

In Block 6, the Rfor the correlations between spectral bands and HM dropped to zero in
February 2017 (Figure 16). There was a slight increasé im May 2017. In June 2017, the
R? increased again, but the red band's correlation to HM was the highes0.B. Starting from
July 2017, there were fluctuations in the correlations until 2017 December. In October 2017, the
correlations were weak to moderaté €R0.2- 0.3) for all bands except NIR, which was not
correlated with HM. In April 2016 and in Felamy and December 2017, there was no correlation
between any spectral band and HM. From January through May 2017, there was no correlation
between NDVI and HM. In June 2017, there was a very weak correlation between NDVI and
HM (R? e 0.10). Then this valudropped to zero in July and August. In September 2017, there
was a rise in the Ro 0.20 before it dropped to 0.10 in October and leveled off until the end of
the year.

In Block 12 in February, June, and October 2016, a year when corn was grown, there
were peaks in Rfor the correlations of the spectral bands with HM (Figure 18). There were
some differences in correlations for Blocks 6 and 12, though. For example, in January 2016, the
correlations between spectral bands and HM ranged froen@R03 to 0.13 in Block 12, which
were lower than those in Block 6 (Figures 18 and 16). Unlike Block 6, in Block 12 during
February 2016, there was an increase in the correlation between HM and the spectral parameters
except for Green and Red (Figures 1@ 48). In Block 12, the correlation between NIR and
HM was the highest (e 0.2) among all the HM correlations in February 2016 (Figure 18). The

correlations between HM and spectral bands in Block 12 in March and April 2016 were similar
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to those in Bloclé in March and April 2017 (Figures 18 and 16). There was an increage in R

beginning in May 2016 for Block 12, which was unlike Block 6 the same month (Figures 18 and
16). Throughout 2016 in Block 12, NIR's correlation to HM was the strongest among the
spectral parameters (Figure 18). This situation was not observed in Block 6 in 2016 (Figure 16).
Like Block 6, there were generally marked increases’im Block 12, especially in May, June,
September, and October 2016 (Figure 18). However, at the efd®ir2Block 12, there were
no correlations between any spectral parameters and HM, which was similar to Block 6 in 2017
(Figures 18 and 16). In 2017 in Block 12, soybean was cropped while soybean was cropped in
Block 6 in 2016 (Figures 18 and 16). In aduh, in the years that soybean was cropped, the HM
correlations were similar in Blocks 6 and 12 (Figures 18 and 16). In terms of the correlation
patterns between HM and the spectral parameters, Block 8 was like Block 45 (Figures 17 and
19). We examined tavyears™ correlations for these two blocks in order to compare soybean with
soybean and corn with corn (Figures 17 and 19). The biggest similarity between Blocks 8 and 45
was that the correlations between HM and the spectral parameters were not sttoRgewdt
to 0.20 throughout 2016 and 2017 (Figures 17 and 19). From November 2016 through April
2017, there was no correlation between any spectral parameters and HM in Block 8 (Figure 17).
There were very weak correlations’@ 0.02 to 0.10) from May throughugust 2017 in Block
8. From September through December 2017, there was no correlation of HM with any spectral
parameters in Block 8. There were very weak correlations between NDVI and HM in Block 8 in
May and June 2017.

Unlike Block 8, from January andrtfugh March 2016, there were some wehk
correlations in Block 45 with R 0.03 to 0.15 (Figu17 and 19). For all spectral bands, the

correlations gradually decreased until April 2016 (Figure 19). In Block 45 between April and
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October 2016, there were very weak correlations with spectral bands ranging*feot@3 to
0.10.From October 2016 through July 2017, there was no correlation between any of the spectral
parameters and HM. There were weak correlations of HM with NIR and NDVI in August 2017.
The strongest correlation, albeit with aheR0.20, was with NDVI in Octobe2017.

The NC correlation patterns (Figures-18) did not resemble those in IL (Figures 5
15) regardless of year. This was expected, as the soil types and other environmental conditions
were quite different between the study sites. In addition,ah®arison between NC and IL

might have been confounded by the different analytes, HM (Hardy, 2014) in NC and OM in IL.

Phosphorus
lllinois

For P, the correlation patterns for 2017 were similar among IL fields, with the highest
correlation(R? e 0.1 to 0.4%ending to the JanuattiiroughMay period (Figures 20, 21, and 23)
andthe August throughDecember perioR? e 0.1 to 0.55Figures 22, 24, 25, 26, and 27)
except for three fields: Home, Bailey, and East. The higheist Rome was in Julfor the
Green band (Figure 28). In Bailey, there was no significant correlation between P and any
spectral parameters (Figure)2Bast was similar to Bailey because the only correlations with P
were for all spectral parameters except NDVI in FebruaryMerth 2017 (Figures 30 and 29).
Unlike Bailey, there was a correlation between P and the spectral parameters in Buess (Figures
29 and 20), but only between February and August 2017 (Figure 20). In February 2017, the
correlations had Re 0.15 in Buess (Figure 20). Theé Ren increased to about 0.15 to 0.25
until March 2017 (Figure 20). The correlations were poor in April (Figure 20), but then there
were two R peaks, one in May and one in July (Figure 20) witle .35 and 0.25, respiacely

(Figure 20). In Cleo (Figure 21), there were correlations between the spectral parameters and P
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from January to June. In January, the correlations ranged ff@0R to 0.3 and the highest
correlation was between P and NIR (Figure 21). From JurtaaMay, R values did not change
dramatically for the spectral bands, but there was no correlation between the spectral parameters
and P for the rest of 2017 in Cleo (Figure 21). The correlation between P and NDVI in Cleo
occurred only from January thrglu May (Figure 21).

The correlations between P and the spectral parameters in Harris North were weak and
happened between February and August for spectral bands, and in December for NDVI (Figure
24). In Harris South (Figure 25), the correlations of P witlof the spectral bands began in
March and increased to’R 0.4 in April (Figure 25). The strength of the correlations remained
the same through May for all spectral bands except for NIR, for which the correlation kept
increasing until June (Figure 23 June in Harris South, there was no correlation between P
and any spectral parameters except for NIR and NDVI (Figure 25). In July, the NIR correlation
was very weak (Figure 25). Between July and October in Harris South, there were many
fluctuations inthe strengths of the correlations of P with the spectral bands, with all but NIR
peaking moderately in August or September (Figure 25) and decreasing to no correlation in
October. In November, the correlations started to increase and regalaediRg fom 0.45 to
0.5 (Figure 25). The correlation between NDVI and P happened from May through September in
Harris South, with Rranging from 0.12 to 0.3 (Figure 25).

In Home from June to October, the P correlations to the spectral parameters ranged from
R%e 0.09 to 0.2 (Figure 28). In Home in April and from July and September, there was a
correlation between NDVI and P witl? R0.09 to 0.2 (Figure 28). In Keegan (Figure 22), there
were relatively strong correlations between P and the spectral parameteassambtoghe fields

mentioned previously. For all but NIR, the correlations were high in August, ranging frem R
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0.2 to 0.5 (Figure 22) except for NIR which had no correlation. There were similarly strong
correlations in October and December (Figure 2R pfl spectral parameters except for Blue,
which had no correlation with P.

In North (Figure 26), there was a weak correlatioh@R 0. 2) bet ween P and
parameters from January through September. The correlation between P and the spectral
parameters was weak in Thackery (Figure 27). In February 2017, there were very weak (R
0.2) correlations between P and some spectral parameters. From April through July, there was no
correlation between any of the spectral parameters and P, which was¢HercBailey (Figure
29). In Thackery from August through November, the only correlation was between Blue and P
with R? e 0.2 (Figure 27). Weber (Figure 23) was similar to Buess (Figure 20), perhaps because
both fields had the same soil unit (Table 4dl @rop mixture, corn and soybean (Table 3). In
Weber (Figure 23), there was usually no correlation between P and the spectral parameters
except for April, May, July, and December. In April, the correlations were arotiaddR2, then
they increased to gihtly above Re 0.3 in May. In June, there was no correlation, but in July
there were correlations witl?R 0.1 to 0.3. The correlation with Green in July was about twice
as strong as the other spectral parameters. In December, there was no cobetladen P and

NDVI in Weber (Figure 23).

North Carolina

For the temporal patterns of the correlations of P with the spectral parameters in 2016 and
2017, Blocks 6 and 12 (Figures 31 and 33) had stronger correlations than did Blocks 8 and 45
(Figures 32 anh 34). Again, these pairings were associated with the soils: Blocks 6 and 12 were
the mineral soils, while Blocks 8 and 45 were the organic soils. For the organic Blocks 8 and 45,

the correlations were very weak or rexistent. Again, the weaker corretats in Blocks 8 and
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45 may be attributable to their low P variability (Table 6). The CV values for Block 8 and 45

were lower than those for Block 6 and 12. In Block 6 (Figure 31), the P correlations to the
spectral data fluctuated substantially. AbrupirRreases were observed in March and May
2016, and October 2016 and 2017 (Figure 31). In January 2016 Wer&around 0.45 for the
spectral parameters except for Blue and NIR (Figure 31). There was no correlation for Blue and
NIR bands in January 2016 Block 6. In 2016, there were three correlation peaks: February,
May, and September, witi?R 0.5, 0.5, and 0.3, respectively. During the rest of 2016, the P
correlations were lower (Figure 31). In January 2017, theuRyed from 0.2 to 0.3 for the

spectral parameters except for NDVI. Between February and August 2017, there were many
fluctuations in the spectral band Ralues. In October 2017, the correlations between P and the
visible bands (Red, Green, and Blue) ranged fréra R.3 to 0.5, while the was no correlation
with NIR and NDVI (Figure 31). In 2017, the only correlations between NDVI and P occurred
between May and June and between August and October, #gtOR5 and 0.2, respectively
(Figure 31).

Block 8 (Figure 32) was very similar Bailey in terms of the P correlations with spectral
parameters: the correlations were either poor or nonexistent (Figures 32 and 29). In Block 12, the
P correlations were weak and fluctuated somewhat through 2016 and 2017 (Figure 33). The
correlation betwen P and the spectral parameters in Block 12 ranged ff@m0R25 to 0.3.

Compared to the other spectral parameters, NIR had the strongest correlations, which peaked at
R2e 0.25in December 2017. The P correlations in 2016 and 2017 did not resemble each other
(Figure 33). This was probably because two differemps were grown in 2016 (corn) and 2017

(soybean).
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Block 45 had several fluctuations it fFigure 34). In January 2016, thé lRetween the

spectral bands and P ranged from 0.10 to 0.15. Between February and JuheathesRell
below 0.05. Throughow®016, the correlations increased to as higle ®.2. The P correlations
in 2017 had lower Rthan those in 2016. Like Block 12, the patterns in 2016 and 2017 were not
similar to each other, again, probably because two different crops were grown (Figure 34). For
any correlation between P and the sg@giarameters, the strengths differed little among the
bands.

The NC correlation patterns did not resemble those in IL regardless of year. This was
expected, as the soil types and other environmental conditions were quite different between the

study sites

Potassium
lllinois
There were correlations between K and spectral data in the IL fields (Figures 35, 36, 37, 38, 39,
40, and 41), but these were weak and generally weaker than those for SOM. Additionally, the
CV values for K for the IL fields were mogthigher than those for SOM for the IL fields (Table
7). Despite that, K correlations in the IL fields were weaker than those for B@Nmportant
to realize that correlation requires some amount of variability in the parameters, but high
variability dd not necessarily result in high correlation for this case.

The correlations between the spectral parameters and K were either wealeaishemt
in Bailey, East, Harris North, and Home (Figures 42, 43, 44, and 45). In Cleo from January to
July 2017 Figure 35), there was no correlation between any spectral data and K. In August,
there was a marked increase in correlation, witk R.4, while correlations with the rest of the

spectral parameters rose to slightly above ®.1 and leveled off througBeptember (Figure
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35). In October, the Riecreased to near zero. Between October and December, the only
correlation was between NIR and K in November at the levef ef &1 (Figure 35).

There were correlations of K with the spectral parameters in Kiéighre 39), the
strongest of which (Re 0.45) were with Green and Red in July and September. Correlations
with NDVI peaked in January, April, and Judely with R e 0.15 to 0.20. Thus, even though
Harris North and North were both cropped with soyl@able 3), the strengths of their
correlations differed. This may have been because the soil map units for these two fields were
different (Table 1): the Milford silty clay loam in Harris North and the Elliot silt loam in North.

In previous research, it fdeen found that different soil textures (silty clay loam and silt loam)
have different light reflectand®arnes et al.,2003}or our study, we theorized that soil texture

might have affected light reflectance values in the images, thus correlations. Therefore, these two
fields had different level of correlations. Differences in agricultural management practices such
as fertilization, irrigation, or tillage, etc. may also have contributed to the differences in

correlation strength.

In Harris South (Figure 36), the comgbns between K and the spectral parameters
occurred only in February and March, withé€0.15 to 0.25. In February, there was a dramatic
increase in Rexcept for NIR. The highest’Rvas for NDVI in February (Figure 36). In Buess,
there were correlatits between K and the spectral parameters from April through September
(Figure 40). There were three peaks: April, June, and August. The correlation in April @ad R
0.23 for all spectral parameters except NDVI, which was not correlated. The peak in June
ranged from Re 0.1 to 0.15 except for NIR, which was not correlated. The peak in August
ranged from Re 0.2 to 0.27. During the rest of the year, the correlations for K were either poor

or nonexistent except for NDVI in December, witheR0.15.
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In Keegan, there were correlations between K and the spectral parameters during most of
2017 (Figure 41). In January, the only correlations were for K with Blue and NIR. In February,
all the correlations increased t8 ® 0.12 to 0.35. Through April, the corrétans of K with the
spectral bands increased, withdR0.27 to 0.35, while there was no correlation with NDVI from
April through June. The strengths of the spectral band correlations decreased somewhat in May,
with R?e 0.1 to 0.2 (Figure 41). In Junegthialues increased considerably foeR0.25 to 0.5.
Between July and November, the correlations were weak. In December, the strength of the
correlations increased to’B 0.25 to 0.32. The correlation between NDVI and K was significant
only between Januaiand March (Figure 41).

Since the Rthreshold for having a statistically significant correlation was 0.13 for
Thackery (Table 4), there were few correlations between the spectral parameters and K (Figure
37). In July, K was weakly correlated{® 0.15 with all spectral parameters except for NIR. In
September, however, NIR had the strongest correlation with K, albeit a weak one. Similarly, in
October and November the strongest, yet weak, correlations were with Red and Blue,

respectively.

North Carolina

In Block 45, there was essentially no correlation between K and the spectral parameters
(Figure 46), similar to Bailey. In contrast, the strongest correlations were on the other muck
field, Block 8 (Figure 47). Relatively strong correlations betweendtha spectral bands were
observed in Block 8 (Figure 47). There were mafp&aks in 2016 and 2017. In 2016, these
peaks were in April, July, September, and November, witg R.15, 0.14, 0.2, and 0.15,
respectively. In 2017, the peaks iR\Rilues wer@bserved in January, April, August and,

September: 0.2, 0.3, 0.3, and 0.3, respectively. The peak in September was only for NIR (Figure
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47). In Block 8, the correlations that existed tended to strengthen somewhat from 2016 through
2017, but there were sslantial fluctuations, with Rranging from zero to 0.30. For the most
part, the correlations with K differed little among the spectral bands and NDVI. Exceptions
included February 2017, when K was correlated with only NDVI and NIR, and in September
Octadber 2017 when the only correlation was with NIR.

The temporal correlation patterns on the mineral soils (Blocks 6 and 12) (Figures 48 and
49) did not resemble those on the organic soil (Blocks 8 and 45) (Figures 46 and 47) and
exhibited little similarity me to another. Except for Block 45, all the NC fields had correlations
for K with the spectral data. The CV values were similar among the NC fields. Therefore,
variability would not have been a factor in the correlations (Table 7). In Block 6 (Figume 48) i
2016 (soybean), there were correlation peaks in March anelitas 2016, with the strongest
correlations (Re 0.25) with NIR and Green. There was little or no correlation from November
2016 through August 2017. In Septemfatober 2017 (corn) there veeweak correlations with
all spectral bands but not with NDVI. In Block 12 (Figure 49), the strengths of the correlations
were extremely variable from month to month, alternating between no correlation to a maximum
(R? e 0.20) for NIR in August. The diéfrences between Blocks 6 and 12 may have been due to
the different crops both years. While Block 6 had soybean in 2016 and corn in 2017, Block 12
had corn in 2016 and soybean in 2017. Different crops can be discriminated from remote sensing
imagery by invetigating a red spectral shift in the chlorophyll absorption edge, meaning that
different crops have unique light reflectar{Gmllins, 1978) Therefore, we hypothesized that the
difference in crop rotation caused differences in the light reflectance in the spectral bands, thus
the correlations differed for Block 6 and 12 despite simildmsap units. In Block 12, there

were many fluctuations in the correlations between the spectral parameters and K (Figure 49),
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with R? e 0to 0.23 (Figure 49). With a few exceptions, there was little to distinguish the spectral

parameters one from anothddowever, in June and October 2016, and July and August 2017,
the correlations of K with NIR and NDVI were substantially stronger than those with the other

spectral bands, e.g.?R 0.23 vs Re 0.0, respectively.

pH
[llinois

For pH, the correlationsere usually weak. This could be attributed to low CV values (4
- 9%) for pH in the IL fields (Table 7). We hypothesized that the variation in pH test values
across the IL fields was not sufficient to have high correlations. Relative to the otherliields, t
correlations between pH and the spectral parameters were poor or nonexistent in Bailey, East,
Harris North, Harris South, North, and Thackery (Figures®8). In all but East, any
correlations in these fields were characterized by a single peak #gtlfOR0. However, the
month when this peak occurred and for what spectral parameters differed from field to field.

In Cleo and Home, the correlations between pH and the spectral parameters were weak
(Figures 56 and 57). In Cleo, the correlations of tleeispl bands with pH were observed only
in June, September, and November (Figure 56), while the correlation between NDVI and pH
existed in April, June, August, and September. In Cleo, the correlations did not differ much
among the spectral bands and ND¥tept for NIR from June through December, when any
correlations with pH tended to be weaker than those for the other spectral parameters. The
correlation patterns for pH in Cleo differed from Bailey, East, and Harris South. That was most
likely because oflifferent management practices such as fertilization and tillage, as all of these
fields were located in the same study site, had the same soil map unit (Table 1), and were

cropped with corn in 2017 (Table 3). The correlation patterns for pH in Clecediffieam those
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in Thackery. This was likely because the dominant soil unit in Thackery was Swygert silty clay
loam, while in Cleo it was Milford silty clay loam. According to USDA official series
descriptions, Swygert silty clay loam was somewhat poorlyeda while Milford silty clay
loam hadpoorly drained and very poorly drained soil conditions. It is a-twabwn fact that
moisture conditions of soils directly affect the light reflectance, which likely affected the
correlations for these two fieldslore specifically, wet soils absorb most light coming from the
sun and do not give much reflectance for the satellite camera to $aisdewers the statistical
variation of spectral reflectance valuaad thus decreastsdr correlationswith soil
paraneters

In Home, the strongest correlations between pH and the spectral parameters occurred in
June, when all but NIR and NDVI had B 0.30 (Figure 57). Any other correlations haddR
0.20. In Keegan, the correlations between pH and the spectral perabegan in February and
strengthened until April, when the strongest correlaticne(R.38) was with NIR (Figure 58). In
May, there was no correlation. In June for all but NDVI, the correlation increaseal to R e
0.33 to 0.40. A correlation betwephl and NDVI occurred only in March af@ 0.20.

By far, the strongest pH correlations in IL were for Buess, Weber, and Keegan (Figures
59, 60, and 58). The temporal correlation patterns in Buess and Weber were remarkably similar.
This may have been becauthese fields were adjacent, had the same dominant soil unit (Milford
silty clay loam) (Table 1), and both were partially cropped with soybean and corn (Table 3). In
Buess and Weber, there were many dramatic increases and decreases in the strbegihk of t
correlations. Among the stronger correlations, the temporal patterns were characterized by four
peaks: January, June, August, and November. The strongest correlations for all spectral

parameters occurred in January. There was little to differeatateg the spectral parameters
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except for NDVI, which had weaker correlations than did the spectral bands in January through
March, and stronger correlations in April and Noverribecember. In Weber, the correlations
ranged from Re 0.03 to 0.75 at the pks (Figure 60). In Buess, the Ranged from 0.05 to 0.7
(Figure 59). Through 2017 in both fields, the correlations between pH and NDVI were weaker
than those with the spectral bands (Figures 59 and 60).

The correlations with pH in Keegan (Figure 58) wawenewhat weaker than in Buess
and Weber, and their temporal patterns differed. The reason for this could be because Keegan
was uniformly cropped with soybean, while Buess and Weber were cropped partially with
soybean and corn. As a result, this likelysedidifferences in reflectance values and
corresponding correlations. In Keegan, the correlations began in February, then strengthened
through April. In May, there was no correlation between pH and the spectral data. In June, the
correlations improved agaiwith R e 0.33 to 0.4 except for NDVI. The correlation between pH

and NDVI occurred only in March with?R 0.2.

North Carolina

In Block 45 (Figure 61), there were no correlations between pH and the spectral
parameters. In Blocks 6, 8, and 12 (Figures 62, 6364ndany correlations between pH and the
spectral parameters were weak, withdR 0 . 2 3 . The CV values for
higher than those for the other fields (Table 6). We hypothesized that this did not affect the
correlation strength fquH in the NC fields. In Block 6, the strongest correlations were for NDVI
in April 2016 (R e 0.10), Green in September 2016 €R0.20), and Red in June 20172@®
0.15). The patterns for the correlation between pH and the spectral parameters for 2016

(soybean) and 2017 (corn) were dissimilar likely because of the different crops grown in those

pH
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years. This would have influenced the reflectance values of the spectral bands, likely affecting
the strength of the corresponding correlations.

In Block 8 (Figure63), the patterns in 2016 and 2017 were similar, but the correlations in
2016 tended to be somewhat stronger than in 2017, which meant that soydpgsed year
(Table 3) gave higher correlations than the emopped year. In both years, the correlations
between pH and the spectral parameters were low at the beginning of the year before first
peaking in May, decreasing in Judily, then peaking again in September. We theorized that the
correlation pattern for pH in Block 8 was related to the plantinghamngesting dates in NC
(Table 5). The dramatic changes in the correlations (Figure 63) in April and May occurred when
the crops were likely planted, emerged, and continued growing. Another potential factor may
have been spring tillage that bared the $dklewise, we also observed decreases in the
correlations starting by October, which may have been related to harvest when the crop was
removed, revealing crop residue, weeds, and bare soil (Table 5).

In Block 12 (Figure 64), the 2016 correlations betweldrand the spectral parameters
were very poor and only slightly above th&eR0.03 significance cutoff (Table 4). Only in June
2016 were there slightly higher correlations, these for Blue and Red. In Block 12 in 2017, there
were many fluctuations in the strengths of the correlations. The temporal correlation patterns for
2016 (con) differed from those in 2017 (soybean), again perhaps because different crops were
grown in those years, which influences the reflectance values of spectral bands and the
associated correlations. In addition, the 2016 correlations were relatively lamethe 2017
correlations, echoing Block 8 when the stronger correlations were also with soybean.

Although Blocks 6, 8, 12, and 45 were located in the same study site, the correlation

patterns for pH in Blocks 6, 8, and 12 were different from those ickB!&6. For Blocks 6 and
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12, one reason may be because the dominant soil in Block 45 was Belhaven Muck, while in
Blocks 6 and 12, it was Deloss fine sandy loam and Altavista fine sandy loam, respectively
(Table 2). Despite the fact that Blocks 8 and 45 wrethe same study site and had the same
dominant soil unit, the correlation patterns for pH in these two fields were quite different. This
may have been due to differences in management pradticddition,the correlations patterns
for pH and spectrglarameters in NC were different from those in IL. That was most likely
because the study sites and soils were different (Fakded 2).

The fields Buess, Keegan, Weber, and Block 8 had the highest correlations for pH within
each of their respective sty sites. This may have been because soybean was either partially or
fully grown in these fields. However, in both IL and NC, there were other fields with soybean
where the correlations were not particularly strong: Harris North and North in IL, and48ock

in NC.

Summary and Conclusions

There were weak to strong correlations between satellite spectral data and soil parameters
in the fields located in IL and NC. In some cases, low variability in soil parameters likely caused
weak correlations. For exampleH usually had the weakest correlations among the soil
parameters. In almost all cases, pH had the lowest CV values compared to other soil parameters.
Another interesting finding of this study was that high variability in soil parameters did not
necessaly result in high correlations. Although the CV values for K were higher than those for
SOM in all the IL fields, this did not necessarily result in higher correlations for K than SOM.
Soil organic matter and HM had the highest correlations across ldtefdlowed by P, K, and
pH. An individual soil parameter typically gave similar correlation patterns across different

fields with the same/ similar crop or soil map unitsere were also cases where the correlations
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patterns were surprisingly differefar fields with the same crop and soil map unit. For these
cases, we theorized that the correlations were affected by weather conditions and agronomic
management. For instance, there was snow cover in IL between Nov. and Apr. (NOAA, 2019),
which likely lesened any correlation. When there is a thick blanket of snow, it is unlikely that
images of the surface provide any information regarding the soil below. However, snowmelt
patterngmight be indicative of underlying soil characteristics such as cRainfall, irrigation,

and soil moisture likely affected the reflectance values of the spectral bands, and thus the
correlations. We also thought that our results may have been affected by differences in tillage. It
is a weltknown fact that the roughness of 8@l surface has a direct effect on light reflectance
which is sensed by the satellite camera. Differences in tillage, e.g., conventional vs. minimal,
present different views of the soil surface to the satellite sehkmting and harvesting dates

likely would have had an effect on the correlations, because the light reflectance would have
changed when plants started to grow, continued through the season, and were harvested. This
caused mix reflectance of soil and crops until the crop completely cavergdound. Another

factor which could have affected the correlations was plant stress, which affects reflectance, and

potentially, the correlations.
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Chapter 3: Precision Agriculture Management Zone
Delineation Using ISODATA Unsupervised
Classification of Satellite Imagery

Abstract

Soil management zones (MZpresent subfield regions of similar soils and production
potential suitable for uniform management. The goal is to identify soil variations in the field and
manage them efficiently using variabiate technologies. Delineating sgpecific MZs at a fiel
level can be useful to manage spatial variability in soils. We sought to delineate MZs using
multi-temporal multispectral satellite imagery and vegetation indices. The study was conducted
on four fields in North Carolina. Spectral bands and vegetatiings from two years of
monthly satellite imagery were stacked and analyzed together in ISODfFative Self
Organizing Data Analysis Technique Algorithm. ISODATA is a statistical clustering algorithm
that creates a wetlefined classification that agas each data point to a specific classe

examined several delineation strategies and our input (stacked imagery) for ISODATA varied

among t hem. For example, the #AHAAIl I-yebrimadeds o de
stack; AUnifomagé®si ocll wdfedom uni formly cropped
used the AUNni formo i mage stack plus NDVI or S
survey delineations; fAControl o used randomly

calculated and eopared means of soil parameters within MZs in a field. We also judged the
agronomic impact of the differences in MZ skt meansThe magnitude of the differences
between the fertilizer rates that would be applied to the MZs based on zonal méash Bgils

and KO ranged from 5 to 51 Ib acreBased on NCDA&C guidelingsve considered
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differences010 Ib acré* to beagronomically importantAmong the delineation strategies tested,

AALl I Fieldso captured soil variability best i
mostly the same delineation, meaning that their performances were eithar simsame. Based
solely on the numbers of mean separations cap
strategy in one study field performed substan
F i e |Omesimportant outcome of this study what different soil parameters often had

different optimal MZ numbers within the same field, indicating that each parameter
warranted/needed its own separate delineation. However, in most cases, two MZs was the

optimal followed by four, three, and five MZIn cases where a particular number of MZs was

not always the optimal, different delineations for different soil parameters could provide the

grower flexibility and make agricultural farm management more precise and effithent.

results indicated thahe approach based on satellite imagery and ISODATA can be helpful in

delineating MZs at a field level for optimizing precision agriculture practices.
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Introduction

Managing agriculture fields on a whdleld basis has been used to treat agricaltur
fields homogenously and to calculate fertilizer and lime application requirements of a field
(Flowers et al., 2005Whereas the spatial variability of soils has been recognized for many
years (Flowers et al., 20Q3h precision agriculture (PA), this variability is characterized and
used to guide intrfield site-specific management. To quantify variability in sei$t properties
at a field level, the current precision agriculture soil sampling techniques @usagrpling and
management zones (MZSullivan et al. 2005)

An effective way of achieving an accurate assessment of the spatial variability of soil
properties is through sampling soil on a dense georeferenced grid. Howevesaloargbe
expensive due to sampling and analytical c(Stsdlivan et al., 2005)in contrast, substantial
precision agriculture research has centered on the use of MZs as a technique for soil sampling
and variablerate fertilizer application@Chang et al., 20147 MZ is a subarea of a field that
has similar characteristics of sail fertility, which means that a singteofdertilizer is suitable
to obtain the optimum efficaqy/rindts et al., 2005)Delineation of MZs is important for
defining soil variability at a field level. THdZs can be created by using a combination of data
layers, for example, yield and soil maps, éfcanzen et al., 1999%everal studies have
demonstrated that MZs can be used in place of grid soil sampling to manage agricultural fields
with variable rate technologieSullivan et al. (20053tated that the use of MZs over grid soil
sampling for soil sampling purposes could decrease the number of soil samples. Zone fertility is
typically assessed by taking a number of sa@sphndomly within a zone, bulking them, and
submitting a single sample per zone for testing. This can decrease sampling and analytical costs

substantially.
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Since 1929, the beneficial use of aerial, and now satellite, imagery in agricultural crop
managerant has been recognizésleelan et al2003) Building MZs based only on satellite
spectral data is dependent on the correlations of surface spectral reflectance with soil properties
and crop characteristi¢Moran et al., 1997)Agbu et al. (1990%tated thaalthough it is not
possible to evaluate soil profile featuresoughsatelliteimagery, it is possible to analyze
spectral characteristics of the earth surface feathe¢snay be indicativef top- and subsoil
conditions. In addition, Agbu et al. (1990) found significant correlations between soraeilsub
propertes and satellite spectral dathen et al. (200®Iso investigated the statistical
correlation between soil organic carbon (SOC) iamabe intensity values in the red, green, and
blue bands with a logarithmic linear equation for a-haSield. They found a substantial
correlation between SOC and spectral bands. They then concluded that the procedures for
investigating the correlations were accurate enough to be used for precision agriculture
applications at field scale.

In many studies, sbcthemical and physical properties have been used to create digital
soil maps by using statistical clustering methods (Sullivan et al.)) 280Hlivan et al. (2005)
stated that linear regression and clustering could be usedtmspéstral data from satellite
imagery to variability in surficial soil properties. Thetated further that the utilization of high
resolution remotehgensed data might be the real potential of clustering methods for delineating
MZs because light refléance from the Earth surface is correlated with many soil attributes.
Zhang et al. (2010pund a correlationR? e 0.4) between soil organic matter (SP&hd the soil
reflectance in the neanfrared (NIR.Then they created MZs based on the NIR band of satellite
imagery.Daniel et al. (2004investigated the correlation between SOM content of sampled soils

and the spdral responses at 960, 1100, and 520 nm by using multiple regression analyses and
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polynomial modeling. The polynomial modeling approach was promising for modeling non
photoactive soil nutrients. They then concluded that the procedures for investigating the
correlations might form the foundation for integration of spectrometers and satellite sensors,
aimed at digitally mapping nevegetated field§Daniel et al., 2004)

The Iterative SeHOrganizing Data Analysis Technique (ISODATA) is a statistical
clusteing algorithm that creates a weléfined classification of data points that assigns each data
point to a specific clagdrvin et al., 1997) ISODATA has been widely used fdassifying
satellite imageslirvin et al., 1997) Recent studies have utilized statistical clustering algorithms
to create soil maps based on soil physical and chemical pespérowever the real potential of
the clustering methods may be the use of remote sensin(Sdiditaan et al., 2005)Because
many studies including our own (Thesis Chapter 2) indicated that there is substantial correlation
between soil properties and satellite imageB) DATA cluster analysis of higiesolution
satellite imagery is a promising tool to delineate soil variability.

Delineation of MZs is important for defining soil variability at a field leviéle positive
outcomes of PA are expected in two domains: ogttion of profitability for agricultural
production and the protection of the environmtitang et al., 2002)These two benefits are
accomplished mainly by avoiding over and underuse of nutrients, lime, herbicides, and
pesticides. The importance of PA has been recognized by farmer and farm managers because it
can be que efficient to manage withifield variability on a sitespecific basis rather than the
traditional wholefield approachLi et al., 2008)

We sought to delineate MZs using cluster analysis with the only input beingdines
satellitespectral datave used multtemporal and mukspectral Plandtabs, Inc. satellite

imagery as input for ISODATA cluster analysis to delineate MZs. Particularly, we evaluated the
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potential of ISODATA cluster analysis of mutémporal, multispectral satellite imagery t

delineate MZ that capture the spatial variability of pleyer soil parameters for different soils.

Materials & Methods
Study Sites

The study was conducted on four fields in North Carolina. The site was located in
Beaufort, NC. The fields ranged size from 530.1 to 624.9 ac and were characterized by a
surface with high organic matter or loamy soil texture (Tahl@Redrainedfields had
originally been forests and swamps. Natural drainage conditions in the fields ranged from poor to
very poor. Toget rid of excess water, 1.61 kimile)-long ditches had been dug approximately
every 100 m to create fields known | ocally as
ac).Frequently grown crops included wheat, corn, and soybean in the fieldgutved only

corn and soybean.

Soil Sampling and Analyses

Grid soil samples had been collected by the grower. Three of the fields (Blocks 6, 12, and
8) had 144 georeferenced soil sampling sites on a roughiynit8@ngular grid. Théourth
field, Block 45, had 189 soil grid sampling sites with ~100 m between tBeits were analyzed
by the NC Dept. of Agriculture and Consumer Services (NCDA&CS) Agronomic Division Soil
Test Section laboratory for routine fertility and chemical properties. (Hardy eDadl):2
Mehlich 3 (Mehlich, 1984a): P, K, Ca, Mg, S, Cu, Mn, Zn, Na; cation exchange capacity and
base saturation; pH/acidity/lime requirement (Mehlich et al., 1976); soil class (mineral, mineral
organic, organic); sieved weigtd-volume; and humic matteH\M; Mehlich, 1984b)Humic

matter as determined by the NCDA&CS method is strongly correlated with soil organic matter
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(Blumhorst et al., 1990; Gonese and Weber, 1998). Herein we discuss only P, K, Ca, Mg, S, pH,

CEC, base saturation, and humic matter (HRBsults for P, K, and S were reported using the
NCDAG&CS fertility index system (Table 8), which provides a relative scale of actudksbil

levels. Table 8 relates these index values to general nutrient availability, indicates the likelihood
and magnitde of crop response to fertilization, and provides multipliers for converting the

indices to mg kg. Our primary focus was soil humic matter (HM), P, K, and pH.

Satellite Imagery and Data Preparation for Analysis

Satellite imagery was provided courtegyo Pl anet Labs, Il nc. (here:
commercial satellite imagery provid&ensoicalibrated multispectral images were taken by
sensors on two different satellitégapidEyeandPlanetscopeOrthorectified, Surface
Reflectance, Radiance, and Basiagery types were available on the website of Planet. In our
study, we used thelanetscop®©rtho scene product and tRapidEyeOrtho Tile product.

Because cloudree images were not available for the entire years of 2016 and 2017 from either
satelliteindividually, we used images from both satellites.

Planetscop@rthorectified (Ortho) imagery refers to images that are geometrically
corrected for topographic relief, lens distortion, and camera tilt. Orthorectified images can be
used to measure true t#iaces since they are relatively accurate localized representation of the
Earth’s surfacePlanetscop®©rtho images had-81 ground resolution or pixel size and four
spectral bands: blué%5 515 nm) green $00' 590 nm) red 690/ 670 nm) and NIR (780860
nm). The Planetscop®rtho scenewere in GeoTIFF image format. The product orientation was
map north up and product framing was scene based. The dimensions of the downloaded image
scenes were approximately-Bg7 km, with some variability by satellite #&lide The image bit

depth was 16, which is the number of bits used to express the color of a single pixel in a



54

bitmapped image. Geometric corrections had been done using sensor telemetry and a sensor
model for senserelated effects. Atmospheric correcttohad been done using 6SV2.1 radiative
transfer code. The horizontal datum was WGS84 and the map projection was UTM. The
resampling kernel was cubic convolution, which is an interpolation technique used to correct
spatial distortiongRifman, 1973 and Bernstein, 1976)

TheRapidEyeOrtho Tile product refers to thmages that were orthorectified ast2p
25 km tiles. This particular product was designed for a wide variety of applications which require
imagery with an accurate geolocation and cartographic projection. The imagery had been
processed to get rid of geaghic distortions and could be used for many cartographic purposes.
TheRapidEyeémages had-#n ground resolution or pixel size and five bardae @40 510
nm), green $20' 590 nm) red 630/ 685 nm) red edge (690’30 nm), and neainfrared (NIR:
76071 850 nm).The RapidEyeOrtho Tilescenesvere in GeoTIFF image format. The product
orientation was map north up and product framing was based on a worldwide, fixed UTM grid
system. The bit depth of the images was 16, which is the number of bits used te theoedor
of a single pixel in a bitmapped image. Geometric corrections had been done using sensor
telemetry and a sensor model for serstaited effects. Bands had beerregistered and
spacecrafrelated effects corrected using attitude telemetrytarsd available ephemeris data.
Orthorectification had been conducted using ground control points and fine digital elevation
models (30 m to 90 m posting). Atmospheric corrections had been done using 6SV2.1 radiative
transfer code. The horizontal datum W& S84 and the map projection was UTM. The
resampling kernel was cubic convolution.

The sequential steps for delineating MZs at a field level are shown in Figure 3. We chose

images at approximately monthly intervals for 2016 and 2017. The purpose ofiraméilye
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series stacked spectral bands was to capture the changes in crop growth and soil surface over
time. Our goal was to choose imagery that displayed the target fields with a range of cover
including: a crop at several stages of development; baradjaucrop residue; cover crops;

snow cover; etc. When acquiring satellite images, we were cautious to pickrdeuchages,

which isespecially challenging in rainy regio(Georgi et al., 2017Yo pick cloudfree images,

we dways kept the cloud cover slider in Planet's user interface to the leastcoleeidoption (0

to 1%). In three months (Talk®g, we were unable to find appropriately clefide scenedt was
important not to use the images with cloud cover because éa¢hthat cloud cover could affect
the delineation results and would not reflect what was on the ground. That is why we had to
eliminate three images from 2016.

Because the study areas were quite large, more than one scene was always needed for full
coveaage. In ArcMap 10.6.1 (ESRI, Redlands, CA), scenes were mosaicked together (Figures 3
and 4) and clipped to the full extent of each study area, a rectangle encompassing all fields. In
ArcMap these steps were done using Mosaic to New Raster and Clipeg8ebgy, the
resultant images for each month were split into their individual spectral bands. This was done by
double clicking the whole image in the add data dialog box in ArcMap, which made it possible to
access the individual spectral bands of the wimolge. After doing this, users can add the
individual bands into the table of contents in ArcMap and analyze them easily. Before stacking
images to create timeeries satellite data, we had to adjust the spatial resolutPlamétscope
images (3m grownd resolutiofto 5m using the Resample tool in ArcMap. Resampling was
done because the ground resolutionBlahetscopendRapideyamages were different. After
resampling th&lanetscop@mages, we overlaid the resamplldnetscopemages with the

Rapideyeimages using Snap Raster in ArcMap (Environment Settihept, the individual
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bands of sever al mont hs I mages were composi't
Composite Bands in ArcMap. The resultant stack wasiiéidimensional attribute spateat

contained all the spectral information from the months of 2016 and 2017. Subsequently, the

Ai mage stackdé66é was clipped to the extent of e
Subset tools in ERDAS IMAGINE 201@lexagon Geospatial, Madisofil.). A 6-m buffer

inside the field boundary was then trimmed to eliminate interferences coming from the areas

close to the edges of fields by using Subset tool in ERDAS IMAGINE 2018.

Vegetation Indices: NDVI and SAVI

Two spectral vegetation indices, tNermalized Difference Vegetation Index (NDVI;
Ashley and Rea, 197%nd the Soil Adjusted Vegetation Index (SAVI; Huete, 1988) were
calculated to describe dynamic sedgetation relations from remotely sensed det@ NDVI is
written in the form:

NDVI = (&niR i red) / (BNIR + Bred)

whereanir is the reflectance value of the néirared andbreqis that of the red. Vegetation
naturally has a high NIR reflectance (due to scattering by leaf mesophy)lacelitow red
reflectance (due to absorption dylarophyll pigments The NDVI for healthy, fulcanopy
vegetation will hence tend toward the limit, one. By contrast, clouds, water, and snow have a
larger red reflectance than NIR reflectance, and these features thus yield negative NDVI values.
Rock andbare soil areas have similar reflectance in the two bands and result in vegetation
indices near zer(Hurcom and Harrison, 19983AVI was intended to minimize soil influence
on vegetation spectra by including in the numerator and denominator of the NDVI a canstant,
a canopy background adjustment factor whichegadepending on the stage of vegetation and

the soil background (Qi et al. 1994). The SAVI was calculated as:



57

)
z
SAVI 1 —zp

To calcullLat waSAVYet fio 0.5, a standage@ievral ue
al. 1994). For the months of 2016 and 2017 images, these vegetation indices were created as

raster maps that were included as additional bands in the composite image stack.

Management Zone Delineation and ISODATA

The Iterative SelOrganizingData Analysis Technique (ISODATA) is a statistical
clustering algorithm that creates a wadifined classification of data points that assigns each data
point to a specific clagdrvin et al., 1997)Fraisse et al. (2001) reported that ISODATA is
advantageous relative to other clustering/classification algorithms because it is fast and easy to
use readily automated. Furthermore, it allows the use of additional input layersghtibe
significant for characterizing the variability seen in the figlo.perform ISODATA, the user has
to define the number of classes (clusté®)odhi et al., 1999).

Different clusters are characterized as different colors to be distingumshegpbs and
they might be the potential MZs. ISODATA has been widely used for classifying satellite images
(Irvin et al., 1997)We used the ISODATA in Erdas Imagine 20tBthe present study, the
input data was the stacked images described aboterms of satellite remote sensing data,
what makes our project unique was that we analyzeddgeries data as we had one image per
month for 2016 and 2017.

The algorithm was run fouimes for dividing the input layer into two, three, four, and
five classes. Different number of classes were defined because the ISODATA algorithm does not
define the optimum number of classes and statistical evaluation was required to determine the

optimum number of classes (Flowers et al. 2005). We used the default settings, 20 and 10 for

t
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minimum class size and sample interval, respectively. After running ISODATA in ERDAS, the
results were classified image layers (composed of pixels), with the clagzesdes potential
MZs. To smooth zone boundaries and eliminate small groups of pixels of one class that fell
within another class with a larger number of pixels, Boundary Clean and Majority Filter tools
were applied in ArcMap. These processes were castietb meld tiny areas of classified pixels
that were close to larger areas of the same class, or within larger areas of different classes, in
order to create a single continuous class zone. As a result, agricultural farm management would
be eased, as itay not be possible or desirable to manage very small MZs in the field depending
on grower preferences and o npratdfértdizerdimepabi | i ti es
application equipment. For display, different classes were characterized as diffévento be
distinguished in maps and illustrate the potential MZs.

We studied and compared six different delineation strategies (Table 10). For each study
field, we produced an image stack containing the spectral bands of the different months of 2016
aad 2017. This was the AAII |l mageso delineatio
fields were not cropped uniformly, meaning some parts of a field were occupied by one crop
while the rest was empty. We thought that including-aoifiormly cropped imges might result
in undesirable MZ delineations. Therefore, we picked only unifoardpped images to stack.
This was the fAUni formo delineation strategy (
comprising only uniformly cropped fields plus the corresting Normalized Difference
Vegetation I ndex (NDVI) maps and named it as
image stack comprising only uniformly cropped fields plus the corresponding Soil Adjusted
Vegetation Index (SAVI) maps was createdand med t he ASAVI 0 delineat.

10). We also compared our zone delineations with a control consisting of randomly created
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zones. For the AContr ol Strategyo, study fiel
using Subdivide Polygom ArcGIS Pro. A degree of randomness was incorporated by using a
random subdivision angle. Each field was divided into two, three, four, or fiveegidns.

Finally, we compared our delineations with the SSURGO soil map unit poly§onsStrvey

Staff,2019), our secalledii So i | Surveyo strategy.

Performance Evaluation

Mean values for the soil properties (HM, P, K, pH, CEC, base saturation, Ca, Mg, and S)
were calculated for corresponding MZs in all study areas for the different delineation strategies.
One purpose of MZ delineation is/was to increase advissariation in soil properties while
decreasing the variation within MZs. The extent to which a delineation achieved this was
assessed in part via ANOVA. This analysis was carried out to see th@waioa mean values
of soil parameters across and within different MZs in each field for the different delineation
strategies.

The performance evaluation process included several steps. The first was to convert
classified images of delineation resultwinector layer polygons using Raster to Polygon in
ArcMap. Then, the resultant polygon layer was dissolved according to the actual number of MZs
by Dissolve in ArcMap. Next, the MZ number was linked to soil points by Spatial Join in
ArcMap. Spatial Joinn ArcMap 10.6 was able to join MZ polygon layer and soil point layer
based on the location of the features in these layers by appending the attributes of one layer to
another. The outcome of Spatial Join was a soil point layer with the matching MZ nember f
each soil sampling point. This layer's attribute table was converted into an Excel sheet by Table
to Excel in ArcMap. Resultant Excel sheets were then transfer@aS® 9.4 (SAS Institute,

Cary, NC)to conduct PROC MEANS and PROC GLM. These SAS proeesihelped us to
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calculate mean values of soil parameters within each MZ and to compare MZ Wéens.
there were statistically significant differences<(0.05), individual soil parameter means within
each MZ were separated by using a Tukey(tektfield et al., 2018)

To determine the optimum delineation strategy for the soil parameters studied, we used
three different criteria. The first criterion was to determine the totaler of statistically
different zones for each soil parameter within each MZ delineation. In the present case, this was
done simply by counting the number of uniqgue mean separation letters. These results were then
tabulated for comparison. Second, fockeparameter within a delineation strategy, we
determined the minimum number of zones needed to capture the total number of statistically
significantly different MZs. In other words: when dividing the field into a greater number of
MZs did not increase ¢hnumber of statistically distinct MZs. The third criterion was a judgment
as to whether any particular mean separation was agronomically important, i.e., large enough to
warrant/justify differential management. For P and K, these judgements were nyzate, with
reference to the NCDA&CS soil test index system (Table 8), as well as their equations used to
calculate fertilizer rate recommendations (Hardy et al., 2014). We considered whether the
maximum difference in recommended rates between zones witletineation was likely to
result in quantifiable crop response. We also considered whether these differences were within
the capabilities of current variabtate spreaders to apply solid material accurately and precisely.
Current equipment typically Bahe capability of applying a target rate plus or minus 10% (Dr.
Gary Roberson, personal communication). Finally, we considered the fact that NCDA&CS
fertilizer recommendations are rounded to the nearest 10 [t @daedy et al., 2014).
Integratingtne e consi derations, we c 0tobdadrenondcdlly a d i

important.

ff
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For S, the NCDA&CS recommends fertilization only when tHadgx is 25 or less,
depending on soil class. The mean values-lidex for all MZs within each delinéan strategy
(Table 11) were above 25. Therefore, all thm&ex values for different MZs were
agronomically the same or similar, and did not require different fertilizater rates. Hereafter, we

examined only P and K for agronomic difference.

Results andDiscussion
NB: We did not discuss blocks in numerical order. Instead, we ordered them based on
soils: Blocks 6 and 12 were the mineral soils, which are discussed first, while Blocks 8 and 45

were the organic soils.

Block 6

The dAAIlI Fi el tegydTahleell) capteredtlé, D6Nn19,andrl&mean
separations for two, three, four, and five MZs, respectively (Table 12). The delineation maps are
shown in Figures 65 to 68. There were similar
samplingstrategy. The total number of means separations (16) was the same when Block 6 was
divided into two or three MZs. This increased by ~20% when there were four or five MZ. The
two-MZ del i neation for the dAAII Fielsdilso strateg
parameters except pH (Table 12). Potassium, Ca, Mg, HM, and BS had the same total number
(two) of mean separations for two, three, four, and five MZ delineations (Table 12), thus-the two
zone option was statistically optimal. Phosphorus, S, and GA®te additional mean
separation in the fouand/or fiveMZ delineations compared to the twand threeMZ-
delineations, an indication that four MZs was statistically optimal. We then judged the

agronomic significance (Table 8) of the means separatonsf P and K wi thin the
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delineation strategy. For corn, the maximum difference in recommended fertilizer P rates among
the three MZs was about 30 Ib aéf0s, while that between the two MZs for K was about 29

Ib acre! K2O. The magnitudes dhese differences were within spreader capabilities and would
likely produce a differential crop response.

The AUni formo delineation strategy (Tabl e
for two, three, four, and five MZs, respectively (Table I3)ese numbers were 37 to 70% lower
compared to the AAII Fieldso delineation stra
delineation maps are shown in Figures 69 to 7
delineation strategy captured mesaparations only for K, Ca, and Mg (Table 13). For HM and
pH, there was no mean separation captured for
(Table 13). For P, S, and CEC, there was no mean separation captured for theeéepand
five-MZ delineations, while the fouMZ delineation captured only two different mean
separations for each of these soil parameters (Table 13), making the four MZs optimal. For both
K and Ca, only two mean separations were captured irrespective of the number ofdldés (T
13), thus their optimal number was two MZ. For Mg, the only mean separation captured was in
the twoMZ delineation (Table 13). For BS, the only mean separations were in the four and five
MZ delineations, both with two (Table 13). For P with four Mig difference between the
maximum and minimum index values amounted to a difference in recommendations for corn of
only about 14 Ib acreP.Os, while for K with two MZ this difference was about 11 Ib atre
K20. Within the capabilities of VRT spreadetitsese differences were likely to produce a small
differential response.

The ANDVI O delineation strategy (Table 11)

two, three, four, and five MZs, respectively (Table 14). For two, three, and four MZs, these
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numbers of mean separations were | ower compare
delineation strategies (Table 14). With the fM& delineation, the NDVI strategy yielded 12

mean separations compared to 6 ategks, 18 for the
respectively. The delineation maps are shown in Figures 73 to 76. TiMAwlelineation of the

ANDVI 0O strategy captured mean separation only
mean separation was captured for any MZ delineation. For Hivk thias no mean separation

captured in two and three MZ delineations, while the-fand fiveMZ delineations both

captured two mean separations. For P and S, mean separations were captured only4in the five

MZ delineation, both with two separations. Fqrtto mean separations were captured whatever

the number of MZs, thus its optimal number was two MZ. For Mg, there were two mean

separations in twaand fiveMZs, while there were not any mean separations in-tlares four

MZs. For CEC, both four and fivdZ delineations captured two mean separations. For BS,

mean separations were captured only in the-kdrdelineation, which had only two mean

separations. For P, the maximum difference in fertilizer recommendations between zones

amounted to about 18 lw@! P,Os, while for K that difference amounted to about 11 Ibacre

K20. Within the capabilities of current spreaders, the P differential would likely be adequate to

result in differential response, while K was marginal in that regard.

The ASodl dSurmegti on strategy (Table 15) f
NRCS Soil Survey map units (Figure 77). The i
from the maps of other delineation strategies. A total of eight mean separations were cgptured b
the ASoi l Surveyo delineation (Table 15). Com
MZs (four), the eight mean separations captur

| ower than for the Al I Fi e l, whidedt wasnhd samdJas thd or mo



64

number for the ANDVI O delineation strategy (T
separations were captured, while there were no mean separations for Mg, Ca, pH, CEC, and BS
(Table 15). The highest and lowest P zone mbaost h f e | | in the NCDA&CS
category (Table 8). The difference iFfdttilizer rate recommendations between these means was
about51lbacréP,0s. Li ke P, the two MZ K means also fe
a difference in fertilizerecommendations of about 47 Ib atkO. These differences were
well within equipment capabilities and likely to provoke a differential response.

The AControl o delineation strategy (Tabl e
separations for two, thretour, and five MZs, respectively (Table 16). The random subdivisions
are shown in Figures 78 to 81. Except for the-fil2 delineation, the number of mean
separations was very similar to thevie in the
delineat on f or t hswatefgyAaptured-more thangwice the number of mean
separations compared -MAa dédltnedt Nn€Cont ool Dhe Th
captured mean separations for all soil parameters except Ca and pH (Table 16).rHtweve
two-MZ delineation was optimal only for K and Mg: there were only two mean separations
irrespective of the number of MZs. For HM, P, and S, the greatest number of mean separations,
three, was captured by the thid& delineation. For Ca, the maximumumber of mean
separations was two, achieved first with the fl delineation. For pH, the maximum number
of mean separations, two, was captured by the-threkfiveMZ delineations, thus the three
MZ delineation was optimal. For CEC, the maximum namdf mean separations was three,
which were captured by the thresnd fourMZ delineations, thus three MZs were optimal. For
BS with the AControl o strategy, the maxi mum n

the two, four-, and fiveMZ delinedions, making two the optimal number. For P with the
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optimal threeMZ delineation, the difference in fertilizer rates between the minimum and
maximum MZ means amounted to about 26 Ib-a&®s. For K with two MZ, this difference
corresponded to about #2acre! K,O. We considered both of these differences to be
agronomically important.
Recall that the AControl o delineation stra

using a random delineation angle (Figures318 Based solely on the numbers of mea

separations captured, surprisingly, the fACont
substantially better than all ot her strategie
Block 12

The dAIlI Fieldso delineation strategy (Tab

semrations (Table 11) for two, three, four, and five MZs, respectively (Table 17). The

delineation maps are shown in Figures 82 to 85. There were similarities in the delineation
patterns for the AAl | FMZadélidestionfartheénpl | nBi et dade
strategy captured mean separations for HM, K, S, pH, and CEC, while there was no mean
separation captured for Ca, Mg, and BS (Table 17). Potassium and S had the same total number
(two) of mean separations for two, three, four, and five Mzhdalions (Table 17), thus their

optimal number was two MZs. For P, Ca, and BS, mean separations were captured only in the
five-MZ delineation, with only two mean separations. Humic matter had one additional mean
separation for a total of three in the fiv&Z delineation compared to the twahree, and four

MZ delineations, which had only two separations, an indication that five MZs was optimal. For
Mg, mean separations were captured only in the fand fiveMZ delineations, both with two,

making the fouMZs optimal. For pH, there was no mean separation captured in three MZ

delineations, while the twpfour- and fiveMZ delineations captured two mean separations,
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making the two MZs optimal. Compared to the twtbree, and fourMZ-delineations which fth

two separations, CEC had two additional separations in thé/i&/delineation, an indication

that five MZs was statistically optimal. We then judged the agronomic significance (Table 8) of

t he mean separations ff or Ptioastrateg)KFomncorh,the n t he
maximum difference in recommended fertilizer P rates among the five MZs was about 24 |b

acre! P,Os, while that between the two MZs for K was about 13 Ib-a&r#0. We judged the P

difference agronomically important and K miawa in that regard.

The AUni for @0 deend nfeM@VIion strategies (Tabl e
number of mean separations (Table 11): 8, 10, 17, and 18 for two, three, four, and five MZs,
respectively (Tables 18 and 19). Because the results hesaime for these two MZ delineation
strategies, we only discuss the AUni formo del
strategies output the same mean separation results was that adding the NDVI layers onto the
uniform images did not affect delineat results. We hypothesized that the delineation results
for the two were the same because the NDVI layers were based on the same data used for
creating the input for the AUni formd strategy
the same restd for the input data of these two strategies for Block 12. That is why the mean
separations (Table 11) were the same. The number of mean separations captured by the
AUNiI f or mo 40a ndde IARiNnDeValt i on strategies was similar
delineation strategy for all MZ delineations (Table 11). The delineation maps are shown in
Figures86t093. ThetwlZ del i neati on for the AUNni for mo de
separations only for HM, K, pH, and CEC (Table 18). For Mg, there was ao separation
captured for any MZ delineation in the fAUNni fo

two mean separations were captured irrespective of the number of MZs, thus their optimal
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number was two MZ. For BS, the only mean separation capwas in the fiveMZ delineation

with two separations (Table 18). For Ca, the only mean separations were in the four and five MZ
delineations, both with two, thus its optimal number was four MZ (Table 18). For S, there were
mean separations in the thrgleur-, and fiveMZ delineations, all with two separations, making

the threeMZ delineation optimal (Table 18). For P, the only mean separations were in the four
and five MZ delineations, with three and two separations, respectively, thus the optimal number
was four MZ. For both humic matter and CEC, delineation captured two, two, three, and three
mean separations for two, three, four, and five MZs, respectively, making four MZ the optimal
(Tables 18 and 19). For P with four MZs, the difference between tamum and minimum

index values amounted to a difference in recommendations for corn of about 25'I1B.&&e

while for K with five MZ this difference was about 15 Ib at#,0. We considered both of

these to be agronomically important.

The fASoyiol ddrivneeati on strategy (Table 15) f
USDA-NRCS Soil Survey map units (Figure 94); two very small map units were excluded. The
ASoi | Surveyo delineation was quite dAfferent
total of 13 mean separations were captured by

Compared to delineations with the same number of MZs (four), the 13 mean separations

captured by the ASoil Surveyo del foembi andwer
ANDMI del i neation strategies, while it was abo
Fieldso delineation strategy (Table 11). For

15). For P, S, Mg, pH, and CEC, two mean separations weraeapihile there were no mean

separations for K, Ca, and BS (Table 15). The highest and lowest P zone means both fell in the
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NCDA&CS fAmedi umo index cat eg-fertligerret§ abl e 8) . Th

recommendations between these means was about2a:hP,Os.

The AControl o delineation strategy (Tabl e
separations for two, three, four, and five MZs, respectively (Table 20). Except for tidZive
delineation, the number of mean separations was similar to thdsein tii A | | Fieldso st
(Table 11). ThefiveMZ del i neati on for the AAII Fieldso s
number of mean separati ons -MZdelineaiondodthet o t he nC
AControl 0 strategy c alpdlparamaersraxephK, GagcapdBS rableo n s
20). In addition, no mean separations were captured in any MZ for K, Ca, and BS (Table 20). For
P and CEC, there were only two mean separations irrespective of the number of MZs, thus their
optimal number wasmo MZ. For HM, the greatest number of mean separations, three, was
captured by the threand fourMZ delineation, making the thrédZ delineation optimum. For
Mg, the maximum number of mean separations, two, was captured by théhtee and four
MZ ddineations, making two the optimal number. For S and pH, the maximum number of mean
separations was two, which were captured by the, tthoee and fiveMZ delineations, thus two
MZs were optimal. For P, the difference in fertilizer rates between thenonimiand maximum
MZ means amounted to about 12 Ib &dReOs. , which we considered of marginal agronomic

importance. Based solely on the numbers of mean separations captured, all delineation strategies

except for fASoil Sur veogmnt rpelrd odaereidn ebaettitcerr itrh akE
Block 8
The dAll Fieldso delineation strategy (Tab

separations for two, three, four, and five MZs, respectively (Tables 11 and 21). The delineation

maps are shown in Figures 95 to Y8ere were similarities in the delineation patterns for the
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AALl I Fieldso samgMZi rdge |l stnreatta gpyn. fTolre tthveo i Al | F

mean separations for S, Mg, pH, and BS, while there was no mean separation captured for HM,
P, Ca, ancCEC (Table 21). In addition, there was no mean separation captured for HM and P for
any MZ delineation. For pH and BS, there were two mean separations for all MZs (Table 21),
thus their optimal number was two MZ. For K, there were two mean separations three,
and four MZs, while there were three mean separations in five MZ, making thdZioption
the optimal for K (Table 21). Sulfur had one additional mean separation in thehauiive MZ
delineations compared to the twthree, and fourMZ-delineations, an indication that four MZs
was statistically optimal. For Ca, the only mean separations were in the four and five MZ
delineations, both with two. For Mg, the maximum number of mean separations was three, which
were captured by the fivilZ ddineation, while the twg three, and fourMZ delineations had
only two mean separations, thus three MZs were optimal. For CEC, there were the same total
number of (two) of mean separations for thyéeur-, and fiveMZ delineations, thus the three
MZ option was optimal. We then judged the agronomic significance (Table 8) of the means
separations for K within the AAII Fieldso del
in recommended fertilizer K rates among the five MZs was about 30 I} kie@ which we
considered agronomically important.

Both the AUNni oodmd i arcdtiDVIstrategies (Tab
number of mean separations: 12, 16, 16, and 16 separations for two, three, four, and five MZs,

respectively (Tables 11, 28nd 23). Again, because the results were the same for these two MZ

=]

delineation strategies, we discuss only the
separations captured q4bydaelhien ddtniidrorator athalg ineND

compaed to the AAIlI Fieldso delineation strateg
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delineation maps are shown in Figures 99to 106. TheMwo del i neat i on f or t he
delineation strategy captured mean separations for all soil parameters ex¢gpait] BS

(Table 22). For S, Ca, and CEC, only two mean separations were captured irrespective of the
number of MZs (Table 22), thus their optimal MZ number was two. For P, the only mean
separation captured was in the fivZ delineation. For pH and BS,dtlthree, four-, and five

MZ delineations each captured two different mean separations for both of these soil parameters,
making the three MZs optimal. For K, the twthree, and fourMZ delineations each captured

only two mean separations while theresw# mean separation for the fiv&Z delineation,

making the two MZs optimal. Humic matter had the same total number (two) of mean
separations for two, three, and five MZ delineations, thus thetme option was optimal. For

Mg, there were two mean septons for each of the twand threeMZ delineations. There

were four and three mean separations for the fimua five MZ delineations, respectively, thus

the fourzone option was statistically optimal (Table 22). For P with five MZs, the difference
between the maximum and minimum index values amounted to a difference in recommendations
for corn of only about 11 Ib actéP,0s, while for K with five MZ this difference was about 10 Ib
acre! K,0. Both of these were of marginal agronomic importance.

The ntGool 6 delineation strategy (Table 10)
for two, three, four, and five MZs, respectiyv
strategy performed poorly relati iVSurvay,bwhichhe ot h
performed just as poorly. The twahree, and fourMZ del i neat i ons f or t he
captured mean separations only for P (Table 24). However, thb#veelineation captured
mean separations for HM and Mg as well as P. Hgraabhmeters, the maximum number of

mean separations for the AControl o delineatio
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separations were captured irrespective of the number of MZs, thus the optimal MZ number was
two. For P with the twdMZ delineation, tle difference in fertilizer rates between the minimum
and maximum MZ means amounted to about 5 b ’aBs®s, agronomically unimportant. In

Bl ock 8 based solely on the numbers of mean s

delineation strategyperor med wor se than all other strategi
equivalent to the AControl . o

The ASoil Surveyo delineation strategy (Ta
NRCS Soil Survey map units ( Figasaquaediff@dent) . The

from the maps of other delineation strategies. A total of 12 mean separations were captured by

the fASoil Surveyo delineation (Table 11). Com
MZs (four), the 12 mean separations captured by tii So i | Surveyo delineat.
fewer than for fohe afinWniifPolrim,Foi efllNdDsMol del i neat i o
pH, and CEC, two mean separations were captured, while there were no mean separations for

HM, Ca, and BS (Table 15)oF P, three mean separations were captured (Table 15). The highest
and | owest P and K zone means fell in the NCD
difference in Pfertilizer rate recommendations between these means was about 23'IP.a85e

while that for K was about 21 Ib acr& .0, both of which we considered agronomically

important.

Block 45

The dAll Fieldso delineation strategy (Tab
separations for two, three, four, and five MZs, respectively (TableThg)delineation maps are
shown in Figures 108 to 111. There were simi/l

Fieldso sampl i AiZ ddterl @ tneecayt.i olmnh & otrwa he A Al | Fi e
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separations only for HM, P, Mg, and BSafille 25). No mean separations were captured for Ca,
pH, and CEC (Table 25) irrespective of the number of MZs. Humic matter, Mg, and BS had two
mean separations regardless of the number of MZs, thus tHdZaption was statistically
optimal. Both K and $ad two mean separations for three, four, and five MZ delineations, thus
the threezone MZ delineation was statistically optimal. Phosphorus had one additional mean
separation in the fotiZ delineation compared to the twahree, and fiveMZ delineatiors, an
indication that four MZs was statistically optimal. Then, the agronomic significance (Table 8) of
the means separations for P and K within the
corn, the maximum difference in recommended fertilizemtBs among the three MZs was about
16 Ib acrét P,Os, while that between the two MZs for K was about 19 Ib a&rO, both
agronomically important.

The AUni formo delineation strategy (Tabl e
for two, three, dur, and five MZs, respectively (Table 11). These numbers were ~25 to 70%
| ower compared to the dAll Fieldso delineatio
shown in Figures 112to 115. ThetMbZ del i neat i on for theg AUNni for
captured mean separations only for HM, P, and BS (Table 26). For K, Ca, pH, and CEC, there
was no mean separation captured irrespective of the number of MZs (Table 26). For Mg and S,
there was no mean separation captured for the tiweee, and fourMZ delineations, while five
MZ delineation captured only two different mean separations for each of these soil parameters,
making the five MZs optimal. For both HM and P, only two mean separations were captured
irrespective of the number of MZs, thus theatimal number was two MZs. Base saturation had
the same total number (two) of mean separations for the two anilZivselineations, while

there were no mean separations for theeel four MZ delineations, making the optimal number
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two MZs. For P withwo MZs, the difference between the maximum and minimum index values
amounted to a difference in recommendations for corn of only about 10 thRa€e which we
considered agronomically unimportant.

The ANDYEIl ineation str aé6,&0yandgmeaniséparatidn® ) cap
for two, three, four, and five MZs, respectively (Table 11). For theN&othese numbers of
mean separations were the same as the numbers
three, four, and fiveMZswere~33 o 50% | ess than those for the
delineation maps are shown in Figures 116 to 119. Thetwilo d el i neat i @n of t he
strategy captured mean separation only for HM, P, Mg, and BS (Table 27). For Ca, pH, and
CEC, no mean sepaion was captured for any MZ delineation (Table 27). For HM, there was
no mean separation captured in the-fWg delineation, while the twg three, and fourMZ
delineations each captured two mean separations. Phosphorus had two mean separations
whateve the number of MZs, thus its optimal number was two MZs. For K, mean separations
were captured only in the thrddZ delineation, which had only two mean separations. For S,
mean separations were captured only in the-fand fiveMZ delineations, which éth had only
two mean separations, thus the optimum MZ number was four. Magnesium and BS both had two
mean separations for twdour-, and fiveMZ delineations, thus their optimal number was two
MZs. For P, the maximum difference in fertilizer recommeiodatbetween zones amounted to
about 9 Ib acré P.Os, while for K that difference amounted to about 13 Ib &é&eO. Thus we
considered the P difference not agronomically important, while that for K was.

The ASoi l Sur veyo de Ifor Bloekadb compnisedits twatS®y ( Ta
NRCS Soi l Survey map units (Figure 120). The

from the maps of other delineation strategies. A total of two mean separations were captured by
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the fASoil S u r \ble §19. Campdred to dedineatians witl theesame number of

MZs (two), the two mean separations captured
| ower than for the Al o Fdeellidnseda t ifioln isftorrantoe g iae

only mean sparations captured were for S and Mg (Table 15).

The AControl o delineation strategy (Tabl e
for two, three, four, and five MZs (Table 11)
poorly relativetoalt he ot her delineation strategies exce

delineations with the same number of MZs (two), the two mean separations captured by the
AControl o delineation was the same as the ASo
separations were captured only for S and Mg (Table 28). For S, only two mean separations were
captured in all the MZs except for the fddiZ option (Table 28), which had none, thus the

optimal number was two MZ. For Mg, the two mean separations were ahptlyein the four

MZ delineation. Because there were no mean separations for P and K, uniform applications of P

and K fertilizers would be recommended.

Comparison of Fields

In Bl ock 6, the AControl 0 del ihreegfaut-jjamn st r at
five-MZ delineations captured, 14, 18, 18, and 10 mean separations, respectively (Table 11).
Relative to the other delineation strategies, we found these numbers to be greater than might be
expected for random field divisions. While not so cla#r there were similar results for the
AControl 06 strategythégprerBlooanankt2. ofl n heo mtCroad tr ,0
8 and 45vas muchpoorer Thus, the AControl 6 delineation ¢

mineral soils (Block$ and 12) than on the organic ones (Blocks 8 and 45).



75

The relatively high performance of the fACo
can be explained in part by comparing summary statistics of soil parameters for the whole field.
We calculated th coefficient of variation (CV) of the soil parameters for each block. The CV is
the ratio of the standard deviatitmthe mean. It quantifies the amount of variability within a
sample or population. The CV can be used to compare variability amongrditieta
irrespective of the magnitudes of the means and measurement units. For HM, P, Ca, BS, and
CEC, a pattern emerged: within a soil parameter, the CVs in Blocks 6 and 12 were larger than
the CVs for Blocks 8 and 45 (Table 6). We attributed the relsithigh performance of the
AControl o for Blocks 6 and 12 to the high var
Because the variation of soil parameters was high in Blocks 6 and 12, random subdivisions of the
AControl 06 i n Bcthancekof cddptuning theaa separatoasttharrin Blocks 8 and
45. As a result, the fAControl o delineation st
to Blocks 8 and 45. Despite the fact that the
perforrmnce of the AControl 6 was not higher than
blocks (Table 11). Among all the study fields, Block 45 had the highest number of occurrences
of no mean separations (Table 29), which wereCa, pH, and CEC. Theason for that might
be because the variability for these parameters in Block 45 was quite low. Especially, the CVs of
CEC and Ca for Block 45 were much lower (Table 6) than those for other fields. As a result,
sampling strategies for Block 45 did not captany mean separations for Ca and CEC, while
other fields tended to capture mean separations for both Ca and CEC (Table 29). For pH, the CV
values were quite low among all the NC fields (Table 6), thus we did not expect to observe high

performance for M&lelineation in any field. To summarize, it appears that differences in
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variability of the soil parameters, as quantified by the CV, strongly influenced MZ delineation
results in many cases.

The patterns in the map fd40g dagiessveré usuallyt he fA U
similar among all the fields with slight diff
Fieldso were quite different fri@om Hhhwe parn t etr me
AAl'l Fieldso delinetabi bhewA€osbmewbatdebi meatar
straight lines bounding some MZs.

In Table 29, we compiled the optimal numbers of MZs for the different fields and
delineation strategies (Table 10). There were many cases where the optimal number of MZs
differed across delineation strategies and fields (Table 29). For example, the CEC for Block 8
had the same optimal number of MZs (three) for all the delineation strategies except for the
AControl o, while the CEC f or Blobdelikeatbrb had no
strategy (Table 29). In addition, different soil parameters usually had different optimal numbers
of MZs (Table 29). Furthermore, there was no common optimal number of MZs for any soil
parameter for all the fields within the same delineasivategy (Table 29). However, we
observed the same optimal MZ number for some soil parameters within the same field (Table
29). For example, K and Mg had the same optimal MZ number (two) for all the delineation
strategies (Table 10) in Block 6 (Table 28hother case was for pH in Block 6, as pH had no
mean separations and thus no optimal MZ number for all delineation strategies (Table 10) except
for the AControl 6, where the opti mal number w
andBShadthe ame opti mal numbers betswveedal t heafianf o
strategies (Table 29). In Block 8, K had the same optimal number (two) for all the delineation

strategies except for the AControl o (Table 29
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(four) for all the delineati on Caionrexcharggi es exc
capacity also &d the same optimal number (three) for all the delineation strategies except for the
AControl o (Table 29). | noil Barametekssthe®ptimal mumbder2of wi t h
MZs were the same bet wea ndée lhien ddtnii d og .mol ra nBIl dic
AUNI f or mo q0a ndde IRiNNDeValt i on strategies had the san
parameters except K, S, and Mg (Table 29).

The maximum difference in P and K fertilizer recommendations between zones tended to
be higher for the nAIlI Fieldso and ASoil Sur v
strategies (Table 30). | n BlfooRROsan@7IbforK® f Soi |
while these numbers f or actelerespestivdly (TRhlee30).dcerdo wer e
Bl ock 6, the AAlIl Fieldso del ifergizezt i on had a h
recommendations for the optimal M#®n those fothe other delineation strategies except for
ASoi | Surveyo (Table 30). To manage Bl ock 6,
to get the highest difference in fertilizer r
Fiel dso st grenondcglijfferemca tbr s and 20 Ibacre! for K20, while the
AUNi f or mo 40a nhda di NDhvel s g0paed for K@, Gileasd 1flzare!, P
respectively. The fASoil Sasre'foePyOsandkegdl i neati on h
respectively, whilet e i Co nt r acte'dor Pr@s @ndnb agtomomic difference for0.
To manage Block 8, the #AAII Fieldso delineat.
Surveyo delineation could be used for gomanagi n
yielded the same values for the difference in fertilizer recommendations, 26 anact&' for
P.Osand KO, respectively (Table 30). These values were larger than those for any other

delineation strategies for Block 12 (Table 30). Therefore, usihgreaf these two strategies for
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Block 12 would be optimal for farm management in terms of the agronomic importance of P and
K. In Block 45, the difference in.Rsand kO amount s for the A@AAIlI Fi el
acre! (Table 30), respectively, anddse values were the largest values among the delineation
strategies (Table 10) in that block. Thus, us
for managing P and K.

In our study, we used the ISODATA unsupervised image classification algaai a
tool to delineate soil property variability at a field scale. Our RS input for this tool varied among
the delineation strategies. I n al most all cas
number of mean separations than the other delinesttiategies, which could be considered an
indication of high performance for MZ delineatidhh e ANDYhd AUni for mo del |
strategies mostly yielded the same number of mean separations. As stated before, to prepare the
i nput pr oducyr efqouri rtense fAiuNDVler ef fort compared
ANDI del i neation performed similarly to the i
need to spend more time Prepaocithegrtcenichpsi oM
ANDMI ainSdA@| del i neati on strategies always perf«
have been due to the similar mathematical formulas of NDVI and SAVI. As a result, we
concluded that using either of these would be sufficient to delineate MZs if one decides to
delineate a field with vegetation indices.

One important outcome of this study was that different soil parameters often had different
optimal MZ numbers within the same field, indicating that each parameter warranted/needed its
own separate delineatiodowever, in most cases, two MZs was the optimal followed by four,
three, and five MZs (Table 29). This could provide flexibility for managing different soil

properties and make agricultural farm management more precise and effisitnig as
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appropriatevariable rate technology is used, the number ofBiaZes not matter in terms of the
practicality.In the future, there should be more research to extend this work as the need for
precision agriculture is expanding. Considering the high cost of soil sepgsid analysis, and

the need for more efficient farm management, satellite spectral data shows promise as a tool to

assess soil variability over large areas.
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TABLES
Tablel. Field name, soil map unit symbol, dominant soil, taxonomic name, andgitieldor the
IL study fields.
Field Map unit Dominantsoil Taxonomic name Field size
symbol (acre)
Bailey 69A Milford silty clay Flne_, mlxe_d, superactive, 196.9
loam mesic Typic Endoaquolls
Buess 69A Milford silty clay Flne_, mlxe_d, superactive, 1159
loam mesc Typic Endoaquolls
Cleo 69A Milford silty clay Flne_, mlxe_d, superactive, 145 1
loam mesic Typic Endoaquolls
East 69A Milford silty clay Flne_, mlxe_d, superactive, 1706
loam mesic Typic Endoaquolls
Harris 69A Milford silty clay Flne_, mxeq, superactive, 176.2
North loam mesic Typic Endoaquolls
Harris Milford silty clay Fine, mixed, superactive,
69A . : 85.7
South loam mesic Typic Endoaquolls
Home 91A Swygert silty clay  Fine, ml_xed, active, mesic 1109
loam Aquic Argiudolls
Keegan 69A Milford silty clay Flne_, mlxe_d, superactive, 76.3
loam mesic Typic Endoaquolls
North 146A Elliott silt loam Fine, |II|t|c_, mesic Aguic 129.2
Argiudolls
Thackery 91A Swygert silty clay  Fine, ml_xed, active, mesic 771
loam Aquic Argiudolls
Weber 69A Milford silty clay Fine, mixed, superactive, 117.3

loam

mesic Typic Endoaquolls
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Table2. Field name, soil map unit symbol, dominant soil, taxonomic name, and field size for the
NC study fields.

Field S_0|I map Dominant soil Taxonomic nara Field size
unit symbol (acre)
Deloss fine Fine-loamy, mixed, semiactive,
Block 6 De sandy loam thermic Typic Umbraquults 622.7

Altavista fine  Fineloamy, mixed, semiactive,

Block 12 AaA sandy loam thermic Aquic Hapludults 530.1

Block 8 BH Belhaven muck Loamy, mned, dysic, 'thermlc 624.9
Terric Haplosaprists

Block 45 BH Belhaven muck Loamy, mixed, dysic, thermic 620.1

Terric Haplosaprists
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Table3. Fields by year and crop. 664a0606 indicates
year.
Crop
Corn Soybean
State/field Year (Zea mays L.) (Glycine max L.) Part soybean, part col
lllinois
Bailey 2017 a
Buess 2017 a
Cleo 2017 a
East 2017 a
HarrisN 2017 a
HarrisS 2017 a
Home 2017 a
Keegan 2017 a
North 2017 a
Thackery 2017 a
Weber 2017 a
North Carolina
2016 a
Block 6 2017 5
2016 a
Block 12 2017 5
Block 8 2016 a
2017 a
2016 a
Block 45 2017 5




Table4. For each study fieldhteshold R above which all regressions were statistically
significant (p O 0.05).

IL fields R? NC fields R?2
Bailey 0.06 Block6 0.03

Buess 0.09 Block12 0.03
Cleo 0.06 Block8 0.03

East 0.06 Block45 0.02
Harris

North 0.06

Harris

south 012

Home 0.09

Keegan 0.13

North 0.08

Thackery  0.13
Weber 0.09
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Table5. Snow cover, planting and harvesting information for the study sites.

Study AUsual I Usual Harvesting .
. Crop Dates (most . Snow Cover Period
site . Dates (most active)
active)
North Ys ,
. March with average of 0.t
Carolina it h h
Soybean May 20- Jun 30 Nov 12- Dec 3 In for each mont
Corn  Apr 30- May 18 Oct 9- Nov 3 _
N From November to April,
lllinois . .
ranging from 6.3 t0 0.7 in
Soybean May 15-Jun 9 Oct 1- Oct 19
A Date information was taken from USDA Agricu

and Harvesting Dates for U.S. Field Crops).
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Table6. Mean, minimum (Min.), maximum (Max.), standard deviation (SD), and coefficient of
variation (CV) for soiltest parameterfor each NC field

Field

Soil-test parameter Block 6 Block 12 Block 8 Block 45

HMA , % Mean 7.51by 5.46¢ 9.53a 9.54a
Min. 1.31 1.25 2.84 5.85
Max. 10.0 10.0 10.0 10.0
SD 2.21 2.28 0.89 0.93
CV (%) 29.6 41.7 9.23 9.75

P, NCDA&CS index§ Mean 41.5¢c 54.4a 38.1d 48.7b
Min. 22.0 35.0 24.0 33.0
Max. 61.0 113.0 78.0 69.0
SD 9.50 10.9 5.92 7.31
CV (%) 22.8 20.0 15.4 150

K, NCDA&CS index§ Mean 47.0a 44.6a 32.2b 33.6b
Min. 23.0 24.0 15.0 19.0
Max. 87.0 88.0 63.0 103.0
SD 12.5 10.8 8.51 10.6
CV (%) 26.6 24.3 26.3 31.6

S, NCDA&CS index8§ Mean 33.5¢ 49.0a 30.5d 42.0b
Min. 20.0 31.0 21.0 29.0
Max. 62.0 77.0 44.0 58.0
SD 6.27 5.96 4.81 5.23
CV (%) 18.8 12.2 15.8 12.4

Ca, % of CEC Mean 63.1b 54.1c 64.8b 67.2a
Min. 45.0 30.0 56.0 57.0
Max. 91.0 75.0 88.0 81.0
SD 7.53 7.82 4.48 3.93
CV (%) 11.9 14.4 6.90 5.84

Mg, % of CEC Mean 10.9b 8.92¢ 12.5a 10.5b
Min. 4.00 4.00 5.00 6.00
Max. 18.0 19.0 26.0 21.0
SD 3.12 2.65 4.64 2.34
CV (%) 28.9 29.5 37.4 22.3

Soil pH Mean 5.26a 5.29a 5.08b 5.04b
Min. 4.70 4.70 4.70 4.60
Max. 7.00 6.00 6.60 6.00
SD 0.34 0.25 0.24 0.25
CV (%) 6.46 4.72 4.72 4.96

CEC,cmok kg* Mean 17.8c 9.82d 25.5b 34.7a
Min. 8.30 5.40 16.6 28.6
Max. 33.7 17.8 34.7 435
SD 5.69 2.78 3.64 2.78
CV (%) 32.0 28.3 14.3 8.02

BS, % Mean 75.5b 65.4c 78.0a 78.2a
Min. 55.0 39.0 67.0 70.0
Max. 98.0 86.0 94.0 91.0
SD 7.10 8.41 423 3.96
CV (%) 9.39 12.8 5.43 5.06

AHM, humi c matter (Hardy et a l , 2014) , whi ch

a 1.3 HM + 0.9 (Weber and Peter, 1982, Bl umho

y Within a row, means f ol | owedifferenyacdordimytos a me | e

TukeyKramebs honest significance difference test

8 NC Dept. of Agriculture and Consumer Services soil test index (Table 7; Hardy et al., 2014).
TCEC, cation exchange capacity; BS, base saturation.
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Table7. Mean, minimum (Min.), maximum (Max.), standard deviation (SD), and coefficient of variation (CV) feestgilarameters
for each IL field

Field
Soil-test parameter Bailey Buess Cleo East :irr;'; gg:{ﬁ Home Keegan North Thackery Weber
OM, % Mean 4.83 5.06 451 4.47 4.65 4,78 4.83 4.79 4.69 4.46 4.96
Min. 3.3 3.6 2.6 2 3.6 3.7 3.2 3.7 3.4 3.2 3.8
Max. 6.8 6.2 6 5.9 6.7 6.3 6.9 5.8 6.6 54 6.6
SD 0.85 0.52 0.66 0.62 0.56 0.64 0.76 0.44 0.7 0.51 0.68
CV (%) 17.6 10.3 14.6 13.9 12.0 13.4 15.7 9.2 14.9 11.4 13.7
P, mg kg* Mean 29.5 47.6 50.4 52 38.1 325 63.1 36 55,5 14.1 375
Min. 10 21 26 25 14 13 39 16 23 33 15
Max. 98 91 100 96 72 77 104 93 127 88 76
SD 17.9 15 19.2 15.9 13.1 14.6 12.5 18.9 21.4 14.1 13.1
CV (%) 60.7 315 38.1 30.6 34.4 449 19.8 52.5 38.6 100.0 34.9
K, mg kg* Mean 172.2 241 249.8 263.7 219.3 234.6 279.3 162.4 314.3 266 224.8
Min. 111 141 149 180 141 147 204 102 192 225 135
Max. 422 331 399 508 300 326 514 244 776 347 323
SD 52.8 40.8 54.3 56.1 38.9 49.2 56.4 34.1 101.3 325 42.5
CV (%) 30.7 16.9 21.7 21.3 17.7 21.0 20.2 21.0 32.2 12.2 18.9
Ca,mg kg* Mean 2378.9 2634.8 2595.8 344.2 2276.1 2879.7 2740.9 2225.8 24315 2384.4 25375
Min. 1500 1750 1550 1850 1600 1850 2000 1500 1850 1700 1650
Max. 3450 3500 3550 3550 3050 4250 3600 3050 3250 2850 5050
SD 125.4 365 483.8 344.2 324.2 614.6 390.3 413.1 363.7 270 674.3
CV (%) 5.30 13.9 18.6 100.0 14.2 21.3 14.2 18.6 15.0 11.3 26.6
Mg, mg kg? Mean 331.6 369 381.6 2915 314.1 375 345.9 494.5 328 376.3 329.7
Min. 115 150 125 150 150 175 175 310 180 175 195
Max. 650 655 725 670 565 675 600 735 545 525 665
SD 125.4 109.7 139.5 94 97.7 149.3 104.3 124.1 87.3 84.9 114.6
CV (%) 37.8 29.7 36.6 32.2 31.1 39.8 30.2 25.1 26.6 22.6 348
pH Mean 6.21 6 6.3 6.23 6.2 6.82 6.88 5.17 6.04 6.34 6.02
Min. 5.3 5.4 55 5.4 5.6 5.9 6.4 4.8 5.5 5.5 5.3
Max. 7 7.3 7.5 7.2 7 7.3 7.5 5.7 6.9 6.8 7.9
SD 0.35 0.55 0.39 0.37 0.31 0.31 0.27 0.24 0.31 0.31 0.57
CV (%) 5.60 9.20 6.20 5.90 5.00 4.50 3.90 4.60 5.10 4.90 9.50
CECA , € mo Mean 18.1 21.3 19.8 19 17.7 18.9 18 24.8 19.7 18.5 20.1
kg Min. 11.3 12.6 11.9 13.8 12.3 12.7 13.3 20 14.8 14.3 13.2
Max. 24.9 26.8 28 26.6 229 26.8 23.6 31 25.4 22.7 29.1
SD 3.33 3.15 3.76 2.96 2.61 3.91 277 3.11 2.78 1.81 4.02
CV (%) 18.4 14.8 19.0 15.6 14.7 20.7 15.4 12.5 14.1 9.8 20.0

ACEC, cation exchange capacity
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Table8. Relationship between NC Dept. of Agriculture and Consumer Services soil test index
ranges and expected gratude of response to fertilization (Hardy et al., 2014).

Soil test index Crop response to nutrient application
Range Ratng P K
0r 10 very low very high very high
11125 low high high
261 50 medium medi umy medi umy
511100 high none low/none
100+ very high none none
A P, mi.2 klmdex Value; K mg kb= 1.955 x Index Value.
YyResponse decreases as soil test index increa
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Table9. Downl oaded i mages for the months -bede 2016 &
image to be used for MZ delineation was available for all of the study fields (Tjable@ 6 X 6 6
indicates that no clouffee image was found for that month.

Month

Study
site Year Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec

Noth 2016 & a4 a4 X a4 a4 X X a a a a

Carolina 2017 a & 5 a4 &4 4 a &4 a4 a a a




Table10. Strategies used for management zone delineation and their abbreviations.
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Delineatbn strategy Abbreviation
Image stack comprising all fields All Fields
Image stack comprising only uniformly cropped fields Uniform
Image stack comprising only uniformly cropped fields plus the NDV]
corresponding Normalized Difference Vegetation Index (NDW&ps d
USDA Soil Survey majunit polygons Soil Survey
Random subdivisions Control
Image stack comprising only uniformly cropped fields plus the SAVIq

corresponding Soil Adjusted Vegetation Index (SAVI) maps




Tablell Totd number of mean separations captured by each delineation strategy (Table 10).

The Soil Survey delineation strategy contained only oneun#pdelineation per field.
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Number of mean separations captured for different numbers
management zones (MZ)

sanpling 0y Two MZ Three o mz Five MZ  Sum
strategy MZ
Block6 16 16 19 18 69
All Fields Block 12 10 8 12 21 51
Block8 10 12 15 17 54
Block 45 8 12 13 12 45
Block6 6 4 12 6 28
Uniform Block 12 8 10 17 18 53
Block8 12 16 16 16 60
Block 45 6 4 4 10 24
Block6 4 2 8 12 26
NDVI Block 12 8 10 17 18 53
Block8 12 16 16 16 60
Block 45 8 6 10 8 32
Block6 NAA NA 8 NA 8
Soil Survey Block 12 NA NA 13 NA 13
Block 8 NA NA 12 NA 12
Block 45 2 NA NA NA 2
Block6 14 18 18 10 60
Control Block 12 12 13 9 10 44
Block8 2 2 2 6 12
Block 45 2 2 2 2 8
ANA: not applicable: each field had only

a

S
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Tablel12. Effects of management zone (MZ) numberzone soHtest parameter means for division of Block 6 into two, three, four, and five
MZs based on cluster analysis of 2 years of monthly multispectral satellite imagery using the All Fields strategy (Table 10).

Soil-test parameter

Number of MZ Number of

MZs ID soil samples HMA P K S Ca Mg pH CECY BSy
% NC soittestindex§ ---% of CEG--§ cmok kgt %
Two MZ 1 65 6.24bY 48.2a 52.2a 38.0a 61.5b 9.18b 5.28a 13.4b 72.5b
2 78 8.54a 36.2b  42.7b 29.6b 64.6a 12.2a 5.25a 21.4a 78.0a
1 32 6.45b 48.1a 48.0b 38.3a 63.8a 8.75b 5.33a 13.8b 74.1b
Three MZ 2 32 6.0lb 48.3a 56.5a 37.9a 59.2b 9.66b 5.23a 12.9b 71.0b
3 79 8.52a 36.3b  42.7b 29.7b 64.6a 12.2a 5.24a 21.3a 77.9a
1 30 6.57b 479ab 48.4a 38.3a 63.9a 8.67b 5.32a 13.9c 74.1ab
Four MZ 2 27 581b 49.1a 55.6a 38.1a 57.6b 10.2b 5.25a 12.3c 70.1b
3 24 6.81b  44.1b 53.1a 33.8b 66.5a 9.58b 5.26a 16.9b 77.9a
4 62 8.94a 34.4c 40.2b 29.0c 64.0a 12.7a 5.23a 22.3a 77.6a
1 30 6.57b 47.9a 484ab 38.3a 63.9a 8.67b 5.32a 13.9bc 74.1 ab
2 25 5.86b  48.5a 55.4a 38.4a 57.1b 9.96b 5.22a 12.2c 69.4b
Five MZ 3 31 8.90a 33.3b 38.4c 29.6¢c 65.0a 12.3a 5.26a 23.3a 78.1a
4 33 8.92a 35.7b  42.9bc 28.5¢c 63.3a 12.9a 5.20a 21.2a 77.4a
5 22 6.70b 445a 52.8a 34.0b 66.5a 9.45b 5.27a 16.6b 77.7a
AHM, humic matter (Hardy et al., 2014). Organic matt andWdéberl. 3
1998).
yCEC, cation exchange capacity; BS, base saturation.

A Hardy et al ts51.2%hdexdvalueAKngkg:=rm.§55 k ipdex value; Ca, mg kg 200 x (% of CEC); Mg, mg kb= 121.6

x (% of CEC).

fWithin a column and MZ number, means followed by the same letter are not significantly different accordkeytérameld s hone st
significance differenceset (p O 0. 05) .



95

Table13. Effects of management zone (MZ) number on zonetssilparameter means for division of Block 6 into two, three, four, and five
MZs based on cluster analysis of 2 years of monthly multispectral satabitgeery using the Uniform strategy (Table 10).

Soil-test parameter

Number of MZ Number of .
MZs ID soil samples HMA P K S Ca Mg pH CECY BSy
% NC soilttestindex§ ---% of CEG--§ cmok kgt %
Two MZ 1 76 7.54aY 41.6a 44.3b 34.0a 64.3a 10.3b 5.28a 18.0a 76.0a
2 66 749a 415a 50.2a 32.8a 61.8b 11.5a 5.23a 17.4a 74.9a
1 52 7.59a 41.1a 43.5b 34.5a 64.7a 10.1a 5.3la 17.8a 76.0a
Three MZ 2 29 7.46a 43.1a 56.8a 34.5a 60.1b 10.7a 5.15a 16.5a 72.8a
3 61 7.47a 41.2a 45.4b 32.0a 63.2ab 11.6 5.27a 18.3a 76.3a
1 46 7.84a  40.1ab 42.3b 33.7ab  63.7a 10.8a 5.27a 18.3ab 75.6a
Four MZ 2 18 7.15a 45.7a 58.0a 36.0a 57.2b 10.4a 5.12a 14.8b 69.8b
3 27 8.33a 38.6b  49.9b 31.2b 63.3a 12.0a 5.19a 19.8a 76.8a
4 51 6.90a 42.9ab 45.9b 33.5ab 64.7a 10.5a 5.33a 17.2ab 76.7a
1 33 7.88a 40.9a 43.0b 34.6a 64.2a 10.4a 5.29a 18.4a 75.7ab
2 13 7.83a 44.0a 60.4a 35.2a 57.0b 10.8a 5.11a 15.9a 69.8b
Five MZ 3 14 8.35a 38.5a 52.6ab 3l.4a 64.3a 11.8a 5.16a 19.5a 77.7a
4 57 7.40a 40.4 43.7b 32.5a 64.3a 11.1a 5.29a 18.4a 76.7a
5 25 6.65a 45.4a  49.8b 34.2a 61.8ab 10.4a 5.27a 15.5a 74.1ab
AHM, humic matter (Hardy et al , 2014). Organic matt andWaberl . 3
1998).

y C E €tion exchange capacity; BS, base saturation.

8 Hardy et al., 2014.

fWithin a column and MZ number, means followed by the same letter are not significantly different accordikegdgrame s
significance difference

test

(p

O 0.05) .

honest

HM



Table14. Effects of management zone (MZ) number on zonetssilparameter means for division of Block 6 into two, three, four, and five

MZs based on cluster analysis of 2 years of monthly multispectral satellite imagery using the fd@gy/ g able 10).
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Soil-test parameter

Number of MZ Number of .
MZs ID soil samples HMA P K S Ca Mg pH CECY BSy
% NC soittestindex§ ---% of CEG--§ cmok kg? %
Two MZ 1 76 7.56aY 41.6a 44.2b 34.1a 64.1a 10.3b 5.27a 17.9a 75.7a
2 65 7.48a 412a 49.9a  32.6a 62.2a 11.4a 5.24a 17.7a 75.2a
1 53 7.59a 41.3a 42.9b 33.8a 64.4a 10.3a 5.30a 17.8a 75.9a
Three MZ 2 29 7.17a 43.1a 56.2a 34.6a 60.8a 10.3a 5.19a 16.4a 73.1a
3 59 7.65a 40.8a 45.7b 32.5a 63.3a 11.5a 5.24a 18.5a 76.2a
1 26 6.56b 455a 55.1a 35.3a 59.6a 10.4a 5.23a 14.8b 72.1b
Four MZ 2 43 7.95ab 40.3a 43.0b 33.9a 63.7a 10.6a 5.26a 18.4ab 75.5ab
3 57 7.40ab 41.0a 43.6b 32.7a 64.2a 10.9a 5.28a 18.3ab 76.4ab
4 15 8.46a 39.2a 55.9a 31.6a 64.0a 11.9a 5.17a 19.4a 77.6a
1 26 6.83bc 44.6a 54.6a 34.9ab 59.7a 10.5ab 5.21a 15.6b 72.2a
2 38 6.33c 45.1a 48.1ab 36.0a 64.2a 9.73b 5.32a 15.6b 75.6a
Five MZ 3 35 7.99abc 40.3ab 41.7b 34.1abc 64.1a 10.6ab 5.28a 18.7ab 75.8a
4 32 8.78a 36.3b  42.5b 29.4c 63.22 12.6a 5.21a 20.8a 77.0a
5 10 8.26ab 39.2ab 53.5a 30.7bc  65.la 10.9ab 5.16a 19.0ab 77.7a
AHM, humic matter (Hardy et al , 2014). Organic matt andWaberl . 3
1998).
yCEC, cation exchange capacity; BS, base saturation.

8 Hardy et al., 2014.

fWithin a column and MZ number, medo#lowed by the same letter are not significantly different accordiigik®y-Kramelp s
di fference

significance

test (

p O 0.05).

honest

HM



Table15. Map-unit soittest parameter means for division of Blocks 6, 8, 12, and 45 un@rfgdil Survey strategy (Table 10).

Number of Number of soil

Soil-test parameter

97

matt andW@berl . 3 HM

Field map units samples HMA P K S Ca Mg pH CECYy BSY
% NC soittestindex rating8 --% of CEG- cmok kg! %

1 96 7.55b4 41.6ba 47.8ba 33.7ba 63.8a 10.4a 5.26a 18.0a 75.8a

Block 6 2 1 10.0a 27.0b 27.0b 25.0b 56.0a 15.0a 5.10a 20.9a 72.0a
3 23 5.64b 48.8a 50.4a 36.7a 62.2a 9.91a 5.34a 13.0a 74.0a
4 21 9.37ba 32.9ba 39.2ba 28.9ba 61.9a 13.3a 5.15a 22.0a 76.0a
1 29 4.42cb 64.0a 44.2a 52.8a 53.1a 9.79ba 5.32ba 9.22b 65.4a

Block 12 2 68 6.82a 50.5b 44.3a 47.5b 54.8a 7.96c 5.21b 11.2a 64.8a
3 16 4.92b 53.0b 44.4a 49.8ba 56.1a 8.63bc 5.43a 8.81b 67.1a
4 28 3.53c 54.8b 46.1a 48.3b 52.5a 10.5a 5.38ba 7.56b 65.8a
1 47 9.87a 36.7tx 33.3a 35.7a 63.2a 15.7a 5.12ba 27.6a 79.4a

Block 8 2 6 8.70a 43.8a 38.2a 3l1l.2a 66.3a 9.83b 5.25a 20.4b 77.2a
3 9 9.69a 33.1c 29.0b 24.8b 67.0a 8.44b 5.03b 26.0a 76.1a
4 80 9.73a 39.2ba 31.6ba 29.7a 65.4a 11.3b 5.05ba 24.4a 77.3a

Block 45 1 132 9.52a 48.6a 34.2a 42.7a 67.1a 10.9a 5.03a 34.8a 78.4a
2 59 9.58a 48.9a 32.3a 40.8b 67.7a 9.73b 5.06a 34.6a 77.8a

AHM, humic matter (Hardy et al., 2014). Organic

1998).

yCEC, cation exchange capacity; BS, base saturation.

§ Hardy et al., 2014.

fWithin a column and field, means followed by the same letter are not significantly different accoidikgyérame6 s
di fference

t est

(p

O 0

. 05) .

honest

signi f
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Tale 16. Effects of management zone (MZ) number on zonetssilparameter means for division of Block 6 into two, three, four, and five
MZs based on the Control strategy (Table 10).

Soil-test parameter

Number of MZ Numbe of

MZs ID soil samples HMA P K S Ca Mg pH CECY BSy
% NC soittestindex rating§ ---% of CEG-- cmolckgl %
Two MZ 1 70 6.19by 475a 52.8a 37.6a 62.2a  9.30b 5.29a 13.7b 73.4b
2 71 8.84a 355b  41.0b 29.3b 64.2a 12.3a 5.21a 21.9a 77.5a
1 44 5.63c 475a 54.2a 37.9a 63.3a  9.25b 5.39a 13.4c 74.6a
ThreeMZzZ 2 51 7.63b 42.3b  44.4b 34.5b 62.8a 10.3b 521b 17.3b 74.5a
3 46 9.22a  34.6¢ 42.4b 27.9c 63.5a 12.8a 5.17b 22.6a 77.4a
1 35 8.90a 33.1c 38.1b 29.2b 63.7a 12.4a 5.28a 2l16a 76.9a
Four MZ 2 36 8.00ab 37.7b  48.2a  30.6b 65.4a 12.3a 5.27a 20.7a 79.1a
3 33 7.02bc 46.0a 47.5a 35.4a 65.1a  8.63b 5.21a 16.2b 75.3a
4 37 6.22c 48.8a 53.2a 38.5a 58.9b 9.89b 5.25a 12.8c 70.8b
1 28 6.08c 42.0a 51.2a 34.5a 67.9a 9.5( 5.52a 16.6a 79.1a
2 27 6.64bc 42.8a 41.3b 35.1a 65.7ab 10.5a 540a 17.4a 77.5ab
Five MZ 3 29 8.07ab 40.7a  48.8ab 33.5a 60.1c 11.3a 5.10b 18.0a 72.9b
4 29 7.99ab 40.4l1a 43.5ab 32.7a 60.3c 11.1a 5.20b 17.0a 72.9b
5 28 8.79a 41.3a 49.2ab 3l.4a 62.2bc 11.6a 5.10b 20.0a 75.1ab
AHM, humic matter (Hardy et al., 2014). Organic matt andWdéberl. 3
1998).
yCEC, cation exchange capacity; BS, base saturation.

8 Hardy et al., 2014.
fwithin a column and MZ number, medolowed by the same letter are not significantly different accordigik@yKrameb s hone st
significance difference test (p O 0.05).

HM
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Tablel7. Effects of management zone (MZ) number on zonetssilparameter means for diais of Block 12 into two, three, four, and five
MZs based on cluster analysis of 2 years of monthly multispectral satellite imagery using the All Fields Staatedh(

Number of MZ

Number of

Soil-test parameter

MZs ID soil samples HMA P K S Ca Mg pH CECY BSy
% NC soittestindex rating§ ---% of CEG-- cmok kg %
Two MZ 1 72 48209 543a 47.7a 50.4a 54.9a  8.89a 5.35a 9.33b 66.3a
2 69 6.12a 54.6a 41.3b 47.5b 53.3a  8.96a 5.23b 10.3a 64.4a
1 59 4.71b 53.5a 48.1a 49.7a 53.7a  9.22a 5.34a 8.91b 65.6a
Three MZ 2 44 6.06a 55.8a 42.9ab 51.5a 55.8a  8.16a 5.29a 10.7a 65.9a
3 38 592a 544a 41.0b 44.8b 52.8a 9.34a 5.22a 10.l1ab 64.4a
1 44 4.22b  53.5a 48.7a 49.5a 54.4a 9.6la 5.38a 8.57b 66.7a
Four MZ 2 31 5.74a 56.6a  40.5c 50.4a 55.0a 9.42a 5.3lab 10.4a 66.4a
3 25 596a 52.9a 47.4ab 51.3a 55.2a  7.52b 5.26ab 10.7a 65.1a
4 41 6.25a 54.7a  41.4bc 45.9b 52.6a  8.66ab 5.21b  10.2ab 63.4a
1 28 4.00c 54.3ab 49.5a 49.3a 56.8a  9.54ab 5.41a 8.92cd 68.9a
2 16 8.75a  46.5b 48.8ab 43.8b 57.9a  9.00ab 5.11b 14.2a 68.4a
Five MZ 3 32 5.26¢ 52.9b  46.5abc 50.1la 52.8ab 8.88ab 5.3la 9.22c 64.3ab
4 32 4.12c 60.8a  39.1c 47.8ab 589b  9.63a 5.27ab 7.66d 61.3b
5 33 6.59b 53.8ab 41.7bc 51.3a 56.4a 7.73b 5.29ab 11.1b 65.9ab
AHM, humic matter (Hardy et al., 2014). Organic matt endWebed . 3
1998).
yCEC, cation exchange capacity; BS, base saturation.

§ Hardy et al., 2014.

fWithin a column and MZ number, medo#iowed by the same letter are not significantly different accordiigikey-Kramed s

significance

di fference

t est

(p O 0.05).

honest

HM

+
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Table18. Effects of management zone (MZ) number on zonetssilparameter means for diwisiof Block 12 into two, three, four, and five

MZs based on cluster analysis of 2 years of monthly multispectral satellite imagery using the Uniform strategy (Table 10).

Number of MZ

Number of

Soil-test parameter

MZs ID soil samples HMA P K S Ca Mg pH CECY BSy
% NC soittestindex rating§ ---% of CEG-- cmok kg %
Two MZ 1 70 6.084 55.7a 40.7b  48.2a 53.6a  8.89a 5.24b 10.3a 64.5a
2 71 484b 53.2a 48.3a 49.7a 54.7a  8.96a 5.35a 9.33b 66.3a
1 32 6.46a 54.7a 42.8b 44.4b 54 6a 9.19a 5.20b 11.3a 65.8a
Three MZ 2 52 5.68ab 56.1a 40.8b 51.1a 54.2a  8.63a 5.31lab 9.89b 64.9a
3 57 469 52.8a 49.0a 49.6a 53.8a 9.04a 5.33a 8.95b 65.6a
1 20 3.80c 62.9a  36.3c 45.5b 50.8b  9.85a 5.33a 7.77c 63.2a
Four MZ 2 20 8.43a  47.5c 46.6d 44.1b 57.1la  9.00a 5.10b 13.8a 67.6a
3 45 455bc 53.1bc 49.6a 49.8a 53.9ab 9.42a 5.35a 8.82bc 66.0a
4 56 572b  55.0b  42.7bc 51.3a 54.5ab 8.16a 5.30a 9.94b 64.8a
1 23 3.80c 60.6a 36.9c 45.6bc  49.8c 9.78a 5.32a 7.57d 62.2b
2 20 843a  47.5c 46.6ab 44.1c 57.1la  9.00a 5.10b 13.8a 67.6ab
Five MZ 3 22 4.14c 53.2abc 51.4a 486ab 58.0a 9.27a 5.42a 9.33bc 69.9a
4 40 6.06b 56.6ab 41.7bc 52.3a 55.6ab 8.20a 5.32a 10.4b 65.8ab
5 36 4.99bc 52.7bc 47.3ab 50.4a 51.3bc 8.92a 5.28ab 8.72cd 63.0b
AHM humic matter (Hardy et al., 2014). Organic matter Viebet,. 3
1998).
yCEC, cation exchange capacity; BS, base saturation.
§ Hardy et al., 2014.
fWithin a column and MZ number, meanfidwed by the same letter are not significantly different accordifgikeyKrameb s hone st

significance

di fference

t est

(p O 0.05).

HM

+
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Table19. Effects of management zone (MZ) number on zonetssilparameter means for divisiohBlock 12 into two, three, four, and five

MZs based on cluster analysis of 2 years of monthly multispectral satellite imagery using the NDVI strategy (Table 10).

Soil-test parameter

Number of MZ Number of

MZs ID soil samples HMA P K S Ca Mg pH CECY BSy
% NC soittestindex rating§ ---% of CEG-- cmok kg %
Two MZ 1 70 6.084 55.7a 40.7b  48.2a 53.6a  8.89a 5.24b 10.3a 64.5a
2 71 484b 53.2a 48.3a 49.7a 54.7a  8.96a 5.35a 9.33b 66.3a
1 32 6.46a 54.7a 42.8b 44.4b 54.6a 9.19a 5.20b 11.3a 65.8a
Three MZ 2 52 5.68ab 56.1a 40.8b 51.1a 54.2a  8.63a 5.31lab 9.89b 64.9a
3 57 469 52.8a 49.0a 49.6a 53.8a 9.04a 5.33a 8.95b 65.6a
1 20 3.80c 62.9a  36.3c 45.5b 50.8b  9.85a 5.33a 7.77c 63.2a
Four MZ 2 20 8.43a  47.5c 46.6ab 441b 57.1la  9.00a 5.10b 13.8a 67.6a
3 45 455bc 53.1bc 49.6a 49.8a 53.9ab 9.42a 5.35a 8.82bc 66.0a
4 56 572b  55.0b  42.7bc 51.3a 54.5ab 8.16a 5.30a 9.94b 64.8a
1 23 3.80c 60.6a 36.9c 45.6bc  49.8c 9.78a 5.32a 7.57d 62.2b
2 20 8.43a  47.5c 46.6ab 44.1c 57.1la  9.00a 5.10b 13.8a 67.6ab
Five MZ 3 22 4.14c 53.2abc 51.4a 486ab 58.0a 9.27a 5.42a 9.33bc 69.9a
4 40 6.06b 56.6ab 41.7bc 52.3a 55.6ab 8.20a 5.32a 10.4b 65.8ab
5 36 4.99bc 52.7bc 47.3ab 50.4a 51.3bc 8.92a 5.28ab 8.72cd 63.0b
AHM, ilcummatter (Hardy et al., 2014). Organic matter & 1. 3r, HM
1998).
yCEC, cation exchange capacity; BS, base saturation.
§ Hardy et al., 2014.
fWithin a column and MZ number, means follaln®y the same letter are not significantly different accordiniguieeyKrameb s hone st

significance difference test (p O 0.05).

+

0.
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Table20. Effects of management zone (MZ) number on zonetssilparameter means for division db& 12 into two, three, four, and five
MZs based on the Control strategy (Table 10).

Number of MZ Number of

Soil-test parameter

MZs ID soil samples HMA P K S Ca Mg pH CECY BSy
% NC soittestindex rating§ ---% of CEG-- cmok kg* %
Two MZ 1 70 6.72 50.9b 44.3a 47.5b 54.5a  7.99b 521b 1l.l1a 64.5a
2 71 4.21b 579a 44.8a 50.4a 53.8a 9.85a 5.37a 8.59b 66.2a
1 48 7.6la 479b 459a 47.1b 55.3a  8.46b 5.20b 12.0a 65.6a
Three MZ 2 46 4.94b 55.8a 44.7a 49.7ab 545a  7.98b 5.34a 9.18b 64.8a
3 47 3.76¢C 59.7a 43.0a 50.1a 52.7a 10.3a 5.35a 8.21b 65.7a
1 37 7.42a 48.1b 47.1a 49.6a 54 .5a 8.32b 5.24a 11.29a 64.9a
Four MZ 2 33 5.65b 53.2ab 46.7a  50.0a 54.6a  8.63ab 5.30a 10.l1a 65.6a
3 37 5.19b 579a 43.2a 48.5a 55.2a  8.84ab 5.29a 10.2a 66.2a
4 34 3.41c 58.8a 41.2a 47.9a 52.0a 9.94a 5.34a 7.60b 64.7a
1 26 7.00a 55.6ab 415a 44.8c 55.8a  8.38a 5.13b 12.2a 65.9a
2 29 5.80ab 49.8b 459a 47.7bc 53.9a 8.17a 5.27ab 9.94b 64.5a
Five MZ 3 29 5.51labc 51.0b 429a 49.4d 54.0a  8.83a 5.35a 9.27b 65.1a
4 29 4.17c 53.6b 48.6a 50.4ab 53.8a 9.97a 5.39a 8.50b 66.6a
5 28 493bc 625a 435a 52.3a 53.2a 9.21a 5.30ab 9.38b 64.9a
AHM, humic matter (Hardy et al , 2014) . Orhogrststialg 1999aGoneseranddVelier, 3
1998).
yCEC, cation exchange capacity; BS, base saturation.

§ Hardy et al., 2014.

fWithin a column and MZ number, means followed by the same letter are not significantly different accordkegAéramed s
signi ficance difference

test

(p

O 0.05).

honest

HM
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Table21. Effects of management zone (MZ) number on zonetssilparameter means for division of Block 8 into two, three, four, and five

MZs based on cluster analysis of 2 years of monthlitispectral satellite imagery using the All Fields strategy (Table 10).

Soil-test parameter

Number of MZ Number of

MZs ID soil samples HMA P K S Ca Mg pH CECY BSy
% NC soittestindex rating§ ---% of CEG-- cmok kgt %
Two MZ 1 39 9.739 38.(n 38.7a  34.8a 64.6a 1l4.5a 5.19a 25.7a 79.9a
2 103 9.73a 38.2a 29.8b 28.8b 64.9a 11.8b 5.04b 25.3a 77.2b
1 24 9.71a 38.5a 40.0a 35.7a 64.2a 15.8a 5.25a 26.8a 80.8a
Three MZ 2 14 9.76a 37.4a 37.la 33.9a 65.6a  12.6b 5.12b  23.9b 79.1ab
3 14 9.73a 38.2a 29.8b 28.8b 64.8a 11.7b 5.03b 25.3ab 77.1b
1 23 9.70a 38.5a 40.6a 35.7a 64.1ab 15.9a 5.25a 26.9a 80.9a
Four MZ 2 13 9.74a 37.1a 36.7ab 35.1a 65.5a 13.8a 5.18ab 23.9b 80.1a
3 44 9.62a 37.3a  27.5c 31.0b 62.6b 15.4a 5.08bc 26.(ab 78.5ab
4 62 9.82a 389a 31.6bc 27.1c 66.5a  8.89b 5.00c 24.8ab 75.9b
1 24 9.83a 38.1a 4l4a 35.3a 63.9ab 15.8ab 5.21ab 26.9a 80.5a
2 12 948a 37.8a 34.8b 36.9a 66.1a  13.8b 5.56a 23.6b 80.8a
Five MZ 3 33 9.71la 37.3a 27.8c 32.1b 62.1b 17.2a 5.10bc 27.2a 79.8a
4 16 9.62a 37.9a  28.6¢c 27.0c 63.9ab 9.25c 499c 23.0b 73.8b
5 57 9.79a 389a 31.5bc 27.3c 66.7a  9.02c 5.00c 24.8ab 76.3b
AHM, humic matter (Hardy et al ., 2014). Or ga nalclo9g &onese and Webdr,
1998).
yCEC, cation exchange capacity; BS, base saturation.

§ Hardy et al., 2014.

fWithin a column and MZ number, means followed by the same letter are not significantly different accordkeytéramed s hone st

significace di f ference test (p O 0.05).

3
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Table22. Effects of management zone (MZ) number on zonetssilparameter means for division of Block 8 into two, three, four, and five

MZs based on cluster analysis of 2 years of monthly mekttsal satellite imagery using the Uniform strategy (Table 10).

Soil-test parameter

Number of MZ Number of

MZs ID soil samples HMA P K S Ca Mg pH CECY BSy
% NC soittestindex rating§ ---% of CEG-- cmok kgt %
Two MZ 1 64 992 379a 34.3a 3l4a 63.7b 14.0a 5.05a 26.9a 78.3a
2 78 9.60b 38.3a 30.5b 29.6b 65.7a  11.3b 5.11a 24.3b 77.6a
1 58 9.85a 379a 34.7a 31.5a 63.6b 14.1a 5.05b 26.9a 78.4a
Three MZ 2 36 9.49b 379a 3l.lab 33.4a 65.3ab 13.4a 5.21a 24.3b 79.3a
3 48 9.77ab 387a 30.1b  27.0b 65.9a  9.90b 5.02b 24.5b 76.3b
1 30 98la 37.8a 37.1la 33.6a 62.0b 16.4a 5.13ab 27.6a 79.2ab
Four MZ 2 34 9.56a 37.8a 33.3ab 34.4a 65.4a  13.9b 5.23a 24.5bc 80.0a
3 49 9.80a 38.0a 29.3b 28.1b 65.1a 11.4c 497c 26.0ab 77.0bc
4 29 9.72a 39.3a 31.0b 26.5b 66.5a  8.70d 5.04bc 23.4c 75.8¢
1 21 9.84a 37.7ab 36.8a 32.7ab 62.1b 15.0a 5.07b 27.2a 77.9ab
2 42 9.84a 36.6b 32.8a 33.3a 63.7ab 15.4a 5.13b 26.1ab 79.7a
Five MZ 3 42 9.86a 38.4ab 30.2a 27.9ab 65.9a 10.7bc 499 25.9ab 77.1ab
4 11 8.74b 41.6a 3l4a 34.0a 66.8a 12.5ab 5.38a 22.7c 79.9a
5 26 9.69a 39.2ab 31.4a 26.7b 66.0a  8.81c 5.02b 23.3bc 75.5b
AHM, humic matter (Hardy et al., 2014). Organi d99m&dnese and \&ebdr,.
1998).
yCEC, cation exchange capacity; BS, base saturation.

§ Hardy et al., 2014.

fWithin a column and MZ number, means followed by the same letter are not significantly different accordkeytéramed s hone st

significancedif er ence test (p O 0.05).
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Table23. Effects of management zone (MZ) number on zonetssilparameter means for division of Block 8 into two, three, four, and five
MZs based on cluster analysis of 2 years of monthly multispeetiallite imagery using the NDVI strateghaple 10.

Soil-test parameter

Number of MZ Number of

MZs ID soil samples HMA P K S Ca Mg pH CECY BSy
% NC soittestindex rating§ ---% of CEG-- cmok kgt %
Two MZ 1 64 9.92af 37.9a 34.3a 31.5a 63.7b 14.0a 5.05a 26.9a 78.3a
2 77 9.62b  38.3a  30.5b 29.6b 65.7a  11.4b 5.11a 24.3b 77.7a
1 58 985a 379a 34.7a 31.5a 63.6b 14.1a 5.05b 26.9a 78.4a
Three MZ 2 36 9.49b 37.9a 3l.1lab 33.4a 65.3ab 13.4a 5.21a 24.3b 79.3a
3 48 9.77ab 38.7a  30.1b 27.0b 65.9a  9.90b 5.02b 24.5b 76.3b
1 30 9.8la 378a 37.1a 33.6a 62.0b 16.4a 5.13ab 27.56a 79.2ab
Four MZ 2 34 9.56a 37.8a 33.3ab 34.4a 65.4a 13.9b 5.23a 24.5bc 80.0a
3 49 9.80a 38.0a 29.3b 28.1b 65.1a 11.4c 497c 25.9ab 77.0bc
4 29 9.72a 39.3a 31.0b 26.5b 66.5a  8.69d 5.04bc 23.4c 75.8c
1 21 9.84a 37.7ab 36.8a 32.7a 62.1b 15.0a 5.07b 27.2a 77.9ab
2 42 9.84a 36.6b 32.8a 33.3a 63.7ab 15.4a 5.13b 26.l1ab 79.7a
Five MZ 3 42 9.86a 38.4ab 30.2a 27.9b 65.9a  10.7bc 499 25.9ab 77.1ab
4 11 8.74b 41.6a 3l.4a 34.0a 66.8a 12.5ab 5.38a 22.7c 79.9a
5 26 9.69a 39.2ab 31l.4a 26.7b 66.0a 8.81c 5.02b 23.3bc 75.5b
AHM, humic matter (Hardy et al., 2014). Organic matt andWdéberl. 3
1998).
yCEC, cation exchange capacity; BS, base saturation.

8 Hardy et al., 2014.
fwithin a column and MZ number, medolowed by the same letter are not significantly different accordigik@yKrameb s hone st
significance difference test (p O 0.05).
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Table24. Effects of management zone (MZ) number on zonetssilparameter means for diais of Block 8 into two, three, four, and five

MZs based on the Control strategy (Table 10).

Number of MZ Number of

Soil-test parameter

MZs ID soil samples HMA P K S Ca Mg pH CECY BSy
% NC soittestindex rating§ ---% of CEG-- cmok kgt %
Two MZ 1 71 9.65aY 39.2a 32.5a 31l.1a 65.0a 12.9a 5.10a 25.7a 78.5a
2 71 9.8la  37.0b 32.0a 29.8a 64.6a 12.1a 5.10a 25.l1a 77.3a
1 49 9.62a 399a 324a 31.3a 65.2a 12.7a 5.12a 25.5a 78.6a
Three MZ 2 47 9.81a 37.7ab 32.3a 30.8a 64.7a 12.8a 5.05a 25.8a 78.0a
3 46 9.77a  36.8b 32.0a 29.2a 64.5a 11.9a 5.07a 24.9a 77.1a
1 34 953a 41.3a 32.7a 30.7a 65.7a 11.6a 5.09a 25.3a 77.9a
Four MZ 2 37 9.72a  37.7b 31.0a 20.l1a 64.4a 12.9a 5.06a 25.6a 77.7a
3 35 9.8la 37.6b 32.6a 30.3a 64.3a 12.4 5.07a 24.8a 77.4a
4 36 9.78a 36.1b 32.8a 30.7a 64.8a 13.2a 5.10a 26.l1a 78.6a
1 28 940b 418a 30.3a 29.3a 66.4a 10.0b 5.08a 24.2a 76.9a
2 30 9.90a 37.3b 33.4a 30.l1a 64.7a 12.9ab 5.06a 26.la 78.2a
Five MZ 3 28 9.66ab 38.5ab 32.8a 30.1a 64.0a 12.9ab 5.05a 25.6a 77.5a
4 29 9.77ab 36.4b 31.4a 30.3a 64.7a 12.4ab 5.07a 25.7a 77.8a
5 27 9.9la 36.9b 33.4a  32.6a 64.2a 14.3a 5.14a 25.5a 79.2a
AHM, humic matter (Hardy et al , 2014) . Or grstatialg1999aGoneseranddVelder, 3
1998).
yCEC, cation exchange capacity; BS, base saturation.

8 Hardy et al., 2014.

fWithin a column and MZ number, means followed by the same letter are not significantly different accordkegdgrame s
signi fi cance difference

t est

(p

O 0.05).

honest

HM



Table25. Effects of management zone (MZ) number on zonetssilparameter means for division of Block 45 into two, three, four, and five

MZs based on cluster analysis of 2 years of monthlitispectral satellite imagery using the All Fields strategy (Table 10).
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Number of MZ Number of

Soil-test parameter

MZs ID soil samples HMA P K S Ca Mg pH CECY BSy
% NC soittestindex rating§ ---% of CEG-- cmok kgt %
Two MZ 1 74 9.35bf 517a 345a 41.6a 66.8a  10.1b 5.04a 34.8a 77.4b
2 117 9.66a 46.7b 32.9a 42.4a 67.5a 10.8a 5.04a 34.7a 78.8a
1 52 9.18b 53.1a 36.9a 42.6a 67.0a  10.0b 5.08a 35.0a 77.5b
Three MZ 2 65 9.84a  45.9b 28.5b  39.0b 67.6a  9.50b 499a 34.2a 77.4b
3 74 9.52ab 479b  35.6a 44.4a 67.2a 1l1.7a 5.06a 35.0a 79.4a
1 36 9.13b 53.6a 37.0a 421a 67.0a  9.89b 5.09a 35.l1a 77.5b
Four MZ 2 48 9.9la 44.8c 28.3b  38.5b 67.8a  9.40b 5.00a 34.4a 77.4b
3 41 9.43ab 49.7b  32.9ab 42.2a 66.6a  10.2b 499a 34.0a 77.1b
4 66 9.56ab 48.1bc 35.8a 44.5a 67.5a 11.8a 5.08a 35.2a 79.8a
1 55 9.89a 45.0c 27.9b  38.4b 67.7a  9.51c 5.00a 34.2a 77.4ab
2 27 9.03b 53.7a 36.9a 42.9a 67.1a 10.1bc 5.11a 35.3a 77.9ab
Five MZ 3 59 9.54ab 48.3bc 36.7a 44.6a 67.4a 11.%a 5.07a 35.3a 79.8a
4 32 9.50ab 52.2ab 34.6ab 415ab 66.7a  9.69c 499%9a 34.2a 76.8b
5 18 9.30ab 47.1c 33.6ab 44.5a 67.0a 11.2ab 5.05a 34.4a 78.6ab
AHM, humic matter (Hardy et al , 2014). Or ganalcloogaonese and Webér, 3
1998).
yCEC, cation exchange capacity; BS, base saturation.

8 Hardy et al., 2014.

fWithin a column and MZ number, means followed by the same letter are not significantly different accordkegdgrame s
significmce di fference

test

(p

O 0.05).
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Table26 Effects of management zone (MZ) number on zonetsstlparameter means for division of Block 45 into two, three, four, and five

MZs based on cluster analysis of 2 years of monthly npeitisal satellite imagery using the Uniform strategy (Table 10).
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Number of MZ Number of

Soil-test parameter

MZs ID soil samples HMA P K S Ca Mg pH CECY BSy
% NC soittestindex rating§ ---% of CEG-- cmok kgt %
Two MZ 1 69 9.30by 52.0a 354a 42.la 66.8a 10.1a 5.04a 34.7a 77.4b
2 120 9.67a  46.7b 32.6a 42.0a 67.5a 10.8a 5.04a 34.7a 78.6a
1 41 9.19b 53.7a 36.7a 42.4a 67.1a 9.73a 5.07a 34.8a 77.4a
Three MZ 2 38 9.47ab 48.7b 32.0a 41.4a 66.2a 10.5a 498a 34.3a 77.0a
3 110 9.68a  46.7b 33.0a 42.1a 67.6a 10.8a 5.04a 34.8a 78.8a
1 28 9.12b 53.7a 37.0a 42.5a 66.6a 10.0a 5.08a 35.l1a 77.3a
Four MZ 2 26 9.33ab 50.9ab 34.8a 43.0a 67.0a 10.1a 5.05a 34.7a 77.6a
3 62 9.74a 47.7ab 3l.1a 40.2a 66.9a 10.5a 5.00a 34.5a 77.6a
4 73 9.59ab 46.6¢c 34.0a 43.0a 67.8a 10.9a 5.05a 34.7a 79.1a
1 27 9.03b 53.7a 36.9a 429ab 67.1a 10.1b 5.11a 35.3a 77.9ab
2 28 9.41ab 526a 35.3a 423ab 66.1a 9.71b 496a 34.3a 76.3b
Five MZ 3 25 9.44ab 46.8b 3l.2a 41.4ab 67.2a 10.6ab 5.05a 34.0a 78.3ab
4 46 9.57ab 46.5b 33.4a 44.3a 67.9a 11.7a 5.11a 34.9a 80.0a
5 63 9.82a  47.0b 32.5a 40.1b 67.2a 10.2ab 499a 34.8a 77.8ab
AHM, humic matter (Hardy et al , 2014). Organic m@aondseand Véebet,. 3
1998).
yCEC, cation exchange capacity; BS, base saturation.

8 Hardy et al., 2014.

fWithin a column and MZ number, means followed by the same letter are not significantly different accordkegdgrame s
O 0.05).

significance differac e t es't

(p
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Table27. Effects of management zone (MZ) number on zonetssilparameter means for division of Block 45 into two, three, four, and five
MZs based on cluster analysis of 2 years of monthly multispectedliteaimagery using the NDVI strategy (Table 10).

Soil-test parameter

Number of MZ Number of

MZs ID soil samples HMA P K S Ca Mg pH CECY BSy
% NC soittestindex rating§ ---% of CEG-- cmok kgt %
Two MZ 1 117 9.70aY 46.7b 32.4a 41.9a 67.6a  10.8a 5.04a 34.8a 78.8a
2 73 9.27b 51.8a 354a 423a 66.7a  10.1b 5.04a 34.6a 77.3b
1 86 9.66a 46.7b  33.7ab 42.3a 67.6a 10.9a 5.03a 35.0a 78.9a
Three MZ 2 48 9.18b 53.4a 36.7a  42.6a 66.8a 9.94a 5.07a 34.9a 77.3a
3 56 9.66a 475b 30.8b 41la 67.1a 10.4a 5.03a 34.2a 77.9a
1 38 9.63ab 455b 33.8a 44.5a 67.9a 1l.4a 5.10a 34.4a 79.8a
Four MZ 2 71 9.71la 47.6b  32.7a  40.8b 67.4a  10.3ab 5.00a 35.0a 78.1ab
3 41 9.14b 539a 37.0a 425ab 67.0a 9.76b 5.07a 34.8a 77.4b
4 40 9.54ab 482b 3l.5a 41.4b 66.6a 10.7ab 5.02a 34.4a 77.7b
1 41 9.66a 46.2b 33.8a 44.7a 68.0a 11.5a 5.11a 34.7a 79.9a
2 66 9.7la  47.3b 32.5a  40.5b 67.3a 10.2ab 5.00a 34.9a 77.9ab
Five MZ 3 24 9.11a 526a 36.5a 42.3ab 67.3a 10.3ab 5.13a 35.7a 78.2ab
4 27 9.38a 54.3a 35.7a 419ab 66.9a 9.30b 499a 34.2a 76.7b
5 32 948a 469b 315a 416ab 66.3a 1l.la 5.02a 34.0a 77.7ab
AHM, humic matter (Hardy et al., 2014). Organic matt aendWder, 1. 3
1998).
yCEC, cation exchange capacity; BS, base saturation.

8 Hardy et al., 2014.
fwithin a column and MZ number, means followed by the same letter are not significantly different accofdkegAérameb s hone st
significance d05 ference test (p O O
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Table28. Effects of management zone (MZ) number on zonetssilparameter means for division of Block 45 into two, three, four, and five
MZs based on the Control strategy (Table 10).

Soil-test parameter

Number of MZ Number of

MZs ID soil samples HMA P K S Ca Mg pH CECY BSy
% NC soittestindex rating§ ---% of CEG-- cmok kgt %
Two MZ 1 93 9.66af 48.0a 33.6a 42.8a 67.0a 10.4a 5.02a 34.4a 77.8a
2 96 9.4la 49.3a 33.6a 41.2b 67.5a 10.6a 5.06a 35.0a 78.5a
1 60 9.56a 475a 35.6a 44.6a 66.9a 10.9a 5.0la 34.4a 78.2a
Three MZ 2 65 9.54a 49.7a 32.1a 41.5b 67.6a 10.2a 5.04a 34.6a 78.2a
3 64 9.50a 485a 33.2a 40.0b 67.1a 10.5a 5.05a 35.1a 78.0a
1 44 9.23a 488a 35.7a 42.8a 67.5a 11.1a 5.08a 34.8a 79.0a
Eour MZ 2 53 9.58a 48.7a 31.9a 41.3a 67.6a 10.8a 5.06a 35.2a 78.8a
3 50 9.66a 48.1a 35.3a 42.2a 66.4a 10.7a 5.00a 34.6a 77.6a
4 42 9.64a 48.8a 31.5a 41.8a 67.4a 9.40b 5.00a 34.2a 77.1a
1 30 9.53a 49.0a 37.1la 46.2a 68.1a 10.6a 5.08a 35.0a 79.3a
2 43 9.65a 47.1a 33.3a 42.2b 66.1a 10.7a 497a 33.7a 77.1a
Five MZ 3 41 9.5la 494a 32.0a 41.1b 67.4a 10.4a 5.05a 34.9a 78.3a
4 40 9.58a 50.4a 33.9a 41.2b 67.1a 10.3a 5.0la 35.0a 77.8a
5 35 9.38a 47.2a 32.5a 40.1b 67.8a 10.7a 5.11a 35.2a 78.8a
AHM, humic matter (Hardy et al., 2014). Organic matt aendWdberl. 3 HM
1998).
yCEC, cation exchange capacity; BS, base saturation.

8 Hardy et al., 2014.
fwithin a columrand MZ number, means followed by the same letter are not significantly different accortiiigyekrameb s hone st
significance difference test (p O 0.05).



Table29. Optimum number of MZs for different soil parameters by field delineation strategy.
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Soil-test parameter

Delineation .
Field strategy HMA P K S Ca Mg pH CECyY BSy
% NC soittestindex rating8 ---% of CEG-- cmok kgt %
All Fields None Four Two Three Two Two None Three Two
Block 6 Uniform None Four Two Four Two Two None Four Four
NDVI Four Five Two Five None Two None Four Four
Control Three Three Two Three Four Two Three Three Two
All Fields Five Five Two Two Five Four Two Five Five
Block 12 Uniform Four Four Two Three Four None Two Four Five
NDVI Four Four Two Three Four None Two Four Five
Control Three Two None Two None Two Two Two None
All Fields None None Two Four Four Three Two Three Two
Block 8 Uniform Two Five Two Four Four Four Three Three Three
NDVI Two Five Two Four Four Four Three Three Three
Control Five Two None None None Five None None None
All Fields Two Four Three Three None Two None None Two
Block 45 Uniform Two Two None Five None Five None None Two
NDVI Two Two Three Four None Two None None Two
Control None None None Two None Four None None None




Table30. Within a field and delineation strategy and among management zones, the maximum difference in recommended fertilizer rates

(expressed as;@s andK20).

Fertilizer
Field Delineation strategy P20s K20
--------- Ib acre!--------
All Fields 30 29
Uniform 14 11
Block 6 NDVI 18 11
Soil Survey 51 47
Control 26 22
All Fields 24.3 12.5
Uniform 26 15
Block 12 NDVI 26 15
Soil Survey 22 None
Control 12 None
All Fields None 30
Uniform 11 10
Block 8 NDVI 11 10
Soil Survey 23 21
Control 5 None
All Fields 16 19
Uniform 10 None
Block 45 NDVI 9 13
Soil Survey None None
Control None None
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Figure3. Creating a single image from twwipes of satellite images by mosaicking and clipping.
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Figure5. Coefficients of determination @Rfor simple linearegression of soil organic matter
(SOM) versus satellite imagery spectral data by month for Melvin, IL Bad&lfor 2017. The
X-axis shows the image acquisition date. Gandicates that it was grown over the entire field.
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Figure6. Coefficients of determination @Rfor simple linear regression of soil organic matter
(SOM) versus satellite imagery spectral data by month for Melvin, IL Hiedddor 2017. The
X-axis shows the image acquisition date. GamdSoybeapindicate that each was grown on
only a part of the field.
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Figure7. Coefficients of determination @Rfor simple linear regression of soil organic matter
(SOM) versus satellite imagery spectral data by month for the Méllvidleo field for 2017.
The X-axis shows the image acquisition date. Gandicates that it was grown over the entire
field.
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Figure8. Coefficients of determination @Rfor simple linear regression of soil organic matter
(SOM) versus satellite imagery spectral data by month for the Melvin, ILflessfor 2017.
The X-axis shows the image acquisition date. Gandicates that it was grown over the entire

field.
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Figure9. Coefficients ofdetermination (B for simple linear regression of soil organic matter
(SOM) versus satellite imagery spectral data by month for the Melvin, IL Harris fisdlHior
2017. The Xaxis shows the image acquisition d&eybeanindicates that it was growrver
the entire field.
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Figure10. Coefficients of determination @Rfor simple linear regression of soil organic matter
(SOM) versus satellite imagery spectral data by month for the Melvin, IL Harris fseldtfor
2017. TheX-axis shows the image acquisition date. Gandicates that it was grown over the
entire field.
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Figure1l. Coefficients of determination @Rfor simple linear regression of soil organic matter
(SOM) versus satellite imagespectral data by month for the Melvin, IL Hoffield for 2017.
The X-axis shows the image acquisition date. Gandicates that it was grown over the entire

field.
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Figure12. Coefficients of determination @Rfor simplelinear regression of soil organic matter
(SOM) versus satellite imagery spectral data by month for the Melvin, IL Kdieddfor 2017.
The X-axis shows the image acquisition d&eybeanindicates that it was grown over the
entire field.
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Figure13. Coefficients of determination @Rfor simple linear regression of soil organic matter
(SOM) versus satellite imagery spectral data by month for the Melvin, IL NeldHor 2017.
The X-axis shows the image acquisition d&eybean indicates that it was grown over the
entire field.
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Figure14. Coefficients of determination @Rfor simple linear regression of soil organic matter
(SOM) versus satellite imagery spectral data by month for the Melvithackeryfield for

2017. The Xaxis shows the image acquisition date. Gandicates that it was grown over the
entire field.
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Figure15. Coefficients of determination @Rfor simple linear regression of soil organicttaa
(SOM) versus satellite imagery spectral data by month for the Melvin, IL Wielzefor 2017.
The X-axis shows the image acquisition date. GamdSoybeapindicate that each was grown
on only a part of the field.
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Figure16. Coefficients of determination @Rfor simple linear regression of soil organic matter
(SOM) versus satellite imagery spectral data by month for the Open Grounds Farm etk 6
for 2016 and 2017. The-&xis shows the image acquisitidate. Cornindicates that it was
grown over the entire field. Soybedndicates that it was grown over the entire field.
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Figure17. Coefficients of determination @Rfor simple linear regression of soil organic matter
(SOM) versus satellite imagery spectral data by month for the Open Grounds Farm etk 8
for 2016 and 2017. The-Axis shows the image acquisition date. Gardicates that it was
grown over the entire field. Soybedndicates that it was grown ovthe entire field.
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Figure18. Coefficients of determination @Rfor simple linear regression of soil organic matter
(SOM) versus satellite imagery spectral data by month for the Open Grounds Farm Block 12
field for 2016and 2017. The >axis shows the image acquisition date. Gandicates that it was
grown over the entire field. Soybedndicates that it was grown over the entire field.
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Figure19. Coefficients of determination @Rfor simple linear regression of soil organic matter
(SOM) versus satellite imagery spectral data by month for the Open Grounds Farm Block 45
field for 2016 and 2017. The-&xis shows the image acquisition date. Gandicates that it was
grown over the entiradld. Soybeanindicates that it was grown over the entire field.
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Figure20. Coefficients of determination @Rfor simple linear regression of phosphorus (P)
versus satellite imagery spectral data by month for Melvin, ILlsBiield for 2017. The Xaxis
shows the image acquisition date GandSoybeapindicate that each was grown on only a
part of the field.
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Figure21. Coefficients of determination @Rfor simple linear regression of phosp(P)
versus satellite imagery spectral data by month for the Melvin, IL fi@kbfor 2017. The X
axis shows the image acquisition date. Gandicates that it was grown over the entire field.
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Figure22. Coefficients of @étermination (R for simple linear regression of phosphorus (P)
versus satellite imagery spectral data by month for the Melvin, IL Kdegdrior 2017. The X
axis shows the image acquisition date. Soypewficates that it was grown over the entirédie
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Figure23. Coefficients of determination @Rfor simple linear regression of phosphorus (P)
versus satellite imagery spectral data by month for the Melvin, IL Wedbegfor 2017. The X
axis shows the image acquisitidate. CorpandSoybeapindicate that each was grown on only

a part of the field.
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Figure24. Coefficients of determination @Rfor simple linear regression of phosphorus (P)
versus satellite imagery spectral data by montthe Melvin, IL Harris Norttfield for 2017.
The X-axis shows the image acquisition date. Soybguaticates that it was grown over the
entire field.
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Figure25. Coefficients of determination @Rfor simple linear regressiasf soil phosphorus (P)
versus satellite imagery spectral data by month for the Melvin, IL Harris 8elatfior 2017.
The X-axis shows the image acquisition date. Gandicates that it was grown over the entire
field.
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Figure26. Coefficients of determination @Rfor simple linear regression of phosphorus (P)
versus satellite imagery spectral data by month for the Melvin, IL Nietthfor 2017. The X
axis shows the image acquisition date. Soypeuaficates that it was gwn over the entire field.
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Figure27. Coefficients of determination @Rfor simple linear regression of phosphorus (P)
versus satellite imagery spectral data by month for the Melvin, IL Thatik&hfor 2017. The
X-axis shavs the image acquisition date. Comdicates that it was grown over the entire field.
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Figure28. Coefficients of determination @Rfor simple linear regression of phosphorus (P)
versus satellite imagery spectral data bynthdor the Melvin, IL Homdield for 2017. The X
axis shows the image acquisition date. Gandicates that it was grown over the entire field.



141

0.9 - — —Blue
o84 | g;‘;e"
0.7 < e NlR
0.6 - Corny —-- NDVI
N 0.5 -
“ 0.4 -
0.3 A
0.2 -
0.1 -
0 . .

Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec

Figure29. Coefficients of determination @Rfor simple linear regression ohpsphorus (P)
versus satellite imagery spectral data by month for Melvin, IL Béigdy for 2017. The Xaxis
shows the image acquisition date. Gandlicates that it was grown over the entire field.
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Figure30. Coefficientsof determination (B for simple linear regression of phosphorus (P)
versus satellite imagery spectral data by month for the Melvin, ILfieasfor 2017. The Xaxis
shows the image acquisition date. Gandicates that it was grown over the entirediel
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Figure31 Coefficients of determination @Rfor simple linear regression of phosphorus (P)
versus satellite imagery spectral data by month for the Open Grounds Farm Beddkdd
2016 and 2017. The-Axis shows thénage acquisition date. Carimdicates that it was grown
over the entire field. Soybeamdicates that it was grown over the entire field.
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Figure32. Coefficients of determination @Rfor simple linear regression of pghorus (P)
versus satellite imagery spectral data by month for the Open Grounds Farm BedK@
2016 and 2017. The-Axis shows the image acquisition date. Gandicates that it was grown
over the entire field. Soybeamdicates that it was grawover the entire field.
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Figure33. Coefficients of determination @Rfor simple linear regression of phosphorus (P)
versus satellite imagery spectral data by month for the Open Grounds Farm Bfisté fiiz
2016 and 2017The Xaxis shows the image acquisition date. Gandicates that it was grown
over the entire field. Soybeamdicates that it was grown over the entire field.
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Figure34. Coefficients of determination @Rfor simple lirear regression of phosphorus (P)
versus satellite imagery spectral data by month for the Open Grounds Farm Bfisiét #5
2016 and 2017. The-Axis shows the image acquisition date. Gandicates that it was grown
over the entire field. Soybeamdicates that it was grown over the entire field.
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Figure35. Coefficients of determination @Rfor simple linear regression of potassium (K)
versus satellite imagery spectral data by month for the Melvin, IL fi@kbfor 2017.The X-
axis shows the image acquisition date. Gandicates that it was grown over the entire field.
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Figure36. Coefficients of determination @Rfor simple linear regression of soil potassium (K)
versus satellite imagerysctral data by month for the Melvin, IL Harris Sofigid for 2017.
The X-axis shows the image acquisition date. Gandicates that it was grown over the entire
field.
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Figure37. Coefficients of determination @Rfor simpk linear regression of potassium (K)
versus satellite imagery spectral data by month for the Melvin, IL Thatik&hfor 2017. The
X-axis shows the image acquisition date. Gandicates that it was grown over the entire field.
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Figure38. Coefficients of determination @Rfor simple linear regression of potassium (K)
versus satellite imagery spectral data by month for the Melvin, IL Wedbegfor 2017. The X
axis shows the image acquisition date. GamdSoybeapindicate that each was grown on only
a part of the field.
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Figure39. Coefficients of determination @Rfor simple linear regression of potassium (K)
versus satellite imagery spectral data by month for the Melvin, IL Nietthfor 2017. The X
axis shows the image acquisition date. Soybewficates that it was grown over the entire field.
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Figure40. Coefficients of determination @Rfor simple linear regression of potassium (K)
versus satellite ingery spectral data by month for Melvin, IL Budietd for 2017. The Xaxis
shows the image acquisition date. G@ndSoybeapindicate that each was grown on only a
part of the field.
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Figure4l. Coefficients of determinatio(R?) for simple linear regression of potassium (K)
versus satellite imagery spectral data by month for the Melvin, IL Kefegldrior 2017. The X
axis shows the image acquisition date. Soybewficates that it was grown over the entire field.
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Figure42. Coefficients of determination @Rfor simple linear regression of potassium (K)
versus satellite imagery spectral data by month for Melvin, IL Béigdy for 2017. The Xaxis
shows the image acquisition date. Gandlicates that it was grown over the entire field.
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Figure43. Coefficients of determination @Rfor simple linear regression of potassium (K)
versus satellite imagery spectral data by month for the Melvin, ILfieastfor 2017.The X-axis
shows the image acquisition date. Gandlicates that it was grown over the entire field.
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Figure44. Coefficients of determination @Rfor simple linear regression of potassium (K)
versus satellite imagery speitdata by month for the Melvin, IL Harris Noffield for 2017.
The X-axis shows the image acquisition date. Soybguaticates that it was grown over the
entire field.
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Figure45. Coefficients of determination @Rfor simpk linear regression of potassium (K)
versus satellite imagery spectral data by month for the Melvin, IL Higldefor 2017. The X
axis shows the image acquisition date. Gandicates that it was grown over the entire field.
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Figure46. Coefficients of determination @Rfor simple linear regression of potassium (K)
versus satellite imagery spectral data by month for the Open Grounds Farm Bfistél #5
2016 and 2017. The-Axis shows the image acquisition date. Gandicates that it was grown
over the entire field. Soybeamdicates that it was grown over the entire field.
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Figure47. Coefficients of determination @Rfor simple linear regression of potassium (K)
versus satellite imagespectral data by month for the Open Grounds Farm BldigkdBfor
2016 and 2017. The-Axis shows the image acquisition date. Gandicates that it was grown
over the entire field. Soybeamdicates that it was grown over the entire field.
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Figure48. Coefficients of determination @Rfor simple linear regression of potassium (K)
versus satellite imagery spectral data by month for the Open Grounds Farm Beddkdd

2016 and 2017. The-Axis shows the image acquisitidate. Cornindicates that it was grown
over the entire field. Soybeamdicates that it was grown over the entire field.
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Figure49. Coefficients of determination @Rfor simple linear regression of potassium (K)
versussatellite imagery spectral data by month for the Open Grounds Farm Bldiekdlfar
2016 and 2017. The-Axis shows the image acquisition date. Gandicates that it was grown
over the entire field. Soybeamdicates that it was grown over the enfiedd.
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Figure50. Coefficients of determination @Rfor simple linear regression of pH versus satellite
imagery spectral data by month for Melvin, IL Baifesid for 2017. The Xaxis shows the
image acquisition date. Carimdicates that it was grown over the entire field.
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Figure51. Coefficients of determination @Rfor simple linear regression of pH versus satellite
imagery spectral data by month for the Melvin, IL Hasdtl for 2017. The Xaxis shows the
image acquisition date. Carimdicates that it was grown over the entire field.
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Figure52. Coefficients of determination @Rfor simple linear regression of pH versus satellite
imagery spectral data by montir the Melvin, IL Harris NortHield for 2017. The Xaxis shows
the image acquisition date. Soybeardicates that it was grown over the entire field.
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Figure53. Coefficients of determination @Rfor simple linear regressiaf soil pH versus
satellite imagery spectral data by month for the Melvin, IL Harris Sieeithfor 2017. The X
axis shows the image acquisition date. Gardicates that it was grown over the entire field.
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Figure54. Coeficients of determination (8 for simple linear regression of pH versus satellite
imagery spectral data by month for the Melvin, IL Ndréhd for 2017. The Xaxis shows the
image acquisition date. Soybeamdicates that it was grown over the entirddie
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Figure55. Coefficients of determination @Rfor simple linear regression of pH versus satellite
imagery spectral data by month for the Melvin, IL ThacKeslg for 2017. The Xaxis shows
the image acquisition date. @gindicates that it was grown over the entire field.
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Figure56. Coefficients of determination @Rfor simple linear regression of pH versus satellite
imagery spectral data by month for the Melvin, IL Clietd for 2017. Tlke X-axis shows the
image acquisition date. Carimdicates that it was grown over the entire field.
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Figure57. Coefficients of determination @Rfor simple linear regression of pH versus satellite
imagery spectral data by mibrfor the Melvin, IL Homdield for 2017. The Xaxis shows the
image acquisition date. Carimdicates that it was grown over the entire field.
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Figure58. Coefficients of determination @Rfor simple linear regression of pkrsus satellite
imagery spectral data by month for the Melvin, IL Keefiald for 2017. The Xaxis shows the
image acquisition date. Soybgamdicates that it was grown over the entire field.
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Figure59. Coefficients of detenination (R) for simple linear regression of pH versus satellite
imagery spectral data by month for the Melvin, IL Buislsl for 2017. The Xaxis shows the
image acquisition date. CorandSoybeapindicate that each was grown on only a part of the
field.
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Figure60. Coefficients of determination @Rfor simple linear regression of pH versus satellite
imagery spectral data by month for the Melvin, IL Welteld for 2017. The Xaxis shows the
image acquisition date. CgrandSoybeapindicate that each was grown on only a part of the
field.
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Figure61. Coefficients of determination @Rfor simple linear regression of pH versus satellite
imagery spectral data by month for the Open Grounds Béook 45field for 2016 and 2017.
The X-axis shows the image acquisition date. Gandicates that it was grown over the entire
field. Soybeanindicates that it was grown over the entire field.
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Figure62. Coefficients of @termination (R for simple linear regression of pH versus satellite
imagery spectral data by month for the Open Grounds Farm Blfieki6or 2016 and 2017.
The X-axis shows the image acquisition date. Gandicates that it was grown over the entire
field. Soybeapindicates that it was grown over the entire field.
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Figure63. Coefficients of determination @Rfor simple linear regression of pH versus satellite
imagery spectral data by month for the Open Grounds Farnk Blfseld for 2016 and 2017.
The X-axis shows the image acquisition date. Gandicates that it was grown over the entire
field. Soybeanindicates that it was grown over the entire field.
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Figure64. Coefficients of determiation (R) for simple linear regression of pH versus satellite
imagery spectral data by month for the Open Grounds Farm Bloiéld 2or 2016 and 2017.
The X-axis shows the image acquisition d&ern, indicates that it was grown over the entire
field. Soybeanindicates that it was grown over the entire field.
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Figure65. Management zone delineation map for

Fieldso del iTaeald.i on strategy (
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Figure66. Management zone delineation map for Block 6 including three zones based on the
AAl I Fi el dso dTlableildeati on strategy (
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Figure67. Management zone delineation map
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Figure68. Management zone delineation map
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Figure69. Management zandelineation map for Block 6 including two zones based on the
AUni formo del iTable®¥)t i on strategy (
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Figure70. Management zone delineation map for Block 6 including three zones based on the
AUni formo del(Table®¥)}) i on strategy



183

Management Zones

. 1
2
3
4 1000 2000 4000

oo L] e [-cet

Author: Caner Ferhatoglu Data Source: Imagery courtesy of Planet Labs, Inc. Coordinate System: WGS 1984 UTM Zone 18N

Figure71 Management zone delineation map for Block 6 including four zones based on the
AUni formo delineation strategy (Table 10).
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Figure72. Management zone delineation map for Block éuiding five zones based on the
AUni formo delineation strategy (Table 10)
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Figure73. Management zone delineation map for Block 6 including two zones based on the
ANDVI O del i ndalelQon strategy (
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Figure74. Management zone delineation map for Block 6 including three zones based on the
ANDVI 0 del i ndablelQon strategy (













































































































































