
 

 

ABSTRACT 

 

FERHATOGLU, CANER. Delineating Precision Agriculture Management Zones Using Satellite 

Imagery, Web Soil Survey, and Machine Learning. (Under the direction of Dr. Jeffrey G White). 

 

 

Precision agriculture is a management strategy based on observing, measuring and 

responding to intra-field spatial variability in soils, crops, pests, and diseases. The goal is to 

identify variations in the field and manage them efficiently using variable-rate technologies. Soil 

management zones (MZ) represent subfield regions of similar soils and production potential 

suitable for uniform management. Using MZ is advantageous because they require fewer soil 

samples and analyses compared to grid sampling. The goal of this project was to delineate soil 

management zones at the field level using multi-temporal satellite imagery, the soil survey 

geodatabase (SSURGO), and machine learning (ML). The study concerned two sites. The first 

was located in Melvin, IL and had 11 fields. The second site was located in Open Grounds (OG) 

Farms, Beaufort, NC and had four fields. Georeferenced soil sample test data were obtained from 

growers. Monthly satellite images were downloaded courtesy of óôPlanet.comôô. Four image 

spectral bands (red, green, blue, and near-infrared [NIR]) and image-derived soil and vegetation 

indices were used as input for regression analyses. In a GIS (ArcMap), the soil sample data were 

linked with corresponding image pixels. SAS was used to explore relationships of individual 

predictors, e.g., spectral bands, with predictions: soil test parameters, which are our foundation 

for delineating management zones. In Illinois, linear regression R2 were usually high for 

correlations of organic matter (OM) with the red and NIR bands (R2 ḙ 0.2 to 0.9). The R2 for 

OM or humic matter (HM) versus NIR were most frequently the greatest over different farms 

and images in both study sites (R2 ḙ 0.2 to 0.9). For the Illinois farms, interpolation of organic 

matter point values and subsequent linear regression between the interpolated values and band 



 

 

values gave very low R2 values. In addition, analyzing all Illinois fields together did not increase 

R2. For delineating MZ (done only for NC), multi-temporal, multi-spectral images were used as 

input to the ML image classification algorithm, ISODATA. To examine several delineation 

strategies, we varied our input (stacked imagery) for ISODATA.  The ñAll Fieldsò delineation 

strategy used the entire two-year image stack; ñUniformò included images only from uniformly 

cropped fields; ñNDVIò and ñSAVIò used the ñUniformò image stack plus NDVI or SAVI maps; 

ñSoil Surveyò used USDA soil survey delineations; ñControlò used randomly divided fields. To 

assess the delineations, outputs were compared with SSURGO maps and with a random 

delineation. Soil test results were analyzed via ANOVA to calculate zonal statistics, compare 

zone means, and assess the agronomic impact of any differences among them. Based on 

guidelines from the NC Department of Agriculture and Consumer Services, we considered a 

difference in fertilizer recommendations of Ó10 lb acre-1 to be agronomically important. These 

differences were sometimes large enough to warrant different rates of fertilizers being applied to 

different zone. Among the delineation strategies tested, ñAll Fieldsò captured soil variability best 

in almost all cases, meaning it was most often the optimal delineation. The ñNDVIò and ñSAVIò 

strategies performed very similarly to each other or the same. Different soil parameters often had 

different optimal MZ numbers within the same field, indicating that each parameter needed its 

own separate delineation. However, in most cases, two MZs was the optimal. In cases where a 

particular number of MZs was not always the optimal, different delineations for different soil 

parameters could provide the grower flexibility. Management-zone-based precision agriculture is 

effective as it helps optimize crop yield while preventing over or underuse of agricultural inputs 

such as fertilizers and pesticides. As a natural result, the environment would be protected.  
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Chapter 1: Introduction to Delineating Precision 

Agriculture Management Zones Using Satellite 

imagery, Web Soil Survey, and Machine Learning 

Precision Agriculture 

Precision agriculture (PA) or site-specific crop management seeks to observe, identify 

and manage within-field spatial variability in soils, crops, pests, and diseases. As the world 

experiences increases in the price of agricultural inputs of chemicals and fuel, the need for 

precision agriculture to reduce economic and environmental costs is getting more important. The 

positive outcomes of PA are expected in two domains: optimization of profitability for 

agricultural production and the protection of the environment (Zhang et al., 2002). These two 

benefits are accomplished mainly by avoiding over and underuse of nutrients, lime, herbicides, 

and pesticides. The importance of PA has been recognized by farmers and farm managers 

because it can be quite efficient to manage within-field variability on a site-specific basis rather 

than the traditional whole-field approach (Li et al., 2008).  

Management Zones 

Much precision agriculture research has centered on the use of management zones (MZs) 

as a technique for variable-rate fertilizer applications (Chang et al., 2014). A MZ is a sub-area of 

an agricultural field that has similar characteristics such as soil fertility, which means that a 

single rate of fertilizer is suitable to optimize efficacy  (Vrindts et al., 2005). Several studies have 

demonstrated that MZs can be used in place of grid soil sampling and to manage agricultural 

fields with variable rate technologies (VRT) (Khosla and Alley, 1999 and Khosla et al., 2002). 

Additionally, MZ style agricultural farming requires fewer soil samples and analyses compared 



2 

 

to grid sampling since each MZ contains similar soils, which can potentially be sampled as 

homogenous (Flowers et al., 2005). 

Delineating Management Zones 

To develop a zone map, there are three factors to be considered: information to be used as 

a foundation for creating zones, the method for processing the information (i.e., classification), 

and the optimum number of MZs within a field (Fridgen et al., 2004). Lack of any of these 

factors could result in a failure in delineating MZs (Zhang et al., 2002). Most research has 

focused on predicting yield data by using inputs that are thought to influence yield. As an 

example of the nature of these failures, choosing input data that is not related to yield could 

result in a failure in delineating MZs. Likewise, utilizing an improper or inadequate method 

might cause problems in delineating MZs.  

Input  

As input information to be processed for MZ delineation, many studies used several years 

of soil test and yield data (Li et al., 2008). Li et al. (2008) used three distinct sources of input in 

clustering analysis to delineate MZs. These were maps of: the Normalized Difference Vegetation 

Index (NDVI) derived from satellite imagery, soil electrical conductivity (EC), and cotton yield. 

Flowers et al. (2005) used several years of yield maps to create MZs. Zhang et al. (2010) stated 

that vegetation indices (such as NDVI) derived from satellite images can also be used as input to 

delineate MZs when a yield map is not available. Kravchenko and Bullock (1998) and Wibawa 

et al. (2013) used topography and soil map units, respectively, as input for delineating MZs. 

Fraisse et al. (2001) used a combination of soil EC, elevation, and slope to delineate MZs.  The 

use of soil test data and maps resulting from interpolated soil data is another common approach 
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to delimit MZs, especially when there are no yield maps available (Georgi et al., 2017). Zhang et 

al. (2010) used the combination of vegetation indexes such as NDVI and the Green NDVI 

(GNDVI,) with spectral bands of satellite images as input for delineation of MZs. Long et al. 

(1995) attempted to correlate colors in aerial photographs of growing crops with potential MZs. 

They concluded that this method was quite accurate to divide a field into MZs for the end 

purpose of predicting grain yield. Haghverdi et al. (2015) stated that the use of soil EC and 

satellite images was appealing because of relatively low cost and ease of collection. They found 

that satellite images can be utilized as input information in unsupervised classification using 

Iterative Self- Organizing Data Analysis Techniques (ISODATA) in order to delineate MZs. 

Stenberg et al. (2010) found correlations between soil reflectance in the NIR and soil organic 

matter (SOM). They used this correlation to model the SOM. Zhang et al. (2010) created near 

infrared (NIR)-based MZs that explained SOM. Using satellite images as the only input is 

promising and might make the delineation process less costly and time-consuming by 

eliminating the use of soil data. In addition, over broad extents, satellite imagery may be more 

cost-effective and valuable (relative to several years of soil and yield data) to determine MZs on 

the basis of the spatial-temporal changes in crop growth patterns and soil conditions reflected in 

time series imagery (Basnyat et al., 2005 and Georgi et al., 2017).   

Many studies have shown that reflectance of soil is affected by characteristics such as 

organic matter, soil moisture, particle size, soil structure, iron oxide content, soil mineralogy, and 

parent material (Stoner and Baumgardner, 1993). Dalal and Henry (1986) investigated the 

relation between some soil parameters and NIR soil reflectance. They found that the higher soil 

moisture content was in soil, the lower the NIR reflectance. They also had similar results for soil 

organic C and total N, but these parameters showed small differences in absorbance of NIR. 
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Cierniewski and KuŜnierek (2010) investigated the influence of several soil features on soil 

surface reflectance. They found that CaCO3 content of the soil made little difference in visible 

light reflectance. However, higher CaCO3 content in the soil increased NIR reflectance from the 

soil surface. By using the same soil samples with different moisture applications, they also found 

that higher water content decreased reflectance for any visible light (red, green, and blue) and 

NIR. In terms of the effect of soil texture on spectral response of soils, many studies found that 

higher clay content decreased soil reflectance compared to soils with higher sand content 

because clay particles are able hold more water and water naturally absorbs light instead of 

reflecting. For example. Thomasson et al. (2001) compared the light reflectance of fine white 

sand, silt, clay (lab samples), and top soil (in the field). They found that fine white sand gave the 

highest reflectance for any light followed by silt, clay, and top soil. The reflectance patterns of 

clay and silt were quite similar. Cierniewski and KuŜnierek (2010) found that soil roughness did 

not clearly influence soil surface reflectance. Iron-oxides tend to give orange/rust color to soils; 

the higher the content, the higher the red and NIR reflectance (Coleman and Montgomery, 1987). 

High organic matter content in the soil usually gives darker color tones, thus soil reflectance for 

visible lights decreases (Coleman and Montgomery, 1987). As reported by Cierniewski and 

KuŜnierek (2010), Piech and Walker (1974) found that soil reflectance for visible light and NIR 

increased with decreasing soil particle sizes ranging from 2 mm to less than 0.062 mm. Böttcher 

et al. (2012) investigated the correlation between soil structure and soil reflectance. They found 

increased light reflectance from the upper layer of a soil sample with lower porosity relative to 

soils with greater porosity. Agbu et al. (1990) investigated the correlations between soil 

properties and satellite spectral data. They found significant correlations of the SPOT satellite 

NIR band with slope form and water content or drainage conditions in soil. They also found 
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correlations between the Red band of SPOT and soil A horizon color, silt content, and percent 

organic C. Another finding of their study was that the SPOT green band was correlated with A 

horizon sand content, upper B horizon color value, and B horizon clay content. Another finding 

was that the organic C content of the surface soil was significantly correlated with only the red 

and green SPOT spectral bands. They then concluded that most surface soil properties are 

correlated with satellite spectral data, thus satellite data can be used to map soil variability. 

Escadafal (1993) studied the relation between Munsell Atlas (a color scale for soils providing 

information about soil properties) and satellite spectral data (red, green, and blue bands). He 

concluded that reflectance curves of visible light from satellite imagery can be modeled from 

field Munsell color data.  

Methods  

There are many methods for processing input information to delineate PA MZs. Use of 

classification algorithms has been proven to be effective to delimit potential MZs in a field 

(Pedroso et al., 2010). Classification algorithms are able to group individuals with similar 

attributes (Valente et al., 2012) into different classes or óclusters' based on common properties 

measured for each individual (Irvin et al., 1997). Thus, classifying algorithms are used to 

describe input data in terms of these clusters or groups (Irvin et al., 1997). 

Clustering techniques are utilized extensively for digital image classification and can be either 

supervised or unsupervised. When conducting a supervised classification, the operator must 

define the cluster characteristics before the classification process. On the other hand, 

unsupervised classification techniques rely on a process that defines the clusters without prior 

knowledge other than a target number of clusters. The outcome of unsupervised classification 

techniques is the natural groupings of input data in a one- or multi-dimensional attribute space. 
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These groupings can be used to learn more about the structure of the data and may result in new 

subclasses of input data (Irvin et al. 1997). Unsupervised classification methods are often used to 

divide fields into different MZs since it is normally presumed that users might have no prior 

knowledge of which information or areas are supposed to be used for training (Haghverdi et al., 

2015).  

There are several unsupervised classification algorithms that have been used for 

delineating MZs such as the Iterative Self-Organizing Data Analysis Technique Algorithm 

(ISODATA), fuzzy c-means, and a non-parametric density algorithm. Guastaferro et al. (2010) 

compared these three methods and concluded that ISODATA was the simplest method to 

perform and the fastest to run. Fraisse et al. (2001) reported that ISODATA is advantageous 

because it is fast, easy to use, and can easily be automated. Furthermore, it allows the use of 

several input layers that may be significant for characterizing the variability seen in the field, for 

example, remote sensing images, yield maps, and different soil parameter values. Caution is 

required concerning the distribution of the data, as a non-Gaussian distribution in input layers 

might give misleading results (Guastaferro et al., 2010). ISODATA is available in most 

commercial GIS software for image classification and can be used for grouping similar sub-areas 

of a field. 

The first step of using ISODATA unsupervised classification requires the selection of 

variables to be used in the process of delineating within-field MZs (Fraisse et al., 2001). The 

ISODATA determines the zone boundaries based on the spatial structure of the input data, thus 

no user intervention is necessary other than specifying the desired number of classes (natural 

groupings) (Fraisse et al., 2001). Then, the user must decide the optimal number of MZs.  
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Performance Evaluation and Optimal Number of Management 

Zones 

 

As for determining the optimal number of MZs for a field, it might be challenging if 

unsupervised classification is used as a delineation method because this technique does not 

explicitly provide information about the optimal number of MZs (Haghverdi et al., 2015). Odeh 

et al. (1992) suggested that using the fuzziness performance index (FPI) and normalized 

classification entropy (NCE) were promising to determine the optimal number. As measures of 

cluster performance, FPI and NCE are provided by a MZ delineation software named FuzME 

(Minasny and McBratney 2000). The FPI is a measure of the degree that different classes share 

membership and takes values between zero and one. When FPI gets close to one, membership 

sharing increases. Whereas, when the FPI approaches zero, classes become more clear-cut by 

less membership shared. The NCE is a prediction of the quantity of disorderliness made by a 

determined number of classes. Both FPI and NCE are constrained to values between zero and 

one. When MPE approaches one, disorganization is high, and as MPE approaches zero, it 

indicates high organization. Plotting the values of FPI and MPE versus the number of specified 

classes is necessary. The optimum number of MZs is that which minimizes both FPI and NCE 

(Boydell and McBratney, 2002). However, NCE and FPI sometimes do not converge and the 

optimal number of zones suggested by one parameter may be quite different from the one 

suggested by the other one (Brock et al., 2005).  

In determining the optimal number of MZs for soil nutrient management, there are two 

core points to consider: 1) reducing variability in soil fertility factors within each MZ, and 2) 

increasing variability among different MZs (Flowers et al., 2005). These two criteria were 

satisfied through trial and error in several variance analyses by Zhang et al. (2010). The size of 
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their study fields ranged from ~45 to 97 ha. They created MZs based on satellite images with the 

highest NDVI values for the year and found that they correlated well with SOM content. Then, 

they evaluated the MZs through statistical variance analyses of soil parameter values within MZs 

and compared the variance results. They calculated the total statistical variance for soil 

parameters for different numbers of MZ delineations. The total within-zone variance increased as 

they continued to increase the number of MZs. After five MZs, the variance did not change 

dramatically regardless of increasing the number of MZs. They then determined the optimal 

number of zones as that which reduced the variance considerably relative to the initial 

variability, but with little change in the variance when the number of zones was increased 

further.. Haghverdi et al. (2015) also utilized trial and error through variance analysis and 

concluded that dividing a field into more than four to five MZs does not improve clustering 

results drastically. They worked on a field whose size was approximately 73 ha. Additionally, it 

was observed that there were similar productivity levels across different MZs when the study 

area was divided into more than four to five MZs. Flowers et al. (2005) also used the trial and 

error method to determine the optimum number of MZs.  

Tisseyre and McBratney (2008) stated that small zones are agronomically undesirable 

and might not be possible to manage because of technological limitations. Pedroso et al. (2010) 

considered MZ areas smaller than 0.1 ha as agronomically undesirable. For different cases, this 

threshold area may vary depending on the resolution of management possible with available 

variable-rate technology and agricultural equipment. Li et al. (2008) suggested a one-way 

variance analysis on georeferenced soil and yield sampling points as a means to assess how well 

delineated MZs reflected the soil properties and productivity level. Flowers et al. (2005) created 

MZs based on yield maps, and resultant MZ delineation had a low within-zone variability and 
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high across-zones variability in different soil properties. By following this approach, the operator 

can assess if the average value of soil parameters for different zones are statistically significantly 

different. However, this process might be time-consuming although necessary. Another approach 

was to visually compare MZs with yield maps, which was a qualitative comparison (Shaddad et 

al., 2016). 
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Chapter 2: Temporal variability in correlations of 

satellite imagery spectral data with soil chemical 

properties 

Abstract 

The basic relationships between satellite spectral data and surface soil properties have 

been investigated in many research papers and correlations have been found. This attracted many 

scientists to utilize satellite spectral data in cluster analysis for delineating precision agriculture 

(PA) management zones (MZ) that capture variability in soil properties. Using linear regression, 

we sought to quantify correlations of multi-temporal high-resolution satellite imagery spectral 

data with soil chemical parameters useful in delineating and evaluating MZs. The study was 

conducted at two contrasting sites, Melvin, IL with 11 fields comprising 16 mineral soil map 

units, and Beaufort, NC, with four fields comprising eight map units that consisted of five 

mineral soils and three organic soils. Monthly satellite imagery for 2016 and 2017 was provided 

courtesy of Plant Labs, Inc. Several simple linear regression analyses results showed that there 

were, in some instances, substantial correlations of soil properties with spectral bands and NDVI: 

R2 ranged from 0.10 to 0.90.  Soil organic matter/humic matter gave the highest correlations to 

the spectral data. Phosphorus, potassium, and pH had moderate correlations. In IL fields, R2 

values for all correlations tended to be stronger with the highest R2 ḙ 0.9 compared to NC fields 

with the highest R2 ḙ 0.6. In NC, for humic matter correlations, the fields that were 

predominated by organic soil map units had weaker correlations (R2 ḙ 0.03 to 0.2) than those 

that had predominantly mineral soil map units (R2 ḙ 0.03 to 0.6). Despite the fact that we 

compared two different years, there were similarities in correlation levels for the fields with a 

dominant mineral map unit within crops across years. There were similar correlation patterns the 



15 

 

years that soybean was cropped. Analogously, the years that corn was cropped, there were 

similar correlation patterns, which were different from those of soybean. Correlations for any 

given field were rarely constant. Instead they tended to change over time. There were also 

instances when correlations were constant over time, but these were when correlations were 

weak or where there was no correlation for several months. The correlations were likely affected 

by weather and agricultural management practices including crop (corn or soybean), tillage, and 

planting and harvesting dates. These could have had a substantial impact on soil and crop 

reflectance, and consequently on the correlations. With the eventual aim of using such imagery 

to delineate MZs, we hypothesized that delineation success would likely depend, at least in part, 

on the existence and strength of such correlations. If consistent correlation patterns exist, 

characterizing them might facilitate MZ delineation by using satellite imagery only from periods 

of strong correlation. 

  



16 

 

Introduction  

Aerial images were first used to map soils in 1929. Since then, the beneficial use of aerial 

and satellite imagery in agricultural crop management has been recognized (Seelan et al., 2003). 

Creating precision agricultural management zones (MZs) based only on satellite spectral data is 

likely dependent on the correlation between satellite spectral data and surface soil features and 

crop characteristics (Moran et al., 1997). Agbu et al. (1990) stated that although it is not possible 

to evaluate soil profile features through spatial imagery, it is possible to analyze spectral 

characteristics of the earth surface features that are determinative of top- and subsoil conditions. 

In addition, Agbu et al. (1990) found significant correlations between sub-soil properties and 

satellite spectral data. Chen et al. (2000) investigated the statistical correlation between soil 

organic carbon (SOC) and image intensity values in visible light spectral bands with a 

logarithmic linear equation for a 115-ha field. They found substantial correlations between SOC 

and the spectral bands. They then concluded that the procedures they used to find the correlations 

were accurate enough to be used for precision agriculture applications at the field level (Chen et 

al., 2000).  

In many studies, soil chemical and physical properties have been found to be correlated 

with satellite spectral data (Sullivan et al., 2005). Varvel et al. (1999) found correlations between 

brightness values of the blue, green, and NIR bands from aerial photographs and both soil 

organic matter (SOM) and P. Zhang et al. (2010) found a correlation (R2 ḙ 0.4) between SOM 

and the corresponding soil reflectance values in the near-infrared (NIR). These correlations have 

the potential to be used for improving soil sampling strategies (Varvel et al., 1999). Sullivan et 

al. (2005) stated that using the correlation of soil parameters with satellite data could have a high 

potential to create precision agriculture MZs. Zhang et al. (2010) created precision agriculture 
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MZs based on the NIR. Daniel et al. (2004) investigated the correlation between soil organic 

matter (SOM) content of sampled soils and the spectral responses at 960, 1100, and 520 nm by 

using multiple regression analyses and polynomial modeling. It was concluded that these 

procedures may form the foundation for the integration of spectrometers and satellite sensors 

aimed at digitally mapping non-vegetated fields (Daniel et al., 2004). 

In this study, we aimed to investigate over time the correlation of plow-layer soil-test 

parameters with satellite multi-spectral data. With the eventual aim of using such imagery to 

delineate MZs, we hypothesized that delineation success would likely depend, at least in part, on 

the existence and strength of such correlations. If consistent correlation patterns exist, 

characterizing them might facilitate MZ delineation by using satellite imagery only from periods 

of strong correlation. 

Materials & Methods 

Study Sites 

The study was conducted at two sites. The first was located in Melvin IL and had 11 

fields (Figure 1). The second site was located in Beaufort, NC and had four fields (Figure 2). The 

fields in IL ranged in size from 31.1 to 80.4 ha and were characterized by silty clay loam or silt 

loam surficial soil textures (Table 1). In the IL fields, the crops grown were usually soybean 

(Glycine max L.) and corn (Zea mays L.). The fields in NC ranged from 214.2 to 253.6 ha and 

had both organic and mineral soils (Table 2).  The fields in NC were developed by draining 

forests and swamps. Frequently grown crops included wheat (Triticum aestivum L.), corn, and 

soybean; for this study we examined only corn and soybean. Natural drainage conditions in the 

NC fields ranged from poor to very poor. To get rid of excess water, 1.61 km-(mile)-long ditches 
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had been dug approximately every 100 m to create fields known locally as ñcutsò, with each cut 

consisting of ~16.3 ha (40 ac).  

Some of the fields at both sites were entirely cropped with corn in 2016 and 2017 (Table 

3). In 2016, the entirety of Blocks 12 and 45 was cropped with corn. In 2017, Bailey, Cleo, East, 

Harris South, Home, Thackery, Block 6, and Block 8 were cropped with only corn. Some of the 

fields were entirely cropped with soybean in 2016 and 2017 (Table 3). In 2016, Blocks 6 and 8 

were cropped with only soybean. In 2017, Harris North, Keegan, North, Block 12, and Block 45 

were cropped with only soybean. In 2017, one-third of the two fields Buess and Weber were 

cropped with soybean while the rest of these fields was cropped with corn. 

Soil Sampling and Analysis 

In the NC fields, grid soil samples had been collected by the grower. Three of the fields 

(Blocks 6, 12, and 8) had 144 georeferenced soil sampling points on a roughly 130-m triangular 

grid.  The fourth field, Block 45, had 189 soil sampling points with ~100 m between them. In the 

IL fields, the number of georeferenced samples varied from 31 to 76 per field. Soils there were 

sampled on a 1-ha rectangular grid. From the NC fields, soil samples were analyzed by the North 

Carolina Dept. of Agriculture and Consumer Services (NCDA&CS) Agronomic Division Soil 

Test Section laboratory for routine soil fertility and chemical properties (Hardy et al., 2014): 

Mehlich 3 (Mehlich, 1984a): plant-available P, K, Ca, Mg, S, Cu, Mn, Zn, Na; cation exchange 

capacity and base saturation; pH/acidity/lime requirement (Mehlich et al., 1976); soil class 

(mineral, mineral-organic, organic); sieved weight-to-volume ratio; and humic matter (HM; 

Mehlich, 1984b). Humic matter as determined by the NCDA&CS method is strongly correlated 

with soil organic matter (Blumhorst et al., 1990; Gonese and Weber, 1998). The laboratories 

used for the IL samples were unknown, and other than Bray and Kurtz P-1 for P, the exact 
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analyses were unknown as well.  Based on common regional lab practice and North Central 

Regional Testing and Plant Analysis Committee recommendations (Missouri Agricultural 

Experiment Station, 2012), cations and cation exchange capacity (CEC) would likely have been 

analyzed via an ammonium acetate extraction; pH using a 1:1 ratio with 0.01 M CaCl2; and SOM 

via Walkley-Black (Walkley and Black, 1934). 

In NC and IL, our primary focus was the soil parameters: soil organic matter (SOM) or 

humic matter (HM), P, K, and pH. 

Satellite Imagery and Data Preparation for Analysis  

Satellite imagery was downloaded courtesy of Planet Labs, Inc. (hereafter, ñPlanetò), a 

commercial satellite imagery provider. Sensor-calibrated multispectral images had been taken by 

sensors on two different satellites: RapidEye and Planetscope. Orthorectified, Surface 

Reflectance, Radiance, and Basic imagery types were available on the website of Planet. In our 

study, we used the Planetscope Ortho scene product and the RapidEye Ortho Tile product. 

Because cloud-free images were not available for the entire years of 2016 and 2017 from either 

satellite individually, we used images from both satellites.  

Planetscope orthorectified (Ortho) imagery refers to images that are geometrically 

corrected for topographic relief, lens distortion, and camera tilt. Orthorectified images can be 

used to measure true distances since they are a relatively accurate localized representation of the 

Earth`s surface. Planetscope Ortho images had 3-m ground resolution or pixel size and four 

spectral bands: blue (455ï515 nm), green (500ï590 nm), red (590ï670 nm), and NIR (780ï860 

nm). The Planetscope Ortho scenes were in GeoTIFF image format. The product orientation was 

map north up and product framing was scene based. The dimensions of downloaded image 

scenes were approximately 25 km by 7 km for each Planetscope Ortho scene with some 
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variability by satellite altitude. The bit depth of images was 16, which is the number of bits used 

to express the color of a single pixel in a bitmapped image. Geometric corrections had been done 

using sensor telemetry and a sensor model for sensor-related effects. Atmospheric corrections 

had been done using 6SV2.1 radiative transfer code. The horizontal datum was WGS84 and the 

map projection was UTM. The resampling kernel was cubic convolution, which is an 

interpolation technique used to correct spatial distortions  (Rifman, 1973 and Bernstein, 1976). 

The RapidEye Ortho Tile product refers to the images that were orthorectified as 25-by-

25 km tiles. This particular product was designed for a wide variety of applications that require 

imagery with accurate geolocation and cartographic projection. The imagery had been processed 

to get rid of geographic distortions and could be used for many cartographic purposes. The 

RapidEye images had 5-m ground resolution or pixel size and five bands: blue (440ï510 nm), 

green (520ï590 nm), red (630ï685 nm), red edge (690ï730 nm), and near-infrared (NIR: 760 ï 

850 nm). The RapidEye Ortho Tile scenes were in GeoTIFF image format. The product 

orientation was map north up and product framing was based on a worldwide, fixed UTM grid 

system. The dimensions of downloaded image scenes were approximately 25-by-25 km for each 

RapidEye Ortho Tile scene. For the most part, image characteristics and processing were similar 

to PlanetScope. Otherwise, bands had been co-registered, and spacecraft-related effects had been 

corrected using attitude telemetry and best available ephemeris data. Orthorectification had been 

conducted using ground control points and fine digital elevation models (30 m to 90 m posting).  

We chose images at approximately monthly intervals for 2016 and 2017. Our goal was to 

choose imagery that displayed the target fields with a range of cover including: a crop at several 

stages of development; bare ground or crop residue; cover crops; snow cover; etc. When 

acquiring satellite images, we were cautious to pick cloud-free images, which is especially 



21 

 

challenging in rainy regions (Georgi et al., 2017). To pick cloud-free images, we always kept the 

cloud cover slider in Planet`s user interface at the least cloud cover option (0 to 1%). For the IL 

fields, all the images were cloud-free, while in NC, there were 11 cloud-free images from 2016 

and 12 cloud-free images from 2017. In August 2016, the available images were extremely 

cloudy, thus it was not possible to use them in the correlation analysis. In NC, the images from 

two months, April and July 2016, had some cloud cover which required some soil samples to be 

eliminated for the correlation analysis. In April 2016, 13 soil samples were eliminated from 

Block 6, 42 were eliminated from Block 8, and 35 were eliminated from Block 45. In July 2016, 

10 soil samples were eliminated from Block 6, and 11 were eliminated from Block 12. Because 

the study areas were quite large, more than one scene was always needed for full coverage 

(Figure 3). In ArcMap 10.6.1 (ESRI, Redlands, CA), scenes were then mosaicked together and 

this step was shown in the figure of the sequential steps for delineating MZs (Figures 3 and 4) 

and clipped to the full extent of each study area, a rectangle encompassing all fields in NC and in 

IL, using Mosaic to New Raster and Clip.  Subsequently, the resultant images for each month 

were split into their individual spectral bands. This was done by double-clicking the whole image 

in the add data dialog box in ArcMap, which made it possible to access the individual spectral 

bands of the whole image. After doing this, operator can add the individual bands into the table 

of contents in ArcMap and analyze it easily. After doing these steps, the images were ready for 

further data preparation for conducting simple linear regression analyses. 

First, digital pixel values of the spectral bands and their associated vegetation indices 

were extracted to the corresponding georeferenced soil sampling points by using Extract Multi 

Values to Points in ArcMap. As a result, only the pixel that contained the soil sampling site was 

used for multiple linear regression analyses. The extracted pixel values came from the mosaicked 
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and clipped images in different months of 2016 and 2017. This process output ArcMap attribute 

tables (similar to an Excel spreadsheet) of soil test results for georeferenced soil sampling points. 

The attribute tables contained the extracted values of individual spectral bands (red, green, blue, 

red edge, and NIR) and the vegetation indices (see below) for corresponding soil samples. The 

resultant attribute tables were transferred to SAS® 9.4 as Excel sheets. 

Vegetation Indices: NDVI and SAVI 

Two spectral vegetation indices, the Normalized Difference Vegetation Index (NDVI; 

Ashley and Rea, 1975) and the Soil Adjusted Vegetation Index (SAVI; Huete, 1988) were 

calculated to describe dynamic soil-vegetation relations from remotely sensed data. The NDVI 

was calculated for all the fields in both study sites, while SAVI was calculated only for NC 

fields. The reason we did so was that both NDVI and SAVI had the same results in our analyses 

for NC fields. Therefore, we ceased calculating SAVI for IL fields. The NDVI is written in the 

form:  

NDVI = (ɚNIR ï ɚred) / (ɚNIR + ɚred) 

Where ɚNIR is the reflectance value of the near-infrared and ɚred is that of the red. Vegetation 

naturally has a high NIR reflectance (due to scattering by leaf mesophyll cells) and low red 

reflectance (due to absorption by chlorophyll pigments). The NDVI for healthy, full-canopy 

vegetation will hence tend toward the upper limit of one. By contrast, clouds, water, and snow 

have a larger red reflectance than NIR reflectance, and these features thus yield negative NDVI 

values. Rock and bare soil areas have similar reflectance in the two bands and result in 

vegetation indices near zero (Hurcom and Harrison, 1998). SAVI was intended to minimize soil 

influence on vegetation spectra by including in the numerator and denominator of the NDVI a 
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constant L, a canopy background adjustment factor which varies depending on the stage of 

vegetation and the soil background (Qi et al. 1994). The SAVI was calculated as:  

SAVI
ʇ ɀ ʇ

ʇ   ʇ   ,
ᶻρ , 

 

To calculate SAVI, the value of ñLò was set to a standard, 0.5, which requires no prior 

knowledge (Qi et al. 1994).  

Data Analysis 

Using PROC REG in SAS® 9.4 (SAS Institute, Cary, NC), linear regression analyses 

were conducted to investigate the correlations of soil parameters with satellite spectral bands and 

vegetation indices. Linear regression analyses were conducted for each soil parameter in each 

individual field. This procedure output linear regression R2 values for each analysis. For each 

field, we then determined the threshold values of R2 (Table 4) above which all correlations were 

statistically significant at p Ò 0.05.  

The focus was given to the relationships of some of the soil parameters (SOM / HM, P, 

K, and pH) with the satellite spectral data. The main reason for doing such statistical analysis 

was to support the idea of delineating MZs based only on input of spectral bands and vegetation 

indices. In the presence of substantial correlation between soil features and satellite spectral data, 

one could hypothesize that MZ maps based on satellite spectral data can provide information 

about the soil variability potentially useful for MZ delineation. To determine temporal patterns in 

the correlations of individual soil parameters with each of the satellite spectral bands and indices, 

the R2 of the regressions were plotted on the y-axis versus the month of image acquisition on the 

x-axis. In the correlation figures, there were five different lines, each indicating one of the four 

spectral bands and NDVI (Figures 5 to 64). Because SAVI and NDVI produced the same R2 in 
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all the simple linear regression analyses, we showed SAVI and NDVI with the same line in all 

the correlation figures. 

Results and Discussion 

The correlations of soil properties with spectral bands and NDVI had R2 values that 

ranged from 0.10 to 0.90. The temporal variability and strength of these correlations are shown 

in Figures 5 to 64, with R2 on the Y-axis and image month on the X-axis for each study field. 

Generally, the statistical significance thresholds for IL fields were higher than those for NC 

fields (Table 4). Although the R2 values for the correlations in NC fields were generally lower 

than those in IL fields, there were many statistically significant correlations in NC because of its 

low R2 threshold value. In the following section, we compare by time, location, and crop the 

temporal patterns of the correlations of the spectral parameters with the soil parameters.  

Soil Organic Matter/Humic Matter  

There were many statistically significant correlations between HM/SOM and the spectral 

parameters across the NC and IL fields.  

Illinois  

For SOM, the correlation patterns for 2017 were somewhat similar among IL fields 

(Figures 5 - 15), with the highest correlation tending to the April-through-May period. In IL, 

snow cover typically lasts from November to April. Snowmelt may have revealed the soil 

surface, hence the high correlation in April and May (Table 5). We hypothesized that plant 

growth in May caused changes in the correlations.  

The correlations of SOM versus the spectral bands peaked at about R2 ḙ 0.7 between 

March and May in Bailey. Between January and April, the correlation between NIR and SOM 
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was slightly higher than that for the rest of the spectral bands and greater still from June until 

August (Figure 5). Bands other than NIR were not correlated with SOM between June and 

November. Between September and November, there was no correlation between SOM and any 

spectral band. Starting from November through December, correlations with all the spectral 

bands peaked to almost R2 ḙ 0.5. The NDVI was not correlated with SOM in Bailey except for 

November (Figure 5). Between May and November, there was crop in the field. 

Although both corn and soybean were cropped on only a part of Buess (Table 3; Figure 

6), its correlation patterns were similar to those for Bailey (Figure 5). There were some 

differences in the patterns such as in March and April when the correlation was much lower for 

Buess than for Bailey (Figures 6 and 5). Another major difference was in December when there 

was no correlation in Buess while there was a high correlation in Bailey (Figures 6 and 5). Cleo 

showed similar correlation patterns to Bailey (Figures 7 and 5). However, relative to Bailey, in 

Cleo, the correlations were higher in January, and NIR`s correlation was higher than the other 

spectral bands (Figure 5 and 7). Between June and October, the correlations were generally 

higher in Cleo relative to Bailey. However, in August, the correlation was higher in Bailey 

compared to Cleo (Figures 5 and 7). In December, the correlations were much weaker in Cleo 

compared to those in Bailey, ranging from R2 ḙ 0.08 to 0.20. East also showed similar patterns 

to Bailey (Figures 8 and 5). However, one difference was that the correlations were higher in 

January in East. In addition, there was no correlation between any the spectral parameters and 

SOM from July to October in East, whereas there were some correlations in Bailey (Figures 8 

and 5). Harris North showed similar correlation patterns to Bailey, but there were some 

differences (Figures 9 and 5). In January, the R2 values were higher in Bailey compared to those 

for Harris North (Figures 9 and 5). However, in June the correlations were higher in Harris North 
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relative to those in Bailey (Figures 9 and 5). Another major difference was in December when 

there was no correlation in Harris North, while there was a high correlation in Bailey (Figures 9 

and 5). Harris South was also similar to Bailey (Figures 10 and 5). However, there were many 

fluctuations in R2. In February, the correlation between NIR and SOM was higher in Harris 

South compared to that in Bailey. Between June and November, there were fluctuations for the 

correlations in Harris South which resulted in increased R2 values in December compared to 

those in June (Figure 10). Between July and September, there was no correlation in Harris South 

while there was a correlation in Bailey (Figures 10 and 5). In December, all correlations in Harris 

South were higher than those in Bailey.  In December in Harris South and compared to the other 

spectral parameters, the correlation between NIR and SOM had the highest, R2 ḙ 0.60. As for 

the correlation between NDVI and SOM in Harris South, it happened between April and 

September, and between November and December. These correlations were higher in Harris 

South than in Bailey, as there was almost no correlation between NDVI and SOM for Bailey 

except for a few months.  

Home also showed similar patterns to Bailey in the case of the correlations between SOM 

and the spectral parameters (Figures 11 and 5). There were some differences, though. One 

difference occurred in January when the correlations were higher in Home compared to those in 

Bailey and ranged from R2 ḙ 0.3 to 0.4. There was a decrease in R2 in April. The correlations for 

Home were slightly higher than those in Bailey. In December, the correlations between spectral 

bands and SOM were much weaker, with R2 ḙ 0.2 for all the bands in Home compared to those 

in Bailey. There was a high correlation between NDVI and SOM in Home between May and 

September, unlike Bailey.  
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In Keegan, the correlation patterns were also similar to Bailey with some differences 

(Figures 12 and 5). One major difference occurred in May and June when the correlations were 

higher in Keegan relative to those in Bailey (Figures 12 and 5). Another major difference was in 

December, as there was no significant correlation between SOM and the spectral parameters in 

Keegan (Figure 12), while there was a high correlation in Bailey (Figure 5). In North (Figure 

13), the correlation patterns were also similar to Bailey (Figure 5) with some differences. One 

major difference occurred in January and February when the correlations were higher in North 

(Figure 13) relative to Bailey (Figure 5). Another major difference was in December when there 

was no significant correlation in North (Figure 13), while there was a high correlation in Bailey 

(Figure 5). Thackery (Figure 14) displayed correlation patterns similar to Bailey (Figure 5). 

However, there was a major difference: the correlations in Thackery were much weaker between 

February and April compared to those in Bailey. In addition, the correlations were slightly higher 

between June and October in Thackery (R2 ḙ 0.3), whereas the correlations were lower, R2 ḙ 

0.2, in December compared to those in Bailey, R2 ḙ 0.45.  The correlation patterns in Weber 

(Figure 15) were also similar to those in Bailey (Figure 5). One major difference occurred in 

March and April as the correlations between SOM and the spectral parameters were higher in 

Bailey (Figure 5) relative to those in Weber (Figure 15).  

North Carolina  

For the temporal patterns of the correlations of HM with the spectral parameters in 2016 

and 2017, Block 6 was similar to Block 12 (Figures 16 and 18), and Block 8 was similar to 

Block 45 (Figures 17 and 19). These pairings were associated with the soils: Blocks 6 and 12 

were the mineral soils, while Blocks 8 and 45 were the organic soils. For the organic Blocks 8 

and 45, the correlations were very weak or non-existent. There were no correlations during the 
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months of Oct. 2016 through May 2017, and only very weak correlations the other months of 

these years. Low variability can decrease the likelihood and strength of correlations and may 

explain the weaker correlations in Block 8 and 45 relative to Block 6 and 12. This meant that 

there was not enough variation in HM in Block 8 and 45 to yield high R2 values for correlations 

with the spectral data. On the other hand, there was higher variation (higher CV) in Block 6 and 

12 for HM. This variability provided the potential for higher R2 values for the correlations 

between HM and satellite spectral data (Table 6). The correlation patterns appeared to be 

associated with the year and not with the crop, i.e., within a year, corn and soybean had similar 

correlation patterns. The weak correlations in Block 8 and 45 might be explained by the low 

variability in HM as indicated by the coefficient of variation (CV) (Table 6). The CV values for 

Block 8 and 45 were lower than those for Block 6 and 12. Low variability can decrease the 

likelihood and strength of correlations and may explain the weaker correlations in Block 8 and 

45 relative to Block 6 and 12. On the other hand, there was higher variation (higher CV) in Block 

6 and 12 for HM, which facilitated higher R2 values for the correlations between HM and 

satellite spectral data (Table 6).  

On the mineral soils (Blocks 6 and 12), the correlations ranged from very weak or non-

existent to R2 ḙ 0.55.  Despite the fact that we compared two different years, there were 

similarities in correlation levels for these two blocks within crops across years. There were 

similar correlation patterns in the years that soybean was cropped, 2016 in Block 6 and 2017 in 

Block 12 (Figures 16 and 18). Analogously, the years that corn was cropped, 2017 in Block 6 

and 2016 in Block 12, there were similar correlation patterns, which were different from those of 

soybean. In general, the correlations when soybean was grown were stronger than when corn was 

grown.  With soybean, the higher R2 ranged from 0.50 to 0.55, while with corn, the highest R2 
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was about 0.3. As a result, we concluded that the fields with the same crop created similar 

correlation patterns across different fields at the same site if they had similar or same soil map 

units (Tables 1, 2, and 3). 

In Block 6, the R2 for the correlations between spectral bands and HM dropped to zero in 

February 2017 (Figure 16). There was a slight increase in R2 until May 2017. In June 2017, the 

R2 increased again, but the red band`s correlation to HM was the highest: R2 ḙ 0.3. Starting from 

July 2017, there were fluctuations in the correlations until 2017 December. In October 2017, the 

correlations were weak to moderate (R2 ḙ 0.2 - 0.3) for all bands except NIR, which was not 

correlated with HM. In April 2016 and in February and December 2017, there was no correlation 

between any spectral band and HM. From January through May 2017, there was no correlation 

between NDVI and HM. In June 2017, there was a very weak correlation between NDVI and 

HM (R2 ḙ 0.10). Then this value dropped to zero in July and August. In September 2017, there 

was a rise in the R2 to 0.20 before it dropped to 0.10 in October and leveled off until the end of 

the year.   

In Block 12 in February, June, and October 2016, a year when corn was grown, there 

were peaks in R2 for the correlations of the spectral bands with HM (Figure 18). There were 

some differences in correlations for Blocks 6 and 12, though. For example, in January 2016, the 

correlations between spectral bands and HM ranged from R2 ḙ 0.03 to 0.13 in Block 12, which 

were lower than those in Block 6 (Figures 18 and 16). Unlike Block 6, in Block 12 during 

February 2016, there was an increase in the correlation between HM and the spectral parameters 

except for Green and Red (Figures 16 and 18). In Block 12, the correlation between NIR and 

HM was the highest (R2 ḙ 0.2) among all the HM correlations in February 2016 (Figure 18). The 

correlations between HM and spectral bands in Block 12 in March and April 2016 were similar 
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to those in Block 6 in March and April 2017 (Figures 18 and 16). There was an increase in R2 

beginning in May 2016 for Block 12, which was unlike Block 6 the same month (Figures 18 and 

16). Throughout 2016 in Block 12, NIR`s correlation to HM was the strongest among the 

spectral parameters (Figure 18). This situation was not observed in Block 6 in 2016 (Figure 16). 

Like Block 6, there were generally marked increases in R2 in Block 12, especially in May, June, 

September, and October 2016 (Figure 18). However, at the end of 2016 in Block 12, there were 

no correlations between any spectral parameters and HM, which was similar to Block 6 in 2017 

(Figures 18 and 16). In 2017 in Block 12, soybean was cropped while soybean was cropped in 

Block 6 in 2016 (Figures 18 and 16). In addition, in the years that soybean was cropped, the HM 

correlations were similar in Blocks 6 and 12 (Figures 18 and 16). In terms of the correlation 

patterns between HM and the spectral parameters, Block 8 was like Block 45 (Figures 17 and 

19). We examined two years` correlations for these two blocks in order to compare soybean with 

soybean and corn with corn (Figures 17 and 19). The biggest similarity between Blocks 8 and 45 

was that the correlations between HM and the spectral parameters were not strong, with R2 ḙ 0 

to 0.20 throughout 2016 and 2017 (Figures 17 and 19). From November 2016 through April 

2017, there was no correlation between any spectral parameters and HM in Block 8 (Figure 17). 

There were very weak correlations (R2 ḙ 0.02 to 0.10) from May through August 2017 in Block 

8. From September through December 2017, there was no correlation of HM with any spectral 

parameters in Block 8. There were very weak correlations between NDVI and HM in Block 8 in 

May and June 2017. 

Unlike Block 8, from January and through March 2016, there were some weak HM 

correlations in Block 45 with R2 ḙ 0.03 to 0.15 (Figures 17 and 19). For all spectral bands, the 

correlations gradually decreased until April 2016 (Figure 19). In Block 45 between April and 
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October 2016, there were very weak correlations with spectral bands ranging from R2 ḙ 0.03 to 

0.10. From October 2016 through July 2017, there was no correlation between any of the spectral 

parameters and HM. There were weak correlations of HM with NIR and NDVI in August 2017.  

The strongest correlation, albeit with an R2 ḙ 0.20, was with NDVI in October 2017. 

The NC correlation patterns (Figures 16 - 19) did not resemble those in IL (Figures 5 - 

15) regardless of year. This was expected, as the soil types and other environmental conditions 

were quite different between the study sites. In addition, the comparison between NC and IL 

might have been confounded by the different analytes, HM (Hardy, 2014) in NC and OM in IL.  

Phosphorus 

Illinois  

For P, the correlation patterns for 2017 were similar among IL fields, with the highest 

correlation (R2 ḙ 0.1 to 0.4) tending to the January-through-May period (Figures 20, 21, and 23) 

and the August- through-December period (R2 ḙ 0.1 to 0.55)(Figures 22, 24, 25, 26, and 27) 

except for three fields: Home, Bailey, and East. The highest R2 in Home was in July for the 

Green band (Figure 28). In Bailey, there was no significant correlation between P and any 

spectral parameters (Figure 29). East was similar to Bailey because the only correlations with P 

were for all spectral parameters except NDVI in February and March 2017 (Figures 30 and 29). 

Unlike Bailey, there was a correlation between P and the spectral parameters in Buess (Figures 

29 and 20), but only between February and August 2017 (Figure 20). In February 2017, the 

correlations had R2 ḙ 0.15 in Buess (Figure 20). The R2 then increased to about 0.15 to 0.25 

until March 2017 (Figure 20). The correlations were poor in April (Figure 20), but then there 

were two R2 peaks, one in May and one in July (Figure 20) with R2 ḙ 0.35 and 0.25, respectively 

(Figure 20). In Cleo (Figure 21), there were correlations between the spectral parameters and P 
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from January to June. In January, the correlations ranged from R2 ḙ 0.1 to 0.3 and the highest 

correlation was between P and NIR (Figure 21). From January to May, R2 values did not change 

dramatically for the spectral bands, but there was no correlation between the spectral parameters 

and P for the rest of 2017 in Cleo (Figure 21). The correlation between P and NDVI in Cleo 

occurred only from January through May (Figure 21).  

The correlations between P and the spectral parameters in Harris North were weak and 

happened between February and August for spectral bands, and in December for NDVI (Figure 

24). In Harris South (Figure 25), the correlations of P with all of the spectral bands began in 

March and increased to R2 ḙ 0.4 in April (Figure 25). The strength of the correlations remained 

the same through May for all spectral bands except for NIR, for which the correlation kept 

increasing until June (Figure 25). In June in Harris South, there was no correlation between P 

and any spectral parameters except for NIR and NDVI (Figure 25). In July, the NIR correlation 

was very weak (Figure 25). Between July and October in Harris South, there were many 

fluctuations in the strengths of the correlations of P with the spectral bands, with all but NIR 

peaking moderately in August or September (Figure 25) and decreasing to no correlation in 

October. In November, the correlations started to increase and reached R2 ranging from 0.45 to 

0.5 (Figure 25). The correlation between NDVI and P happened from May through September in 

Harris South, with R2 ranging from 0.12 to 0.3 (Figure 25).  

In Home from June to October, the P correlations to the spectral parameters ranged from 

R2 ḙ 0.09 to 0.2 (Figure 28). In Home in April and from July and September, there was a 

correlation between NDVI and P with R2 ḙ 0.09 to 0.2 (Figure 28). In Keegan (Figure 22), there 

were relatively strong correlations between P and the spectral parameters compared to the fields 

mentioned previously. For all but NIR, the correlations were high in August, ranging from R2 ḙ 
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0.2 to 0.5 (Figure 22) except for NIR which had no correlation. There were similarly strong 

correlations in October and December (Figure 22) for all spectral parameters except for Blue, 

which had no correlation with P.  

In North (Figure 26), there was a weak correlation (R2 Ò 0.2) between P and the spectral 

parameters from January through September. The correlation between P and the spectral 

parameters was weak in Thackery (Figure 27). In February 2017, there were very weak (R2 Ò 

0.2) correlations between P and some spectral parameters. From April through July, there was no 

correlation between any of the spectral parameters and P, which was the case for Bailey (Figure 

29).  In Thackery from August through November, the only correlation was between Blue and P 

with R2 ḙ 0.2 (Figure 27). Weber (Figure 23) was similar to Buess (Figure 20), perhaps because 

both fields had the same soil unit (Table 1) and crop mixture, corn and soybean (Table 3). In 

Weber (Figure 23), there was usually no correlation between P and the spectral parameters 

except for April, May, July, and December. In April, the correlations were around R2 ḙ 0.2, then 

they increased to slightly above R2 ḙ 0.3 in May.  In June, there was no correlation, but in July 

there were correlations with R2 ḙ 0.1 to 0.3. The correlation with Green in July was about twice 

as strong as the other spectral parameters. In December, there was no correlation between P and 

NDVI in Weber (Figure 23).  

North Carolina  

For the temporal patterns of the correlations of P with the spectral parameters in 2016 and 

2017, Blocks 6 and 12 (Figures 31 and 33) had stronger correlations than did Blocks 8 and 45 

(Figures 32 and 34). Again, these pairings were associated with the soils: Blocks 6 and 12 were 

the mineral soils, while Blocks 8 and 45 were the organic soils. For the organic Blocks 8 and 45, 

the correlations were very weak or non-existent. Again, the weaker correlations in Blocks 8 and 



34 

 

45 may be attributable to their low P variability (Table 6). The CV values for Block 8 and 45 

were lower than those for Block 6 and 12. In Block 6 (Figure 31), the P correlations to the 

spectral data fluctuated substantially. Abrupt R2 increases were observed in March and May 

2016, and October 2016 and 2017 (Figure 31). In January 2016, the R2 were around 0.45 for the 

spectral parameters except for Blue and NIR (Figure 31). There was no correlation for Blue and 

NIR bands in January 2016 in Block 6. In 2016, there were three correlation peaks: February, 

May, and September, with R2 ḙ 0.5, 0.5, and 0.3, respectively. During the rest of 2016, the P 

correlations were lower (Figure 31). In January 2017, the R2 ranged from 0.2 to 0.3 for the 

spectral parameters except for NDVI. Between February and August 2017, there were many 

fluctuations in the spectral band R2 values. In October 2017, the correlations between P and the 

visible bands (Red, Green, and Blue) ranged from R2 ḙ 0.3 to 0.5, while there was no correlation 

with NIR and NDVI (Figure 31). In 2017, the only correlations between NDVI and P occurred 

between May and June and between August and October, with R2 ḙ 0.15 and 0.2, respectively 

(Figure 31).  

Block 8 (Figure 32) was very similar to Bailey in terms of the P correlations with spectral 

parameters: the correlations were either poor or nonexistent (Figures 32 and 29). In Block 12, the 

P correlations were weak and fluctuated somewhat through 2016 and 2017 (Figure 33). The 

correlation between P and the spectral parameters in Block 12 ranged from R2 ḙ 0.25 to 0.3. 

Compared to the other spectral parameters, NIR had the strongest correlations, which peaked at 

R2 ḙ 0.25 in December 2017. The P correlations in 2016 and 2017 did not resemble each other 

(Figure 33). This was probably because two different crops were grown in 2016 (corn) and 2017 

(soybean).  
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Block 45 had several fluctuations in R2 (Figure 34). In January 2016, the R2 between the 

spectral bands and P ranged from 0.10 to 0.15. Between February and June, the R2 values fell 

below 0.05. Throughout 2016, the correlations increased to as high R2 ḙ 0.2. The P correlations 

in 2017 had lower R2 than those in 2016. Like Block 12, the patterns in 2016 and 2017 were not 

similar to each other, again, probably because two different crops were grown (Figure 34). For 

any correlation between P and the spectral parameters, the strengths differed little among the 

bands.  

The NC correlation patterns did not resemble those in IL regardless of year. This was 

expected, as the soil types and other environmental conditions were quite different between the 

study sites.  

Potassium 

Illinois  

There were correlations between K and spectral data in the IL fields (Figures 35, 36, 37, 38, 39, 

40, and 41), but these were weak and generally weaker than those for SOM. Additionally, the 

CV values for K for the IL fields were mostly higher than those for SOM for the IL fields (Table 

7). Despite that, K correlations in the IL fields were weaker than those for SOM. It is important 

to realize that correlation requires some amount of variability in the parameters, but high 

variability did not necessarily result in high correlation for this case.  

The correlations between the spectral parameters and K were either weak or non-existent 

in Bailey, East, Harris North, and Home (Figures 42, 43, 44, and 45).  In Cleo from January to 

July 2017 (Figure 35), there was no correlation between any spectral data and K. In August, 

there was a marked increase in correlation, with R2 ḙ 0.4, while correlations with the rest of the 

spectral parameters rose to slightly above R2 ḙ 0.1 and leveled off through September (Figure 
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35). In October, the R2 decreased to near zero. Between October and December, the only 

correlation was between NIR and K in November at the level of R2 ḙ 0.1 (Figure 35).  

There were correlations of K with the spectral parameters in North (Figure 39), the 

strongest of which (R2 ḙ 0.45) were with Green and Red in July and September.  Correlations 

with NDVI peaked in January, April, and June-July with R2 ḙ 0.15 to 0.20. Thus, even though 

Harris North and North were both cropped with soybean (Table 3), the strengths of their 

correlations differed. This may have been because the soil map units for these two fields were 

different (Table 1): the Milford silty clay loam in Harris North and the Elliot silt loam in North. 

In previous research, it has been found that different soil textures (silty clay loam and silt loam) 

have different light reflectance (Barnes et al.,2003). For our study, we theorized that soil texture 

might have affected light reflectance values in the images, thus correlations. Therefore, these two 

fields had different level of correlations. Differences in agricultural management practices such 

as fertilization, irrigation, or tillage, etc. may also have contributed to the differences in 

correlation strength.  

In Harris South (Figure 36), the correlations between K and the spectral parameters 

occurred only in February and March, with R2 ḙ 0.15 to 0.25. In February, there was a dramatic 

increase in R2 except for NIR.  The highest R2 was for NDVI in February (Figure 36). In Buess, 

there were correlations between K and the spectral parameters from April through September 

(Figure 40). There were three peaks: April, June, and August. The correlation in April had R2 ḙ 

0.23 for all spectral parameters except NDVI, which was not correlated.  The peak in June 

ranged from R2 ḙ 0.1 to 0.15 except for NIR, which was not correlated. The peak in August 

ranged from R2 ḙ 0.2 to 0.27. During the rest of the year, the correlations for K were either poor 

or nonexistent except for NDVI in December, with R2 ḙ 0.15.  
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In Keegan, there were correlations between K and the spectral parameters during most of 

2017 (Figure 41). In January, the only correlations were for K with Blue and NIR. In February, 

all the correlations increased to R2 ḙ 0.12 to 0.35. Through April, the correlations of K with the 

spectral bands increased, with R2 ḙ 0.27 to 0.35, while there was no correlation with NDVI from 

April through June. The strengths of the spectral band correlations decreased somewhat in May, 

with R2 ḙ 0.1 to 0.2 (Figure 41). In June, the values increased considerably to R2 ḙ 0.25 to 0.5. 

Between July and November, the correlations were weak. In December, the strength of the 

correlations increased to R2 ḙ 0.25 to 0.32. The correlation between NDVI and K was significant 

only between January and March (Figure 41).   

Since the R2 threshold for having a statistically significant correlation was 0.13 for 

Thackery (Table 4), there were few correlations between the spectral parameters and K (Figure 

37). In July, K was weakly correlated (R2 ḙ 0.15) with all spectral parameters except for NIR. In 

September, however, NIR had the strongest correlation with K, albeit a weak one. Similarly, in 

October and November the strongest, yet weak, correlations were with Red and Blue, 

respectively. 

North Carolina  

In Block 45, there was essentially no correlation between K and the spectral parameters 

(Figure 46), similar to Bailey. In contrast, the strongest correlations were on the other muck 

field, Block 8 (Figure 47).  Relatively strong correlations between K and the spectral bands were 

observed in Block 8 (Figure 47). There were many R2 peaks in 2016 and 2017. In 2016, these 

peaks were in April, July, September, and November, with R2 ḙ 0.15, 0.14, 0.2, and 0.15, 

respectively. In 2017, the peaks in R2 values were observed in January, April, August and, 

September: 0.2, 0.3, 0.3, and 0.3, respectively. The peak in September was only for NIR (Figure 
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47). In Block 8, the correlations that existed tended to strengthen somewhat from 2016 through 

2017, but there were substantial fluctuations, with R2 ranging from zero to 0.30.  For the most 

part, the correlations with K differed little among the spectral bands and NDVI.  Exceptions 

included February 2017, when K was correlated with only NDVI and NIR, and in September-

October 2017 when the only correlation was with NIR. 

The temporal correlation patterns on the mineral soils (Blocks 6 and 12) (Figures 48 and 

49) did not resemble those on the organic soil (Blocks 8 and 45) (Figures 46 and 47) and 

exhibited little similarity one to another. Except for Block 45, all the NC fields had correlations 

for K with the spectral data. The CV values were similar among the NC fields. Therefore, 

variability would not have been a factor in the correlations (Table 7). In Block 6 (Figure 48) in 

2016 (soybean), there were correlation peaks in March and May-June 2016, with the strongest 

correlations (R2 ḙ 0.25) with NIR and Green.  There was little or no correlation from November 

2016 through August 2017. In September-October 2017 (corn) there were weak correlations with 

all spectral bands but not with NDVI. In Block 12 (Figure 49), the strengths of the correlations 

were extremely variable from month to month, alternating between no correlation to a maximum 

(R2 ḙ 0.20) for NIR in August.  The differences between Blocks 6 and 12 may have been due to 

the different crops both years. While Block 6 had soybean in 2016 and corn in 2017, Block 12 

had corn in 2016 and soybean in 2017. Different crops can be discriminated from remote sensing 

imagery by investigating a red spectral shift in the chlorophyll absorption edge, meaning that 

different crops have unique light reflectance (Collins, 1978). Therefore, we hypothesized that the 

difference in crop rotation caused differences in the light reflectance in the spectral bands, thus 

the correlations differed for Block 6 and 12 despite similar soil map units.  In Block 12, there 

were many fluctuations in the correlations between the spectral parameters and K (Figure 49), 
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with R2 ḙ 0 to 0.23 (Figure 49). With a few exceptions, there was little to distinguish the spectral 

parameters one from another.  However, in June and October 2016, and July and August 2017, 

the correlations of K with NIR and NDVI were substantially stronger than those with the other 

spectral bands, e.g., R2 ḙ 0.23 vs R2 ḙ 0.0, respectively.  

pH  

Illinois  

For pH, the correlations were usually weak. This could be attributed to low CV values (4 

- 9%) for pH in the IL fields (Table 7). We hypothesized that the variation in pH test values 

across the IL fields was not sufficient to have high correlations. Relative to the other fields, the 

correlations between pH and the spectral parameters were poor or nonexistent in Bailey, East, 

Harris North, Harris South, North, and Thackery (Figures 50 - 55). In all but East, any 

correlations in these fields were characterized by a single peak with R2 ḙ 0.20. However, the 

month when this peak occurred and for what spectral parameters differed from field to field. 

In Cleo and Home, the correlations between pH and the spectral parameters were weak 

(Figures 56 and 57). In Cleo, the correlations of the spectral bands with pH were observed only 

in June, September, and November (Figure 56), while the correlation between NDVI and pH 

existed in April, June, August, and September. In Cleo, the correlations did not differ much 

among the spectral bands and NDVI except for NIR from June through December, when any 

correlations with pH tended to be weaker than those for the other spectral parameters. The 

correlation patterns for pH in Cleo differed from Bailey, East, and Harris South. That was most 

likely because of different management practices such as fertilization and tillage, as all of these 

fields were located in the same study site, had the same soil map unit (Table 1), and were 

cropped with corn in 2017 (Table 3). The correlation patterns for pH in Cleo differed from those 
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in Thackery. This was likely because the dominant soil unit in Thackery was Swygert silty clay 

loam, while in Cleo it was Milford silty clay loam. According to USDA official series 

descriptions, Swygert silty clay loam was somewhat poorly drained, while Milford silty clay 

loam had poorly drained and very poorly drained soil conditions. It is a well-known fact that 

moisture conditions of soils directly affect the light reflectance, which likely affected the 

correlations for these two fields. More specifically, wet soils absorb most light coming from the 

sun and do not give much reflectance for the satellite camera to sense. This lowers the statistical 

variation of spectral reflectance values, and thus decreases their correlations with soil 

parameters. 

In Home, the strongest correlations between pH and the spectral parameters occurred in 

June, when all but NIR and NDVI had R2 ḙ 0.30 (Figure 57).  Any other correlations had R2 Ò 

0.20.  In Keegan, the correlations between pH and the spectral parameters began in February and 

strengthened until April, when the strongest correlation (R2 ḙ 0.38) was with NIR (Figure 58). In 

May, there was no correlation. In June for all but NDVI, the correlation increased again to R2 ḙ 

0.33 to 0.40. A correlation between pH and NDVI occurred only in March at R2 ḙ 0.20. 

By far, the strongest pH correlations in IL were for Buess, Weber, and Keegan (Figures 

59, 60, and 58). The temporal correlation patterns in Buess and Weber were remarkably similar. 

This may have been because these fields were adjacent, had the same dominant soil unit (Milford 

silty clay loam) (Table 1), and both were partially cropped with soybean and corn (Table 3).  In 

Buess and Weber, there were many dramatic increases and decreases in the strengths of the pH 

correlations. Among the stronger correlations, the temporal patterns were characterized by four 

peaks: January, June, August, and November. The strongest correlations for all spectral 

parameters occurred in January. There was little to differentiate among the spectral parameters 
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except for NDVI, which had weaker correlations than did the spectral bands in January through 

March, and stronger correlations in April and November-December. In Weber, the correlations 

ranged from R2 ḙ 0.03 to 0.75 at the peaks (Figure 60). In Buess, the R2 ranged from 0.05 to 0.7 

(Figure 59). Through 2017 in both fields, the correlations between pH and NDVI were weaker 

than those with the spectral bands (Figures 59 and 60).  

The correlations with pH in Keegan (Figure 58) were somewhat weaker than in Buess 

and Weber, and their temporal patterns differed. The reason for this could be because Keegan 

was uniformly cropped with soybean, while Buess and Weber were cropped partially with 

soybean and corn. As a result, this likely caused differences in reflectance values and 

corresponding correlations. In Keegan, the correlations began in February, then strengthened 

through April. In May, there was no correlation between pH and the spectral data. In June, the 

correlations improved again, with R2 ḙ 0.33 to 0.4 except for NDVI. The correlation between pH 

and NDVI occurred only in March with R2 ḙ 0.2.  

North Carolina  

In Block 45 (Figure 61), there were no correlations between pH and the spectral 

parameters. In Blocks 6, 8, and 12 (Figures 62, 63, and 64), any correlations between pH and the 

spectral parameters were weak, with R2 Ò 0.23.  The CV values for pH for Block 6 was slightly 

higher than those for the other fields (Table 6). We hypothesized that this did not affect the 

correlation strength for pH in the NC fields. In Block 6, the strongest correlations were for NDVI 

in April 2016 (R2 ḙ 0.10), Green in September 2016 (R2 ḙ 0.20), and Red in June 2017 (R2 ḙ 

0.15). The patterns for the correlation between pH and the spectral parameters for 2016 

(soybean) and 2017 (corn) were dissimilar likely because of the different crops grown in those 
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years. This would have influenced the reflectance values of the spectral bands, likely affecting 

the strength of the corresponding correlations.  

In Block 8 (Figure 63), the patterns in 2016 and 2017 were similar, but the correlations in 

2016 tended to be somewhat stronger than in 2017, which meant that soybean-cropped year 

(Table 3) gave higher correlations than the corn-cropped year. In both years, the correlations 

between pH and the spectral parameters were low at the beginning of the year before first 

peaking in May, decreasing in June-July, then peaking again in September. We theorized that the 

correlation pattern for pH in Block 8 was related to the planting and harvesting dates in NC 

(Table 5). The dramatic changes in the correlations (Figure 63) in April and May occurred when 

the crops were likely planted, emerged, and continued growing. Another potential factor may 

have been spring tillage that bared the soil. Likewise, we also observed decreases in the 

correlations starting by October, which may have been related to harvest when the crop was 

removed, revealing crop residue, weeds, and bare soil (Table 5).  

In Block 12 (Figure 64), the 2016 correlations between pH and the spectral parameters 

were very poor and only slightly above the R2 ḙ 0.03 significance cutoff (Table 4). Only in June 

2016 were there slightly higher correlations, these for Blue and Red. In Block 12 in 2017, there 

were many fluctuations in the strengths of the correlations. The temporal correlation patterns for 

2016 (corn) differed from those in 2017 (soybean), again perhaps because different crops were 

grown in those years, which influences the reflectance values of spectral bands and the 

associated correlations. In addition, the 2016 correlations were relatively lower than the 2017 

correlations, echoing Block 8 when the stronger correlations were also with soybean.  

Although Blocks 6, 8, 12, and 45 were located in the same study site, the correlation 

patterns for pH in Blocks 6, 8, and 12 were different from those in Block 45. For Blocks 6 and 
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12, one reason may be because the dominant soil in Block 45 was Belhaven Muck, while in 

Blocks 6 and 12, it was Deloss fine sandy loam and Altavista fine sandy loam, respectively 

(Table 2). Despite the fact that Blocks 8 and 45 were in the same study site and had the same 

dominant soil unit, the correlation patterns for pH in these two fields were quite different. This 

may have been due to differences in management practices. In addition, the correlations patterns 

for pH and spectral parameters in NC were different from those in IL. That was most likely 

because the study sites and soils were different (Tables 1 and 2).  

The fields Buess, Keegan, Weber, and Block 8 had the highest correlations for pH within 

each of their respective study sites. This may have been because soybean was either partially or 

fully grown in these fields. However, in both IL and NC, there were other fields with soybean 

where the correlations were not particularly strong: Harris North and North in IL, and Block 45 

in NC.  

Summary and Conclusions 

There were weak to strong correlations between satellite spectral data and soil parameters 

in the fields located in IL and NC. In some cases, low variability in soil parameters likely caused 

weak correlations. For example, pH usually had the weakest correlations among the soil 

parameters. In almost all cases, pH had the lowest CV values compared to other soil parameters. 

Another interesting finding of this study was that high variability in soil parameters did not 

necessarily result in high correlations. Although the CV values for K were higher than those for 

SOM in all the IL fields, this did not necessarily result in higher correlations for K than SOM. 

Soil organic matter and HM had the highest correlations across the fields followed by P, K, and 

pH. An individual soil parameter typically gave similar correlation patterns across different 

fields with the same/ similar crop or soil map units. There were also cases where the correlations 
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patterns were surprisingly different for fields with the same crop and soil map unit. For these 

cases, we theorized that the correlations were affected by weather conditions and agronomic 

management. For instance, there was snow cover in IL between Nov. and Apr. (NOAA, 2019), 

which likely lessened any correlation. When there is a thick blanket of snow, it is unlikely that 

images of the surface provide any information regarding the soil below. However, snowmelt 

patterns might be indicative of underlying soil characteristics such as color. Rainfall, irrigation, 

and soil moisture likely affected the reflectance values of the spectral bands, and thus the 

correlations. We also thought that our results may have been affected by differences in tillage. It 

is a well-known fact that the roughness of the soil surface has a direct effect on light reflectance 

which is sensed by the satellite camera. Differences in tillage, e.g., conventional vs. minimal, 

present different views of the soil surface to the satellite sensor. Planting and harvesting dates 

likely would have had an effect on the correlations, because the light reflectance would have 

changed when plants started to grow, continued through the season, and were harvested. This 

caused mix reflectance of soil and crops until the crop completely covered the ground. Another 

factor which could have affected the correlations was plant stress, which affects reflectance, and 

potentially, the correlations. 

  



45 

 

References 

Agbu, P.A., D.J. Fehrenbacher, and I.J. Jansen. 1990. Soil Property Relationships with SPOT 

Satellite Digital Data in East Central Illinois. Soil Sci. Soc. Am. J. 54:807-812. 

doi:10.2136/sssaj1990.03615995005400030031x 

 

Ashley, M. D., and Rea, J., 1975, Seasonal vegetation differences from ERTS imagery. 

Photogrammetric Engineering and Remote Sensing, 41, 713-719. 

 

Bernstein, R. 1976. Digital Image Processing of Earth Observation Sensor Data. IBM J. Res. 

Dev.: Vol. 20: 40-57. doi: 10.1147/rd.201.0040. 

 

Blumhorst, M.R., J.B. Weber, and L.R. Swain. 1990. Efficacy of Selected Herbicides as 

Influenced by Soil Properties. Weed Tech. 4(2): 279ï283. Available at 

www.jstor.org/stable/3987073 (Verified 5 June 2019). 

 

Chen, F., D.E. Kissel, L.T. West, and W. Adkins. 2000. Field-Scale Mapping of Surface Soil 

Organic Carbon Using Remotely Sensed Imagery. Soil Sci. Soc. Am. J. 64(2): 746. doi: 

10.2136/sssaj2000.642746x. 

 

Collins, W. 1978. Remote sensing of crop type and maturity. Photogramm. Eng. Remote Sensing 

44(1): 43ï55. 

 

Daniel, K.W., N.K. Tripathi, K. Honda, and E. Apisit. 2004. Analysis of VNIR (400-1100 nm) 

spectral signatures for estimation of soil organic matter in tropical soils of Thailand. Int. 

J. Remote Sens. 25(3): 643ï652. doi: 10.1080/0143116031000139944. 

Edward M. Barnes, K. A. Sudduth, J. W. Hummel, S. M. Lesch, D. L. Corwin, C. Yang, C. S.T. 

Daughtry,  and W.C. Bausch. 2003. Remote- and Ground-Based Sensor Techniques to 

Map Soil Properties. Commun. Soil Sci. Plant Anal. (12): 619ï630. doi: 

https://doi.org/10.14358/PERS.69.6.619. 

Georgi, C., D. Spengler, S. Itzerott, and B. Kleinschmit. 2017. Automatic delineation algorithm 

for site-specific management zones based on satellite remote sensing data. Precis. Agric.: 

1ï24. doi: 10.1007/s11119-017-9549-y. 

 

Hardy, D.H., M.R. Tucker, and C.E. Stokes. 2014. Crop fertilization based on North Carolina 

soil tests. North Carolina Dep. of Agriculture and Consumer Services, Agronomic 

Division, Raleigh, NC. 

 

Huete, A.R., 1988. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 25:295ï309. 

doi.org/10.1016/0034-4257(88)90106-X 

 

Hurcom, S.J., and A.R. Harrison. 1998. The NDVI and spectral decomposition for semi-arid 

vegetation abundance estimation. Int. J. Remote Sens. 19(16): 3109ï3125. doi: 

10.1080/014311698214217. 

http://www.jstor.org/stable/3987073


46 

 

Gonese, J.U., and J.B. Weber. 1998. Herbicide Rate Recommendations: Soil Parameter 

Equations vs. Registered Rate Recommendations. Weed Tech. 12(2):235ï242. Available 

at JSTOR, www.jstor.org/stable/3988381. (Verified 5 June 2019) 

 

Moran, M.S., Y. Inoue, and E.M. Barnes. 1997. Opportunities and limitations for image-based 

remote sensing in precision crop management. Remote Sens. Environ. 61(3): 319ï346. 

doi: 10.1016/S0034-4257(97)00045-X. 

 

Missouri Agricultural Experiment Station. 2012. Recommended Chemical Soil Test Procedures 

for the North Central Region.  North Central Regional Research Publication No. 221 

(Revised). Missouri Agric. Exp. Stn. SB 1001. Columbia, MO. 

 

NOAA. National Weather Service Forecast Office: Central Illinois. (Verified 5 June 2019). 

https://w2.weather.gov/climate/xmacis.php?wfo=ilx 

 

Rifman, S.S.1973. Digital Rectification of ERTS Multispectral Imagery. Proc. Symp. on 

Significant Results Obtained from the Earth Resources Technology Satellite-1, vol. 1, 

section B, NASA SP-327, pp. 1131ï1142. 

 

Seelan, S.K., S. Laguette, G.M. Casady, and G.A. Seielstad. 2003. Remote sensing applications 

for precision agriculture: A learning community approach. Remote Sens. Environ. 88(1ï

2): 157ï169. doi: 10.1016/j.rse.2003.04.007. 

 

Sullivan, D.G., J.N. Shaw, and D. Rickman. 2005. IKONOS Imagery to Estimate Surface Soil 

Property Variability in Two Alabama Physiographies. Soil Sci. Soc. Am. J. 69(6): 1789. 

doi: 10.2136/sssaj2005.0071. 

 

Qi, J., A. Chehbouni, A.R. Huete, Y.H. Kerr, and S. Sorooshian. 1994. A modified soil adjusted 

vegetation index. Remote Sens. Environ. 48(2): 119ï126. doi: 10.1016/0034-

4257(94)90134-1. 

 

Varvel, G.E., M.R. Schlemmer, and J.S. Schepers. 1999. Relationship between Spectral Data 

from an Aerial Image and Soil Organic Matter and Phosphorus Levels. Precis. Agric. 

1(3): 291ï300. doi: 10.1023/A:1009973008521. 

 

Walkley, A. and I.A. Black. 1934. An examination of the Degtjareff method for determining 

organic carbon in soils: Effect of variations in digestion conditions and of inorganic soil 

constituents. Soil Sci. 63:251-263. 

 

Zhang, X., L. Shi, X. Jia, G. Seielstad, and C. Helgason. 2010. Zone mapping application for 

precision-farming: A decision support tool for variable rate application. Precis. Agric. 

11(2): 103ï114. doi: 10.1007/s11119-009-9130-4. 

 

  

http://www.jstor.org/stable/3988381
https://w2.weather.gov/climate/xmacis.php?wfo=ilx


47 

 

Chapter 3: Precision Agriculture Management Zone 

Delineation Using ISODATA Unsupervised 

Classification of Satellite Imagery 

 

Abstract 

Soil management zones (MZs) represent subfield regions of similar soils and production 

potential suitable for uniform management. The goal is to identify soil variations in the field and 

manage them efficiently using variable-rate technologies. Delineating site-specific MZs at a field 

level can be useful to manage spatial variability in soils. We sought to delineate MZs using 

multi-temporal multi-spectral satellite imagery and vegetation indices. The study was conducted 

on four fields in North Carolina. Spectral bands and vegetation indices from two years of 

monthly satellite imagery were stacked and analyzed together in ISODATA: Iterative Self-

Organizing Data Analysis Technique Algorithm. ISODATA is a statistical clustering algorithm 

that creates a well-defined classification that assigns each data point to a specific class. We 

examined several delineation strategies and our input (stacked imagery) for ISODATA varied 

among them.  For example, the ñAll Fieldsò delineation strategy used the entire two-year image 

stack; ñUniformò included images only from uniformly cropped fields; ñNDVIò and ñSAVIò 

used the ñUniformò image stack plus NDVI or SAVI maps; ñSoil Surveyò used USDA soil 

survey delineations; ñControlò used randomly divided fields. To evaluate MZ delineations, we 

calculated and compared means of soil parameters within MZs in a field. We also judged the 

agronomic impact of the differences in MZ soil-test means. The magnitude of the differences 

between the fertilizer rates that would be applied to the MZs based on zonal mean soil-test P2O5 

and K2O ranged from 5 to 51 lb acres-1. Based on NCDA&C guidelines, we considered 
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differences Ó 10 lb acre-1 to be agronomically important. Among the delineation strategies tested, 

ñAll Fieldsò captured soil variability best in almost all cases. The ñNDVIò and ñSAVIò had 

mostly the same delineation, meaning that their performances were either similar or same. Based 

solely on the numbers of mean separations captured, surprisingly, the ñControlò delineation 

strategy in one study field performed substantially better than all other strategies except ñAll 

Fieldsò. One important outcome of this study was that different soil parameters often had 

different optimal MZ numbers within the same field, indicating that each parameter 

warranted/needed its own separate delineation. However, in most cases, two MZs was the 

optimal followed by four, three, and five MZs. In cases where a particular number of MZs was 

not always the optimal, different delineations for different soil parameters could provide the 

grower flexibility and make agricultural farm management more precise and efficient. The 

results indicated that the approach based on satellite imagery and ISODATA can be helpful in 

delineating MZs at a field level for optimizing precision agriculture practices. 
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Introduction  

Managing agriculture fields on a whole-field basis has been used to treat agricultural 

fields homogenously and to calculate fertilizer and lime application requirements of a field 

(Flowers et al., 2005). Whereas the spatial variability of soils has been recognized for many 

years (Flowers et al., 2005). In precision agriculture (PA), this variability is characterized and 

used to guide intra-field site-specific management.  To quantify variability in soil-test properties 

at a field level, the current precision agriculture soil sampling techniques are grid-sampling and 

management zones (MZs) (Sullivan et al. 2005). 

An effective way of achieving an accurate assessment of the spatial variability of soil 

properties is through sampling soil on a dense georeferenced grid. However, doing so can be 

expensive due to sampling and analytical costs (Sullivan et al., 2005). In contrast, substantial 

precision agriculture research has centered on the use of MZs as a technique for soil sampling 

and variable-rate fertilizer applications (Chang et al., 2014). A MZ is a sub-area of a field that 

has similar characteristics of soil fertility, which means that a single rate of fertilizer is suitable 

to obtain the optimum efficacy (Vrindts et al., 2005). Delineation of MZs is important for 

defining soil variability at a field level. The MZs can be created by using a combination of data 

layers, for example, yield and soil maps, etc. (Franzen et al., 1999). Several studies have 

demonstrated that MZs can be used in place of grid soil sampling to manage agricultural fields 

with variable rate technologies. Sullivan et al. (2005) stated that the use of MZs over grid soil 

sampling for soil sampling purposes could decrease the number of soil samples. Zone fertility is 

typically assessed by taking a number of samples randomly within a zone, bulking them, and 

submitting a single sample per zone for testing.  This can decrease sampling and analytical costs 

substantially.  
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Since 1929, the beneficial use of aerial, and now satellite, imagery in agricultural crop 

management has been recognized (Seelan et al., 2003). Building MZs based only on satellite 

spectral data is dependent on the correlations of surface spectral reflectance with soil properties 

and crop characteristics (Moran et al., 1997). Agbu et al. (1990) stated that although it is not 

possible to evaluate soil profile features through satellite imagery, it is possible to analyze 

spectral characteristics of the earth surface features that may be indicative of top- and sub-soil 

conditions. In addition, Agbu et al. (1990) found significant correlations between some sub-soil 

properties and satellite spectral data. Chen et al. (2000) also investigated the statistical 

correlation between soil organic carbon (SOC) and image intensity values in the red, green, and 

blue bands with a logarithmic linear equation for a 115-ha field. They found a substantial 

correlation between SOC and spectral bands. They then concluded that the procedures for 

investigating the correlations were accurate enough to be used for precision agriculture 

applications at field scale. 

In many studies, soil chemical and physical properties have been used to create digital 

soil maps by using statistical clustering methods (Sullivan et al., 2005). Sullivan et al. (2005) 

stated that linear regression and clustering could be used to relate spectral data from satellite 

imagery to variability in surficial soil properties. They stated further that the utilization of high-

resolution remotely-sensed data might be the real potential of clustering methods for delineating 

MZs because light reflectance from the Earth surface is correlated with many soil attributes.  

Zhang et al. (2010) found a correlation (R2 ḙ0.4) between soil organic matter (SOM) and the soil 

reflectance in the near-infrared (NIR).Then they created MZs based on the NIR band of satellite 

imagery. Daniel et al. (2004) investigated the correlation between SOM content of sampled soils 

and the spectral responses at 960, 1100, and 520 nm by using multiple regression analyses and 
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polynomial modeling. The polynomial modeling approach was promising for modeling non-

photoactive soil nutrients. They then concluded that the procedures for investigating the 

correlations might form the foundation for integration of spectrometers and satellite sensors, 

aimed at digitally mapping non-vegetated fields (Daniel et al., 2004).  

The Iterative Self-Organizing Data Analysis Technique (ISODATA) is a statistical 

clustering algorithm that creates a well-defined classification of data points that assigns each data 

point to a specific class (Irvin et al., 1997). ISODATA has been widely used for classifying 

satellite images (Irvin et al., 1997). Recent studies have utilized statistical clustering algorithms 

to create soil maps based on soil physical and chemical properties, however the real potential of 

the clustering methods may be the use of remote sensing data (Sullivan et al., 2005). Because 

many studies including our own (Thesis Chapter 2) indicated that there is substantial correlation 

between soil properties and satellite imagery, ISODATA cluster analysis of high-resolution 

satellite imagery is a promising tool to delineate soil variability.  

Delineation of MZs is important for defining soil variability at a field level. The positive 

outcomes of PA are expected in two domains: optimization of profitability for agricultural 

production and the protection of the environment (Zhang et al., 2002). These two benefits are 

accomplished mainly by avoiding over and underuse of nutrients, lime, herbicides, and 

pesticides. The importance of PA has been recognized by farmer and farm managers because it 

can be quite efficient to manage within-field variability on a site-specific basis rather than the 

traditional whole-field approach (Li et al., 2008).   

We sought to delineate MZs using cluster analysis with the only input being time-series 

satellite spectral data. We used multi-temporal and multi-spectral Planet Labs, Inc. satellite 

imagery as input for ISODATA cluster analysis to delineate MZs. Particularly, we evaluated the 
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potential of ISODATA cluster analysis of multi-temporal, multi-spectral satellite imagery to 

delineate MZ that capture the spatial variability of plow-layer soil parameters for different soils.   

Materials & Methods   

Study Sites 

The study was conducted on four fields in North Carolina. The site was located in 

Beaufort, NC. The fields ranged in size from 530.1 to 624.9 ac and were characterized by a 

surface with high organic matter or loamy soil texture (Table 2). The drained fields had 

originally been forests and swamps. Natural drainage conditions in the fields ranged from poor to 

very poor. To get rid of excess water, 1.61 km-(mile)-long ditches had been dug approximately 

every 100 m to create fields known locally as ñcutsò, with each cut consisting of ~16.3 ha (40 

ac). Frequently grown crops included wheat, corn, and soybean in the fields. We studied only 

corn and soybean. 

Soil Sampling and Analyses 

Grid soil samples had been collected by the grower. Three of the fields (Blocks 6, 12, and 

8) had 144 georeferenced soil sampling sites on a roughly 130-m triangular grid.  The fourth 

field, Block 45, had 189 soil grid sampling sites with ~100 m between them. Soils were analyzed 

by the NC Dept. of Agriculture and Consumer Services (NCDA&CS) Agronomic Division Soil 

Test Section laboratory for routine fertility and chemical properties. (Hardy et al., 2014): 

Mehlich 3 (Mehlich, 1984a): P, K, Ca, Mg, S, Cu, Mn, Zn, Na; cation exchange capacity and 

base saturation; pH/acidity/lime requirement (Mehlich et al., 1976); soil class (mineral, mineral-

organic, organic); sieved weight-to-volume; and humic matter (HM; Mehlich, 1984b). Humic 

matter as determined by the NCDA&CS method is strongly correlated with soil organic matter 
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(Blumhorst et al., 1990; Gonese and Weber, 1998). Herein we discuss only P, K, Ca, Mg, S, pH, 

CEC, base saturation, and humic matter (HM). Results for P, K, and S were reported using the 

NCDA&CS fertility index system (Table 8), which provides a relative scale of actual soil-test 

levels. Table 8 relates these index values to general nutrient availability, indicates the likelihood 

and magnitude of crop response to fertilization, and provides multipliers for converting the 

indices to mg kg-1. Our primary focus was soil humic matter (HM), P, K, and pH. 

Satellite Imagery and Data Preparation for Analysis  

Satellite imagery was provided courtesy of Planet Labs, Inc. (hereafter, ñPlanetò), a 

commercial satellite imagery provider. Sensor-calibrated multispectral images were taken by 

sensors on two different satellites: RapidEye and Planetscope. Orthorectified, Surface 

Reflectance, Radiance, and Basic imagery types were available on the website of Planet. In our 

study, we used the Planetscope Ortho scene product and the RapidEye Ortho Tile product. 

Because cloud-free images were not available for the entire years of 2016 and 2017 from either 

satellite individually, we used images from both satellites.  

Planetscope orthorectified (Ortho) imagery refers to images that are geometrically 

corrected for topographic relief, lens distortion, and camera tilt. Orthorectified images can be 

used to measure true distances since they are relatively accurate localized representation of the 

Earth`s surface. Planetscope Ortho images had 3-m ground resolution or pixel size and four 

spectral bands: blue (455ï515 nm), green (500ï590 nm), red (590ï670 nm), and NIR (780ï860 

nm). The Planetscope Ortho scenes were in GeoTIFF image format. The product orientation was 

map north up and product framing was scene based. The dimensions of the downloaded image 

scenes were approximately 25-by-7 km, with some variability by satellite altitude. The image bit 

depth was 16, which is the number of bits used to express the color of a single pixel in a 
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bitmapped image. Geometric corrections had been done using sensor telemetry and a sensor 

model for sensor-related effects. Atmospheric corrections had been done using 6SV2.1 radiative 

transfer code. The horizontal datum was WGS84 and the map projection was UTM. The 

resampling kernel was cubic convolution, which is an interpolation technique used to correct 

spatial distortions  (Rifman, 1973 and Bernstein, 1976). 

The RapidEye Ortho Tile product refers to the images that were orthorectified as 25-by-

25 km tiles. This particular product was designed for a wide variety of applications which require 

imagery with an accurate geolocation and cartographic projection. The imagery had been 

processed to get rid of geographic distortions and could be used for many cartographic purposes. 

The RapidEye images had 5-m ground resolution or pixel size and five bands: blue (440ï510 

nm), green (520ï590 nm), red (630ï685 nm), red edge (690ï730 nm), and near-infrared (NIR: 

760 ï 850 nm). The RapidEye Ortho Tile scenes were in GeoTIFF image format. The product 

orientation was map north up and product framing was based on a worldwide, fixed UTM grid 

system. The bit depth of the images was 16, which is the number of bits used to express the color 

of a single pixel in a bitmapped image. Geometric corrections had been done using sensor 

telemetry and a sensor model for sensor-related effects. Bands had been co-registered and 

spacecraft-related effects corrected using attitude telemetry and best available ephemeris data. 

Orthorectification had been conducted using ground control points and fine digital elevation 

models (30 m to 90 m posting). Atmospheric corrections had been done using 6SV2.1 radiative 

transfer code. The horizontal datum was WGS84 and the map projection was UTM. The 

resampling kernel was cubic convolution. 

The sequential steps for delineating MZs at a field level are shown in Figure 3. We chose 

images at approximately monthly intervals for 2016 and 2017. The purpose of analyzing time-
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series stacked spectral bands was to capture the changes in crop growth and soil surface over 

time. Our goal was to choose imagery that displayed the target fields with a range of cover 

including: a crop at several stages of development; bare ground or crop residue; cover crops; 

snow cover; etc. When acquiring satellite images, we were cautious to pick cloud-free images, 

which is especially challenging in rainy regions (Georgi et al., 2017). To pick cloud-free images, 

we always kept the cloud cover slider in Planet`s user interface to the least cloud-cover option (0 

to 1%). In three months (Table 9), we were unable to find appropriately cloud-free scenes. It was 

important not to use the images with cloud cover because of the fact that cloud cover could affect 

the delineation results and would not reflect what was on the ground. That is why we had to 

eliminate three images from 2016. 

Because the study areas were quite large, more than one scene was always needed for full 

coverage. In ArcMap 10.6.1 (ESRI, Redlands, CA), scenes were mosaicked together (Figures 3 

and 4) and clipped to the full extent of each study area, a rectangle encompassing all fields. In 

ArcMap these steps were done using Mosaic to New Raster and Clip.  Subsequently, the 

resultant images for each month were split into their individual spectral bands. This was done by 

double clicking the whole image in the add data dialog box in ArcMap, which made it possible to 

access the individual spectral bands of the whole image. After doing this, users can add the 

individual bands into the table of contents in ArcMap and analyze them easily. Before stacking 

images to create time-series satellite data, we had to adjust the spatial resolution of Planetscope 

images (3-m ground resolution) to 5-m using the Resample tool in ArcMap. Resampling was 

done because the ground resolutions of Planetscope and Rapideye images were different. After 

resampling the Planetscope images, we overlaid the resampled Planetscope images with the 

Rapideye images using Snap Raster in ArcMap (Environment Setting). Next, the individual 
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bands of several months` images were composited to form a single ñimage stackò using 

Composite Bands in ArcMap. The resultant stack was a multidimensional attribute space that 

contained all the spectral information from the months of 2016 and 2017. Subsequently, the 

ñimage stackôô was clipped to the extent of each study field by using the Area of Interest and 

Subset tools in ERDAS IMAGINE 2018 (Hexagon Geospatial, Madison, AL). A 6-m buffer 

inside the field boundary was then trimmed to eliminate interferences coming from the areas 

close to the edges of fields by using Subset tool in ERDAS IMAGINE 2018.  

Vegetation Indices: NDVI and SAVI 

Two spectral vegetation indices, the Normalized Difference Vegetation Index (NDVI; 

Ashley and Rea, 1975) and the Soil Adjusted Vegetation Index (SAVI; Huete, 1988) were 

calculated to describe dynamic soil-vegetation relations from remotely sensed data. The NDVI is 

written in the form:  

NDVI = (ɚNIR ï ɚred) / (ɚNIR + ɚred) 

where ɚNIR is the reflectance value of the near-infrared and ɚred is that of the red. Vegetation 

naturally has a high NIR reflectance (due to scattering by leaf mesophyll cells) and low red 

reflectance (due to absorption by chlorophyll pigments). The NDVI for healthy, full-canopy 

vegetation will hence tend toward the limit, one. By contrast, clouds, water, and snow have a 

larger red reflectance than NIR reflectance, and these features thus yield negative NDVI values. 

Rock and bare soil areas have similar reflectance in the two bands and result in vegetation 

indices near zero (Hurcom and Harrison, 1998). SAVI was intended to minimize soil influence 

on vegetation spectra by including in the numerator and denominator of the NDVI a constant, L, 

a canopy background adjustment factor which varies depending on the stage of vegetation and 

the soil background (Qi et al. 1994). The SAVI was calculated as:  
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To calculate SAVI, ñLò was set to 0.5, a standard value that requires no prior knowledge (Qi et 

al. 1994). For the months of 2016 and 2017 images, these vegetation indices were created as 

raster maps that were included as additional bands in the composite image stack.   

Management Zone Delineation and ISODATA  

The Iterative Self-Organizing Data Analysis Technique (ISODATA) is a statistical 

clustering algorithm that creates a well-defined classification of data points that assigns each data 

point to a specific class (Irvin et al., 1997). Fraisse et al. (2001) reported that ISODATA is 

advantageous relative to other clustering/classification algorithms because it is fast and easy to 

use readily automated. Furthermore, it allows the use of additional input layers that might be 

significant for characterizing the variability seen in the field. To perform ISODATA, the user has 

to define the number of classes (clusters) (Dhodhi et al., 1999).  

Different clusters are characterized as different colors to be distinguished in maps and 

they might be the potential MZs. ISODATA has been widely used for classifying satellite images 

(Irvin et al., 1997). We used the ISODATA in Erdas Imagine 2018. In the present study, the 

input data was the stacked images described above. In terms of satellite remote sensing data, 

what makes our project unique was that we analyzed time-series data as we had one image per 

month for 2016 and 2017. 

The algorithm was run four times for dividing the input layer into two, three, four, and 

five classes. Different number of classes were defined because the ISODATA algorithm does not 

define the optimum number of classes and statistical evaluation was required to determine the 

optimum number of classes (Flowers et al. 2005). We used the default settings, 20 and 10 for 
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minimum class size and sample interval, respectively. After running ISODATA in ERDAS, the 

results were classified image layers (composed of pixels), with the classes mapped as potential 

MZs. To smooth zone boundaries and eliminate small groups of pixels of one class that fell 

within another class with a larger number of pixels, Boundary Clean and Majority Filter tools 

were applied in ArcMap. These processes were carried out to meld tiny areas of classified pixels 

that were close to larger areas of the same class, or within larger areas of different classes, in 

order to create a single continuous class zone. As a result, agricultural farm management would 

be eased, as it may not be possible or desirable to manage very small MZs in the field depending 

on grower preferences and on the capabilities of a growerôs variable-rate fertilizer/lime 

application equipment. For display, different classes were characterized as different colors to be 

distinguished in maps and illustrate the potential MZs.  

We studied and compared six different delineation strategies (Table 10). For each study 

field, we produced an image stack containing the spectral bands of the different months of 2016 

and 2017. This was the ñAll Imagesò delineation strategy (Table 10). In some images, some 

fields were not cropped uniformly, meaning some parts of a field were occupied by one crop 

while the rest was empty. We thought that including non-uniformly cropped images might result 

in undesirable MZ delineations. Therefore, we picked only uniformly-cropped images to stack. 

This was the ñUniformò delineation strategy (Table 10). We also created the image stack 

comprising only uniformly cropped fields plus the corresponding Normalized Difference 

Vegetation Index (NDVI) maps and named it as ñNDVIò delineation strategy.  Additionally, the 

image stack comprising only uniformly cropped fields plus the corresponding Soil Adjusted 

Vegetation Index (SAVI) maps was created and named the ñSAVIò delineation strategy (Table 

10).  We also compared our zone delineations with a control consisting of randomly created 
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zones. For the ñControl Strategyò, study fields were divided into a specified number of regions 

using Subdivide Polygon in ArcGIS Pro. A degree of randomness was incorporated by using a 

random subdivision angle. Each field was divided into two, three, four, or five sub-regions. 

Finally, we compared our delineations with the SSURGO soil map unit polygons (Soil Survey 

Staff, 2019), our so-called ñSoil Surveyò strategy. 

Performance Evaluation 

Mean values for the soil properties (HM, P, K, pH, CEC, base saturation, Ca, Mg, and S) 

were calculated for corresponding MZs in all study areas for the different delineation strategies. 

One purpose of MZ delineation is/was to increase across-MZ variation in soil properties while 

decreasing the variation within MZs. The extent to which a delineation achieved this was 

assessed in part via ANOVA. This analysis was carried out to see the variation for mean values 

of soil parameters across and within different MZs in each field for the different delineation 

strategies.  

The performance evaluation process included several steps. The first was to convert 

classified images of delineation results into vector layer polygons using Raster to Polygon in 

ArcMap. Then, the resultant polygon layer was dissolved according to the actual number of MZs 

by Dissolve in ArcMap. Next, the MZ number was linked to soil points by Spatial Join in 

ArcMap. Spatial Join in ArcMap 10.6 was able to join MZ polygon layer and soil point layer 

based on the location of the features in these layers by appending the attributes of one layer to 

another. The outcome of Spatial Join was a soil point layer with the matching MZ number for 

each soil sampling point. This layer`s attribute table was converted into an Excel sheet by Table 

to Excel in ArcMap. Resultant Excel sheets were then transferred to SAS® 9.4 (SAS Institute, 

Cary, NC) to conduct PROC MEANS and PROC GLM. These SAS procedures helped us to 
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calculate mean values of soil parameters within each MZ and to compare MZ means. Where 

there were statistically significant differences (p < 0.05), individual soil parameter means within 

each MZ were separated by using a Tukey test (Oldfield et al., 2018).  

To determine the optimum delineation strategy for the soil parameters studied, we used 

three different criteria. The first criterion was to determine the total number of statistically 

different zones for each soil parameter within each MZ delineation. In the present case, this was 

done simply by counting the number of unique mean separation letters. These results were then 

tabulated for comparison.  Second, for each parameter within a delineation strategy, we 

determined the minimum number of zones needed to capture the total number of statistically 

significantly different MZs.  In other words: when dividing the field into a greater number of 

MZs did not increase the number of statistically distinct MZs. The third criterion was a judgment 

as to whether any particular mean separation was agronomically important, i.e., large enough to 

warrant/justify differential management. For P and K, these judgements were made, in part, with 

reference to the NCDA&CS soil test index system (Table 8), as well as their equations used to 

calculate fertilizer rate recommendations (Hardy et al., 2014). We considered whether the 

maximum difference in recommended rates between zones within a delineation was likely to 

result in quantifiable crop response. We also considered whether these differences were within 

the capabilities of current variable-rate spreaders to apply solid material accurately and precisely.  

Current equipment typically has the capability of applying a target rate plus or minus 10% (Dr. 

Gary Roberson, personal communication). Finally, we considered the fact that NCDA&CS 

fertilizer recommendations are rounded to the nearest 10 lb acre-1 (Hardy et al., 2014).  

Integrating these considerations, we considered a difference Ó 10 lb acre-1 to be agronomically 

important. 
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For S, the NCDA&CS recommends fertilization only when the S-Index is 25 or less, 

depending on soil class. The mean values of S-Index for all MZs within each delineation strategy 

(Table 11) were above 25. Therefore, all the S-Index values for different MZs were 

agronomically the same or similar, and did not require different fertilizater rates. Hereafter, we 

examined only P and K for agronomic difference. 

Results and Discussion 

NB: We did not discuss blocks in numerical order. Instead, we ordered them based on 

soils: Blocks 6 and 12 were the mineral soils, which are discussed first, while Blocks 8 and 45 

were the organic soils. 

Block 6 

The ñAll Fieldsò delineation strategy (Table 11) captured 16, 16, 19, and 18 mean 

separations for two, three, four, and five MZs, respectively (Table 12). The delineation maps are 

shown in Figures 65 to 68. There were similarities in the delineation patterns for the ñAll Fieldsò 

sampling strategy. The total number of means separations (16) was the same when Block 6 was 

divided into two or three MZs. This increased by ~20% when there were four or five MZ. The 

two-MZ delineation for the ñAll Fieldsò strategy captured mean separations for all soil 

parameters except pH (Table 12). Potassium, Ca, Mg, HM, and BS had the same total number 

(two) of mean separations for two, three, four, and five MZ delineations (Table 12), thus the two-

zone option was statistically optimal. Phosphorus, S, and CEC had one additional mean 

separation in the four- and/or five-MZ delineations compared to the two- and three-MZ-

delineations, an indication that four MZs was statistically optimal. We then judged the 

agronomic significance (Table 8) of the means separations for P and K within the ñAll Fieldsò 
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delineation strategy. For corn, the maximum difference in recommended fertilizer P rates among 

the three MZs was about 30 lb acre-1 P2O5, while that between the two MZs for K was about 29 

lb acre-1 K2O. The magnitudes of these differences were within spreader capabilities and would 

likely produce a differential crop response. 

The ñUniformò delineation strategy (Table 11) captured 6, 4, 12, and 6 mean separations 

for two, three, four, and five MZs, respectively (Table 13). These numbers were 37 to 70% lower 

compared to the ñAll Fieldsò delineation strategy for all MZ delineations (Tables 12 and 13). The 

delineation maps are shown in Figures 69 to 72. The two MZ delineation for the ñUniformò 

delineation strategy captured mean separations only for K, Ca, and Mg (Table 13). For HM and 

pH, there was no mean separation captured for any MZ delineation in the ñUniformò strategy 

(Table 13). For P, S, and CEC, there was no mean separation captured for the two-, three-, and 

five-MZ delineations, while the four-MZ delineation captured only two different mean 

separations for each of these soil parameters (Table 13), making the four MZs optimal. For both 

K and Ca, only two mean separations were captured irrespective of the number of MZs (Table 

13), thus their optimal number was two MZ. For Mg, the only mean separation captured was in 

the two-MZ delineation (Table 13). For BS, the only mean separations were in the four and five 

MZ delineations, both with two (Table 13). For P with four MZs, the difference between the 

maximum and minimum index values amounted to a difference in recommendations for corn of 

only about 14 lb acre-1 P2O5, while for K with two MZ this difference was about 11 lb acre-1 

K2O. Within the capabilities of VRT spreaders, these differences were likely to produce a small 

differential response. 

The ñNDVIò delineation strategy (Table 11) captured 4, 2, 8, and 12 mean separations for 

two, three, four, and five MZs, respectively (Table 14). For two, three, and four MZs, these 
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numbers of mean separations were lower compared to both the ñAll Fieldsò and ñUniformò 

delineation strategies (Table 14). With the five-MZ delineation, the NDVI strategy yielded 12 

mean separations compared to 6 and 18 for the ñUniformò and ñAll Fieldsò strategies, 

respectively. The delineation maps are shown in Figures 73 to 76. The two-MZ delineation of the 

ñNDVIò strategy captured mean separation only for K and Mg (Table 14). For Ca and pH, no 

mean separation was captured for any MZ delineation. For HM, there was no mean separation 

captured in two and three MZ delineations, while the four- and five-MZ delineations both 

captured two mean separations. For P and S, mean separations were captured only in the five-

MZ delineation, both with two separations. For K, two mean separations were captured whatever 

the number of MZs, thus its optimal number was two MZ. For Mg, there were two mean 

separations in two- and five-MZs, while there were not any mean separations in three- and four-

MZs. For CEC, both four and five MZ delineations captured two mean separations. For BS, 

mean separations were captured only in the four-MZ delineation, which had only two mean 

separations. For P, the maximum difference in fertilizer recommendations between zones 

amounted to about 18 lb acre-1 P2O5, while for K that difference amounted to about 11 lb acre-1 

K2O.  Within the capabilities of current spreaders, the P differential would likely be adequate to 

result in differential response, while K was marginal in that regard. 

The ñSoil Surveyò delineation strategy (Table 15) for Block 6 comprised its four USDA-

NRCS Soil Survey map units (Figure 77). The ñSoil Surveyò delineation was quite different 

from the maps of other delineation strategies. A total of eight mean separations were captured by 

the ñSoil Surveyò delineation (Table 15). Compared to delineations with the same number of 

MZs (four), the eight mean separations captured by the ñSoil Surveyò delineation was 56 to 67% 

lower than for the ñAll Fieldsò and ñUniformò delineation strategies, while it was the same as the 
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number for the ñNDVIò delineation strategy (Table 15). For HM, P, K, and S, two mean 

separations were captured, while there were no mean separations for Mg, Ca, pH, CEC, and BS 

(Table 15). The highest and lowest P zone means both fell in the NCDA&CS ñmediumò index 

category (Table 8). The difference in P-fertilizer rate recommendations between these means was 

about 51 lb acre-1 P2O5. Like P, the two MZ K means also fell into the ñmediumò category, with 

a difference in fertilizer recommendations of about 47 lb acre-1 K2O.  These differences were 

well within equipment capabilities and likely to provoke a differential response. 

The ñControlò delineation strategy (Table 11) captured 14, 18, 18, and 10 mean 

separations for two, three, four, and five MZs, respectively (Table 16). The random subdivisions 

are shown in Figures 78 to 81. Except for the five-MZ delineation, the number of mean 

separations was very similar to those in the ñAll Fieldsò strategy (Table 16). The five-MZ 

delineation for the ñAll Fieldsò strategy captured more than twice the number of mean 

separations compared to that of ñControlò. The two-MZ delineation for the ñControlò strategy 

captured mean separations for all soil parameters except Ca and pH (Table 16). However, the 

two-MZ delineation was optimal only for K and Mg: there were only two mean separations 

irrespective of the number of MZs. For HM, P, and S, the greatest number of mean separations, 

three, was captured by the three-MZ delineation. For Ca, the maximum number of mean 

separations was two, achieved first with the four-MZ delineation. For pH, the maximum number 

of mean separations, two, was captured by the three- and five-MZ delineations, thus the three-

MZ delineation was optimal. For CEC, the maximum number of mean separations was three, 

which were captured by the three- and four-MZ delineations, thus three MZs were optimal. For 

BS with the ñControlò strategy, the maximum number of mean separations, two, was captured by 

the two-, four-, and five-MZ delineations, making two the optimal number. For P with the 



65 

 

optimal three-MZ delineation, the difference in fertilizer rates between the minimum and 

maximum MZ means amounted to about 26 lb acre-1 P2O5. For K with two MZ, this difference 

corresponded to about 22 lb acre-1 K2O. We considered both of these differences to be 

agronomically important. 

Recall that the ñControlò delineation strategy incorporated a degree of randomness by 

using a random delineation angle (Figures 78-81). Based solely on the numbers of mean 

separations captured, surprisingly, the ñControlò delineation strategy in Block 6 performed 

substantially better than all other strategies except ñAll Fieldsò.  

Block 12 

The ñAll Fieldsò delineation strategy (Table 10) captured 10, 8, 12, and 21 mean 

separations (Table 11) for two, three, four, and five MZs, respectively (Table 17). The 

delineation maps are shown in Figures 82 to 85. There were similarities in the delineation 

patterns for the ñAll Fieldsò sampling strategy. The two-MZ delineation for the ñAll Fieldsò 

strategy captured mean separations for HM, K, S, pH, and CEC, while there was no mean 

separation captured for Ca, Mg, and BS (Table 17). Potassium and S had the same total number 

(two) of mean separations for two, three, four, and five MZ delineations (Table 17), thus their 

optimal number was two MZs. For P, Ca, and BS, mean separations were captured only in the 

five-MZ delineation, with only two mean separations. Humic matter had one additional mean 

separation for a total of three in the five-MZ delineation compared to the two-, three-, and four-

MZ delineations, which had only two separations, an indication that five MZs was optimal. For 

Mg, mean separations were captured only in the four- and five-MZ delineations, both with two, 

making the four MZs optimal. For pH, there was no mean separation captured in three MZ 

delineations, while the two-, four- and five-MZ delineations captured two mean separations, 
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making the two MZs optimal. Compared to the two-, three-, and four-MZ-delineations which had 

two separations, CEC had two additional separations in the five-MZ delineation, an indication 

that five MZs was statistically optimal. We then judged the agronomic significance (Table 8) of 

the mean separations for P and K within the ñAll Fieldsò delineation strategy. For corn, the 

maximum difference in recommended fertilizer P rates among the five MZs was about 24 lb 

acre-1 P2O5, while that between the two MZs for K was about 13 lb acre-1 K2O. We judged the P 

difference agronomically important and K marginal in that regard. 

The ñUniformò and ñNDVIdò delineation strategies (Table 10) both captured the same 

number of mean separations (Table 11): 8, 10, 17, and 18 for two, three, four, and five MZs, 

respectively (Tables 18 and 19). Because the results were the same for these two MZ delineation 

strategies, we only discuss the ñUniformò delineation strategy. The reason why these two 

strategies output the same mean separation results was that adding the NDVI layers onto the 

uniform images did not affect delineation results. We hypothesized that the delineation results 

for the two were the same because the NDVI layers were based on the same data used for 

creating the input for the ñUniformò strategy. As a result, the ISODATA clustering analysis gave 

the same results for the input data of these two strategies for Block 12. That is why the mean 

separations (Table 11) were the same. The number of mean separations captured by the 

ñUniformò and ñNDVIdò delineation strategies was similar compared to the ñAll Fieldsò 

delineation strategy for all MZ delineations (Table 11). The delineation maps are shown in 

Figures 86 to 93. The two-MZ delineation for the ñUniformò delineation strategy captured mean 

separations only for HM, K, pH, and CEC (Table 18). For Mg, there was no mean separation 

captured for any MZ delineation in the ñUniformò strategy (Table 18). For both K and pH, only 

two mean separations were captured irrespective of the number of MZs, thus their optimal 
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number was two MZ. For BS, the only mean separation captured was in the five-MZ delineation 

with two separations (Table 18). For Ca, the only mean separations were in the four and five MZ 

delineations, both with two, thus its optimal number was four MZ (Table 18). For S, there were 

mean separations in the three-, four-, and five-MZ delineations, all with two separations, making 

the three-MZ delineation optimal (Table 18). For P, the only mean separations were in the four 

and five MZ delineations, with three and two separations, respectively, thus the optimal number 

was four MZ. For both humic matter and CEC, delineation captured two, two, three, and three 

mean separations for two, three, four, and five MZs, respectively, making four MZ the optimal 

(Tables 18 and 19). For P with four MZs, the difference between the maximum and minimum 

index values amounted to a difference in recommendations for corn of about 25 lb acre-1 P2O5, 

while for K with five MZ this difference was about 15 lb acre-1 K2O. We considered both of 

these to be agronomically important. 

The ñSoil Surveyò delineation strategy (Table 15) for Block 12 comprised its four largest 

USDA-NRCS Soil Survey map units (Figure 94); two very small map units were excluded. The 

ñSoil Surveyò delineation was quite different from the maps of other delineation strategies. A 

total of 13 mean separations were captured by the ñSoil Surveyò delineation (Table 11). 

Compared to delineations with the same number of MZs (four), the 13 mean separations 

captured by the ñSoil Surveyò delineation were about 24% lower than for the ñUniformò and 

ñNDVIdò delineation strategies, while it was about 8% higher than the number for the ñAll 

Fieldsò delineation strategy (Table 11). For HM, three mean separations were captured (Table 

15). For P, S, Mg, pH, and CEC, two mean separations were captured, while there were no mean 

separations for K, Ca, and BS (Table 15). The highest and lowest P zone means both fell in the 
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NCDA&CS ñmediumò index category (Table 8). The difference in P-fertilizer rate 

recommendations between these means was about 22 lb acre-1 P2O5. 

The ñControlò delineation strategy (Table 10) captured 12, 13, 9, and 10 mean 

separations for two, three, four, and five MZs, respectively (Table 20). Except for the five-MZ 

delineation, the number of mean separations was similar to those in the ñAll Fieldsò strategy 

(Table 11). The five-MZ delineation for the ñAll Fieldsò strategy captured more than twice the 

number of mean separations compared to the ñControlò. The two-MZ delineation for the 

ñControlò strategy captured mean separations for all soil parameters except K, Ca, and BS (Table 

20). In addition, no mean separations were captured in any MZ for K, Ca, and BS (Table 20). For 

P and CEC, there were only two mean separations irrespective of the number of MZs, thus their 

optimal number was two MZ. For HM, the greatest number of mean separations, three, was 

captured by the three- and four-MZ delineation, making the three-MZ delineation optimum. For 

Mg, the maximum number of mean separations, two, was captured by the two-, three- and four-

MZ delineations, making two the optimal number. For S and pH, the maximum number of mean 

separations was two, which were captured by the two-, three- and five-MZ delineations, thus two 

MZs were optimal. For P, the difference in fertilizer rates between the minimum and maximum 

MZ means amounted to about 12 lb acre-1 P2O5. , which we considered of marginal agronomic 

importance. Based solely on the numbers of mean separations captured, all delineation strategies 

except for ñSoil Surveyò performed better than the ñControlò delineation in Block 12. 

Block 8 

The ñAll Fieldsò delineation strategy (Table 10) captured 10, 12, 15, and 17 mean 

separations for two, three, four, and five MZs, respectively (Tables 11 and 21). The delineation 

maps are shown in Figures 95 to 98. There were similarities in the delineation patterns for the 
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ñAll Fieldsò sampling strategy. The two-MZ delineation for the ñAll Fieldsò strategy captured 

mean separations for S, Mg, pH, and BS, while there was no mean separation captured for HM, 

P, Ca, and CEC (Table 21). In addition, there was no mean separation captured for HM and P for 

any MZ delineation. For pH and BS, there were two mean separations for all MZs (Table 21), 

thus their optimal number was two MZ. For K, there were two mean separations in two, three, 

and four MZs, while there were three mean separations in five MZ, making the five-MZ option 

the optimal for K (Table 21). Sulfur had one additional mean separation in the four- and five-MZ 

delineations compared to the two-, three-, and four-MZ-delineations, an indication that four MZs 

was statistically optimal. For Ca, the only mean separations were in the four and five MZ 

delineations, both with two. For Mg, the maximum number of mean separations was three, which 

were captured by the five-MZ delineation, while the two-, three-, and four-MZ delineations had 

only two mean separations, thus three MZs were optimal. For CEC, there were the same total 

number of (two) of mean separations for three-, four-, and five-MZ delineations, thus the three-

MZ option was optimal. We then judged the agronomic significance (Table 8) of the means 

separations for K within the ñAll Fieldsò delineation strategy. For corn, the maximum difference 

in recommended fertilizer K rates among the five MZs was about 30 lb acre-1 K2O, which we 

considered agronomically important.  

Both the ñUniformò and ñNDVIdò delineation strategies (Table 10) captured the same 

number of mean separations: 12, 16, 16, and 16 separations for two, three, four, and five MZs, 

respectively (Tables 11, 22, and 23). Again, because the results were the same for these two MZ 

delineation strategies, we discuss only the ñUniformò delineation strategy. The number of mean 

separations captured by the ñUniformò and ñNDVIdò delineation strategies were similar 

compared to the ñAll Fieldsò delineation strategy for all MZ delineations (Table 11). The 
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delineation maps are shown in Figures 99 to 106. The two-MZ delineation for the ñUniformò 

delineation strategy captured mean separations for all soil parameters except P, pH, and BS 

(Table 22). For S, Ca, and CEC, only two mean separations were captured irrespective of the 

number of MZs (Table 22), thus their optimal MZ number was two. For P, the only mean 

separation captured was in the five-MZ delineation. For pH and BS, the three-, four-, and five-

MZ delineations each captured two different mean separations for both of these soil parameters, 

making the three MZs optimal. For K, the two-, three-, and four-MZ delineations each captured 

only two mean separations while there was no mean separation for the five-MZ delineation, 

making the two MZs optimal. Humic matter had the same total number (two) of mean 

separations for two, three, and five MZ delineations, thus the two-zone option was optimal. For 

Mg, there were two mean separations for each of the two- and three-MZ delineations. There 

were four and three mean separations for the four- and five-MZ delineations, respectively, thus 

the four-zone option was statistically optimal (Table 22). For P with five MZs, the difference 

between the maximum and minimum index values amounted to a difference in recommendations 

for corn of only about 11 lb acre-1 P2O5, while for K with five MZ this difference was about 10 lb 

acre-1 K2O. Both of these were of marginal agronomic importance. 

The ñControlò delineation strategy (Table 10) captured 2, 2, 2, and 6 mean separations 

for two, three, four, and five MZs, respectively (Tables 11 and 24). The ñControlò delineation 

strategy performed poorly relative to the other delineation strategies except ñSoil Survey," which 

performed just as poorly. The two-, three-, and four-MZ delineations for the ñControlò strategy 

captured mean separations only for P (Table 24). However, the five-MZ delineation captured 

mean separations for HM and Mg as well as P. For all parameters, the maximum number of 

mean separations for the ñControlò delineation strategy was two. For P, only two mean 
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separations were captured irrespective of the number of MZs, thus the optimal MZ number was 

two. For P with the two-MZ delineation, the difference in fertilizer rates between the minimum 

and maximum MZ means amounted to about 5 lb acre-1 P2O5, agronomically unimportant.  In 

Block 8 based solely on the numbers of mean separations captured (Table 11), the ñControlò 

delineation strategy performed worse than all other strategies except ñSoil Surveyò which was 

equivalent to the ñControl.ò 

The ñSoil Surveyò delineation strategy (Table 15) for Block 8 comprised its four USDA-

NRCS Soil Survey map units (Figure 107). The ñSoil Surveyò delineation was quite different 

from the maps of other delineation strategies. A total of 12 mean separations were captured by 

the ñSoil Surveyò delineation (Table 11). Compared to delineations with the same number of 

MZs (four), the 12 mean separations captured by the ñSoil Surveyò delineation were about 80% 

fewer than for the ñUniform,ò ñNDVIdò, and ñAll Fieldsò delineations (Table 11). For K, Mg, S, 

pH, and CEC, two mean separations were captured, while there were no mean separations for 

HM, Ca, and BS (Table 15). For P, three mean separations were captured (Table 15). The highest 

and lowest P and K zone means fell in the NCDA&CS ñmediumò index category (Table 8). The 

difference in P-fertilizer rate recommendations between these means was about 23 lb acre-1 P2O5, 

while that for K was about 21 lb acre-1 K2O, both of which we considered agronomically 

important. 

Block 45 

The ñAll Fieldsò delineation strategy (Table 10) captured 8, 12, 13, and 12 mean 

separations for two, three, four, and five MZs, respectively (Table 11). The delineation maps are 

shown in Figures 108 to 111. There were similarities in the delineation patterns for the ñAll 

Fieldsò sampling strategy. The two-MZ delineation for the ñAll Fieldsò strategy captured mean 
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separations only for HM, P, Mg, and BS (Table 25). No mean separations were captured for Ca, 

pH, and CEC (Table 25) irrespective of the number of MZs. Humic matter, Mg, and BS had two 

mean separations regardless of the number of MZs, thus the two-MZ option was statistically 

optimal. Both K and S had two mean separations for three, four, and five MZ delineations, thus 

the three-zone MZ delineation was statistically optimal. Phosphorus had one additional mean 

separation in the four-MZ delineation compared to the two-, three-, and five-MZ delineations, an 

indication that four MZs was statistically optimal. Then, the agronomic significance (Table 8) of 

the means separations for P and K within the ñAll Fieldsò delineation strategy was judged. For 

corn, the maximum difference in recommended fertilizer P rates among the three MZs was about 

16 lb acre-1 P2O5, while that between the two MZs for K was about 19 lb acre-1 K2O, both 

agronomically important.  

The ñUniformò delineation strategy (Table 10) captured 6, 4, 4, and 10 mean separations 

for two, three, four, and five MZs, respectively (Table 11). These numbers were ~25 to 70% 

lower compared to the ñAll Fieldsò delineation strategy (Table 11). The delineation maps are 

shown in Figures 112 to 115. The two-MZ delineation for the ñUniformò delineation strategy 

captured mean separations only for HM, P, and BS (Table 26). For K, Ca, pH, and CEC, there 

was no mean separation captured irrespective of the number of MZs (Table 26). For Mg and S, 

there was no mean separation captured for the two-, three-, and four-MZ delineations, while five-

MZ delineation captured only two different mean separations for each of these soil parameters, 

making the five MZs optimal.  For both HM and P, only two mean separations were captured 

irrespective of the number of MZs, thus their optimal number was two MZs. Base saturation had 

the same total number (two) of mean separations for the two and five-MZ delineations, while 

there were no mean separations for three- and four- MZ delineations, making the optimal number 
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two MZs. For P with two MZs, the difference between the maximum and minimum index values 

amounted to a difference in recommendations for corn of only about 10 lb acre-1 P2O5, which we 

considered agronomically unimportant. 

The ñNDVIdò delineation strategy (Table 10) captured 8, 6, 10, and 8 mean separations 

for two, three, four, and five MZs, respectively (Table 11). For the two-MZ, these numbers of 

mean separations were the same as the numbers for ñAll Fieldsò delineation strategy, while the 

three-, four-, and five-MZs were ~33 to 50% less than those for the ñAll Fieldsò (Table 11). The 

delineation maps are shown in Figures 116 to 119. The two-MZ delineation of the ñNDVIdò 

strategy captured mean separation only for HM, P, Mg, and BS (Table 27). For Ca, pH, and 

CEC, no mean separation was captured for any MZ delineation (Table 27). For HM, there was 

no mean separation captured in the five-MZ delineation, while the two-, three-, and four-MZ 

delineations each captured two mean separations. Phosphorus had two mean separations 

whatever the number of MZs, thus its optimal number was two MZs. For K, mean separations 

were captured only in the three-MZ delineation, which had only two mean separations. For S, 

mean separations were captured only in the four- and five-MZ delineations, which both had only 

two mean separations, thus the optimum MZ number was four. Magnesium and BS both had two 

mean separations for two-, four-, and five-MZ delineations, thus their optimal number was two 

MZs. For P, the maximum difference in fertilizer recommendations between zones amounted to 

about 9 lb acre-1 P2O5, while for K that difference amounted to about 13 lb acre-1 K2O. Thus we 

considered the P difference not agronomically important, while that for K was. 

The ñSoil Surveyò delineation strategy (Table 15) for Block 45 comprised its two USDA-

NRCS Soil Survey map units (Figure 120). The ñSoil Surveyò delineation was quite different 

from the maps of other delineation strategies. A total of two mean separations were captured by 
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the ñSoil Surveyò delineation (Table 11). Compared to delineations with the same number of 

MZs (two), the two mean separations captured by the ñSoil Surveyò delineation was 67 to 75% 

lower than for the ñAll Fieldsò, ñUniformò, and ñNDVIdò delineation strategies (Table 11). The 

only mean separations captured were for S and Mg (Table 15).  

The ñControlò delineation strategy (Table 10) captured just two mean separations each 

for two, three, four, and five MZs (Table 11). The ñControlò delineation strategy performed very 

poorly relative to all the other delineation strategies except for ñSoil Surveyò. Compared to 

delineations with the same number of MZs (two), the two mean separations captured by the 

ñControlò delineation was the same as the ñSoil Surveyò delineation strategy (Table 11). Mean 

separations were captured only for S and Mg (Table 28). For S, only two mean separations were 

captured in all the MZs except for the four-MZ option (Table 28), which had none, thus the 

optimal number was two MZ. For Mg, the two mean separations were captured only in the four-

MZ delineation. Because there were no mean separations for P and K, uniform applications of P 

and K fertilizers would be recommended. 

Comparison of Fields 

In Block 6, the ñControlò delineation strategy (Table 16) for the two-, three-, four-, and 

five-MZ delineations captured, 14, 18, 18, and 10 mean separations, respectively (Table 11). 

Relative to the other delineation strategies, we found these numbers to be greater than might be 

expected for random field divisions.  While not so clear cut, there were similar results for the 

ñControlò strategy in Block 12.  In contrast, the performance of the ñControlò strategy in Blocks 

8 and 45 was much poorer. Thus, the ñControlò delineation performed substantially better on the 

mineral soils (Blocks 6 and 12) than on the organic ones (Blocks 8 and 45). 
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The relatively high performance of the ñControlò delineation strategy in Blocks 6 and 12 

can be explained in part by comparing summary statistics of soil parameters for the whole field. 

We calculated the coefficient of variation (CV) of the soil parameters for each block. The CV is 

the ratio of the standard deviation to the mean. It quantifies the amount of variability within a 

sample or population. The CV can be used to compare variability among different data 

irrespective of the magnitudes of the means and measurement units. For HM, P, Ca, BS, and 

CEC, a pattern emerged: within a soil parameter, the CVs in Blocks 6 and 12 were larger than 

the CVs for Blocks 8 and 45 (Table 6). We attributed the relatively high performance of the 

ñControlò for Blocks 6 and 12 to the high variability of the majority of soil parameters therein. 

Because the variation of soil parameters was high in Blocks 6 and 12, random subdivisions of the 

ñControlò in Block 6 had a greater chance of capturing mean separations than in Blocks 8 and 

45. As a result, the ñControlò delineation strategy performed well in Blocks 6 and 12 compared 

to Blocks 8 and 45. Despite the fact that the ñControlò performed well in Blocks 6 and 12, the 

performance of the ñControlò was not higher than the ñAll Fieldsò delineation strategy in these 

blocks (Table 11). Among all the study fields, Block 45 had the highest number of occurrences 

of no mean separations (Table 29), which were for Ca, pH, and CEC. The reason for that might 

be because the variability for these parameters in Block 45 was quite low. Especially, the CVs of 

CEC and Ca for Block 45 were much lower (Table 6) than those for other fields. As a result, 

sampling strategies for Block 45 did not capture any mean separations for Ca and CEC, while 

other fields tended to capture mean separations for both Ca and CEC (Table 29). For pH, the CV 

values were quite low among all the NC fields (Table 6), thus we did not expect to observe high 

performance for MZ delineation in any field. To summarize, it appears that differences in 
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variability of the soil parameters, as quantified by the CV, strongly influenced MZ delineation 

results in many cases. 

The patterns in the map figures for the ñUniformò and ñNDVIdò strategies were usually 

similar among all the fields with slight differences. The patterns in the delineation maps for ñAll 

Fieldsò were quite different from the patterns for the ñUniformò and ñNDVIdò. However, the 

ñAll Fieldsò delineation was somewhat similar to the ñControlò delineation in that both had 

straight lines bounding some MZs.  

In Table 29, we compiled the optimal numbers of MZs for the different fields and 

delineation strategies (Table 10). There were many cases where the optimal number of MZs 

differed across delineation strategies and fields (Table 29). For example, the CEC for Block 8 

had the same optimal number of MZs (three) for all the delineation strategies except for the 

ñControlò, while the CEC for Block 45 had no mean separations regardless of delineation 

strategy (Table 29). In addition, different soil parameters usually had different optimal numbers 

of MZs (Table 29). Furthermore, there was no common optimal number of MZs for any soil 

parameter for all the fields within the same delineation strategy (Table 29). However, we 

observed the same optimal MZ number for some soil parameters within the same field (Table 

29). For example, K and Mg had the same optimal MZ number (two) for all the delineation 

strategies (Table 10) in Block 6 (Table 29). Another case was for pH in Block 6, as pH had no 

mean separations and thus no optimal MZ number for all delineation strategies (Table 10) except 

for the ñControlò, where the optimal number was three (Table 29). In Block 6, K, Mg, pH, CEC, 

and BS had the same optimal numbers between the ñUniformò and ñNDVIdò delineation 

strategies (Table 29). In Block 8, K had the same optimal number (two) for all the delineation 

strategies except for the ñControlò (Table 29). Likewise, S and Ca had the same optimal number 



77 

 

(four) for all the delineation strategies except for the ñControlò (Table 29). Cation exchange 

capacity also had the same optimal number (three) for all the delineation strategies except for the 

ñControlò (Table 29). In Blocks 8 and 12 within all of the soil parameters, the optimal number of 

MZs were the same between the ñUniformò and ñNDVIdò delineations. In Block 45, the 

ñUniformò and ñNDVIdò delineation strategies had the same optimal MZ numbers for all soil 

parameters except K, S, and Mg (Table 29).  

The maximum difference in P and K fertilizer recommendations between zones tended to 

be higher for the ñAll Fieldsò and ñSoil Surveyò delineation strategy relative to other delineation 

strategies (Table 30). In Block 6, the ñSoil Surveyò had 51 lb acre-1 for P2O5 and 47 lb for K2O 

while these numbers for the ñAll Fieldsò were 30 and 29 lb acre-1, respectively (Table 30). For 

Block 6, the ñAll Fieldsò delineation had a higher maximum difference in fertilizer 

recommendations for the optimal MZs than those for the other delineation strategies except for 

ñSoil Surveyò (Table 30). To manage Block 6, the ñSoil Surveyò delineation map could be used 

to get the highest difference in fertilizer recommendations for P and K. In Block 8, the ñAll 

Fieldsò strategy had no agronomic difference for P2O5 and 29 lb acre-1 for K2O, while the 

ñUniformò and ñNDVIdò had the same values for P2O5 and for K2O, 11 and 1 lb acre-1, 

respectively. The ñSoil Surveyò delineation had 23 and 21 lb acre-1 for P2O5 and K2O, 

respectively, while the ñControlò had 5 lb acre-1 for P2O5 and no agronomic difference for K2O. 

To manage Block 8, the ñAll Fieldsò delineation could be used for managing K, and the ñSoil 

Surveyò delineation could be used for managing P. In Block 12, both ñUniformò and ñNDVIdò 

yielded the same values for the difference in fertilizer recommendations, 26 and 15 lb acre-1 for 

P2O5 and K2O, respectively (Table 30). These values were larger than those for any other 

delineation strategies for Block 12 (Table 30). Therefore, using either of these two strategies for 
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Block 12 would be optimal for farm management in terms of the agronomic importance of P and 

K. In Block 45, the difference in P2O5 and K2O amounts for the ñAll Fieldsò were 16 and 19 lb 

acre-1 (Table 30), respectively, and these values were the largest values among the delineation 

strategies (Table 10) in that block. Thus, using the ñAll Fieldsò delineation approach was optimal 

for managing P and K.   

In our study, we used the ISODATA unsupervised image classification algorithm as a 

tool to delineate soil property variability at a field scale. Our RS input for this tool varied among 

the delineation strategies. In almost all cases, the ñAll Fieldsò approach captured a higher 

number of mean separations than the other delineation strategies, which could be considered an 

indication of high performance for MZ delineation. The ñNDVIdò and ñUniformò delineation 

strategies mostly yielded the same number of mean separations. As stated before, to prepare the 

input product for the ñNDVIdò requires further effort compared to the ñUniformò. If the 

ñNDVIdò delineation performed similarly to the ñUniformò delineation strategy, one would not 

need to spend more time preparing the input for the ñNDVIdò. Another conclusion was that the 

ñNDVIdò and ñSAVIdò delineation strategies always performed the same (not shown). This may 

have been due to the similar mathematical formulas of NDVI and SAVI. As a result, we 

concluded that using either of these would be sufficient to delineate MZs if one decides to 

delineate a field with vegetation indices.  

One important outcome of this study was that different soil parameters often had different 

optimal MZ numbers within the same field, indicating that each parameter warranted/needed its 

own separate delineation. However, in most cases, two MZs was the optimal followed by four, 

three, and five MZs (Table 29). This could provide flexibility for managing different soil 

properties and make agricultural farm management more precise and efficient. As long as 
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appropriate variable rate technology is used, the number of MZs does not matter in terms of the 

practicality. In the future, there should be more research to extend this work as the need for 

precision agriculture is expanding. Considering the high cost of soil sampling and analysis, and 

the need for more efficient farm management, satellite spectral data shows promise as a tool to 

assess soil variability over large areas. 
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TABLES 

Table 1. Field name, soil map unit symbol, dominant soil, taxonomic name, and field size for the 

IL study fields. 

Field 
Map unit 

symbol 
Dominant soil Taxonomic name 

Field size 

(acre) 

Bailey 69A 
Milford silty clay 

loam 

Fine, mixed, superactive, 

mesic Typic Endoaquolls 
196.9 

Buess 69A 
Milford silty clay 

loam 

Fine, mixed, superactive, 

mesic Typic Endoaquolls 
115.9 

Cleo 69A 
Milford silty clay 

loam 

Fine, mixed, superactive, 

mesic Typic Endoaquolls 
145.1 

East 69A 
Milford silty clay 

loam 

Fine, mixed, superactive, 

mesic Typic Endoaquolls 
170.6 

Harris 

North 
69A 

Milford silty clay 

loam 

Fine, mixed, superactive, 

mesic Typic Endoaquolls 
176.2 

Harris 

South 
69A 

Milford silty clay 

loam 

Fine, mixed, superactive, 

mesic Typic Endoaquolls 
85.7 

Home 91A 
Swygert silty clay 

loam 

Fine, mixed, active, mesic 

Aquic Argiudolls 
110.9 

Keegan 69A 
Milford silty clay 

loam 

Fine, mixed, superactive, 

mesic Typic Endoaquolls 
76.3 

North 146A Elliott silt loam 
Fine, illitic, mesic Aquic 

Argiudolls 
129.2 

Thackery 91A 
Swygert silty clay 

loam 

Fine, mixed, active, mesic 

Aquic Argiudolls 
77.1 

Weber 69A 
Milford silty clay 

loam 

Fine, mixed, superactive, 

mesic Typic Endoaquolls 
117.3 
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Table 2. Field name, soil map unit symbol, dominant soil, taxonomic name, and field size for the 

NC study fields. 

Field 
Soil map 

unit symbol 
Dominant soil  Taxonomic name 

Field size 

(acre) 

Block 6 De 
Deloss fine 

sandy loam 

Fine-loamy, mixed, semiactive, 

thermic Typic Umbraquults 622.7 

Block 12 AaA 
Altavista fine 

sandy loam 

Fine-loamy, mixed, semiactive, 

thermic Aquic Hapludults 
530.1 

Block 8 BH Belhaven muck 
Loamy, mixed, dysic, thermic 

Terric Haplosaprists 
624.9 

Block 45 BH Belhaven muck 
Loamy, mixed, dysic, thermic 

Terric Haplosaprists 
620.1 
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Table 3. Fields by year and crop. óôãôô indicates which crop was grown in the corresponding 

year. 

  Crop 

State/field Year 

Corn  

(Zea mays L.) 

Soybean  

(Glycine max L.) Part soybean, part corn 

Illinois     

   Bailey 2017 ã   

   Buess 2017   ã 

   Cleo 2017 ã   

   East 2017 ã   

   Harris-N 2017  ã  

   Harris-S 2017 ã   

   Home 2017 ã   

   Keegan 2017  ã  

   North 2017  ã  

  Thackery 2017 ã   

   Weber 2017   ã 

     

North Carolina    

  Block 6 
2016  ã  

2017 ã   

  Block 12 
2016 ã   

2017  ã  

  Block 8 2016  ã  

 2017 ã   

  Block 45 
2016 ã   

2017  ã  
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Table 4. For each study field: threshold R2 above which all regressions were statistically 

significant (p Ò 0.05). 

 

 

  

IL fields  R2  NC fields R2  

Bailey 0.06 Block 6 0.03 

Buess 0.09 Block 12 0.03 

Cleo 0.06 Block 8 0.03 

East 0.06 Block 45 0.02 

Harris 

North  
0.06   

Harris 

South 
0.12   

Home 0.09   

Keegan 0.13   

North  0.08   

Thackery 0.13   

Weber 0.09   
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Table 5. Snow cover, planting and harvesting information for the study sites. 

Study 

site 
Crop 

ÀUsual Planting 

Dates (most 

active) 

Usual Harvesting 

Dates (most active) 
Snow Cover Period 

North 

Carolina 

Corn Apr 10 - Apr 25 Sep 10 - Oct 7 January, February, and 

March with average of 0.5 

in for each month Soybean May 20 - Jun 30 Nov 12 - Dec 3 

Illinois 

Corn Apr 30 - May 18 Oct 9 - Nov 3 
From November to April, 

ranging from 6.3 to 0.7 in 
Soybean May 15 - Jun 9 Oct 1 - Oct 19 

À Date information was taken from USDA Agricultural Handbook Number 628 (Usual Planting 

and Harvesting Dates for U.S. Field Crops). 
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Table 6. Mean, minimum (Min.), maximum (Max.), standard deviation (SD), and coefficient of 

variation (CV) for soil-test parameters for each NC field. 

  Field 

Soil-test parameter  Block 6 Block 12 Block 8 Block 45 

HMÀ, % Mean 7.51bÿ 5.46c 9.53a 9.54a 

Min. 1.31 1.25 2.84 5.85 

Max. 10.0 10.0 10.0 10.0 

SD 2.21 2.28 0.89 0.93 

CV (%) 29.6 41.7 9.23 9.75 

P, NCDA&CS index§ Mean 41.5c 54.4a 38.1d 48.7b 

Min. 22.0 35.0 24.0 33.0 

Max. 61.0 113.0 78.0 69.0 

SD 9.50 10.9 5.92 7.31 

CV (%) 22.8 20.0 15.4 15.0 

K, NCDA&CS index§ Mean 47.0a 44.6a 32.2b 33.6b 

Min. 23.0 24.0 15.0 19.0 

Max. 87.0 88.0 63.0 103.0 

SD 12.5 10.8 8.51 10.6 

CV (%) 26.6 24.3 26.3 31.6 

S, NCDA&CS index§ Mean 33.5c 49.0a 30.5d 42.0b 

Min. 20.0 31.0 21.0 29.0 

Max. 62.0 77.0 44.0 58.0 

SD 6.27 5.96 4.81 5.23 

CV (%) 18.8 12.2 15.8 12.4 

Ca, % of CEC Mean 63.1b 54.1c 64.8b 67.2a 

Min. 45.0 30.0 56.0 57.0 

Max. 91.0 75.0 88.0 81.0 

SD 7.53 7.82 4.48 3.93 

CV (%) 11.9 14.4 6.90 5.84 

Mg, % of CEC Mean 10.9b 8.92c 12.5a 10.5b 

Min. 4.00 4.00 5.00 6.00 

Max. 18.0 19.0 26.0 21.0 

SD 3.12 2.65 4.64 2.34 

CV (%) 28.9 29.5 37.4 22.3 

Soil pH Mean 5.26a 5.29a 5.08b 5.04b 

Min. 4.70 4.70 4.70 4.60 

Max. 7.00 6.00 6.60 6.00 

SD 0.34 0.25 0.24 0.25 

CV (%) 6.46 4.72 4.72 4.96 

CEC, cmolc kg-1 Mean 17.8c 9.82d 25.5b 34.7a 

Min. 8.30 5.40 16.6 28.6 

Max. 33.7 17.8 34.7 43.5 

SD 5.69 2.78 3.64 2.78 

CV (%) 32.0 28.3 14.3 8.02 

BS, % Mean 75.5b 65.4c 78.0a 78.2a 

Min. 55.0 39.0 67.0 70.0 

Max. 98.0 86.0 94.0 91.0 

SD 7.10 8.41 4.23 3.96 

CV (%) 9.39 12.8 5.43 5.06 

ÀHM, humic matter (Hardy et al., 2014), which has an analytical ceiling of 10%. Organic matter 

å 1.3 HM + 0.9 (Weber and Peter, 1982; Blumhorst et al., 1990; Gonese and Weber, 1998).  

ÿ Within a row, means followed by the same letter are not significantly different according to 

Tukey-Kramerôs honest significance difference test (p Ò 0.05).  

§ NC Dept. of Agriculture and Consumer Services soil test index (Table 7; Hardy et al., 2014). 

¶CEC, cation exchange capacity; BS, base saturation.  
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Table 7. Mean, minimum (Min.), maximum (Max.), standard deviation (SD), and coefficient of variation (CV) for soil-test parameters 

for each IL field. 

  Field 

Soil-test parameter  Bailey Buess Cleo East 
Harris 

North 

Harris 

South 
Home Keegan North Thackery Weber 

OM, % Mean 4.83 5.06 4.51 4.47 4.65 4.78 4.83 4.79 4.69 4.46 4.96 

Min. 3.3 3.6 2.6 2 3.6 3.7 3.2 3.7 3.4 3.2 3.8 

Max. 6.8 6.2 6 5.9 6.7 6.3 6.9 5.8 6.6 5.4 6.6 

SD 0.85 0.52 0.66 0.62 0.56 0.64 0.76 0.44 0.7 0.51 0.68 

CV (%) 17.6 10.3 14.6 13.9 12.0 13.4 15.7 9.2 14.9 11.4 13.7 

P, mg kg-1 Mean 29.5 47.6 50.4 52 38.1 32.5 63.1 36 55.5 14.1 37.5 

Min. 10 21 26 25 14 13 39 16 23 33 15 

Max. 98 91 100 96 72 77 104 93 127 88 76 

SD 17.9 15 19.2 15.9 13.1 14.6 12.5 18.9 21.4 14.1 13.1 

CV (%) 60.7 31.5 38.1 30.6 34.4 44.9 19.8 52.5 38.6 100.0 34.9 

K, mg kg-1 Mean 172.2 241 249.8 263.7 219.3 234.6 279.3 162.4 314.3 266 224.8 

Min. 111 141 149 180 141 147 204 102 192 225 135 

Max. 422 331 399 508 300 326 514 244 776 347 323 

SD 52.8 40.8 54.3 56.1 38.9 49.2 56.4 34.1 101.3 32.5 42.5 

CV (%) 30.7 16.9 21.7 21.3 17.7 21.0 20.2 21.0 32.2 12.2 18.9 

Ca, mg kg-1 Mean 2378.9 2634.8 2595.8 344.2 2276.1 2879.7 2740.9 2225.8 2431.5 2384.4 2537.5 

Min. 1500 1750 1550 1850 1600 1850 2000 1500 1850 1700 1650 

Max. 3450 3500 3550 3550 3050 4250 3600 3050 3250 2850 5050 

SD 125.4 365 483.8 344.2 324.2 614.6 390.3 413.1 363.7 270 674.3 

CV (%) 5.30 13.9 18.6 100.0 14.2 21.3 14.2 18.6 15.0 11.3 26.6 

Mg, mg kg-1 Mean 331.6 369 381.6 291.5 314.1 375 345.9 494.5 328 376.3 329.7 

Min. 115 150 125 150 150 175 175 310 180 175 195 

Max. 650 655 725 670 565 675 600 735 545 525 665 

SD 125.4 109.7 139.5 94 97.7 149.3 104.3 124.1 87.3 84.9 114.6 

CV (%) 37.8 29.7 36.6 32.2 31.1 39.8 30.2 25.1 26.6 22.6 34.8 

pH Mean 6.21 6 6.3 6.23 6.2 6.82 6.88 5.17 6.04 6.34 6.02 

Min. 5.3 5.4 5.5 5.4 5.6 5.9 6.4 4.8 5.5 5.5 5.3 

Max. 7 7.3 7.5 7.2 7 7.3 7.5 5.7 6.9 6.8 7.9 

SD 0.35 0.55 0.39 0.37 0.31 0.31 0.27 0.24 0.31 0.31 0.57 

CV (%) 5.60 9.20 6.20 5.90 5.00 4.50 3.90 4.60 5.10 4.90 9.50 

CECÀ, cmolc 

kg-1 

Mean 18.1 21.3 19.8 19 17.7 18.9 18 24.8 19.7 18.5 20.1 

Min. 11.3 12.6 11.9 13.8 12.3 12.7 13.3 20 14.8 14.3 13.2 

Max. 24.9 26.8 28 26.6 22.9 26.8 23.6 31 25.4 22.7 29.1 

SD 3.33 3.15 3.76 2.96 2.61 3.91 2.77 3.11 2.78 1.81 4.02 

CV (%) 18.4 14.8 19.0 15.6 14.7 20.7 15.4 12.5 14.1 9.8 20.0 

ÀCEC, cation exchange capacity
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Table 8. Relationship between NC Dept. of Agriculture and Consumer Services soil test index 

ranges and expected magnitude of response to fertilization (Hardy et al., 2014). 

Soil test index Crop response to nutrient application 

RangeÀ Rating P K 

0ï10 very low very high very high 

11ï25 low high high 

26ï50 medium mediumÿ mediumÿ 

51ï100 high none low/none 

100+ very high none none 

À P, mg kg-1 = 1.2 × Index Value; K mg kg-1 = 1.955 × Index Value. 

ÿResponse decreases as soil test index increases. 
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Table 9. Downloaded images for the months of 2016 and 2017. óôãôô indicates that a cloud-free 

image to be used for MZ delineation was available for all of the study fields (Table 2). óôXôô 

indicates that no cloud-free image was found for that month. 

  Month 

Study 

site Year Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec 

North 

Carolina 

2016 ã ã ã X ã ã X X ã ã ã ã 

2017 ã ã ã ã ã ã ã ã ã ã ã ã 
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Table 10. Strategies used for management zone delineation and their abbreviations. 

Delineation strategy Abbreviation  

Image stack comprising all fields All Fields 

Image stack comprising only uniformly cropped fields Uniform 

Image stack comprising only uniformly cropped fields plus the 

corresponding Normalized Difference Vegetation Index (NDVI) maps 
NDVId 

USDA Soil Survey map-unit polygons Soil Survey 

Random subdivisions Control 

Image stack comprising only uniformly cropped fields plus the 

corresponding Soil Adjusted Vegetation Index (SAVI) maps 
SAVId 
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Table 11. Total number of mean separations captured by each delineation strategy (Table 10). 

The Soil Survey delineation strategy contained only one map-unit delineation per field. 

  
Number of mean separations captured for different numbers of 

management zones (MZ) 

Sampling 

strategy 
Field Two MZ 

Three 

MZ 
Four MZ Five MZ Sum 

All Fields 

Block 6 16 16 19 18 69 

Block 12 10 8 12 21 51 

Block 8 10 12 15 17 54 

Block 45 8 12 13 12 45 

       

Uniform 

Block 6 6 4 12 6 28 

Block 12 8 10 17 18 53 

Block 8 12 16 16 16 60 

Block 45 6 4 4 10 24 

       

NDVI 

Block 6 4 2 8 12 26 

Block 12 8 10 17 18 53 

Block 8 12 16 16 16 60 

Block 45 8 6 10 8 32 

       

Soil Survey 

Block 6  NAÀ NA 8 NA 8 

Block 12  NA NA 13 NA 13 

Block 8  NA NA 12 NA 12 

Block 45  2 NA NA NA 2 

       

Control 

Block 6 14 18 18 10 60 

Block 12 12 13 9 10 44 

Block 8 2 2 2 6 12 

Block 45 2 2 2 2 8 

ÀNA: not applicable: each field had only a single Soil Survey delineation.   
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Table 12. Effects of management zone (MZ) number on zone soil-test parameter means for division of Block 6 into two, three, four, and five 

MZs based on cluster analysis of 2 years of monthly multispectral satellite imagery using the All Fields strategy (Table 10). 

   Soil-test parameter 

Number of 

MZs  

MZ 

ID 

Number of 

soil samples HMÀ P K S Ca Mg pH CECÿ BSÿ 

   % NC soil-test-index§ ---% of CEC---§  cmolc kg-1 % 

Two MZ 
1 65 6.24b¶ 48.2a 52.2a 38.0a 61.5b 9.18b 5.28a 13.4b 72.5b 

2 78 8.54a 36.2b 42.7b 29.6b 64.6a 12.2a 5.25a 21.4a 78.0a 

            

Three MZ 

1 32 6.45b 48.1a 48.0b 38.3a 63.8a 8.75b 5.33a 13.8b 74.1b 

2 32 6.01b 48.3a 56.5a 37.9a 59.2b 9.66b 5.23a 12.9b 71.0b 

3 79 8.52a 36.3b 42.7b 29.7b 64.6a 12.2a 5.24a 21.3a 77.9a 

            

Four MZ 

1 30 6.57b 47.9ab 48.4a 38.3a 63.9a 8.67b 5.32a 13.9c 74.1ab 

2 27 5.81b 49.1a 55.6a 38.1a 57.6b 10.2b 5.25a 12.3c 70.1b 

3 24 6.81b 44.1b 53.1a 33.8b 66.5a 9.58b 5.26a 16.9b 77.9a 

4 62 8.94a 34.4c 40.2b 29.0c 64.0a 12.7a 5.23a 22.3a 77.6a 

            

Five MZ 

1 30 6.57b 47.9a 48.4 ab 38.3a 63.9a 8.67b 5.32a 13.9bc 74.1 ab 

2 25 5.86b 48.5a 55.4a 38.4a 57.1b 9.96b 5.22a 12.2c 69.4b 

3 31 8.90a 33.3b 38.4c 29.6c 65.0a 12.3a 5.26a 23.3a 78.1a 

4 33 8.92a 35.7b 42.9bc 28.5c 63.3a 12.9a 5.20a 21.2a 77.4a 

5 22 6.70b 44.5a 52.8a 34.0b 66.5a 9.45b 5.27a 16.6b 77.7a 

ÀHM, humic matter (Hardy et al., 2014). Organic matter å 1.3 HM + 0.9 (Weber and Peter, 1982; Blumhorst et al., 1990; Gonese and Weber, 

1998). 

ÿCEC, cation exchange capacity; BS, base saturation.  

Ä Hardy et al., 2014. À P, mg kg-1:= 1.2 × index value; K, mg kg-1 = 1.955 × index value; Ca, mg kg-1 = 200 × (% of CEC); Mg, mg kg-1 = 121.6 

× (% of CEC). 

¶Within a column and MZ number, means followed by the same letter are not significantly different according to Tukey-Kramerôs honest 

significance difference test (p Ò 0.05). 
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Table 13. Effects of management zone (MZ) number on zone soil-test parameter means for division of Block 6 into two, three, four, and five 

MZs based on cluster analysis of 2 years of monthly multispectral satellite imagery using the Uniform strategy (Table 10). 

   Soil-test parameter 

Number of 

MZs  

MZ 

ID 

Number of 

soil samples HMÀ P K S Ca Mg pH CECÿ BSÿ 

   % NC soil-test-index§ ---% of CEC---§  cmolc kg-1 % 

Two MZ 
1 76 7.54a¶ 41.6a 44.3b 34.0a 64.3a 10.3b 5.28a 18.0a 76.0a 

2 66 7.49a 41.5a 50.2a 32.8a 61.8b 11.5a 5.23a 17.4a 74.9a 

            

Three MZ 

1 52 7.59a 41.1a 43.5b 34.5a 64.7a 10.1a 5.31a 17.8a 76.0a 

2 29 7.46a 43.1a 56.8a 34.5a 60.1b 10.7a 5.15a 16.5a 72.8a 

3 61 7.47a 41.2a 45.4b 32.0a 63.2ab 11.6a 5.27a 18.3a 76.3a 

            

Four MZ 

1 46 7.84a 40.1ab 42.3b 33.7ab 63.7a 10.8a 5.27a 18.3ab 75.6a 

2 18 7.15a 45.7a 58.0a 36.0a 57.2b 10.4a 5.12a 14.8b 69.8b 

3 27 8.33a 38.6b 49.9b 31.2b 63.3a 12.0a 5.19a 19.8a 76.8a 

4 51 6.90a 42.9ab 45.9b 33.5ab 64.7a 10.5a 5.33a 17.2ab 76.7a 

            

Five MZ 

1 33 7.88a 40.9a 43.0b 34.6a 64.2a 10.4a 5.29a 18.4a 75.7ab 

2 13 7.83a 44.0a 60.4a 35.2a 57.0b 10.8a 5.11a 15.9a 69.8b 

3 14 8.35a 38.5a 52.6ab 31.4a 64.3a 11.8a 5.16a 19.5a 77.7a 

4 57 7.40a 40.4a 43.7b 32.5a 64.3a 11.1a 5.29a 18.4a 76.7a 

5 25 6.65a 45.4a 49.8b 34.2a 61.8ab 10.4a 5.27a 15.5a 74.1ab 

ÀHM, humic matter (Hardy et al., 2014). Organic matter å 1.3 HM + 0.9 (Weber and Peter, 1982; Blumhorst et al., 1990; Gonese and Weber, 

1998). 

ÿCEC, cation exchange capacity; BS, base saturation.  

§ Hardy et al., 2014. 

¶Within a column and MZ number, means followed by the same letter are not significantly different according to Tukey-Kramerôs honest 

significance difference test (p Ò 0.05).  
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Table 14. Effects of management zone (MZ) number on zone soil-test parameter means for division of Block 6 into two, three, four, and five 

MZs based on cluster analysis of 2 years of monthly multispectral satellite imagery using the NDVI strategy (Table 10). 

   Soil-test parameter 

Number of 

MZs  

MZ 

ID 

Number of 

soil samples HMÀ P K S Ca Mg pH CECÿ BSÿ 

   % NC soil-test-index § ---% of CEC---§  cmolc kg-1 % 

Two MZ 
1 76 7.56a¶ 41.6a 44.2b 34.1a 64.1a 10.3b 5.27a 17.9a 75.7a 

2 65 7.48a 41.2a 49.9a 32.6a 62.2a 11.4a 5.24a 17.7a 75.2a 

            

Three MZ 

1 53 7.59a 41.3a 42.9b 33.8a 64.4a 10.3a 5.30a 17.8a 75.9a 

2 29 7.17a 43.1a 56.2a 34.6a 60.8a 10.3a 5.19a 16.4a 73.1a 

3 59 7.65a 40.8a 45.7b 32.5a 63.3a 11.5a 5.24a 18.5a 76.2a 

            

Four MZ 

1 26 6.56b 45.5a 55.1a 35.3a 59.6a 10.4a 5.23a 14.8b 72.1b 

2 43 7.95ab 40.3a 43.0b 33.9a 63.7a 10.6a 5.26a 18.4ab 75.5ab 

3 57 7.40ab 41.0a 43.6b 32.7a 64.2a 10.9a 5.28a 18.3ab 76.4ab 

4 15 8.46a 39.2a 55.9a 31.6a 64.0a 11.9a 5.17a 19.4a 77.6a 

            

Five MZ 

1 26 6.83bc 44.6a 54.6a 34.9ab 59.7a 10.5ab 5.21a 15.6b 72.2a 

2 38 6.33c 45.1a 48.1ab 36.0a 64.2a 9.73b 5.32a 15.6b 75.6a 

3 35 7.99abc 40.3ab 41.7b 34.1abc 64.1a 10.6ab 5.28a 18.7ab 75.8a 

4 32 8.78a 36.3b 42.5b 29.4c 63.2a 12.6a 5.21a 20.8a 77.0a 

5 10 8.26ab 39.2ab 53.5a 30.7bc 65.1a 10.9ab 5.16a 19.0ab 77.7a 

ÀHM, humic matter (Hardy et al., 2014). Organic matter å 1.3 HM + 0.9 (Weber and Peter, 1982; Blumhorst et al., 1990; Gonese and Weber, 

1998). 

ÿCEC, cation exchange capacity; BS, base saturation.  

§ Hardy et al., 2014. 

¶Within a column and MZ number, means followed by the same letter are not significantly different according to Tukey-Kramerôs honest 

significance difference test (p Ò 0.05).  
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 Table 15. Map-unit soil-test parameter means for division of Blocks 6, 8, 12, and 45 using the Soil Survey strategy (Table 10). 

   Soil-test parameter 

Field  

Number of 

map units 

Number of soil 

samples HMÀ P K S Ca Mg pH CECÿ BSÿ 

   %   NC soil-test-index rating§ --% of CEC--  cmolc kg-1 % 

Block 6 

1 96 7.55ba¶ 41.6ba 47.8ba 33.7ba 63.8a 10.4a 5.26a 18.0a 75.8a 

2 1 10.0a 27.0b 27.0b 25.0b 56.0a 15.0a 5.10a 20.9a 72.0a 

3 23 5.64b 48.8a 50.4a 36.7a 62.2a 9.91a 5.34a 13.0a 74.0a 

4 21 9.37ba 32.9ba 39.2ba 28.9ba 61.9a 13.3a 5.15a 22.0a 76.0a 

            

Block 12 

1 29 4.42cb 64.0a 44.2a 52.8a 53.1a 9.79ba 5.32ba 9.22b 65.4a 

2 68 6.82a 50.5b 44.3a 47.5b 54.8a 7.96c 5.21b 11.2a 64.8a 

3 16 4.92b 53.0b 44.4a 49.8ba 56.1a 8.63bc 5.43a 8.81b 67.1a 

4 28 3.53c 54.8b 46.1a 48.3b 52.5a 10.5a 5.38ba 7.56b 65.8a 

            

Block 8 

1 47 9.87a 36.7bc 33.3a 35.7a 63.2a 15.7a 5.12ba 27.6a 79.4a 

2 6 8.70a 43.8a 38.2a 31.2a 66.3a 9.83b 5.25a 20.4b 77.2a 

3 9 9.69a 33.1c 29.0b 24.8b 67.0a 8.44b 5.03b 26.0a 76.1a 

4 80 9.73a 39.2ba 31.6ba 29.7a 65.4a 11.3b 5.05ba 24.4a 77.3a 

            

Block 45 
1 132 9.52a 48.6a 34.2a 42.7a 67.1a 10.9a 5.03a 34.8a 78.4a 

2 59 9.58a 48.9a 32.3a 40.8b 67.7a 9.73b 5.06a 34.6a 77.8a 

ÀHM, humic matter (Hardy et al., 2014). Organic matter å 1.3 HM + 0.9 (Weber and Peter, 1982; Blumhorst et al., 1990; Gonese and Weber, 

1998). 

ÿCEC, cation exchange capacity; BS, base saturation.  

§ Hardy et al., 2014. 

¶Within a column and field, means followed by the same letter are not significantly different according to Tukey-Kramerôs honest significance 

difference test (p Ò 0.05).   
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Table 16. Effects of management zone (MZ) number on zone soil-test parameter means for division of Block 6 into two, three, four, and five 

MZs based on the Control strategy (Table 10). 

   Soil-test parameter 

Number of 

MZs  

MZ 

ID 

Number of 

soil samples HMÀ P K S Ca Mg pH CECÿ BSÿ 

   % NC soil-test-index rating§ ---% of CEC---  cmolc kg-1 % 

Two MZ 
1 70 6.19b¶ 47.5a 52.8a 37.6a 62.2a 9.30b 5.29a 13.7b 73.4b 

2 71 8.84a 35.5b 41.0b 29.3b 64.2a 12.3a 5.21a 21.9a 77.5a 

            

Three MZ 

1 44 5.63c 47.5a 54.2a 37.9a 63.3a 9.25b 5.39a 13.4c 74.6a 

2 51 7.63b 42.3b 44.4b 34.5b 62.8a 10.3b 5.21b 17.3b 74.5a 

3 46 9.22a 34.6c 42.4b 27.9c 63.5a 12.8a 5.17b 22.6a 77.4a 

            

Four MZ 

1 35 8.90a 33.1c 38.1b 29.2b 63.7a 12.4a 5.28a 21.6a 76.9a 

2 36 8.00ab 37.7b 48.2a 30.6b 65.4a 12.3a 5.27a 20.7a 79.1a 

3 33 7.02bc 46.0a 47.5a 35.4a 65.1a 8.63b 5.21a 16.2b 75.3a 

4 37 6.22c 48.8a 53.2a 38.5a 58.9b 9.89b 5.25a 12.8c 70.8b 

            

Five MZ 

1 28 6.08c 42.0a 51.2a 34.5a 67.9a 9.50a 5.52a 16.6a 79.1a 

2 27 6.64bc 42.8a 41.3b 35.1a 65.7ab 10.5a 5.40a 17.4a 77.5ab 

3 29 8.07ab 40.7a 48.8ab 33.5a 60.1c 11.3a 5.10b 18.0a 72.9b 

4 29 7.99ab 40.41a 43.5ab 32.7a 60.3c 11.1a 5.20b 17.0a 72.9b 

5 28 8.79a 41.3a 49.2ab 31.4a 62.2bc 11.6a 5.10b 20.0a 75.1ab 

ÀHM, humic matter (Hardy et al., 2014). Organic matter å 1.3 HM + 0.9 (Weber and Peter, 1982; Blumhorst et al., 1990; Gonese and Weber, 

1998). 

ÿCEC, cation exchange capacity; BS, base saturation.  

§ Hardy et al., 2014. 

¶Within a column and MZ number, means followed by the same letter are not significantly different according to Tukey-Kramerôs honest 

significance difference test (p Ò 0.05).  
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Table 17. Effects of management zone (MZ) number on zone soil-test parameter means for division of Block 12 into two, three, four, and five 

MZs based on cluster analysis of 2 years of monthly multispectral satellite imagery using the All Fields strategy (Table 10). 

   Soil-test parameter 

Number of 

MZs  

MZ 

ID 

Number of 

soil samples HMÀ P K S Ca Mg pH CECÿ BSÿ 

   % NC soil-test-index rating§ ---% of CEC---  cmolc kg-1 % 

Two MZ 
1 72 4.82b¶ 54.3a 47.7a 50.4a 54.9a 8.89a 5.35a 9.33b 66.3a 

2 69 6.12a 54.6a 41.3b 47.5b 53.3a 8.96a 5.23b 10.3a 64.4a 

            

Three MZ 

1 59 4.71b 53.5a 48.1a 49.7a 53.7a 9.22a 5.34a 8.91b 65.6a 

2 44 6.06a 55.8a 42.9ab 51.5a 55.8a 8.16a 5.29a 10.7a 65.9a 

3 38 5.92a 54.4a 41.0b 44.8b 52.8a 9.34a 5.22a 10.1ab 64.4a 

            

Four MZ 

1 44 4.22b 53.5a 48.7a 49.5a 54.4a 9.61a 5.38a 8.57b 66.7a 

2 31 5.74a 56.6a 40.5c 50.4a 55.0a 9.42a 5.31ab 10.4a 66.4a 

3 25 5.96a 52.9a 47.4ab 51.3a 55.2a 7.52b 5.26ab 10.7a 65.1a 

4 41 6.25a 54.7a 41.4bc 45.9b 52.6a 8.66ab 5.21b 10.2ab 63.4a 

            

Five MZ 

1 28 4.00c 54.3ab 49.5a 49.3a 56.8a 9.54ab 5.41a 8.92cd 68.9a 

2 16 8.75a 46.5b 48.8ab 43.8b 57.9a 9.00ab 5.11b 14.2a 68.4a 

3 32 5.26c 52.9b 46.5abc 50.1a 52.8ab 8.88ab 5.31a 9.22c 64.3ab 

4 32 4.12c 60.8a 39.1c 47.8ab 58.9b 9.63a 5.27ab 7.66d 61.3b 

5 33 6.59b 53.8ab 41.7bc 51.3a 56.4a 7.73b 5.29ab 11.1b 65.9ab 

ÀHM, humic matter (Hardy et al., 2014). Organic matter å 1.3 HM + 0.9 (Weber and Peter, 1982; Blumhorst et al., 1990; Gonese and Weber, 

1998). 

ÿCEC, cation exchange capacity; BS, base saturation.  

§ Hardy et al., 2014. 

¶Within a column and MZ number, means followed by the same letter are not significantly different according to Tukey-Kramerôs honest 

significance difference test (p Ò 0.05).  
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Table 18. Effects of management zone (MZ) number on zone soil-test parameter means for division of Block 12 into two, three, four, and five 

MZs based on cluster analysis of 2 years of monthly multispectral satellite imagery using the Uniform strategy (Table 10). 

   Soil-test parameter 

Number of 

MZs  

MZ 

ID 

Number of 

soil samples HMÀ P K S Ca Mg pH CECÿ BSÿ 

   % NC soil-test-index rating§ ---% of CEC---  cmolc kg-1 % 

Two MZ 
1 70 6.08a¶ 55.7a 40.7b 48.2a 53.6a 8.89a 5.24b 10.3a 64.5a 

2 71 4.84b 53.2a 48.3a 49.7a 54.7a 8.96a 5.35a 9.33b 66.3a 

            

Three MZ 

1 32 6.46a 54.7a 42.8b 44.4b 54.6a 9.19a 5.20b 11.3a 65.8a 

2 52 5.68ab 56.1a 40.8b 51.1a 54.2a 8.63a 5.31ab 9.89b 64.9a 

3 57 4.69b 52.8a 49.0a 49.6a 53.8a 9.04a 5.33a 8.95b 65.6a 

            

Four MZ 

1 20 3.80c 62.9a 36.3c 45.5b 50.8b 9.85a 5.33a 7.77c 63.2a 

2 20 8.43a 47.5c 46.6ab 44.1b 57.1a 9.00a 5.10b 13.8a 67.6a 

3 45 4.55bc 53.1bc 49.6a 49.8a 53.9ab 9.42a 5.35a 8.82bc 66.0a 

4 56 5.72b 55.0b 42.7bc 51.3a 54.5ab 8.16a 5.30a 9.94b 64.8a 

            

Five MZ 

1 23 3.80c 60.6a 36.9c 45.6bc 49.8c 9.78a 5.32a 7.57d 62.2b 

2 20 8.43a 47.5c 46.6ab 44.1c 57.1a 9.00a 5.10b 13.8a 67.6ab 

3 22 4.14c 53.2abc 51.4a 48.6ab 58.0a 9.27a 5.42a 9.33bc 69.9a 

4 40 6.06b 56.6ab 41.7bc 52.3a 55.6ab 8.20a 5.32a 10.4b 65.8ab 

5 36 4.99bc 52.7bc 47.3ab 50.4a 51.3bc 8.92a 5.28ab 8.72cd 63.0b 

ÀHM, humic matter (Hardy et al., 2014). Organic matter å 1.3 HM + 0.9 (Weber and Peter, 1982; Blumhorst et al., 1990; Gonese and Weber, 

1998). 

ÿCEC, cation exchange capacity; BS, base saturation.  

§ Hardy et al., 2014. 

¶Within a column and MZ number, means followed by the same letter are not significantly different according to Tukey-Kramerôs honest 

significance difference test (p Ò 0.05).  

  



 

101 

 

Table 19. Effects of management zone (MZ) number on zone soil-test parameter means for division of Block 12 into two, three, four, and five 

MZs based on cluster analysis of 2 years of monthly multispectral satellite imagery using the NDVI strategy (Table 10). 

   Soil-test parameter 

Number of 

MZs  

MZ 

ID 

Number of 

soil samples HMÀ P K S Ca Mg pH CECÿ BSÿ 

   % NC soil-test-index rating§ ---% of CEC---  cmolc kg-1 % 

Two MZ 
1 70 6.08a¶ 55.7a 40.7b 48.2a 53.6a 8.89a 5.24b 10.3a 64.5a 

2 71 4.84b 53.2a 48.3a 49.7a 54.7a 8.96a 5.35a 9.33b 66.3a 

            

Three MZ 

1 32 6.46a 54.7a 42.8b 44.4b 54.6a 9.19a 5.20b 11.3a 65.8a 

2 52 5.68ab 56.1a 40.8b 51.1a 54.2a 8.63a 5.31ab 9.89b 64.9a 

3 57 4.69b 52.8a 49.0a 49.6a 53.8a 9.04a 5.33a 8.95b 65.6a 

            

Four MZ 

1 20 3.80c 62.9a 36.3c 45.5b 50.8b 9.85a 5.33a 7.77c 63.2a 

2 20 8.43a 47.5c 46.6ab 44.1b 57.1a 9.00a 5.10b 13.8a 67.6a 

3 45 4.55bc 53.1bc 49.6a 49.8a 53.9ab 9.42a 5.35a 8.82bc 66.0a 

4 56 5.72b 55.0b 42.7bc 51.3a 54.5ab 8.16a 5.30a 9.94b 64.8a 

            

Five MZ 

1 23 3.80c 60.6a 36.9c 45.6bc 49.8c 9.78a 5.32a 7.57d 62.2b 

2 20 8.43a 47.5c 46.6ab 44.1c 57.1a 9.00a 5.10b 13.8a 67.6ab 

3 22 4.14c 53.2abc 51.4a 48.6ab 58.0a 9.27a 5.42a 9.33bc 69.9a 

4 40 6.06b 56.6ab 41.7bc 52.3a 55.6ab 8.20a 5.32a 10.4b 65.8ab 

5 36 4.99bc 52.7bc 47.3ab 50.4a 51.3bc 8.92a 5.28ab 8.72cd 63.0b 

ÀHM, humic matter (Hardy et al., 2014). Organic matter å 1.3 HM + 0.9 (Weber and Peter, 1982; Blumhorst et al., 1990; Gonese and Weber, 

1998). 

ÿCEC, cation exchange capacity; BS, base saturation.  

§ Hardy et al., 2014. 

¶Within a column and MZ number, means followed by the same letter are not significantly different according to Tukey-Kramerôs honest 

significance difference test (p Ò 0.05).  
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Table 20. Effects of management zone (MZ) number on zone soil-test parameter means for division of Block 12 into two, three, four, and five 

MZs based on the Control strategy (Table 10). 

   Soil-test parameter 

Number of 

MZs  

MZ 

ID 

Number of 

soil samples HMÀ P K S Ca Mg pH CECÿ BSÿ 

   % NC soil-test-index rating§ ---% of CEC---  cmolc kg-1 % 

Two MZ 
1 70 6.72a¶ 50.9b 44.3a 47.5b 54.5a 7.99b 5.21b 11.1a 64.5a 

2 71 4.21b 57.9a 44.8a 50.4a 53.8a 9.85a 5.37a 8.59b 66.2a 

            

Three MZ 

1 48 7.61a 47.9b 45.9a 47.1b 55.3a 8.46b 5.20b 12.0a 65.6a 

2 46 4.94b 55.8a 44.7a 49.7ab 54.5a 7.98b 5.34a 9.18b 64.8a 

3 47 3.76c 59.7a 43.0a 50.1a 52.7a 10.3a 5.35a 8.21b 65.7a 

            

Four MZ 

1 37 7.42a 48.1b 47.1a 49.6a 54.5a 8.32b 5.24a 11.29a 64.9a 

2 33 5.65b 53.2ab 46.7a 50.0a 54.6a 8.63ab 5.30a 10.1a 65.6a 

3 37 5.19b 57.9a 43.2a 48.5a 55.2a 8.84ab 5.29a 10.2a 66.2a 

4 34 3.41c 58.8a 41.2a 47.9a 52.0a 9.94a 5.34a 7.60b 64.7a 

            

Five MZ 

1 26 7.00a 55.6ab 41.5a 44.8c 55.8a 8.38a 5.13b 12.2a 65.9a 

2 29 5.80ab 49.8b 45.9a 47.7bc 53.9a 8.17a 5.27ab 9.94b 64.5a 

3 29 5.51abc 51.0b 42.9a 49.4ab 54.0a 8.83a 5.35a 9.27b 65.1a 

4 29 4.17c 53.6b 48.6a 50.4ab 53.8a 9.97a 5.39a 8.50b 66.6a 

5 28 4.93bc 62.5a 43.5a 52.3a 53.2a 9.21a 5.30ab 9.38b 64.9a 

ÀHM, humic matter (Hardy et al., 2014). Organic matter å 1.3 HM + 0.9 (Weber and Peter, 1982; Blumhorst et al., 1990; Gonese and Weber, 

1998). 

ÿCEC, cation exchange capacity; BS, base saturation.  

§ Hardy et al., 2014. 

¶Within a column and MZ number, means followed by the same letter are not significantly different according to Tukey-Kramerôs honest 

significance difference test (p Ò 0.05). 
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Table 21. Effects of management zone (MZ) number on zone soil-test parameter means for division of Block 8 into two, three, four, and five 

MZs based on cluster analysis of 2 years of monthly multispectral satellite imagery using the All Fields strategy (Table 10). 

   Soil-test parameter 

Number of 

MZs  

MZ 

ID 

Number of 

soil samples HMÀ P K S Ca Mg pH CECÿ BSÿ 

   % NC soil-test-index rating§ ---% of CEC---  cmolc kg-1 % 

Two MZ 
1 39 9.73a¶ 38.0a 38.7a 34.8a 64.6a 14.5a 5.19a 25.7a 79.9a 

2 103 9.73a 38.2a 29.8b 28.8b 64.9a 11.8b 5.04b 25.3a 77.2b 

            

Three MZ 

1 24 9.71a 38.5a 40.0a 35.7a 64.2a 15.8a 5.25a 26.8a 80.8a 

2 14 9.76a 37.4a 37.1a 33.9a 65.6a 12.6b 5.12b 23.9b 79.1ab 

3 104 9.73a 38.2a 29.8b 28.8b 64.8a 11.7b 5.03b 25.3ab 77.1b 

            

Four MZ 

1 23 9.70a 38.5a 40.6a 35.7a 64.1ab 15.9a 5.25a 26.9a 80.9a 

2 13 9.74a 37.1a 36.7ab 35.1a 65.5a 13.8a 5.18ab 23.9b 80.1a 

3 44 9.62a 37.3a 27.5c 31.0b 62.6b 15.4a 5.08bc 26.0ab 78.5ab 

4 62 9.82a 38.9a 31.6bc 27.1c 66.5a 8.89b 5.00c 24.8ab 75.9b 

            

Five MZ 

1 24 9.83a 38.1a 41.4a 35.3a 63.9ab 15.8ab 5.21ab 26.9a 80.5a 

2 12 9.48a 37.8a 34.8b 36.9a 66.1a 13.8b 5.56a 23.6b 80.8a 

3 33 9.71a 37.3a 27.8c 32.1b 62.1b 17.2a 5.10bc 27.2a 79.8a 

4 16 9.62a 37.9a 28.6c 27.0c 63.9ab 9.25c 4.99c 23.0b 73.8b 

5 57 9.79a 38.9a 31.5bc 27.3c 66.7a 9.02c 5.00c 24.8ab 76.3b 

ÀHM, humic matter (Hardy et al., 2014). Organic matter å 1.3 HM + 0.9 (Weber and Peter, 1982; Blumhorst et al., 1990; Gonese and Weber, 

1998). 

ÿCEC, cation exchange capacity; BS, base saturation.  

§ Hardy et al., 2014. 

¶Within a column and MZ number, means followed by the same letter are not significantly different according to Tukey-Kramerôs honest 

significance difference test (p Ò 0.05).  

  



 

104 

 

Table 22. Effects of management zone (MZ) number on zone soil-test parameter means for division of Block 8 into two, three, four, and five 

MZs based on cluster analysis of 2 years of monthly multispectral satellite imagery using the Uniform strategy (Table 10). 

   Soil-test parameter 

Number of 

MZs  

MZ 

ID 

Number of 

soil samples HMÀ P K S Ca Mg pH CECÿ BSÿ 

   % NC soil-test-index rating§ ---% of CEC---  cmolc kg-1 % 

Two MZ 
1 64 9.92a¶ 37.9a 34.3a 31.4a 63.7b 14.0a 5.05a 26.9a 78.3a 

2 78 9.60b 38.3a 30.5b 29.6b 65.7a 11.3b 5.11a 24.3b 77.6a 

            

Three MZ 

1 58 9.85a 37.9a 34.7a 31.5a 63.6b 14.1a 5.05b 26.9a 78.4a 

2 36 9.49b 37.9a 31.1ab 33.4a 65.3ab 13.4a 5.21a 24.3b 79.3a 

3 48 9.77ab 38.7a 30.1b 27.0b 65.9a 9.90b 5.02b 24.5b 76.3b 

            

Four MZ 

1 30 9.81a 37.8a 37.1a 33.6a 62.0b 16.4a 5.13ab 27.6a 79.2ab 

2 34 9.56a 37.8a 33.3ab 34.4a 65.4a 13.9b 5.23a 24.5bc 80.0a 

3 49 9.80a 38.0a 29.3b 28.1b 65.1a 11.4c 4.97c 26.0ab 77.0bc 

4 29 9.72a 39.3a 31.0b 26.5b 66.5a 8.70d 5.04bc 23.4c 75.8c 

            

Five MZ 

1 21 9.84a 37.7ab 36.8a 32.7ab 62.1b 15.0a 5.07b 27.2a 77.9ab 

2 42 9.84a 36.6b 32.8a 33.3a 63.7ab 15.4a 5.13b 26.1ab 79.7a 

3 42 9.86a 38.4ab 30.2a 27.9ab 65.9a 10.7bc 4.99b 25.9ab 77.1ab 

4 11 8.74b 41.6a 31.4a 34.0a 66.8a 12.5ab 5.38a 22.7c 79.9a 

5 26 9.69a 39.2ab 31.4a 26.7b 66.0a 8.81c 5.02b 23.3bc 75.5b 

ÀHM, humic matter (Hardy et al., 2014). Organic matter å 1.3 HM + 0.9 (Weber and Peter, 1982; Blumhorst et al., 1990; Gonese and Weber, 

1998). 

ÿCEC, cation exchange capacity; BS, base saturation.  

§ Hardy et al., 2014. 

¶Within a column and MZ number, means followed by the same letter are not significantly different according to Tukey-Kramerôs honest 

significance difference test (p Ò 0.05).  
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Table 23. Effects of management zone (MZ) number on zone soil-test parameter means for division of Block 8 into two, three, four, and five 

MZs based on cluster analysis of 2 years of monthly multispectral satellite imagery using the NDVI strategy (Table 10). 

   Soil-test parameter 

Number of 

MZs  

MZ 

ID 

Number of 

soil samples HMÀ P K S Ca Mg pH CECÿ BSÿ 

   % NC soil-test-index rating§ ---% of CEC---  cmolc kg-1 % 

Two MZ 
1 64 9.92a¶ 37.9a 34.3a 31.5a 63.7b 14.0a 5.05a 26.9a 78.3a 

2 77 9.62b 38.3a 30.5b 29.6b 65.7a 11.4b 5.11a 24.3b 77.7a 

            

Three MZ 

1 58 9.85a 37.9a 34.7a 31.5a 63.6b 14.1a 5.05b 26.9a 78.4a 

2 36 9.49b 37.9a 31.1ab 33.4a 65.3ab 13.4a 5.21a 24.3b 79.3a 

3 48 9.77ab 38.7a 30.1b 27.0b 65.9a 9.90b 5.02b 24.5b 76.3b 

            

Four MZ 

1 30 9.81a 37.8a 37.1a 33.6a 62.0b 16.4a 5.13ab 27.56a 79.2ab 

2 34 9.56a 37.8a 33.3ab 34.4a 65.4a 13.9b 5.23a 24.5bc 80.0a 

3 49 9.80a 38.0a 29.3b 28.1b 65.1a 11.4c 4.97c 25.9ab 77.0bc 

4 29 9.72a 39.3a 31.0b 26.5b 66.5a 8.69d 5.04bc 23.4c 75.8c 

            

Five MZ 

1 21 9.84a 37.7ab 36.8a 32.7a 62.1b 15.0a 5.07b 27.2a 77.9ab 

2 42 9.84a 36.6b 32.8a 33.3a 63.7ab 15.4a 5.13b 26.1ab 79.7a 

3 42 9.86a 38.4ab 30.2a 27.9b 65.9a 10.7bc 4.99b 25.9ab 77.1ab 

4 11 8.74b 41.6a 31.4a 34.0a 66.8a 12.5ab 5.38a 22.7c 79.9a 

5 26 9.69a 39.2ab 31.4a 26.7b 66.0a 8.81c 5.02b 23.3bc 75.5b 

ÀHM, humic matter (Hardy et al., 2014). Organic matter å 1.3 HM + 0.9 (Weber and Peter, 1982; Blumhorst et al., 1990; Gonese and Weber, 

1998). 

ÿCEC, cation exchange capacity; BS, base saturation.  

§ Hardy et al., 2014. 

¶Within a column and MZ number, means followed by the same letter are not significantly different according to Tukey-Kramerôs honest 

significance difference test (p Ò 0.05).  
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Table 24. Effects of management zone (MZ) number on zone soil-test parameter means for division of Block 8 into two, three, four, and five 

MZs based on the Control strategy (Table 10). 

   Soil-test parameter 

Number of 

MZs  

MZ 

ID 

Number of 

soil samples HMÀ P K S Ca Mg pH CECÿ BSÿ 

   % NC soil-test-index rating§ ---% of CEC---  cmolc kg-1 % 

Two MZ 
1 71 9.65a¶ 39.2a 32.5a 31.1a 65.0a 12.9a 5.10a 25.7a 78.5a 

2 71 9.81a 37.0b 32.0a 29.8a 64.6a 12.1a 5.10a 25.1a 77.3a 

            

Three MZ 

1 49 9.62a 39.9a 32.4a 31.3a 65.2a 12.7a 5.12a 25.5a 78.6a 

2 47 9.81a 37.7ab 32.3a 30.8a 64.7a 12.8a 5.05a 25.8a 78.0a 

3 46 9.77a 36.8b 32.0a 29.2a 64.5a 11.9a 5.07a 24.9a 77.1a 

            

Four MZ 

1 34 9.53a 41.3a 32.7a 30.7a 65.7a 11.6a 5.09a 25.3a 77.9a 

2 37 9.72a 37.7b 31.0a 20.1a 64.4a 12.9a 5.06a 25.6a 77.7a 

3 35 9.81a 37.6b 32.6a 30.3a 64.3a 12.4a 5.07a 24.8a 77.4a 

4 36 9.78a 36.1b 32.8a 30.7a 64.8a 13.2a 5.10a 26.1a 78.6a 

            

Five MZ 

1 28 9.40b 41.8a 30.3a 29.3a 66.4a 10.0b 5.08a 24.2a 76.9a 

2 30 9.90a 37.3b 33.4a 30.1a 64.7a 12.9ab 5.06a 26.1a 78.2a 

3 28 9.66ab 38.5ab 32.8a 30.1a 64.0a 12.9ab 5.05a 25.6a 77.5a 

4 29 9.77ab 36.4b 31.4a 30.3a 64.7a 12.4ab 5.07a 25.7a 77.8a 

5 27 9.91a 36.9b 33.4a 32.6a 64.2a 14.3a 5.14a 25.5a 79.2a 

ÀHM, humic matter (Hardy et al., 2014). Organic matter å 1.3 HM + 0.9 (Weber and Peter, 1982; Blumhorst et al., 1990; Gonese and Weber, 

1998). 

ÿCEC, cation exchange capacity; BS, base saturation.  

§ Hardy et al., 2014. 

¶Within a column and MZ number, means followed by the same letter are not significantly different according to Tukey-Kramerôs honest 

significance difference test (p Ò 0.05).  
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Table 25. Effects of management zone (MZ) number on zone soil-test parameter means for division of Block 45 into two, three, four, and five 

MZs based on cluster analysis of 2 years of monthly multispectral satellite imagery using the All Fields strategy (Table 10). 

   Soil-test parameter 

Number of 

MZs  

MZ 

ID 

Number of 

soil samples HMÀ P K S Ca Mg pH CECÿ BSÿ 

   % NC soil-test-index rating§ ---% of CEC---  cmolc kg-1 % 

Two MZ 
1 74 9.35b¶ 51.7a 34.5a 41.6a 66.8a 10.1b 5.04a 34.8a 77.4b 

2 117 9.66a 46.7b 32.9a 42.4a 67.5a 10.8a 5.04a 34.7a 78.8a 

            

Three MZ 

1 52 9.18b 53.1a 36.9a 42.6a 67.0a 10.0b 5.08a 35.0a 77.5b 

2 65 9.84a 45.9b 28.5b 39.0b 67.6a 9.50b 4.99a 34.2a 77.4b 

3 74 9.52ab 47.9b 35.6a 44.4a 67.2a 11.7a 5.06a 35.0a 79.4a 

            

Four MZ 

1 36 9.13b 53.6a 37.0a 42.1a 67.0a 9.89b 5.09a 35.1a 77.5b 

2 48 9.91a 44.8c 28.3b 38.5b 67.8a 9.40b 5.00a 34.4a 77.4b 

3 41 9.43ab 49.7b 32.9ab 42.2a 66.6a 10.2b 4.99a 34.0a 77.1b 

4 66 9.56ab 48.1bc 35.8a 44.5a 67.5a 11.8a 5.08a 35.2a 79.8a 

            

Five MZ 

1 55 9.89a 45.0c 27.9b 38.4b 67.7a 9.51c 5.00a 34.2a 77.4ab 

2 27 9.03b 53.7a 36.9a 42.9a 67.1a 10.1bc 5.11a 35.3a 77.9ab 

3 59 9.54ab 48.3bc 36.7a 44.6a 67.4a 11.9a 5.07a 35.3a 79.8a 

4 32 9.50ab 52.2ab 34.6ab 41.5ab 66.7a 9.69c 4.99a 34.2a 76.8b 

5 18 9.30ab 47.1c 33.6ab 44.5a 67.0a 11.2ab 5.05a 34.4a 78.6ab 

ÀHM, humic matter (Hardy et al., 2014). Organic matter å 1.3 HM + 0.9 (Weber and Peter, 1982; Blumhorst et al., 1990; Gonese and Weber, 

1998). 

ÿCEC, cation exchange capacity; BS, base saturation.  

§ Hardy et al., 2014. 

¶Within a column and MZ number, means followed by the same letter are not significantly different according to Tukey-Kramerôs honest 

significance difference test (p Ò 0.05).  
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Table 26 Effects of management zone (MZ) number on zone soil-test parameter means for division of Block 45 into two, three, four, and five 

MZs based on cluster analysis of 2 years of monthly multispectral satellite imagery using the Uniform strategy (Table 10). 

   Soil-test parameter 

Number of 

MZs  

MZ 

ID 

Number of 

soil samples HMÀ P K S Ca Mg pH CECÿ BSÿ 

   % NC soil-test-index rating§ ---% of CEC---  cmolc kg-1 % 

Two MZ 
1 69 9.30b¶ 52.0a 35.4a 42.1a 66.8a 10.1a 5.04a 34.7a 77.4b 

2 120 9.67a 46.7b 32.6a 42.0a 67.5a 10.8a 5.04a 34.7a 78.6a 

            

Three MZ 

1 41 9.19b 53.7a 36.7a 42.4a 67.1a 9.73a 5.07a 34.8a 77.4a 

2 38 9.47ab 48.7b 32.0a 41.4a 66.2a 10.5a 4.98a 34.3a 77.0a 

3 110 9.68a 46.7b 33.0a 42.1a 67.6a 10.8a 5.04a 34.8a 78.8a 

            

Four MZ 

1 28 9.12b 53.7a 37.0a 42.5a 66.6a 10.0a 5.08a 35.1a 77.3a 

2 26 9.33ab 50.9ab 34.8a 43.0a 67.0a 10.1a 5.05a 34.7a 77.6a 

3 62 9.74a 47.7ab 31.1a 40.2a 66.9a 10.5a 5.00a 34.5a 77.6a 

4 73 9.59ab 46.6c 34.0a 43.0a 67.8a 10.9a 5.05a 34.7a 79.1a 

            

Five MZ 

1 27 9.03b 53.7a 36.9a 42.9ab 67.1a 10.1b 5.11a 35.3a 77.9ab 

2 28 9.41ab 52.6a 35.3a 42.3ab 66.1a 9.71b 4.96a 34.3a 76.3b 

3 25 9.44ab 46.8b 31.2a 41.4ab 67.2a 10.6ab 5.05a 34.0a 78.3ab 

4 46 9.57ab 46.5b 33.4a 44.3a 67.9a 11.7a 5.11a 34.9a 80.0a 

5 63 9.82a 47.0b 32.5a 40.1b 67.2a 10.2ab 4.99a 34.8a 77.8ab 

ÀHM, humic matter (Hardy et al., 2014). Organic matter å 1.3 HM + 0.9 (Weber and Peter, 1982; Blumhorst et al., 1990; Gonese and Weber, 

1998). 

ÿCEC, cation exchange capacity; BS, base saturation.  

§ Hardy et al., 2014. 

¶Within a column and MZ number, means followed by the same letter are not significantly different according to Tukey-Kramerôs honest 

significance difference test (p Ò 0.05).  
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Table 27. Effects of management zone (MZ) number on zone soil-test parameter means for division of Block 45 into two, three, four, and five 

MZs based on cluster analysis of 2 years of monthly multispectral satellite imagery using the NDVI strategy (Table 10). 

   Soil-test parameter 

Number of 

MZs  

MZ 

ID 

Number of 

soil samples HMÀ P K S Ca Mg pH CECÿ BSÿ 

   % NC soil-test-index rating§ ---% of CEC---  cmolc kg-1 % 

Two MZ 
1 117 9.70a¶ 46.7b 32.4a 41.9a 67.6a 10.8a 5.04a 34.8a 78.8a 

2 73 9.27b 51.8a 35.4a 42.3a 66.7a 10.1b 5.04a 34.6a 77.3b 

            

Three MZ 

1 86 9.66a 46.7b 33.7ab 42.3a 67.6a 10.9a 5.03a 35.0a 78.9a 

2 48 9.18b 53.4a 36.7a 42.6a 66.8a 9.94a 5.07a 34.9a 77.3a 

3 56 9.66a 47.5b 30.8b 41.1a 67.1a 10.4a 5.03a 34.2a 77.9a 

            

Four MZ 

1 38 9.63ab 45.5b 33.8a 44.5a 67.9a 11.4a 5.10a 34.4a 79.8a 

2 71 9.71a 47.6b 32.7a 40.8b 67.4a 10.3ab 5.00a 35.0a 78.1ab 

3 41 9.14b 53.9a 37.0a 42.5ab 67.0a 9.76b 5.07a 34.8a 77.4b 

4 40 9.54ab 48.2b 31.5a 41.4b 66.6a 10.7ab 5.02a 34.4a 77.7b 

            

Five MZ 

1 41 9.66a 46.2b 33.8a 44.7a 68.0a 11.5a 5.11a 34.7a 79.9a 

2 66 9.71a 47.3b 32.5a 40.5b 67.3a 10.2ab 5.00a 34.9a 77.9ab 

3 24 9.11a 52.6a 36.5a 42.3ab 67.3a 10.3ab 5.13a 35.7a 78.2ab 

4 27 9.38a 54.3a 35.7a 41.9ab 66.9a 9.30b 4.99a 34.2a 76.7b 

5 32 9.48a 46.9b 31.5a 41.6ab 66.3a 11.1a 5.02a 34.0a 77.7ab 

ÀHM, humic matter (Hardy et al., 2014). Organic matter å 1.3 HM + 0.9 (Weber and Peter, 1982; Blumhorst et al., 1990; Gonese and Weber, 

1998). 

ÿCEC, cation exchange capacity; BS, base saturation.  

§ Hardy et al., 2014. 

¶Within a column and MZ number, means followed by the same letter are not significantly different according to Tukey-Kramerôs honest 

significance difference test (p Ò 0.05).  
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Table 28. Effects of management zone (MZ) number on zone soil-test parameter means for division of Block 45 into two, three, four, and five 

MZs based on the Control strategy (Table 10). 

   Soil-test parameter 

Number of 

MZs  

MZ 

ID 

Number of 

soil samples HMÀ P K S Ca Mg pH CECÿ BSÿ 

   % NC soil-test-index rating§ ---% of CEC---  cmolc kg-1 % 

Two MZ 
1 93 9.66a¶ 48.0a 33.6a 42.8a 67.0a 10.4a 5.02a 34.4a 77.8a 

2 96 9.41a 49.3a 33.6a 41.2b 67.5a 10.6a 5.06a 35.0a 78.5a 

            

Three MZ 

1 60 9.56a 47.5a 35.6a 44.6a 66.9a 10.9a 5.01a 34.4a 78.2a 

2 65 9.54a 49.7a 32.1a 41.5b 67.6a 10.2a 5.04a 34.6a 78.2a 

3 64 9.50a 48.5a 33.2a 40.0b 67.1a 10.5a 5.05a 35.1a 78.0a 

            

Four MZ 

1 44 9.23a 48.8a 35.7a 42.8a 67.5a 11.1a 5.08a 34.8a 79.0a 

2 53 9.58a 48.7a 31.9a 41.3a 67.6a 10.8a 5.06a 35.2a 78.8a 

3 50 9.66a 48.1a 35.3a 42.2a 66.4a 10.7a 5.00a 34.6a 77.6a 

4 42 9.64a 48.8a 31.5a 41.8a 67.4a 9.40b 5.00a 34.2a 77.1a 

            

Five MZ 

1 30 9.53a 49.0a 37.1a 46.2a 68.1a 10.6a 5.08a 35.0a 79.3a 

2 43 9.65a 47.1a 33.3a 42.2b 66.1a 10.7a 4.97a 33.7a 77.1a 

3 41 9.51a 49.4a 32.0a 41.1b 67.4a 10.4a 5.05a 34.9a 78.3a 

4 40 9.58a 50.4a 33.9a 41.2b 67.1a 10.3a 5.01a 35.0a 77.8a 

5 35 9.38a 47.2a 32.5a 40.1b 67.8a 10.7a 5.11a 35.2a 78.8a 

ÀHM, humic matter (Hardy et al., 2014). Organic matter å 1.3 HM + 0.9 (Weber and Peter, 1982; Blumhorst et al., 1990; Gonese and Weber, 

1998). 

ÿCEC, cation exchange capacity; BS, base saturation.  

§ Hardy et al., 2014. 

¶Within a column and MZ number, means followed by the same letter are not significantly different according to Tukey-Kramerôs honest 

significance difference test (p Ò 0.05).  
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Table 29. Optimum number of MZs for different soil parameters by field and delineation strategy. 

  Soil-test parameter 

Field  

Delineation 

strategy HMÀ P K S Ca Mg pH CECÿ BSÿ 

  % NC soil-test-index rating§ ---% of CEC---  cmolc kg-1 % 

Block 6 

All Fields None Four Two Three Two Two None Three Two 

Uniform None Four Two Four Two Two None Four Four 

NDVI Four Five Two Five None Two None Four Four 

Control Three Three Two Three Four Two Three Three Two 

           

Block 12 

All Fields Five Five Two Two Five Four Two Five Five 

Uniform Four Four Two Three Four None Two Four Five 

NDVI Four Four Two Three Four None Two Four Five 

Control Three Two None Two None Two Two Two None 

           

Block 8 

All Fields None None Two Four Four Three Two Three Two 

Uniform Two Five Two Four Four Four Three Three Three 

NDVI Two Five Two Four Four Four Three Three Three 

Control Five Two None None None Five None None None 

           

Block 45 

All Fields Two Four Three Three None Two None None Two 

Uniform Two Two None Five None Five None None Two 

NDVI Two Two Three Four None Two None None Two 

Control None None None Two None Four None None None 
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Table 30. Within a field and delineation strategy and among management zones, the maximum difference in recommended fertilizer rates 

(expressed as P2O5 and K2O). 

  Fertilizer 

Field Delineation strategy P2O5 K2O 

  ---------lb acre-1-------- 

Block 6 

All Fields 30 29 

Uniform 14 11 

NDVI 18 11 

Soil Survey 51 47 

Control 26 22 

    

Block 12 

All Fields 24.3 12.5 

Uniform 26 15 

NDVI 26 15 

Soil Survey 22 None 

Control 12 None 

    

Block 8 

All Fields None 30 

Uniform 11 10 

NDVI 11 10 

Soil Survey 23 21 

Control 5 None 

    

Block 45 

All Fields 16 19 

Uniform 10 None 

NDVI 9 13 

Soil Survey None None 

Control None None 
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FIGURES 

 
Figure 1. Illinois (IL) study site and the fields located in the site. 
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Figure 2. North Carolina (NC) study site and the fields located in the site. 
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Figure 3. Creating a single image from two stripes of satellite images by mosaicking and clipping.
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Figure 4. Sequential steps for delineating management zones at a field level
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Figure 5. Coefficients of determination (R2) for simple linear regression of soil organic matter 

(SOM) versus satellite imagery spectral data by month for Melvin, IL Bailey field for 2017. The 

X-axis shows the image acquisition date. Cornu indicates that it was grown over the entire field. 
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Figure 6. Coefficients of determination (R2) for simple linear regression of soil organic matter 

(SOM) versus satellite imagery spectral data by month for Melvin, IL Buess field for 2017. The 

X-axis shows the image acquisition date. Cornp and Soybeanp indicate that each was grown on 

only a part of the field. 
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Figure 7. Coefficients of determination (R2) for simple linear regression of soil organic matter 

(SOM) versus satellite imagery spectral data by month for the Melvin, IL Cleo field for 2017. 

The X-axis shows the image acquisition date. Cornu indicates that it was grown over the entire 

field. 
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Figure 8. Coefficients of determination (R2) for simple linear regression of soil organic matter 

(SOM) versus satellite imagery spectral data by month for the Melvin, IL East field for 2017. 

The X-axis shows the image acquisition date. Cornu indicates that it was grown over the entire 

field. 
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Figure 9. Coefficients of determination (R2) for simple linear regression of soil organic matter 

(SOM) versus satellite imagery spectral data by month for the Melvin, IL Harris North field for 

2017. The X-axis shows the image acquisition date. Soybeanu indicates that it was grown over 

the entire field.  

  

Soybeanu 

Snow cover period 

Usual 
planting 

dates for 

soybean in 

IL  

Usual 

harvesting 

dates for 

soybean in IL Snow cover 

period 



122 

 

 

Figure 10. Coefficients of determination (R2) for simple linear regression of soil organic matter 

(SOM) versus satellite imagery spectral data by month for the Melvin, IL Harris South field for 

2017. The X-axis shows the image acquisition date. Cornu indicates that it was grown over the 

entire field. 
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Figure 11. Coefficients of determination (R2) for simple linear regression of soil organic matter 

(SOM) versus satellite imagery spectral data by month for the Melvin, IL Home field for 2017. 

The X-axis shows the image acquisition date. Cornu indicates that it was grown over the entire 

field. 
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Figure 12. Coefficients of determination (R2) for simple linear regression of soil organic matter 

(SOM) versus satellite imagery spectral data by month for the Melvin, IL Keegan field for 2017. 

The X-axis shows the image acquisition date. Soybeanu indicates that it was grown over the 

entire field. 
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Figure 13. Coefficients of determination (R2) for simple linear regression of soil organic matter 

(SOM) versus satellite imagery spectral data by month for the Melvin, IL North field for 2017. 

The X-axis shows the image acquisition date. Soybeanu indicates that it was grown over the 

entire field. 
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Figure 14. Coefficients of determination (R2) for simple linear regression of soil organic matter 

(SOM) versus satellite imagery spectral data by month for the Melvin, IL Thackery field for 

2017. The X-axis shows the image acquisition date. Cornu indicates that it was grown over the 

entire field. 
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Figure 15. Coefficients of determination (R2) for simple linear regression of soil organic matter 

(SOM) versus satellite imagery spectral data by month for the Melvin, IL Weber field for 2017. 

The X-axis shows the image acquisition date. Cornp and Soybeanp indicate that each was grown 

on only a part of the field. 
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Figure 16. Coefficients of determination (R2) for simple linear regression of soil organic matter 

(SOM) versus satellite imagery spectral data by month for the Open Grounds Farm Block 6 field 

for 2016 and 2017. The X-axis shows the image acquisition date. Cornu indicates that it was 

grown over the entire field. Soybeanu indicates that it was grown over the entire field. 
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Figure 17. Coefficients of determination (R2) for simple linear regression of soil organic matter 

(SOM) versus satellite imagery spectral data by month for the Open Grounds Farm Block 8 field 

for 2016 and 2017. The X-axis shows the image acquisition date. Cornu indicates that it was 

grown over the entire field. Soybeanu indicates that it was grown over the entire field. 
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Figure 18. Coefficients of determination (R2) for simple linear regression of soil organic matter 

(SOM) versus satellite imagery spectral data by month for the Open Grounds Farm Block 12 

field for 2016 and 2017. The X-axis shows the image acquisition date. Cornu indicates that it was 

grown over the entire field. Soybeanu indicates that it was grown over the entire field. 
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Figure 19. Coefficients of determination (R2) for simple linear regression of soil organic matter 

(SOM) versus satellite imagery spectral data by month for the Open Grounds Farm Block 45 

field for 2016 and 2017. The X-axis shows the image acquisition date. Cornu indicates that it was 

grown over the entire field. Soybeanu indicates that it was grown over the entire field. 
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Figure 20. Coefficients of determination (R2) for simple linear regression of phosphorus (P) 

versus satellite imagery spectral data by month for Melvin, IL Buess field for 2017. The X-axis 

shows the image acquisition date Cornp and Soybeanp indicate that each was grown on only a 

part of the field. 
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Figure 21. Coefficients of determination (R2) for simple linear regression of phosphorus (P) 

versus satellite imagery spectral data by month for the Melvin, IL Cleo field for 2017. The X-

axis shows the image acquisition date. Cornu indicates that it was grown over the entire field. 

 

  

Cornu 



134 

 

 

Figure 22. Coefficients of determination (R2) for simple linear regression of phosphorus (P) 

versus satellite imagery spectral data by month for the Melvin, IL Keegan field for 2017. The X-

axis shows the image acquisition date. Soybeanu indicates that it was grown over the entire field. 
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Figure 23. Coefficients of determination (R2) for simple linear regression of phosphorus (P) 

versus satellite imagery spectral data by month for the Melvin, IL Weber field for 2017. The X-

axis shows the image acquisition date. Cornp and Soybeanp indicate that each was grown on only 

a part of the field. 
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Figure 24. Coefficients of determination (R2) for simple linear regression of phosphorus (P) 

versus satellite imagery spectral data by month for the Melvin, IL Harris North field for 2017. 

The X-axis shows the image acquisition date. Soybeanu indicates that it was grown over the 

entire field. 
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Figure 25. Coefficients of determination (R2) for simple linear regression of soil phosphorus (P) 

versus satellite imagery spectral data by month for the Melvin, IL Harris South field for 2017. 

The X-axis shows the image acquisition date. Cornu indicates that it was grown over the entire 

field. 
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Figure 26. Coefficients of determination (R2) for simple linear regression of phosphorus (P) 

versus satellite imagery spectral data by month for the Melvin, IL North field for 2017. The X-

axis shows the image acquisition date. Soybeanu indicates that it was grown over the entire field. 
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Figure 27. Coefficients of determination (R2) for simple linear regression of phosphorus (P) 

versus satellite imagery spectral data by month for the Melvin, IL Thackery field for 2017. The 

X-axis shows the image acquisition date. Cornu indicates that it was grown over the entire field. 
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Figure 28. Coefficients of determination (R2) for simple linear regression of phosphorus (P) 

versus satellite imagery spectral data by month for the Melvin, IL Home field for 2017. The X-

axis shows the image acquisition date. Cornu indicates that it was grown over the entire field. 
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Figure 29. Coefficients of determination (R2) for simple linear regression of phosphorus (P) 

versus satellite imagery spectral data by month for Melvin, IL Bailey field for 2017. The X-axis 

shows the image acquisition date. Cornu indicates that it was grown over the entire field. 
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Figure 30. Coefficients of determination (R2) for simple linear regression of phosphorus (P) 

versus satellite imagery spectral data by month for the Melvin, IL East field for 2017. The X-axis 

shows the image acquisition date. Cornu indicates that it was grown over the entire field. 
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Figure 31. Coefficients of determination (R2) for simple linear regression of phosphorus (P) 

versus satellite imagery spectral data by month for the Open Grounds Farm Block 6 field for 

2016 and 2017. The X-axis shows the image acquisition date. Cornu indicates that it was grown 

over the entire field. Soybeanu indicates that it was grown over the entire field. 
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Figure 32. Coefficients of determination (R2) for simple linear regression of phosphorus (P) 

versus satellite imagery spectral data by month for the Open Grounds Farm Block 8 field for 

2016 and 2017. The X-axis shows the image acquisition date. Cornu indicates that it was grown 

over the entire field. Soybeanu indicates that it was grown over the entire field. 
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Figure 33. Coefficients of determination (R2) for simple linear regression of phosphorus (P) 

versus satellite imagery spectral data by month for the Open Grounds Farm Block 12 field for 

2016 and 2017. The X-axis shows the image acquisition date. Cornu indicates that it was grown 

over the entire field. Soybeanu indicates that it was grown over the entire field. 
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Figure 34. Coefficients of determination (R2) for simple linear regression of phosphorus (P) 

versus satellite imagery spectral data by month for the Open Grounds Farm Block 45 field for 

2016 and 2017. The X-axis shows the image acquisition date. Cornu indicates that it was grown 

over the entire field. Soybeanu indicates that it was grown over the entire field. 
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Figure 35. Coefficients of determination (R2) for simple linear regression of potassium (K) 

versus satellite imagery spectral data by month for the Melvin, IL Cleo field for 2017. The X-

axis shows the image acquisition date. Cornu indicates that it was grown over the entire field. 
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Figure 36. Coefficients of determination (R2) for simple linear regression of soil potassium (K) 

versus satellite imagery spectral data by month for the Melvin, IL Harris South field for 2017. 

The X-axis shows the image acquisition date. Cornu indicates that it was grown over the entire 

field. 
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Figure 37. Coefficients of determination (R2) for simple linear regression of potassium (K) 

versus satellite imagery spectral data by month for the Melvin, IL Thackery field for 2017. The 

X-axis shows the image acquisition date. Cornu indicates that it was grown over the entire field. 
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Figure 38. Coefficients of determination (R2) for simple linear regression of potassium (K) 

versus satellite imagery spectral data by month for the Melvin, IL Weber field for 2017. The X-

axis shows the image acquisition date. Cornp and Soybeanp indicate that each was grown on only 

a part of the field. 

  

Cornp and Soybeanp   



151 

 

 

Figure 39. Coefficients of determination (R2) for simple linear regression of potassium (K) 

versus satellite imagery spectral data by month for the Melvin, IL North field for 2017. The X-

axis shows the image acquisition date. Soybeanu indicates that it was grown over the entire field. 
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Figure 40. Coefficients of determination (R2) for simple linear regression of potassium (K) 

versus satellite imagery spectral data by month for Melvin, IL Buess field for 2017. The X-axis 

shows the image acquisition date. Cornp and Soybeanp indicate that each was grown on only a 

part of the field. 
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Figure 41. Coefficients of determination (R2) for simple linear regression of potassium (K) 

versus satellite imagery spectral data by month for the Melvin, IL Keegan field for 2017. The X-

axis shows the image acquisition date. Soybeanu indicates that it was grown over the entire field. 
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Figure 42. Coefficients of determination (R2) for simple linear regression of potassium (K) 

versus satellite imagery spectral data by month for Melvin, IL Bailey field for 2017. The X-axis 

shows the image acquisition date. Cornu indicates that it was grown over the entire field. 
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Figure 43. Coefficients of determination (R2) for simple linear regression of potassium (K) 

versus satellite imagery spectral data by month for the Melvin, IL East field for 2017. The X-axis 

shows the image acquisition date. Cornu indicates that it was grown over the entire field. 
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Figure 44. Coefficients of determination (R2) for simple linear regression of potassium (K) 

versus satellite imagery spectral data by month for the Melvin, IL Harris North field for 2017. 

The X-axis shows the image acquisition date. Soybeanu indicates that it was grown over the 

entire field. 
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Figure 45. Coefficients of determination (R2) for simple linear regression of potassium (K) 

versus satellite imagery spectral data by month for the Melvin, IL Home field for 2017. The X-

axis shows the image acquisition date. Cornu indicates that it was grown over the entire field. 
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Figure 46. Coefficients of determination (R2) for simple linear regression of potassium (K) 

versus satellite imagery spectral data by month for the Open Grounds Farm Block 45 field for 

2016 and 2017. The X-axis shows the image acquisition date. Cornu indicates that it was grown 

over the entire field. Soybeanu indicates that it was grown over the entire field. 
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Figure 47. Coefficients of determination (R2) for simple linear regression of potassium (K) 

versus satellite imagery spectral data by month for the Open Grounds Farm Block 8 field for 

2016 and 2017. The X-axis shows the image acquisition date. Cornu indicates that it was grown 

over the entire field. Soybeanu indicates that it was grown over the entire field. 
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Figure 48. Coefficients of determination (R2) for simple linear regression of potassium (K) 

versus satellite imagery spectral data by month for the Open Grounds Farm Block 6 field for 

2016 and 2017. The X-axis shows the image acquisition date. Cornu indicates that it was grown 

over the entire field. Soybeanu indicates that it was grown over the entire field. 
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Figure 49. Coefficients of determination (R2) for simple linear regression of potassium (K) 

versus satellite imagery spectral data by month for the Open Grounds Farm Block 12 field for 

2016 and 2017. The X-axis shows the image acquisition date. Cornu indicates that it was grown 

over the entire field. Soybeanu indicates that it was grown over the entire field. 
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Figure 50. Coefficients of determination (R2) for simple linear regression of pH versus satellite 

imagery spectral data by month for Melvin, IL Bailey field for 2017. The X-axis shows the 

image acquisition date. Cornu indicates that it was grown over the entire field. 
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Figure 51. Coefficients of determination (R2) for simple linear regression of pH versus satellite 

imagery spectral data by month for the Melvin, IL East field for 2017. The X-axis shows the 

image acquisition date. Cornu indicates that it was grown over the entire field. 
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Figure 52. Coefficients of determination (R2) for simple linear regression of pH versus satellite 

imagery spectral data by month for the Melvin, IL Harris North field for 2017. The X-axis shows 

the image acquisition date. Soybeanu indicates that it was grown over the entire field. 
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Figure 53. Coefficients of determination (R2) for simple linear regression of soil pH versus 

satellite imagery spectral data by month for the Melvin, IL Harris South field for 2017. The X-

axis shows the image acquisition date. Cornu indicates that it was grown over the entire field. 

 

  

Cornu 



166 

 

 

Figure 54. Coefficients of determination (R2) for simple linear regression of pH versus satellite 

imagery spectral data by month for the Melvin, IL North field for 2017. The X-axis shows the 

image acquisition date. Soybeanu indicates that it was grown over the entire field. 
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Figure 55. Coefficients of determination (R2) for simple linear regression of pH versus satellite 

imagery spectral data by month for the Melvin, IL Thackery field for 2017. The X-axis shows 

the image acquisition date. Cornu indicates that it was grown over the entire field. 
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Figure 56. Coefficients of determination (R2) for simple linear regression of pH versus satellite 

imagery spectral data by month for the Melvin, IL Cleo field for 2017. The X-axis shows the 

image acquisition date. Cornu indicates that it was grown over the entire field. 
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Figure 57. Coefficients of determination (R2) for simple linear regression of pH versus satellite 

imagery spectral data by month for the Melvin, IL Home field for 2017. The X-axis shows the 

image acquisition date. Cornu indicates that it was grown over the entire field. 
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Figure 58. Coefficients of determination (R2) for simple linear regression of pH versus satellite 

imagery spectral data by month for the Melvin, IL Keegan field for 2017. The X-axis shows the 

image acquisition date. Soybeanu indicates that it was grown over the entire field. 
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Figure 59. Coefficients of determination (R2) for simple linear regression of pH versus satellite 

imagery spectral data by month for the Melvin, IL Buess field for 2017. The X-axis shows the 

image acquisition date. Cornp and Soybeanp indicate that each was grown on only a part of the 

field. 
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Figure 60. Coefficients of determination (R2) for simple linear regression of pH versus satellite 

imagery spectral data by month for the Melvin, IL Weber field for 2017. The X-axis shows the 

image acquisition date. Cornp and Soybeanp indicate that each was grown on only a part of the 

field. 
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Figure 61. Coefficients of determination (R2) for simple linear regression of pH versus satellite 

imagery spectral data by month for the Open Grounds Farm Block 45 field for 2016 and 2017. 

The X-axis shows the image acquisition date. Cornu indicates that it was grown over the entire 

field. Soybeanu indicates that it was grown over the entire field. 
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Figure 62. Coefficients of determination (R2) for simple linear regression of pH versus satellite 

imagery spectral data by month for the Open Grounds Farm Block 6 field for 2016 and 2017. 

The X-axis shows the image acquisition date. Cornu indicates that it was grown over the entire 

field. Soybeanu indicates that it was grown over the entire field. 
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Figure 63. Coefficients of determination (R2) for simple linear regression of pH versus satellite 

imagery spectral data by month for the Open Grounds Farm Block 8 field for 2016 and 2017. 

The X-axis shows the image acquisition date. Cornu indicates that it was grown over the entire 

field. Soybeanu indicates that it was grown over the entire field. 
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Figure 64. Coefficients of determination (R2) for simple linear regression of pH versus satellite 

imagery spectral data by month for the Open Grounds Farm Block 12 field for 2016 and 2017. 

The X-axis shows the image acquisition date. Cornu indicates that it was grown over the entire 

field. Soybeanu indicates that it was grown over the entire field. 
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Figure 65. Management zone delineation map for Block 6 including two zones based on the ñAll 

Fieldsò delineation strategy (Table 10).  
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Figure 66. Management zone delineation map for Block 6 including three zones based on the 

ñAll Fieldsò delineation strategy (Table 10). 
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Figure 67. Management zone delineation map for Block 6 including four zones based on the ñAll 

Fieldsò delineation strategy (Table 10). 
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Figure 68. Management zone delineation map for Block 6 including five zones based on the ñAll 

Fieldsò delineation strategy (Table 10). 
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Figure 69. Management zone delineation map for Block 6 including two zones based on the 

ñUniformò delineation strategy (Table 10). 
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Figure 70. Management zone delineation map for Block 6 including three zones based on the 

ñUniformò delineation strategy (Table 10). 
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Figure 71. Management zone delineation map for Block 6 including four zones based on the 

ñUniformò delineation strategy (Table 10). 
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Figure 72. Management zone delineation map for Block 6 including five zones based on the 

ñUniformò delineation strategy (Table 10). 
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Figure 73. Management zone delineation map for Block 6 including two zones based on the 

ñNDVIò delineation strategy (Table 10). 
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Figure 74. Management zone delineation map for Block 6 including three zones based on the 

ñNDVIò delineation strategy (Table 10). 






























































































