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LARGE DEFLECTIONS
OF VISCOELASTIC ORTHOTROPIC CYLINDRICAL SHELLS
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ABSTRACT

Using the convolutionsal variational principle of minimum potential energy
for viscoelastic bodies the basic equations of large deflection theory for
viscoelastic snisotropic shallow shells are derived. These equations corres-
pond to Kérmén-Donnel equations for elastic shallow shells. Then the solution
of boundary value problems is transformed into the solution of a system of
non-linear integro-differential equations. Further the symmetrical buckling
of a cylindrical shallow shell, which is uniformly compressed in the axial
direction, is enalysed. It is shown that, in general, there can occur not only
infinite critical time but also finite critical times.

1. INTRQDUCTION

The modern non-linear theory of viscoelasticity, noted by its utmost ge-
nerality, is not very convenient for the solution of boundary value problems.
Green and Rivlin (1] have shown that general operators of constitutive eque~
tions may be expressed to any desired approximation by the sum of multiple in-
tegral operators. The first order spproximation by a single integral operator
generalizes the infinitisimal theory of viscoelasticity to finite deformation
theory of viscoelasticity. Brilla {2] has shown that also this theory is very
corplicated for the solution of boundary vslue problems,

In this paper we shall deal with the further simplification of the gene-
ral theory for two dimmensional bodies corresponding to large deflection theo-

'ry of elastic plates snd shells. Thus we shall assume that deflections of
shells are not small in comparison with the thickness of the shell but are
still small as compared with other dimensions.

2, CONSTITUTIVE EQUATIONS

Consider quasi-static problems in which inertia forces due to deforme—
tions are negligible. The constitutive equation of an arbitrery linear visco-
elastic material cen be written in the form
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where # "yurepresenta a tensor operator. On the basis of the assumptions
of Onsager’a theory for linear rheological models, this tensor operator is
symmetrfc. In additiom, on the bsais of the second law of themodynamice it
may be proved that this operator is positive definite. H EY4E can have: an inte-
grel or dffferential form. Then according to Brilla [3,4,3] constitutive equ-
ation /1/ assume the following forms
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are tensor operators, ¥2 0 are 1nveraa relaxation times, 4,2 ¢ ere inverse
retardation times apd A= 4 =1 o As 1t was proved by Brilla [3]tensor
operators can not be on both e:l.dee of Eqse./2-3/«

In the case of a homogeneous relaxation spectrum Eq./5/ assume the

form
<
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3. BASIC EQUATIONS OF A VISCOELASTIC SHALLOW SHELL

The baasiec equations of the large deflection theory for viscoelastic
anisotropic shallow shells follow from the convolutional variational princip-
le of minimum potential energy derived :f.or viscoelastic bodiee by Brilla [2].
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where ¢ is the transverae losd, %~ the normal /tremsveras/ displacement of
the shell and the indices « , /3 assume the values 1, 2 .
According to the assumptions of the shellow shell theory we have
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where 4“(—,6 is the curvature tensor, 7, the tangential displecements and
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are middle surface strains. Commas dentoe covariant differentiation with
respect to suwface coordinates £, , £ .

Integrating Eq./7/ with respect to «; through the thickness aof the
shell (<£/s, 4/2) we obtain
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We shell consider the combination of the following boundary conditions

w =0, wo, = 0 on 25, ny
or

u- = 0/ Nlm -0 on 01(', /12/
and

A/nn -9, an‘ =0 o 25, /13/
or

Then the basic equations for viscoelasstic shallow shells cen be obtai-
ned from the convolutional principle of minimum potential energy constrained
by the condition Eq./9/
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where N *? {s the Legrenge multiplies.
Using the last term of Eq./8/ &nd constitutive equations we have
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where o
“3rd )1
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Introducing the stress function
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where €°7 is the alternsting temsor we arrive at
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After inserting of Eqs./16,20/ into Eq./15/ the calculus of variation
leads to the basic equations of viscoelastic anisotropic shallow shells.
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As & specisl case we shall consider a viscoelastic shellow shell of a
Zener material with the homogeneous relexation spectrum of Maxwell element
/Fige.l/o
According to Brills (4] the Leplace transform of the constitutive equa-
tion has the following form
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?L
£ # onis tensor of moduli of elasticity and symbols with tildas denote
Laplace transforms.

Solving this equetion we obtain
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where, in genersl, the determinantd(p)= /AL i ’a:ké;"“‘ 77/ 18 & polynomial

of 7«- of degree 3 and the adjoint matrix £ Y, N/'(;f) is a }.« - matrix of
degree 2 o

Expanding Eq./27/ in pertisl fractions, denoting the roots of the deter-
minentel equation A(a)~ 0 by -2 s we obtain for different roots
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snd A% (-2 L is the first derivative of 4 (£) with respect to A for /..-"/1,,'
Equ./28/ can be written in the form
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After inversion it holds
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The basic equations of lerge deflections of a shallow shell of a Zener
material then assume the form
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These equations correspond to Donnel-Kérmén equetion for elastic
shallow shells.

4. INTEGRO-DIFFERENTIAL EQUATIONS OF SHALLOW ANISOTROPIC VISCCELASTIC
SHELLS

When dealing with boundary value problems for large deflections of
shallow viscoelastic shells it is advantageous to replace the original
problem by a solution of non-linear integro-differential equations.

Ve consider the basic equations of shallow viscoelastic shells
Equ./22,23/. Applying formelly Laplace transformation we errive at
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where the Laplace transform, es it is denoted by tildas, is spplied to the
whole non-linesr terms and not to single terms, separately.
Denoting Green functions of the left hand sides of Equ./37,38/ with

appropriate boundary conditions by G, ’ G we obtain
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Using convolution theorem we find that the inverse transform gives
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Thus we have arrived at a system of non-linear integro-differentisl equa-
tions for shallow viscoelastic shells.

This system cen be solved by the method of successive approximation. As
the first approximation we take the linear solution for
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Continuing this process we find as the nth approximation
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In the case of a homogenenous relexstion spectrum the integro-differen-

tial equations /41,42/ assume the form
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where é', » 81 ere Green functions of the elestic shsllow shell. This system-
of integro-differential equations cen be Bolved by the method of successive
approximations, too.

5 STABILITY OF A CYLINDRICAL VISCOELASTIC SHELL

Due to viscoelsstic behaviours the deformations of & viscoelastic shell
incresse with time. This process can leed to instability of the shell. In what
follows we shall deel with the stebility of a cylindricsl viscoelastic shell



- 140 -

uniformly compressed in the axial direction.

In the known way we obtain from the basic equations of lerge deflection -
theory of viscoelastic shallow shells the differentisl equations for linear
buckling '

D"‘Ie”oﬂw, e r e 5140”% F - 20 N = 0/ 749/
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We shell consider am orthotropic viscoelestic cylinder uniformly compre-
ssed in the axial directlon. Then buckling symmetricel with respect to the
axis of the cylinder may occur at a certain value of the compressive stress,

In discussing the stebility of a cylinder we assume that the generator
of the shell is vertical and parallel to 4, — axis, <4, is in the direction
of the tangent to the normel cross section and ZJ in the direction of the
normal to the shell.

Then
P /51
and y /V V o
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Thus the differential equations for linear buckling become
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Eliminating %" we arrive at
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In order to simpIify the following snalysis we restrict our attention to
a shell of Zener materisl with homogeneous relaxation spectrum /Fig.l/. Putt-
ing Eq./26/
£o:/37‘¢/’ - v é-«m‘o” ' /51/
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and
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we find that
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Thus using the contracted notation we have
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Then the differentisl equation for buckling becomes
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e shell assume that A has the form

£ o= FE)sind e .

Hence
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The solution of this differential equation 1is
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The stability of the cylinder depends on the sign of the exponent. For
negative values of the exponent the deflection / decreases as tire goes on.
end the shell is stable. For positive values of exponent f increases with
time and the shell is unstable. The exponent is negetive for small velues G
end then the numerattn- changes its sign. We shall anelyse the exponent for G=
= const. Then G =0 ,

The numerator has its minimm at

2 6o~ 761/
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and chenges the sign at
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which in the case of isotropy gives
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The dencminator has its minimum at
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which for an isotropic shell gives
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It is obvious that foro'= ;% the velocity of the deflection becomes
infinite., Now we cen make the following statement.

The viscoelestic shell is stsble for o€ 0°€ 0°Y | unsteble with infi~
nite critical time for ¥ <6< 0, ana unstable with instent loos of sta-
bility, it is with finite critical time, for 0’= oL .

¥hen comparing 0" a) and f Q) with the corresponding critical stress of
the elastic shell, it is obvious, that 0‘ ) correspondsto the critical stress
of the elastic element [ of Zener model /Fig.l/ end 0’ =) corresponds to the
criticel stress of both springs £, * &3 ©
That fact shows that the statement by B.Venkatraman in the discusion to
Bychawski [6] on nonexistence of finite criticasl times for lineer viscoelas-
tic structures is true only for some viscoelastic models.
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