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Abstract

We consider electromagnetic interrogation problems for complex materials involving distributions of polarization

mechanisms and also distributions for the parameters in these mechanisms. A theoretical and computational frame-

work for such problems is given. Computational results for specific problems with multiple Debye mechanisms are

given in the case of discrete, uniform, log-normal, and log-Bi-Gaussian distributions.
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1 Introduction

For at least the past century [50, 51], scientific investigators have sought to understand what happens
to electromagnetic fields (and how to mathematically model the associated phenomena) when they are
introduced into complex materials such as biotissue and more general dielectrics, conductors and magnetics.
More specifically, a fundamental question is how to model dispersion and dissipation of the fields in these
complex materials. This has most often led to the use of Maxwell’s equations in a non-vacuum environment
which entails constitutive relationships for polarization (in dielectrics), magnetization (in magnetic materials)
and conductivity. We focus here on modeling polarization in dielectric materials for which we develop a new
modeling framework. Even though we treat only polarization as our dispersive mechanism in our formulation
(adopting Ohm’s law for conductivity and considering non-magnetic materials), the approach is sufficiently
general so as to be readily extended to treat magnetization and conductivity in materials (each in some type
of convolution representation involving susceptibility kernels, e.g., see [2, 3]). We develop a framework that
allows not only uncertainty (through distributions of parameters representing molecular variability) at the
molecular level, but also allows for the presence of multiple polarization mechanisms in the material.

We first explain a conceptual framework in the context of the 3-D Maxwell equations in a dielectric
material. In particular, we use Maxwell’s equations which govern the electric field E and the magnetic field
H in a domain D = Ω0 ∪ Ω with charge density ρ in the material Ω while the ambient Ω0 is treated as a
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vacuum. Thus we first consider the system



































































(i)
∂D

∂t
+ J −∇× H = 0, in (0, T ) ×D,

(ii)
∂B

∂t
+ ∇× E = 0, in (0, T ) ×D,

(iii) ∇ · D = ρ, in (0, T ) ×D,

(iv) ∇ · B = 0, in (0, T ) ×D,

(v) E × n = 0, on (0, T ) × ∂D,

(vi) E(0,x) = 0, H(0,x) = 0, in D.

(1)

As usual, the current J is composed of the source current Js and the conductive current Jc. Within the
domain we have constitutive relations that relate the flux densities D,B and the conductive current Jc to
the electric and magnetic fields. We have























(i) D = ε0E + PTIΩ,

(ii) B = µ0H,

(iii) Jc = σEIΩ.

(2)

In (2), IΩ denotes the indicator function on the dielectric medium Ω. Thus Jc = 0 in the ambient or air.
The total electric polarization PT is given by

PT = PI + P = ε0χE + P,

where PI is the instantaneous polarization due to the interface between Ω0 and Ω and P is the material or
dielectric polarization. Hence the constitutive law (2, i) in Ω becomes

D = ε0εrE + P,

where εr = (1 + χ) is the relative permittivity of the dielectric medium.
Our main focus in this presentation is the dielectric polarization P which we assume has the general

convolution form

P(t,x) = g ? E(t,x) =

∫ t

0

g(t − s,x)E(s,x)ds, (3)

where g is the general dielectric response function (DRF). In every practical example (Debye, Lorentz,
etc.) DRFs are parameter dependent as well as time (and possibly space) dependent; we represent this as
g = g(t,x; ν), where typically ν = (ε∞, εs, τ) contains parameters such as the high frequency limit dielectric
permittivity ε∞, the static permittivity εs, and relaxation time τ . Examples of often-used DRFs are the
Debye [11, 23, 29] in a material region Ω defined in the time domain by

g(t,x) = ε0(εs − ε∞)/τ e−t/τ ,

the Lorentz [11, 23, 40] given by
g(t,x) = ε0ω

2
p/ν0e

−t/2τsin(ν0t),

and the Cole-Cole [23, 27, 32, 38, 46] defined by

g(t,x) = L−1

{

ε0(εs − ε∞)

1 + (sτ)α

}

=
1

2πi

∫ ζ+i∞

ζ−i∞

ε0(εs − ε∞)

1 + (sτ)α
estds,

where L is the Laplace transform.
These DRFs also play a fundamental role in convolution representations such as (3) for nonlinear polar-

ization laws [8, 19, 20, 24, 40] of Kerr type and Raman scattering [40]. While the ideas we describe here on
distributions of relaxation times and mechanisms can readily be used to treat such nonlinear polarization
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laws, we shall in this paper concentrate on linear constitutive laws involving multiple relaxation parameters
and multiple dispersive mechanisms in materials in the presence of multiple interrogating frequencies.

The macroscopic polarization model (3) can be derived from microscopic dipole, electron cloud, etc.,
formulations by passing to a limit over the molecular population [30]. However, such derivations tacitly
assume that one has similar individual (molecular, dipole, etc.) parameters; that is, all dipoles, molecules,
“electron clouds”, etc., have the same relaxation parameters, plasma frequencies, etc. Historically, such
models based on molecular level homogeneity throughout the material have often not performed well when
trying to compare models with experimental data. Indeed, in 1907 Von Schweidler [23, 50] observed the
need to assume multiple relaxation times when considering experimental data and in 1913 Wagner [23, 51]
proposed continuous distributions of relaxation times. This idea was subsequently visited by Williams and
Ferry [55] in comparing the behavior of viscoelastic polymers and dielectric materials. In the past half
century intensive experimental efforts [31, 32, 33, 34, 35, 38, 45] have been pursued in describing data for
complex materials with distributions of dielectric parameters (especially relaxation times in multiple Debye
[31] or multiple Lorentz [40] mechanisms) in the frequency domain. A significant amount of this work is
reviewed in the survey paper by Foster and Schwan [31]. There are now incontrovertible experimentally based
arguments for distributions of relaxation parameters in mechanisms for heterogeneous materials. Moreover,
there is compelling evidence of the presence of multiple mechanisms in complex materials such as tissue
and modern polymeric composites. These multiple mechanisms may involve interfacial polarization, dipolar
orientation, ionic diffusion (e.g., see p. 40, 49, 57 of [31]) and may often require a selection of several
types of distributional representations from examples such as the fractional power laws of the Cole-Cole
[25, 26, 31, 35, 46], the log normal, the uniform, as well as the Debye and Lorentz (although the fractional
power law of Cole-Cole is more the rule rather than the exception – p. 39, [31]). These multiple mechanisms
are likely present in some weighted combination (e.g., see [36] and p. 369, [40]) and often are manifested in
a frequency-dependent manner. It is therefore advantageous to consider interrogation or inverse problems
with multiple frequencies (e.g., ranging from RF (106) to GHz (1010)) or broadband excitation signals.

To allow for a distribution F of parameters ν over some admissible set N , we generalize the polarization
law (3) to

P(t,x;F ) = h ? E(t,x) =

∫ t

0

∫

N

g(t − s,x; ν)E(s,x)dF (ν)ds. (4)

We expect to chose F from (or from a subspace of) the space F = P(N ) of all probability measures F on
N .

We further generalize (4) to allow for dielectric materials with multiple mechanisms or multiple DRFs
(i.e., heterogeneous molecular structures) by considering a family G of possible DRFs and distributions M
over this family. This leads to the polarization constitutive relationship

P(t,x;M,F ) =

∫ t

0

∫

G

∫

N

g(t − s,x; ν)E(s,x)dF (ν)dM(g)ds =

∫ t

0

K(t − s,x;M,F )E(s,x)ds, (5)

where for F ∈ F = P(N ) and M ∈ M = P(G), K is defined by

K(t − s,x;M,F ) =

∫

G

∫

N

g(t − s,x; ν)dF (ν)dM(g). (6)

When we use (5) and (6) in the Maxwell system (1)-(2), we are led to a system of partial differential
equations where lower order terms (in time) depend on probability measures. These measures are now the
“parameters” that characterize the material dielectric properties which one must estimate or identify in
interrogation problems.

With the recently growing interest in incorporating uncertainty into models and systems, the need to
employ dynamics with probabilistic structures has received increased emphasis. In particular, systems with
probability measures embedded in the dynamics (problems involving aggregate dynamics as discussed in [8])
have become important in applications in biology [9, 10, 8], electromagnetics [12] and hysteretic [15, 16, 41, 42]
and polymeric [17, 18, 21] materials. These systems (in the case of first order ordinary differential equations)
have the form

ẋ(t) = f(t, x(t), F ),
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where F is a probability distribution or measure. In fact such systems are not new and arise in relaxed or
chattering control problems [43, 44, 47, 52, 53, 54] wherein the controls are probability measures. Indeed,
such systems date back to the seminal work of L.C. Young on generalized curves in the calculus of variations
[56, 57].

In the next section we formulate an inverse problem for the Maxwell system with the general polarization
law (5) and discuss theoretical and computational aspects of this problem. We then report on our initial
computational efforts on a 1-dimensional version of the problem of finding the underlying polarization in a
slab of material using signals reflected from a front air/material interface and a metal backing. We present
numerical results for inverse problems involving Maxwell’s equations with absorbing left boundary condition,
a supraconducting right boundary condition and a general polarization term which includes uncertainty in
the dielectric parameters. We attempt to determine an unknown distribution of parameters which describes
the dielectric properties of the material. We explore both discrete and continuous distributions; for the
continuous case appropriate parameterizations and discretizations are used.

2 A General Inverse Problem

We consider the Maxwell system (1)-(2) with polarization P = P(t,x;M,F ) given by (5). Let

z(t,x;M,F ) =

(

E(t,x;M,F )
H(t,x;M,F )

)

with (t,x) → z(t,x;M,F ) mapping from (0, T ) × Ω to R6. We assume we are given data d̄ = {di}n
i=1

corresponding to observations of CAz(ti, · ;M,F ). Here CA denotes evaluation of one or more components of
E or H at an antenna {xA}. We use this data to estimate the distributions M and F in an ordinary least
squares (OLS) formulation, seeking to minimize

J(M,F ) =
n
∑

i=1

|CAz(ti, · ;M,F ) − di|2 (7)

over (M,F ) ∈ M×F = P(G) × P(N ). We thus seek to find (M̂, F̂ ) such that

(M̂, F̂ ) = arg min{J(M,F ) : M ∈ M, F ∈ F}.

We note that while for simplicity we use an OLS formulation here, most of the results discussed below
could readily be developed in the context of other standard estimation formulations such as maximum
likelihood estimators (MLE), weighted least squares (WLS), or generalized least squares (GLS).

For theoretical and computational purposes, one needs a topology on M and F and for this we choose the
Prohorov metric ρ∗ of weak∗ convergence in M and F when they are considered as subsets of the topological
duals C∗

B(G) and C∗
B(N ) of the spaces CB(G) and CB(N ) of bounded continuous functions on G and N ,

respectively [5, 8]. That is, Fk → F in the ρ∗ metric if and only if

∫

N

φ(ν)dFk(ν) →
∫

N

φ(ν)dF (ν)

for all φ ∈ CB(N ), i.e., all bounded continuous φ on N ; similarly for Mk → M . It is known [5, 8] that if
G and N are complete metric spaces, then M = P(G) and F = P(N ) taken with the Prohorov metric ρ∗

are complete metric spaces. Moreover, if G and/or N are compact, then so are M and/or F . Using these
properties and arguments similar to those in [5, 14], the following problem stability results can be proven.

Theorem 1: Suppose (M,F ) → CAz(t, · ;M,F ) is continuous on M × F and suppose that G and N
are compact. Then solutions (M̂, F̂ ) of minimizing (7) exist (generally, non-uniquely) and are continuous in
the data d̄ in the following sense. Suppose (M ∗(d̄), F ∗(d̄)) and (M∗(d̄k), F ∗(d̄k)) are the solution sets of
minimizing (7) for data d̄ and d̄

k, respectively, where d̄
k → d̄ as k → ∞. Then

dist
[(

M∗(d̄k), F ∗(d̄k)
)

,
(

M∗(d̄), F ∗(d̄)
)]

→ 0
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as k → ∞, where dist[· , · ] is the Hausdorf distance in the metric space M×F .

The problem of minimizing (7) over M×F is in general an infinite dimensional optimization problem
that poses formidable computational challenges. But we note that set G of possible DRFs can in almost all
cases be taken as a fixed finite set, i.e., G = {g1, g2, ..., gK} which means that M would be given by

M =







M(g) ∈ P(G) | dM(g) =

K
∑

j=1

aj d∆gj
(g), aj ≥ 0,

∑

j

aj = 1







,

where ∆gj
is the Dirac measure with single atom at gj , i.e., d∆gj

(g) = δgj
(g)dg. Thus, this part of the

optimization reduces to one over a closed bounded convex set in Euclidean space. The minimization over
F = P(N ) is more interesting since in general one expects N to involve a continuum of (vector) parameters.
We illustrate the possibilities with N = T = { τ |τ ∈ [τa, τb]} for τ the relaxation parameter in, for example,
a Debye or Lorentz mechanism. There are a number of ways this problem could be approached:

1. Assume that F is discrete, having the fixed form dF (τ) =
∑

αjδτj
(τ)dτ and seek to find (αj , τj)

minimizing (7) where αj ≥ 0,
∑

αj = 1, τj ∈ [τa, τb];

2. Assume that F is (absolutely) continuous and given in parametric form dF (τ) = f(τ, µ, σ)dτ
where f is known (e. g., normal, log-normal, uniform, etc.) and seek to find (µ, σ);

3. Assume F does not have a specific parametric form and seek to find the general form for F through
the optimization of (7).

In the first two cases above, one effectively reduces the inverse problem to a computationally tractable
(one hopes!–we explore these ideas computationally in subsequent discussions below) optimization problem
that is finite dimensional. The third case remains infinite dimensional in nature and one must develop
approximation ideas that lead to implementable computational algorithms. In [5], the authors developed
approximation ideas based on density results for measures arising in probability theory. We only outline
those here, referring the reader to [5] for more details and proofs.

To develop approximation ideas for the nonparametric case, we first consider a family of partition points
T N = {qN

j }N
j=1, N = 1, 2, ..., such that ∪∞

N=1T N is dense in T . Then define

FN = PN (T ) = {F N ∈ P(T )|dF N (τ) =
N
∑

j=1

pN
j δqN

j
(τ)dτ, qN

j ∈ T N , pN
j rational,

∑

pN
j = 1}.

It can be argued that ∪∞
N=1FN is dense in F in the Prohorov metric ρ∗. Moreover, if T is compact,

one can prove a method stability theorem (see [5, 8]) similar to Theorem 1 above. Specifically, let F ∗
N (d̄) be

the set of solutions obtained in minimizing (7) with F replaced by FN . Then the method stability theorem
guarantees

dist[(M∗(d̄k), F ∗
N (d̄k)), (M∗(d̄), F ∗(d̄))] → 0

as N, k → ∞.
More generally, one may wish to consider only classes of distributions F that arise from densities functions,

i.e., absolutely continuous distributions in

FAC = { F ∈ F | F ′ = f, f ∈ Fweak}

where Fweak is a given weakly compact subset of L2(T ). For example, Fweak could be any given closed,
convex, bounded subset of L2(T ). It is proven in [21] that sets FAC defined in this way are compact (in
the ρ∗ metric) subsets of F and the corresponding existence and stability results of Theorem 1 hold for
problems using FAC in place of F in the optimization for (7). But once again these are infinite dimensional
in nature and approximations are needed. We note, that although the computational framework described
above utilizing Dirac measures is also valid here, it is often desirable to develop “smoother” approximations
to elements of FAC . In particular, suppose that f ∈ Fweak and F ∈ F = P(T ) with F =

∫

f. Since Fweak
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is a subset of L2(T ), we can use any number of types of splines to formulate an approximation to f, i.e., let
{SN

j }N
j=1, N = 1, 2, ... be a standard spline family [14, 48, 49] (e.g., piecewise–linear, cubic, Hermite cubic,

etc.) and

fN (τ) =

N
∑

j=1

wN
j SN

j (τ),

where the rational numbers wN
j are chosen so that fN → f in L2(T ). This implies that

∫

T

φfNdτ →
∫

T

φfdτ

for all φ ∈ L2(T ), and hence for all φ ∈ C(T ), which yields

ρ(FN , F ) → 0,

where F N =
∫

fN . Thus defining

FN
SPL =







h ∈ L2(T )|h(τ) =

N
∑

j=1

wN
j SN

j (τ)







,

we can conclude that the set

F̃AC = {F ∈ F|F =

∫

f, f ∈ ∪∞
N=1FN

SPL}

is dense in FAC in the ρ∗-metric. Hence spline families provide an alternative way to approximate elements
of FAC in our computational work. We note that in this case the approximating elements are not probability
distributions themselves. Once again one can state and prove a method stability theorem [14] using these
spline approximations. That is:

Theorem 2: Suppose T is compact and the solutions CAz(t, · ;M,F ) are continuous. Let Fweak, FAC ,
and FN

SPL be as defined above with (M∗(d̄), F ∗
N (d̄)) the solution sets for minimizing (7) with F replaced by

FN
SPL. Then for d̄

k → d̄ we have

dist[(M∗(d̄k), F ∗
N (d̄k)), (M∗(d̄), F ∗(d̄))] → 0

as N, k → ∞. Thus solutions depend continuously on data and the approximate problems are method stable.

To illustrate computational aspects of the ideas presented in this section, we turn next to a 1-D version
of the inverse problem and present results in the next several sections on use of discrete and continuous
distributions in the polarization laws.

3 The 1-D Problem Formulation

For our initial numerical efforts, we turned to the 1-D example as explained in detail in [11]. Under the
assumptions detailed there, one obtains a domain as depicted in Figure 1.

Restricting to one dimension, and using D = εE + P , we can write Maxwell’s equations in second order
form as

µ0εË + µ0IΩP̈ + µ0σIΩĖ − E′′ = −µ0J̇s in Ω ∪ Ω0, (8)

where E is the k̂ or z component of the electric field, P is the media’s macroscopic electric polarization, Js

is the interrogating signal, Ω is the domain of the material under investigation, Ω0 is the ambient domain
(considered a vacuum), and σ = σ(z) is the conductivity of the material. Note we are considering a non-
magnetic material containing no charge distribution (ρ = 0). Also, let ε = ε0(1+IΩ(εr −1)) where εr = εr(z)
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0 1 2 3 4 5 6

x 10−3z (meters)

ΩΩ0

Figure 1: The 1-D domain.

is the dielectric permittivity. The values µ0 and ε0 are the magnetic permeability and the electric permittivity
of free space, respectively. See [11] for more details. The boundary conditions that we are assuming are
absorbing at z = 0 (to provide a finite computational window) and supraconducting at z = 1 (representing
a metal backing):

[

Ė − cE′
]

z=0
= 0

E(t, 1) = 0.
(9)

We assume homogeneous initial conditions

E(0, z) = 0 (10)

Ė(0, z) = 0. (11)

For implementation, we scale time by t̃ = ct and the polarization by P̃ = P/ε0 for convenience. Also
note that we have employed the “method of mappings” to obtain a computational domain of z = [0, 1]. The
actual dimensions of the domains considered in this report depend on the interrogating frequency ω. In
particular, for ω = 2π × 1011 we consider a material slab of thickness .004m preceded by a vacuum of depth
.002m. We scale these dimensions as the wavelength scales when we change interrogating frequencies.

Converting the system (8) to weak form (and dropping the˜notation) we obtain

〈εrË(t, ·), φ〉 + 〈IΩP̈ (t, ·), φ〉 + 〈η0σIΩĖ(t, ·), φ〉 − 〈E′′(t, ·), φ〉 = −〈η0J̇s(t, ·), φ〉,

where η0 =
√

µ0/ε0 and φ ∈ V = H1
R(0, 1) = {φ ∈ H1(0, 1) : φ(1) = 0}. Finally, we integrate by parts, and

apply the boundary conditions (9) to get

〈εrË(t, ·), φ〉 + 〈IΩP̈ (t, ·), φ〉 + 〈η0σIΩĖ(t, ·), φ〉 + 〈E′(t, ·), φ′〉 + Ė(t, 0)φ(0) = −〈η0J̇s(t, ·), φ〉. (12)

To describe the behavior of the electric polarization P , we may employ a general polarization kernel, or
dielectric response function, g as follows:

P (t, z) =

∫ t

0

g(t − s, z; τ)E(s, z)ds (13)
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where, for instance using a Debye polarization model,

g(t; τ) = ε0(εs − ε∞)/τ e−t/τ .

However, this presupposes that the material may be sufficiently defined by a single relaxation parameter
τ , which is generally not the case. In order to account for uncertainty in the polarization mechanisms, we
allow for a distribution of relaxation parameters. Thus, we define our polarization model in terms of a
distribution dependent dielectric response function h

P (t, z) =

∫ t

0

h(t − s, z;F )E(s, z)ds, (14)

where h is determined by a family of polarization laws each described by a different parameter τ , and
therefore is given by

h(t, z;F ) =

∫

T

g(t, z; τ)dF (τ),

where T = [τ1, τ2] ⊂ (0,∞). In particular, if the distribution F were discrete, consisting of a single relaxation
parameter, then we would again have (13).

The macroscopic electric polarization becomes

P (t, z) =

∫ t

0

[
∫

T

g(t − s, z; τ)dF (τ)

]

E(s, z)ds,

or, interchanging integrals, we have

P (t, z) =

∫

T

P(t, z; τ)dF (τ),

where

P(t, z; τ) =

∫ t

0

g(t − s, z; τ)E(s, z)ds

is the polarization due to the relaxation parameter τ . Thus assuming we have a computational method to
compute (13), i.e., P, we use this as a basis for approximating P , either directly in the discrete case, or using
a quadrature rule in the continuous case.

The theory developed in Section 2 for general inverse problems can be directly applied to this 1-D problem
once one has established continuity of the solution E with respect to the measures F in the space F = P(T )
taken with the Prohorov metric. But these desired continuity results are given in [12].

3.1 Discrete Distribution

Consider the discrete distribution given by

dF (τ) =
∑̀

i=0

δ(τi)

` + 1
dτ,

where δ represents the Dirac distribution, and τi = τa + iτh with τh = τb−τa

` . Then we have

P (t, z) =
∑̀

i=0

αiP(t, z; τi),

where αi = 1
`+1 . Note that for this example, the nodes (τi) are linearly spaced and the weights or masses

(αi) are uniform. More generally, one can treat a discrete distribution without linearly spaced nodes and/or
uniform masses.
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3.2 Uniform Distribution

The simplest continuous distribution is a uniform distribution. Consider

dF (τ) =
1

τb − τa
dτ,

for τa ≤ τ ≤ τb, and zero otherwise. Since the distribution function is constant, we may pull it outside the
integral giving

P (t, z) =
1

τb − τa

∫ τb

τa

P(t, z; τ)dτ. (15)

While this reduces down to essentially integrating τ out of the polarization convolution term, for most polar-
ization models this does not have an analytical solution. Therefore we must resort to numerical quadrature.
Recall the Composite Simpson’s rule approximation to

I[a,b](L) :=

∫ b

a

L(x)dx

is

S`
[a,b](L) :=

∑̀

i=0

c`
iL(xi)h,

where ` is even, xi = a + ih, h = b−a
` , and the weights are given by

c`
i =























1
3 if i = 0 or i = `

4
3 else if i odd

2
3 else if i even

.

Thus, our Composite Simpson’s approximation to (15) can be written

P (t, z) =
1

τb − τa

∑̀

i=0

c`
iP(t, z; τi)τh

=
∑̀

i=0

αiP(t, z; τi)

with

αi =
c`
i

`
,

since the numerator in τh = τb−τa

` cancels the constant in front of the integral. Note here that while our
nodes are still linearly spaced, now our weights are non-uniform. We could have used a uniform discrete
distribution to approximate the continuous one, which would have resulted in uniform weights, but the
corresponding quadrature rule for g(t, z; τ) would have only been O(τh). Composite Simpson’s rule provides
better accuracy for the same number of function evaluations.

3.3 Log-Normal

A more realistic model for the distribution of Debye relaxation times is given by the log-normal distribution
(see [23]). Therefore we consider the probability distribution defined by

dF (τ) =
1√

2πσ2

1

ln 10

1

τ
exp

(

− (log τ − µ)
2

2σ2

)

dτ,
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which means that log τ is normally distributed with mean µ and variance σ2. The ln 10 term appears because
we are using base 10 logarithms. Thus

P (t, z) =

∫ ∞

0

P(t, z; τ)dF (τ) ≈
∫ τb

τa

P(t, z; τ)dF (τ), (16)

for τa sufficiently close to zero and τb sufficiently large. Since log τ is normally distributed, we choose our
nodes based on a uniform discretization of log τ , denoted {ξi}`

i=0 from log τa := µ − 6σ to log τb := µ + 6σ,
where τa and τb are thusly defined by their logarithms. In this way we reduce our support to a compact set
which should be large enough to effectively approximate our integral. In order to use Composite Simpson’s
rule we prefer to have a uniform discretization of nodes. Therefore we first change variables so that the
integral is in terms of ξ = log τ . First, let

f̂(ξ) =
1√

2πσ2
exp

(

− (log τ − µ)
2

2σ2

)

and note that

dξ = d

(

ln τ

ln 10

)

=
1

ln 10

1

τ
dτ.

Then we have that

P (t, z) ≈
∫ τb

τa

P(t, z; τ)dF (τ) =

∫ µ+6σ

µ−6σ

P(t, z; 10ξ)f̂(ξ)dξ

where implicitly dF = f(τ)dτ and dF̂ = f̂(ξ)dξ. Applying Composite Simpson’s rule gives finally

P (t, z) ≈
∑̀

i=0

αiP(t, z; τi)

where we define τi = 10ξi and

αi = c`
i f̂(ξ)ξh =

c`
i12σ

`

1√
2πσ2

exp

(

− (log τi − µ)
2

2σ2

)

.

For this case our nodes are non-linearly spaced in τ and our weights are non-uniform.
The method used in the bi-gaussian case is derived in a similar fashion. Consider that the polarization is

driven by two distinct mechanisms, one with a dielectric distribution determined by mean µ1 and standard
deviation σ1, and the other determined by mean µ2 and standard deviation σ2. Then we define F1(τ ;µ1, σ1)
and F2(τ ;µ2, σ2) as log normal distributions as above, and let our macroscopic electric polarization be a
function of some combination of these distributions (e.g., determined by the relative volume percentage
of each of two substances in a material). Thus if dF (τ) = β1dF1(τ) + β2dF2(τ) then we again have the
representation (16). For the discretization, we prefer to apply Composite Simpson’s to each distribution
separately and then combine at the end. In other words

P (t, z) ≈ β1

∑̀

i=0

α1
iP(t, z; τ1

i ) + β2

∑̀

i=0

α2
iP(t, z; τ2

i ),

where {α1
i } and {τ1

i } are determined by µ1 and σ1, and {α2
i } and {τ2

i } are determined by µ2 and σ2, as
explained above.

4 Inverse Problem Formulation

Our goal is to estimate the probability distribution function (PDF) F ∈ P(T ) of relaxation parameters
in a given model of the polarization, where P(T ) is the set of all PDFs on the admissible region T =
[τ1, τ2] ⊂ (0,∞), by using reflections of electromagnetic interrogating signals off a metallic backing of a
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dielectric material. To this end we attempt to minimize the difference between simulations and observations
of time-domain data. In our formulation, the observations, Êj , are of the electric field E at discrete times
tj taken at z = 0. Each simulation is a solution of Maxwell’s equations given in (12) using the polarization
model (14) with candidate values for the distribution of relaxation parameters. We propose a non-standard
least-squares measurement (see [13] for a detailed justification) for the objective function, which is given by

J(F ) =
∑

j

∣

∣

∣
|E(tj , 0;F )| − |Êj |

∣

∣

∣

2

, (17)

where E(·, ·;F ) is the solution to (12) and (14) corresponding to the distribution F . Thus the inverse problem
is to solve

min
F∈P(T )

J(F ).

5 Inverse Problem Results Using a Discrete Distribution

Consider a discrete distribution with two atoms at τ1 and τ2. Essentially, we are decomposing the electric
polarization into two components, each dependent on distinct relaxation times as follows:

P = α1P(t, z; τ1) + α2P(t, z; τ2), (18)

where each P(·, ·; τi) satisfies a Debye polarization equation with parameter τi. For now we assume the
proportions α1 and α2 = 1 − α1 are known. Thus we are attempting to solve the following least squares
optimization problem:

min
(τ1,τ2)

∑

j

∣

∣

∣
|E(tj , 0; (τ1, τ2))| − |Êj |

∣

∣

∣

2

, (19)

where Êj is synthetic data generated using the true solution (τ ∗
1 , τ∗

2 ) in our simulator (with a highly refined
mesh), and E(tj , 0; (τ1, τ2)) depends on each τi through its dependence on P , see for example (12). Figures
2 and 3 depict an example of the objective function and the log of the objective function respectively, both
plotted versus the logs of τ1 and τ2 (using a frequency of 1011Hz, α1 = α2 = .5, τ∗

1 = 10−7.5 and τ∗
2 = 10−7.8).

5.1 Analysis of Objective Function

We can see clearly from the log surface plot in Figure 3 that there exists a relation for the relaxation times
for which the corresponding simulations best match the data. We will refer to this relation as the “curve of
best fit”.

Note that the appearance of many local minima is due to the steep decent near the “curve of best fit”
since the lattice points of the mesh used do not always lie near the curve. If we trace along this curve, as
displayed in Figure 4, we see that there are actually two global minima, the exact solution of log(τ1) = −7.5
and log(τ2) = −7.8, and since the proportion used in this case was α1 = α2 = .5, we also have the symmetric
solution where τ1 and τ2 are swapped. If we superimpose the data from the contour plot and the data from
the surface plot on a lattice, as demonstrated in Figure 5, we can more easily see the structure of the “curve
of best fit”, and both global minima.

Unfortunately, the scale of these plots shows that the difference between the objective function at the
minimizers and any other point on this curve in our parameter space is less than 4 × 10−10. Therefore the
exact minimizing parameters are not likely to be identifiable in a practical, experimental setting.

The equation for this “best fit curve” can be derived by combining equations (12) and (14). Note that

P̈ (t, z) =

∫ t

0

G̈(t − s, z)E(s, z)ds + G(0, z)Ė(t, z) + Ġ(0, z)E(t, z), (20)

where

G̈(t, z;F ) =

∫

T

g̈(t, z; τ)dF (τ).

So that now substituting (20) into (12) we obtain
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Figure 2: The objective function for the relaxation time inverse problem versus the log of τ1 and the log of
τ2 using a frequency of 1011Hz.
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Figure 3: The log of the objective function for the relaxation time inverse problem versus the log of τ1 and
the log of τ2 using a frequency of 1011Hz. The solid line above the surface represents the curve of constant
λ̃.
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Figure 4: The objective function for the relaxation time inverse problem plotted along the curve of constant
λ̃ using a frequency of 1011Hz.
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Figure 5: The surface plot of the objective function for the relaxation time inverse problem superimposed
with the contour plot along the curve of constant λ̃, using a frequency of 1011Hz. The fact that there are
only two minima is clearly more visible in this plot.
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〈εrË(t, ·), φ〉 + 〈IΩ [η0σ + G(0, z)] Ė(t, ·), φ〉 + 〈IΩĠ(0, ·)E(t, ·), φ〉

+ 〈
∫ t

0

IΩG̈(t − s, ·)E(s, ·)ds, φ〉 + 〈E′(t, ·), φ′〉 + Ė(t, 0)φ(0) = −〈η0J̇s(t, ·), φ〉. (21)

For large frequencies, the Ė term in (21) dominates over all other terms which depend on G. We can see
this by considering the frequency domain where the time derivative causes an increase by a factor of ω in
the norm. Thus the equation for the “curve of best fit” is simply that of constant G(0, z). For the discrete
Debye example we have

G(0, z) =

∫

T

g(0, z; τ)dF (τ) = α1ε0(εs − ε∞)/τ1 + α2ε0(εs − ε∞)/τ2,

therefore the equation is
α1

τ1
+

α2

τ2
=

α1

τ∗
1

+
α2

τ∗
2

. (22)

This is precisely the curve that is plotted above the surface in Figure 3.
For scaling purposes, and to be consistent with the presentation in [11], we define

λ̃ :=
1

cε0(εs − ε∞)
G(0, z),

which in this example means

λ̃ =
α1

cτ1
+

α2

cτ2

and thus we may say that the “curve of best fit” is the line of constant λ̃.
The frequency dependence of the Ė term in (21) suggests that for smaller frequencies it may not be the

dominant contributor, and therefore, there may be a fundamentally different structure to the surface plot.
This is in fact what we observe in our simulations. Figures 6 through 9 display the surface plots and the log
surface plots for frequencies of 109Hz and 106Hz. Note that in the latter case the concavity of the “curve
of best fit” has swapped orientation! This demonstrates that the surface plots are very much dependent on
ω even though the relaxation mechanisms are the same.

Through our numerical calculations we have determined that for the case using a frequency of 106Hz the
“curve of best fit” is actually that of constant τ̃ := α1τ1 +α2τ2 which is what one might expect as this is the
weighted average of the relaxation times. For the example given here, τ̃ ≈ 2.37000×10−8. In our simulations,
angular frequencies less than one divided by this number were characterized by a constant τ̃ while larger
frequencies resulted in dominance by the λ̃ term given above. The fact that the regime characterized by
ωτ < 1 is fundamentally different in many respects from that of the ωτ > 1 regime is well documented (see,
for example, [23]). Still, the behavior of the objective function along its corresponding “curve of best fit” is
similar for each frequency, despite the curves themselves being fundamentally different, as demonstrated by
comparing Figure 4 to Figure 10 which uses a frequency of 106Hz. Note, however, that the scale of Figure
10 is several orders of magnitudes larger, suggesting that the global minimizers may be easier to find for
smaller frequencies.

Remark 1 We should mention here that in order to analyze only the relationship between the interrogating
frequency and the relaxation time, we scaled the dimensions of the interrogated object according to the change
in scale of frequency. For example, when the frequency is divided by 100 to go from 1011 to 109, we accordingly
multiply the slab thickness by 100 to get .4m in order that the ratio of the dimensions to the wavelength of
the signal remains the same.

5.2 Optimization Procedure and Results

We attempt to apply a two parameter Levenberg-Marquardt optimization routine to the modified least
squares error between the given data and our simulations, as defined in (17), to try to identify the two distinct
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Figure 6: The objective function for the relaxation time inverse problem versus the log of τ1 and the log of
τ2 using a frequency of 109Hz.
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Figure 7: The log of the objective function for the relaxation time inverse problem versus the log of τ1 and
the log of τ2 using a frequency of 109Hz. The solid line above the surface represents the curve of constant
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Figure 8: The objective function for the relaxation time inverse problem versus the log of τ1 and the log of
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Figure 9: The log of the objective function for the relaxation time inverse problem versus the log of τ1 and
the log of τ2 using a frequency of 106Hz. The solid line above the surface represents the curve of constant τ̃ .
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Figure 10: The objective function for the relaxation time inverse problem plotted along the curve of constant
τ̃ using a frequency of 106Hz.

relaxation times that generated the data. We are assuming that the corresponding volume proportions of
the two materials (α1 and α2 := 1−α1) are known. We consider three different scenarios with respect to the
volume proportions: α1 ∈ {.1, .5, .9}. We also perform our inverse problem using the frequencies 1011Hz,
109Hz and 106Hz. Lastly we test the optimization procedure with three various initial conditions given in
Table 1. The actual values are τ1 = 10−7.50031 ≈ 3.16 × 10−8 and τ2 = 10−7.80134 ≈ 1.58 × 10−8. Note that
the first set of initial conditions is the farthest from the exact solution, while the third is the closest.

Table 1: Three sets of initial conditions for the relaxation time inverse problem representing (τ 0
1 , τ0

2 ) =
(Cτ∗

1 , τ∗
2 /C) for C ∈ {5, 2, 1.25} respectively (case 0 represents exact solution), also given are the log10 of

each relaxation time, as well as the % relative error from the exact value.
case τ1 τ2 log(τ1) log(τ2) % τ1 % τ2

0 3.1600e-8 1.5800e-8 -7.50031 -7.80134 0 0
1 1.5800e-7 3.1600e-9 -6.80134 -8.50031 400 80
2 6.3200e-8 7.9000e-9 -7.19928 -8.10237 100 50
3 3.9500e-8 1.2640e-8 -7.40340 -7.89825 25 20

The results of the optimization are given in Tables 2 through 7. Most of the cases appear not to have
converged. Only a few of the cases corresponding to the closest initial conditions converged close to the
original values of the relaxation times. But if we recall the shape of the objective function that we are trying
to minimize (for example see Figures 2 and 3) then it is understandable how a gradient based method may
converge directly to the “curve of best fit”. However, once it reaches this curve, the optimization routine
may jump back and forth across the “trench” and may not be able to traverse the curve to find the true
global minimum. This is in fact what is occurring.
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Table 2: Resulting values of τ1 from the Levenberg-Marquardt routine using a frequency of 1011Hz (recall
the exact solution τ∗

1 =3.1600e-8).
α1

case .1 .5 .9
1 1.57218e-07 1.7488e-07 2.26538e-07
2 6.34973e-08 9.73445e-08 4.90169e-08
3 3.98062e-08 4.13321e-08 3.43569e-08

Table 3: Resulting values of τ1 from the Levenberg-Marquardt routine using a frequency of 109Hz (recall
the exact solution τ∗

1 =3.1600e-8).
α1

case .1 .5 .9
1 1.60128e-07 1.60397e-07 7.0395e-08
2 6.37815e-08 6.68561e-08 3.99819e-08
3 3.97416e-08 4.03239e-08 3.59503e-08

Table 4: Resulting values of τ1 from the Levenberg-Marquardt routine using a frequency of 106Hz (recall
the exact solution τ∗

1 =3.1600e-8).
α1

case .1 .5 .9
1 3.79957e-08 3.23393e-08 3.16236e-08
2 3.17753e-08 3.32218e-08 3.21036e-08
3 3.17897e-08 3.19001e-08 3.16068e-08

Table 5: Resulting values of τ2 from the Levenberg-Marquardt routine using a frequency of 1011Hz (recall
the exact solution τ∗

2 =1.5800e-8).
α1

case .1 .5 .9
1 1.51271e-08 1.1208e-08 3.2429e-09
2 1.53697e-08 1.18119e-08 6.10283e-09
3 1.56197e-08 1.41322e-08 1.1607e-08

Table 6: Resulting values of τ2 from the Levenberg-Marquardt routine using a frequency of 109Hz (recall
the exact solution τ∗

2 =1.5800e-8).
α1

case .1 .5 .9
1 1.51255e-08 1.12739e-08 4.54532e-09
2 1.53692e-08 1.25029e-08 8.12599e-09
3 1.56222e-08 1.4257e-08 1.02271e-08

Table 7: Resulting values of τ2 from the Levenberg-Marquardt routine using a frequency of 106Hz (recall
the exact solution τ∗

2 =1.5800e-8).
α1

case .1 .5 .9
1 1.51064e-08 1.50634e-08 1.63437e-08
2 1.57826e-08 1.41845e-08 1.12902e-08
3 1.57792e-08 1.55032e-08 1.57796e-08
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Table 8 displays the values of λ̃ corresponding to each set of initial conditions, where case 0 denotes the
exact solution. Tables 9 and 10 display the resulting values of λ̃ from the Levenberg-Marquardt routine
using frequencies 1011Hz and 109Hz respectively. Since smaller frequencies are expected to converge to the
curve of constant τ̃ , we give the initial values of τ̃ as well, in Table 11, and Table 12 displays the resulting
values of τ̃ after running the Levenberg-Marquardt routine using a frequency of 106Hz. Note that while the
initial values in case 1 are farthest from the exact solution, some of the corresponding τ̃ are actually closest
to the actual value (for example, α1 = .1). While this suggests that this should more easily converge to the
“curve of best fit”, it will most likely be farther away from the exact solution on this curve, and therefore
should still be considered the hardest of the cases to solve.

Recognizing that we have converged to the “curve of best fit” in each of the above cases, we may now
restart an optimization routine that traverses this curve. Some modifications to the optimization routine’s
parameters are required to address the vast difference in scales of this subproblem as compared to the two
parameter optimization problem. The final results of this two step optimization approach are given in Tables
13 through 18. As expected, the results from case 3 are generally better than the other two sets of initial
conditions. The highest frequency attempted, 1011Hz seemed to perform the most poorly. This suggests
that the higher the frequency, the more difficult to accurately resolve the polarization mechanisms. Although
the 106Hz case used the curve of constant τ̃ while the 109Hz case used the curve of constant λ̃, there was
no evidence to suggest that one case performed better than the other. Lastly, it appears that when material
1 (corresponding to relaxation parameter τ1) is of the highest proportion, the optimization routine is best
able to resolve τ1. Likewise, if material 1 is of a lower proportion, the routine instead does a better job of
resolving τ2. Note that there are several instances where the optimizer “switched” τ1 and τ2, for example in
case 1 of frequency 109Hz with α1 = .5. In this scenario each material comprises 50% of the whole, so the
problem is symmetric and swapping τ1 and τ2 has no effect. However, in case 1 of frequency 109Hz with
α1 = .1, it appears that τ1 is converging toward the exact τ ∗

2 value, but since this problem is not symmetric,
τ2 converges to a meaningless solution.
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Table 8: The initial values of λ̃ := α1

cτ1

+ α2

cτ2

for each set of initial conditions (case 0 represents the exact
solution).

case .1 .5 .9
0 0.200556 0.158333 0.116111
1 0.952112 0.538334 0.124556
2 0.385278 0.237500 0.0897223
3 0.245945 0.174167 0.102389

Table 9: Resulting values of λ̃ from the Levenberg-Marquardt routine using a frequency of 1011Hz for each
set of initial conditions (case 0 represents the exact solution).

α1

case .1 .5 .9
0 0.200556 0.158333 0.116111
1 0.200573 0.15834 0.116109
2 0.200573 0.158327 0.1159
3 0.200573 0.158363 0.116114

Table 10: Resulting values of λ̃ from the Levenberg-Marquardt routine using a frequency of 109Hz for each
set of initial conditions (case 0 represents the exact solution).

α1

case .1 .5 .9
0 0.200556 0.158333 0.116111
1 0.200555 0.158331 0.116029
2 0.200556 0.158337 0.116132
3 0.200556 0.158339 0.116119

Table 11: The initial values of τ̃ := α1τ1 + α2τ2 for each set of initial conditions (case 0 represents the exact
solution).

case .1 .5 .9
0 1.7380e-08 2.3700e-08 3.0020e-08
1 1.8644e-08 8.0580e-08 1.42516e-07
2 1.3430e-08 3.5550e-08 5.7670e-08
3 1.5326e-08 2.6070e-08 3.6814e-08

Table 12: Resulting values of τ̃ from the Levenberg-Marquardt routine using a frequency of 106Hz for each
set of initial conditions (case 0 represents the exact solution).

α1

case .1 .5 .9
0 1.7380e-08 2.3700e-08 3.0020e-08
1 1.73954e-08 2.37014e-08 3.00956e-08
2 1.73819e-08 2.37031e-08 3.00222e-08
3 1.73803e-08 2.37016e-08 3.00241e-08
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Table 13: Final estimates for τ1 from two step optimization approach using a frequency of 1011Hz for each
set of initial conditions (recall the exact solution τ ∗

1 =3.1600e-8).
α1

case .1 .5 .9
1 1.57221e-07 2.81579e-08 2.61108e-08
2 6.34951e-08 4.63981e-08 3.15232e-08
3 3.98043e-08 3.33803e-08 3.2833e-08

Table 14: Final estimates for τ1 from two step optimization approach using a frequency of 109Hz for each
set of initial conditions (recall the exact solution τ ∗

1 =3.1600e-8).
α1

case .1 .5 .9
1 1.12709e-08 1.58005e-08 3.15929e-08
2 3.1574e-08 3.16002e-08 3.16017e-08
3 3.16009e-08 3.16009e-08 3.16009e-08

Table 15: Final estimates for τ1 from two step optimization approach using a frequency of 106Hz for each
set of initial conditions (recall the exact solution τ ∗

1 =3.1600e-8).
α1

case .1 .5 .9
1 3.17673e-08 3.16031e-08 3.16986e-08
2 3.16206e-08 3.16068e-08 3.16031e-08
3 3.16031e-08 3.16039e-08 3.16053e-08

Table 16: Final estimates for τ2 from two step optimization approach using a frequency of 1011Hz for each
set of initial conditions (recall the exact solution τ ∗

2 =1.5800e-8).
α1

case .1 .5 .9
1 1.51273e-08 1.68275e-08 2.93245e-07
2 1.53699e-08 1.36276e-08 1.61391e-08
3 1.56196e-08 1.53854e-08 1.35142e-08

Table 17: Final estimates for τ2 from two step optimization approach using a frequency of 109Hz for each
set of initial conditions (recall the exact solution τ ∗

2 =1.5800e-8).
α1

case .1 .5 .9
1 1.75594e-08 3.15995e-08 1.58782e-08
2 1.58008e-08 1.57994e-08 1.57801e-08
3 1.58001e-08 1.5799e-08 1.57925e-08

Table 18: Final estimates for τ2 from two step optimization approach using a frequency of 106Hz for each
set of initial conditions (recall the exact solution τ ∗

2 =1.5800e-8).
α1

case .1 .5 .9
1 1.52384e-08 1.52286e-08 1.61666e-08
2 1.5787e-08 1.45007e-08 1.18861e-08
3 1.57845e-08 1.55744e-08 1.5783e-08
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5.3 Determination of Volume Proportions

We now attempt to apply a one parameter Levenberg-Marquardt optimization routine to our problem to
identify the relative amounts of two materials with known, distinct relaxation times. Thus we are trying to
find the corresponding volume proportions of the two materials (α1 and α2 := 1−α1). We again consider the
three scenarios with respect to the exact volume proportions: α1 ∈ {.1, .5, .9}. We also perform our inverse
problem using the frequencies 1011Hz, 109Hz and 106Hz. Lastly we test the optimization procedure with
three various initial conditions: α0

1 ∈ {.9999, .0001, .5} (except in the case when α∗
1 = .5 in which case we

used α0
1 ∈ {.9999, .0001, .4}). We refer to these as Cases 1, 2, and 3, respectively. In all of the following we

assume that the known relaxation times are τ1 = 10−7.50031 ≈ 3.16×10−8 and τ2 = 10−7.80134 ≈ 1.58×10−8.
Figures 11 through 13 depict the graphs of the functions that we are attempting to minimize. For each

case the curves appear well behaved. The results for this one parameter inverse problem, displayed in Tables
19 through 21, verify that the relative proportions of known materials are generally easily identifiable. Tables
22 through 24 display the final objective function values for each case. Note that typical initial values for J
were around 0.1, further, the tolerance was set at 10−9, thus all but a few cases converged before reaching
the maximum of 20 iterations.
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Figure 11: The objective function for the relaxation time inverse problem versus α1 using a frequency of
1011Hz and α∗

1 = .1.
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Figure 12: The objective function for the relaxation time inverse problem versus α1 using a frequency of
1011Hz and α∗

1 = .5.
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Figure 13: The objective function for the relaxation time inverse problem versus α1 using a frequency of
1011Hz and α∗

1 = .9.
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Table 19: Results for the one parameter inverse problem to determine the relative proportion of two known
Debye materials using a frequency of 1011Hz (α1 estimates are shown).

α1

case .1 .5 .9
1 0.10095 0.501353 0.900013
2 0.0999994 0.5 0.9
3 0.100643 0.499994 0.899994

Table 20: Results for the one parameter inverse problem to determine the relative proportion of two known
Debye materials using a frequency of 109Hz (α1 estimates are shown).

α1

case .1 .5 .9
1 0.10086 0.5 0.9
2 0.0999161 0.5 0.9
3 0.100017 0.5 0.9

Table 21: Results for the one parameter inverse problem to determine the relative proportion of two known
Debye materials using a frequency of 106Hz (α1 estimates are shown).

α1

case .1 .5 .9
1 0.0995386 0.5 0.900008
2 0.0999965 0.499969 0.899996
3 0.100013 0.499999 0.899999

Table 22: Final objective function values for the inverse problem to determine the relative proportion of two
known Debye materials using a frequency of 1011Hz.

α1

case .1 .5 .9
1 8.27897e-08 1.69802e-07 1.81577e-11
2 3.46217e-14 1.64325e-18 1.8982e-15
3 3.79016e-08 3.76649e-12 2.91698e-12

Table 23: Final objective function values for the inverse problem to determine the relative proportion of two
known Debye materials using a frequency of 109Hz.

α1

case .1 .5 .9
1 1.63248e-05 1.25127e-12 6.89036e-14
2 1.55308e-07 5.89446e-13 5.8576e-14
3 6.53272e-09 2.37274e-12 5.77714e-15

Table 24: Final objective function values for the inverse problem to determine the relative proportion of two
known Debye materials using a frequency of 106Hz.

α1

case .1 .5 .9
1 7.74602e-08 7.31725e-15 4.39638e-12
2 4.51572e-12 1.40031e-10 1.03552e-12
3 6.11308e-11 2.0608e-13 1.53426e-13
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5.4 Determination of Volume Proportions and Relaxation Times Simultane-

ously

Although we anticipate this problem formulation to be underdetermined, we run our optimization routine for
the problem where neither the relaxation times, nor the relative volume proportions, of two distinct Debye
materials are known. Thus this is a three parameter inverse problem for {τ1, τ2, α1} (since α2 = 1 − α1).
Again we consider the following scenarios with respect to the actual volume proportions: α1 ∈ {.1, .5, .9}.
We also perform our inverse problem using the frequencies 1011Hz, 109Hz and 106Hz. Lastly we test the
optimization procedure with the three various initial conditions that were given in Table 1. Note that the
actual values are still τ1 = 10−7.50031 ≈ 3.16 × 10−8 and τ2 = 10−7.80134 ≈ 1.58 × 10−8.

Our initial condition for the volume distribution is α0
1 = .9999, which means there is essentially only

material 1. We chose this initial condition mainly to see whether the optimization routine would try to com-
pensate for the altered volume distribution by significantly changing the relaxation times and not sufficiently
correcting the volume distribution. This is in fact what seems to have occurred. The final α1 values are
given in Tables 25 through 27, while the final τ1 and τ2 values are in Tables 28 through 30 and 31 through
33 respectively. Tables 34 through 36 display the final objective function values. Any values of the final
objective function under the tolerance of 10−9 should be considered as indicative of convergence, while values
greater than 1 clearly indicate stagnation, (e.g., 109Hz: case 1).

Table 25: Resulting values of α1 for the underdetermined inverse problem using a frequency of 1011Hz.
α∗

1

case .1 .5 .9
1 0.606255 0.881722 0.912728
2 0.761665 0.817744 0.877667
3 0.818091 0.879896 0.942175

Table 26: Resulting values of α1 for the underdetermined inverse problem using a frequency of 109Hz.
α1

case .1 .5 .9
1 0.941041 0.941091 0.880293
2 0.999811 0.993342 0.994368
3 0.990988 0.96514 0.965754

Table 27: Resulting values of α1 for the underdetermined inverse problem using a frequency of 106Hz.
α1

case .1 .5 .9
1 0.687959 0.746478 0.956578
2 0.83678 0.900072 0.908588
3 0.890569 0.841634 0.945684

Of the cases that converged, none converged to the correct solution. For example, the final values of α1

were all greater than .6, (although the estimates corresponding to a smaller α∗
1 were on average less than the

estimates corresponding to α∗
1 = .9). When looking at the final estimates for the relaxation times, however,

there appears to be no rhyme nor reason. This is quite similar to what happened when we first tried to
determine unknown relaxation times, but with a fixed volume proportion, in Section 5. Thus we may expect
that here again no single parameter, τ1, τ2, nor α1, may converge, but instead we may see convergence of
a general relation involving them all, namely λ̃ := α1

cτ1

+ α2

cτ2

(or respectively τ̃ := α1τ1 + α2τ2 for angular

frequencies less than 1
τ̃ ).

We redisplay the exact values of λ̃ and τ̃ in Table 37 for reference. Also, the initial values of λ̃ and τ̃
for each case of initial conditions (recall Table 1) is given in Table 38. Finally, Tables 39 through 41 display
the error of the final resulting λ̃ (or τ̃ appropriately) estimates from the exact solutions (i.e., the absolute
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Table 28: Resulting values of τ1 for the underdetermined inverse problem using a frequency of 1011Hz (recall
the exact solution τ∗

1 =3.1600e-8).
α1

case .1 .5 .9
1 3.9469e-08 5.28765e-07 3.23635e-08
2 1.52948e-08 2.49314e-08 2.60749e-08
3 1.79134e-08 2.40213e-08 3.06153e-08

Table 29: Resulting values of τ1 for the underdetermined inverse problem using a frequency of 109Hz (recall
the exact solution τ∗

1 =3.1600e-8).
α1

case .1 .5 .9
1 1.2046e-07 1.24415e-07 5.50848e-07
2 1.67567e-08 2.16631e-08 2.93323e-08
3 1.65557e-08 2.25001e-08 3.0285e-08

Table 30: Resulting values of τ1 for the underdetermined inverse problem using a frequency of 106Hz (recall
the exact solution τ∗

1 =3.1600e-8).
α1

case .1 .5 .9
1 2.12522e-08 2.81013e-08 3.10195e-08
2 1.91221e-08 2.3216e-08 3.15199e-08
3 2.58248e-08 2.67889e-08 3.11248e-08

values of the differences). We show the errors instead of the actual values because some cases converged
so well that the number of decimal places required to see discrepancies is impractical to show! Thus while
the inverse problem was unable to accurately resolve the individual values τ1, τ2, and α1, in all but a few
cases (particularly in the 109Hz scenario) the optimization routine did converge as well as to be expected to
the “curve of best fit”. In the previous section, with the fixed volume proportions, we were able to traverse
the curve of constant λ̃ (or τ̃ appropriately) to find the global minimum. However, here we truly have an
underdetermined problem and therefore we cannot extract any further information without providing more
data.
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Table 31: Resulting values of τ2 for the underdetermined inverse problem using a frequency of 1011Hz (recall
the exact solution τ∗

2 =1.5800e-8).
α1

case .1 .5 .9
1 8.79556e-09 2.58245e-09 1.32076e-08
2 2.30775e-08 1.24249e-08 1.06318e-07
3 1.25825e-08 1.10813e-08 1.4329e-08

Table 32: Resulting values of τ2 for the underdetermined inverse problem using a frequency of 109Hz (recall
the exact solution τ∗

2 =1.5800e-8).
α1

case .1 .5 .9
1 1.81687e-10 2.32623e-10 1.2353e-09
2 4.08525e-10 4.11677e-09 6.18566e-09
3 3.36629e-08 7.61993e-09 1.17231e-08

Table 33: Resulting values of τ2 for the underdetermined inverse problem using a frequency of 106Hz (recall
the exact solution τ∗

2 =1.5800e-8).
α1

case .1 .5 .9
1 8.82441e-09 1.06962e-08 7.87058e-09
2 8.40313e-09 2.78555e-08 1.5107e-08
3 6.19113e-09 7.15491e-09 1.0713e-08

Table 34: Resulting values of the objective function J for the underdetermined inverse problem using a
frequency of 1011Hz.

α∗
1

case .1 .5 .9
1 1.87304e-09 1.39638e-07 2.96012e-12
2 1.87016e-15 3.3089e-14 1.60601e-17
3 2.79754e-14 2.80156e-16 1.38435e-13

Table 35: Resulting values of the objective function J for the underdetermined inverse problem using a
frequency of 109Hz.

α1

case .1 .5 .9
1 9.59505 13.787 25.045
2 0.00021558 2.49585e-06 2.03659e-07
3 3.48546e-06 5.0347e-07 1.18429e-08

Table 36: Resulting values of the objective function J for the underdetermined inverse problem using a
frequency of 106Hz.

α1

case .1 .5 .9
1 1.19225e-05 4.76542e-07 1.18516e-07
2 6.34493e-07 3.86474e-05 4.41757e-10
3 4.07294e-06 1.99923e-06 2.75692e-08
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Table 37: The exact values of λ̃ := α1

cτ1

+ α2

cτ2

(first row) and τ̃ := α1τ1 + α2τ2 (second row) for each set of
volume distributions.

α∗
1

.1 .5 .9

λ̃∗ 0.200556 0.158333 0.116111
τ̃∗ 1.7380e-08 2.3700e-08 3.0020e-08

Table 38: The initial values of λ̃ := α1

cτ1

+ α2

cτ2

(first column) and τ̃ := α1τ1 + α2τ2 (second column) for each
set of initial conditions.

case λ̃0 τ̃0

1 0.0212146 1.57985e-07
2 0.0528147 6.31945e-08
3 0.0844624 3.94973e-08

Table 39: Error of the resulting values of λ̃ from the exact values for the underdetermined inverse problem
using a frequency of 1011Hz for each set of initial conditions.

α1

case .1 .5 .9
1 2.99851e-08 7.35704e-08 3.49983e-09
2 1.23759e-10 4.68118e-10 2.30235e-10
3 1.14292e-09 2.16657e-10 1.273e-10

Table 40: Error of the resulting values of λ̃ from the exact values for the underdetermined inverse problem
using a frequency of 109Hz for each set of initial conditions.

α1

case .1 .5 .9
1 0.907928 0.711589 0.212452
2 4.93369e-06 1.05337e-05 1.47737e-06
3 3.86466e-06 4.68234e-06 6.40273e-08

Table 41: Error of the resulting values of τ̃ from the exact values for the underdetermined inverse problem
using a frequency of 106Hz for each set of initial conditions.

α1

case .1 .5 .9
1 5.78065e-12 1.12783e-11 5.70111e-12
2 7.42983e-12 2.03867e-11 4.54227e-13
3 2.3737e-11 2.04292e-11 3.88617e-12
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5.5 Multiple Frequency Interrogation

In certain situations it may be feasible to add to the data used in the inverse problem in the previous
section by interrogating the material again with a different frequency. In particular, if for example the first
interrogating angular frequency is less than ωc := 1/τ̃ then choosing the second frequency to be greater than
this critical value should give different information, i.e., ωL < 1/τ̃ < ωH . We have already seen that for
frequencies lower than the critical angular frequency we are able to accurately resolve τ̃ . Thus, using this
information we may choose a second frequency to be higher than the critical level, and therefore expect to
be able to resolve λ̃, as was done in our previous examples for high frequencies. We applied this approach
to the test cases described for the f = 106Hz interrogating signal. Using the results of the previous section,
i.e., fixing τ̃ and using the corresponding values of τ1, τ2, and α1 as initial conditions, we attempted an
inverse problem to match data obtained by interrogating the same material with a frequency f = 109Hz,
which is higher than the critical value. In particular, we performed a one parameter search for each of τ1 and
τ2 successively, then a two parameter search for both simultaneously for fine-tuning. As in previous inverse
problems, this allowed determination of λ̃. Now with λ̃ and τ̃ both fixed, we traverse along both contours
simultaneously with a one parameter inverse problem for τ1. Lastly, again, we do a full three parameter
inverse problem for fine-tuning. The results for Cases 1, 2, and 3 are given in Tables 42 - 44. Note that in
order to ensure better accuracy when the wavelength is decreased, we double the number of finite elements
used to solve the high frequency inverse problem.

In each case the lower frequency inverse problem was able to determine the value of τ̃ to at least three
decimal places, while the values of τ1, τ2, α1 and λ̃ are in general not necessarily even improved over the
initial estimates (e.g., τ1 for Case 3). This is similar to the results of previous sections before traversing the
contours of constant τ̃ or λ̃. The higher frequency inverse problem with τ̃ fixed was able to determine the
value of λ̃ to at least three decimal places in each case, while again the values of τ1, τ2 and α1 are in general
not necessarily even improved over the previous estimates. The final rows show the results from running a
one parameter inverse problem for τ1 with both τ̃ and λ̃ fixed (and then using a three parameter search for
fine tuning). Each of the final estimates for τ1, τ2, and α1 have at least two decimal places accuracy.

Recall that, as explained in Remark 1, the slab thickness here is 400m. These dimensions are merely
arbitrary examples, but there is a direct restriction on the width of a slab if it is to be reliably simultaneously
interrogated with frequencies just above and just below the critical angular frequency for a given medium,
which is described by the material properties through the value of τ̃ . Thus, for example, materials with
relaxation times on the order of 10−11, like water, that have dimensions on the order of .4m are quite
feasible to interrogate with multiple frequencies above and below its critical frequency.
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Table 42: Numerical results from the inverse problem using data from interrogating the same medium with
one frequency above, and one frequency below the critical angular frequency for that medium. Given are
the τ1, τ2, and α1 values along with the relative error for λ̃ and τ̃ for each step of the inverse problem: exact
solution, initial conditions for Case 1, and the solutions from the low frequency inverse problem, from the
high frequency inverse problem with fixed τ̃ , and finally from fixing both τ̃ and λ̃.

Case 1 τ1 τ2 α1 relerr(λ̃) relerr(τ̃)
Exact 3.16e-8 1.58e-8 0.1 0 0
Initial 1.58e-7 3.16e-9 0.9999 0.894221 8.09005
f = 106Hz 2.12522e-8 8.82441e-9 0.687957 0.126493 3.33717e-4
f = 109Hz 1.82157e-8 8.82198e-9 0.910418 1.24653e-4 3.33717e-4
Contour 3.13819e-8 1.57826e-8 0.102596 4.98614e-5 1.72612e-4

Table 43: Numerical results from the inverse problem using data from interrogating the same medium with
one frequency above, and one frequency below the critical angular frequency for that medium. Given are
the τ1, τ2, and α1 values along with the relative error for λ̃ and τ̃ for each step of the inverse problem: exact
solution, initial conditions for Case 2, and the solutions from the low frequency inverse problem, from the
high frequency inverse problem with fixed τ̃ , and finally from fixing both τ̃ and λ̃.

Case 2 τ1 τ2 α1 relerr(λ̃) relerr(τ̃)
Exact 3.16e-8 1.58e-8 0.1 0 0
Initial 6.32e-8 7.9e-9 0.9999 0.736658 2.63605
f = 106Hz 1.91221e-8 8.40313e-9 0.836785 5.08337e-2 4.25777e-4
f = 109Hz 1.81458e-8 8.47912e-9 0.920012 1.2964e-4 4.25777e-4
Contour 3.11405e-8 1.57683e-8 0.105044 5.48475e-5 1.78366e-4

Table 44: Numerical results from the inverse problem using data from interrogating the same medium with
one frequency above, and one frequency below the critical angular frequency for that medium. Given are
the τ1, τ2, and α1 values along with the relative error for λ̃ and τ̃ for each step of the inverse problem: exact
solution, initial conditions for Case 3, and the solutions from the low frequency inverse problem, from the
high frequency inverse problem with fixed τ̃ , and finally from fixing both τ̃ and λ̃.

Case 3 τ1 τ2 α1 relerr(λ̃) relerr(τ̃)
Exact 3.16e-8 1.58e-8 0.1 0 0
Initial 3.95e-8 1.264e-9 0.9999 0.578859 1.27257
f = 106Hz 1.81785e-8 1.09823e-8 0.887927 1.79102e-2 4.60299e-4
f = 109Hz 1.87871e-8 1.09078e-8 0.820402 1.09695e-4 4.60299e-4
Contour 3.12584e-8 1.57761e-8 0.103767 4.48752e-5 1.49597e-4
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6 Inverse Problem Results Using a Uniform Distribution

The previous polarization inverse problems have assumed a discrete distribution with two atoms. Accord-
ing to experimental reports [23], most materials demonstrate polarization effects described by a range of
relaxation times. Here we consider the simplest of distributions by exploring the possibility of a uniform
distribution of relaxations times (τ) between a lower and upper limit (τa and τb respectively). This presents
us again with a two parameter inverse problem, namely, to try to resolve the end points of the distribution
used to generate the given data. Computationally we still approximate this distribution with discrete nodes,
but instead of just one at each endpoint, we use ` = 13 uniformly distributed within the interval (recall
Section 3.2). Note that we do not wish to restrict our optimization routine to search only for τa < τb,
therefore subsequently if τa > τb it is assumed without loss of generality that τb is the lower limit of the
distribution and τa is the upper limit.

Figures 14 and 15 depict the objective function and the log of the objective function, respectively, for a
frequency of 1011Hz. The solid line in Figure 15 is the curve of constant λ̃. Given a uniform distribution of
relaxation times in a Debye medium, this parameter is given (analytically) by

λ̃ :=
1

c(τb − τa)

∫ τb

τa

dτ

τ
=

ln τb − ln τa

c(τb − τa)
. (23)

Note that in computations we must use the same quadrature method to evalute this integral as we do for G
to ensure a correct correlation. Although the curve appears slightly different from the discrete distribution
case in Figure 3, the fact that this objective function is also small along this curve suggests that this problem
should behave similarly to the discrete distribution case in Section 5. Figures 16 and 17 depict the objective
function and the log of the objective function, respectively, for a frequency of 106Hz. We notice that again
the orientation of the “curve of best” fit is different from the higher frequency case. The solid line in Figure
17 is the curve of constant τ̃ :=

∫ τb

τa
τdF (τ) = τb−τa

2 . Again, the fact that the λ̃ term only dominates the

behavior when the interrogating frequency is greater than 1
2πτ̃ is consistent with the discrete distribution

case.
Based on our previous experience with the discrete distribution, we anticipate that the two parameter

inverse problem will simply converge to the “line of best fit”. Thus instead, we use an equivalent method to
converge to this curve, namely minimizing over just one parameter, τa, leaving τb fixed at its initial value (the
same values as those given as τ 0

2 in Table 1). It should be noted that one may actually perform two of the
one parameter constrained optimizations, one in each of the directions τa and τb, to allow for the possibility
of the first direction not converging, for example, if τ 0

a , τ0
b ≤ 10−9. In general, the second direction of the

optimization requires only enough iterations to verify convergence, as the first direction has usually already
converged to the “line of best fit”. Using this one parameter at a time approach, we still converge to the “line
of best fit”, but theoretically use half as many function evaluations as the two parameter inverse problem,
since we only compute one gradient at each step. (In practice, only a third as many function evaluations
were actually needed to get the same order of accuracy as the two parameter inverse problem.)

We performed the one parameter inverse problem using the three initial condition cases described above
in Table 1 and again using frequencies 1011Hz, 109Hz and 106Hz. The τa estimates from running Levenberg-
Marquardt on the modified least squares objective function are given in Table 45. Again, as in the discrete
case, the values of the relaxation times do not appear to be converging to the correct solution. But we
expect that the optimization routine is converging to the “curve of best fit”. To test this we must look at
the approximations to λ̃ and τ̃ .

The initial values of λ̃ and τ̃ are given in Table 46 (note that these values were computed by λ̃ ≈∑i
αi

cτi

and τ̃ ≈ ∑

i αiτi using appropriately defined {αi}N−1
i=0 determined by the Composite Simpson’s rule). The

exact values of each are λ̃∗ = 0.248369 and τ̃∗ = 5.42467× 10−8. The resulting λ̃ and τ̃ values from running
the one parameter Levenberg-Marquardt routine are given in Table 47. Clearly each case has converged to
the “line of best fit”; in general the closer initial conditions converged closer to the actual value of λ̃ (or τ̃
for f = 106Hz).

After our one parameter optimization routine resolved λ̃ (or τ̃ for f = 106Hz), we minimized for τa along
the line of constant λ̃ (or τ̃). Again, this is a one parameter inverse problem, and therefore very efficient.
The results of these computations are given in Tables 48 and 49, for τa and the corresponding τb (given
constant λ̃ or τ̃), respectively.
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Figure 14: The objective function for the uniform distribution inverse problem versus the log of τa and the
log of τb using a frequency of 1011Hz.
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Figure 15: The log of the objective function for the uniform distribution inverse problem versus the log of
τa and the log of τb using a frequency of 1011Hz. The solid line above the surface represents the curve of
constant λ̃.
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Figure 16: The objective function for the uniform distribution inverse problem versus the log of τa and the
log of τb using a frequency of 106Hz.
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Figure 17: The log of the objective function for the uniform distribution inverse problem versus the log of
τa and the log of τb using a frequency of 106Hz. The solid line above the surface represents the curve of
constant τ̃ .
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Table 45: Resulting values of τa from the one parameter Levenberg-Marquardt routine for the inverse
problem to determine the endpoints of a uniform distribution of relaxation times (recall the exact solution
τ∗
a =3.16000e-8).

Initial Frequency (Hz)
case 1011 109 106

1 1.58000e-7 5.41874e-8 5.40910e-8 3.59781e-8
2 6.32000e-8 4.01846e-8 4.01788e-8 3.43510e-8
3 3.95000e-8 3.41828e-8 3.41820e-8 3.27009e-8

Table 46: The initial values of λ̃ :=
∑

i
αi

cτi
(or τ̃ :=

∑

i αiτi for f = 106) for each set of initial conditions
for the inverse problem to determine the endpoints of a uniform distribution of relaxation times (case 0
represents the exact solution).

Frequency (Hz)
case 1011 − 109 106

0 0.248369 5.42467e-8
1 0.115739 2.33313e-7
2 0.176705 9.66433e-8
3 0.223136 6.42533e-8

Table 47: Resulting values of λ̃ (or τ̃ for f = 106) from the Levenberg-Marquardt routine for the inverse
problem to determine the endpoints of a uniform distribution of relaxation times for each set of initial
conditions (case 0 represents the exact solution). The values in parenthesis denote the absolute value of the
difference as the number of digits shown here would not suffuciently distinguish the approximations from
the exact solution.

Frequency (Hz)
case 1011 109 106

0 0.248369 0.248369 5.42467e-8
1 (1.64144e-8) 0.248701 5.43479e-8
2 (1.51187e-9) 0.248396 5.43315e-8
3 (5.12895e-11) 0.248373 5.42813e-8

Table 48: Resulting values of τa from minimizing along the line of constant λ̃ (or τ̃ for f = 106Hz), for the
inverse problem to determine the endpoints of a uniform distribution of relaxation times (recall the exact
solution τ∗

a =3.16000e-8).
Frequency (Hz)

case 1011 109 106

1 3.08694e-08 3.1653e-08 3.17617e-08
2 3.16401e-08 3.16043e-08 3.17357e-08
3 3.15905e-08 3.16007e-08 3.16559e-08

Finally, for fine tuning, we apply the full two parameter Levenberg-Marquardt routine using the estimates
from minimizing along constant λ̃ (or τ̃). These results are shown in Tables 50 and 51. We see that the
estimates change very little, if at all, which suggests that our approximation method is not only efficient,
but quite accurate as well.
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Table 49: Resulting values of τb from the minimizing along the line of constant λ̃ (or τ̃ for f = 106Hz),
for the inverse problem to determine the endpoints of a uniform distribution of relaxation times (recall the
exact solution τ∗

b =1.5800e-8).

Frequency (Hz)
case 1011 109 106

1 1.68829e-08 1.56448e-08 1.55282e-08
2 1.57433e-08 1.57874e-08 1.55715e-08
3 1.58134e-08 1.5798e-08 1.57053e-08

Table 50: Resulting values of τa from the two parameter Levenberg-Marquardt routine for the inverse
problem to determine the endpoints of a uniform distribution of relaxation times (recall the exact solution
τ∗
a =3.16000e-8).

Frequency (Hz)
case 1011 109 106

1 3.08694e-08 3.15996e-08 3.16014e-08
2 3.16401e-08 3.16005e-08 3.16008e-08
3 3.15905e-08 3.16008e-08 3.16002e-08

Table 51: Resulting values of τb from the two parameter Levenberg-Marquardt routine for the inverse
problem to determine the endpoints of a uniform distribution of relaxation times (recall the exact solution
τ∗
b =1.58000e-8).

Frequency (Hz)
case 1011 109 106

1 1.68829e-08 1.58005e-08 1.57988e-08
2 1.57433e-08 1.57993e-08 1.57991e-08
3 1.58134e-08 1.57988e-08 1.57998e-08

7 Inverse Problem Results Using a Gaussian Distribution

In this section we explore the possibility of determining dielectric parameters that are normally distributed.
We apply a Gaussian distribution to the logarithms of the relaxation times (thus actually the relaxation times
are log-normally distributed, but all of our computions are in “log”-space so we refer to these parameters as
normally distributed). Based on experimental data in [23], this seems to be a likely model for the relaxation
times of a material.

Recall from Section 3.3 that our PDF is

dF (τ ;µ, σ) =
1√

2πσ2

1

ln 10

1

τ
exp

(

− (log τ − µ)2

2σ2

)

dτ (24)

for a log-normal distribution in τ . Here µ is the mean of the relaxation times and σ is the standard deviation.
Recall further that the density is truncated to a support interval [τa, τb] where τa and τb are determined
based on µ and σ as follows

τa := 10µ−6σ

τb := 10µ+6σ.

Thus, this problem again presents us with a two parameter inverse problem, namely, to try to resolve the
mean and standard deviation of the distribution used to generate the given data. Learning from the success
in the previous section, we expect to apply a three step approach: one parameter Levenberg-Marquardt for
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the mean µ (which we expect to converge to the line of constant λ̃ or τ̃), then traverse the line of constant
λ̃ or τ̃ (which is again one parameter), and finally, perform two parameter Levenberg-Marquardt for fine-
tuning. We can see from the surface plot using f = 1011 shown in Figure 18 that we do again have a trench
representing a “line of best fit”, which does in fact have a single minimizer, but it appears to be independent
of σ. The trench is actually slightly slanted, as can be seen in Figure 19 which zooms in on µ, and in fact, for
the lower frequencies the slant is indeed in the opposite direction. Therefore while at first glance of Figure
18 traversing a line of constant λ̃ or τ̃ may seem unnecessary, it does actually give better results than simply
minimizing in the σ direction alone.

Remark 2 Note that the slant does not appear to be a consequence of our quadrature rule. Changing the
number of nodes used in our computations had no effect on the slope. Further, increasing the support on
which the integral was computed had no effect, e.g., to 12σ on either side of µ. While

∫

G(0, z) = µ is
actually independent of σ we still expect σ to affect the objective function in some other way, and this is in
fact what is happening. Lastly, the apparent local minima in Figure 19 are again just an artifact of the grid
points not falling exactly on the “line of best fit”.

We performed our inverse problem solution approach to the sample problem of µ = 10−7.62525 and
σ = 0.0457575 (this choice of parameters results in a distribution function comparable to the uniform
distribution case of the previous section in that the corresponding densities have the same mean and roughly
similar support, see Figure 20). The cases of initial values we considered for µ and σ, and the corresponding
initial λ̃ and τ̃ values, are given in Table 52. Note that Case 3 is specifically designed to test whether the
standard deviation can be determined when the mean is known.

Table 52: Initial estimates and corresponding λ̃ and τ̃ values for the inverse problem to determine the mean
and standard deviation of a normal distribution of relaxation times (case 0 corresponds to the exact solution).

case log(µ0) σ0 λ̃0 τ̃0

0 -7.62525 0.0457575 0.141524 2.38319e-08
1 -6.92628 0.036606 0.0282483 1.18922e-07
2 -8.32422 0.054909 0.709351 4.77804e-09
3 -7.62525 0.0411817 0.141375 2.37329e-08

The µ estimates resulting from the one parameter Levenberg-Marquardt are given in Table 53. In each
case at least three decimals places of accuracy was achieved. Also, at least seven decimal places of accuracy
are obtained on the estimates of the corresponding λ̃ and τ̃ values, as displayed in Table 54. The µ and σ
estimates resulting from the one parameter tracing of the “line of best fit” are given in Tables 55 and 56,
respectively. In each case at least six decimals places of accuracy was achieved for the log of µ. Also, at least
three decimal places of accuracy are obtained on the estimates of σ. Finally, the µ and σ estimates resulting
from the two parameter Levenberg-Marquardt fine-tuning are given in Tables 57 and 58, respectively. In all
but a couple cases we have as much degree accuracy as the number of digits shown here allows. Figure 21
gives a graphical representation of how well our inverse problem solution method converged given the initial
condition Case 1 from Table 52. We conclude that the inverse problem involving a Gaussian distribution
of relaxation times for a Debye polarization model is computationally feasible for the sample parameters
presented here.
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Figure 18: The log of the objective function for the gaussian distribution inverse problem versus the log of
µ and σ using a frequency of 1011Hz.
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Figure 19: The log of the objective function for the gaussian distribution inverse problem versus the log of
µ and σ, zoomed in with respect to µ, and using a frequency of 1011Hz. The appearance of several local
mininima is merely an artifact of the lattice points used to plot the surface.
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Figure 20: This plot compares the uniform density considered in Section 6 to the lognormal density. Shown
are the two density functions and the corresponding quadrature nodes used in integrating them.

Table 53: The resulting log(µ) values from performing a one parameter Levenberg-Marquardt optimization
for the inverse problem to determine the mean and standard deviation of a normal distribution of relaxation
times for each frequency and initial value case (recall the exact solution is log(µ∗) = −7.62525).

Frequency (Hz)
case 1011 109 106

1 -7.62612 -7.6261 -7.6244
2 -7.62419 -7.62422 -7.62629
3 -7.62571 -7.62701 -7.62348

Table 54: The corresponding λ̃ and τ̃ values from performing a one parameter Levenberg-Marquardt op-
timization for the inverse problem to determine the mean and standard deviation of a normal distribution
of relaxation times for each frequency and initial value case. Note that the absolute values of the differ-
ences between the estimates and the exact values are shown as the number of digits shown here would not
sufficiently distinguish the approximations from the exact solution.

Frequency (Hz)
case 1011 109 106

1 2.62469e-11 7.38776e-08 8.98789e-13
2 3.61986e-11 9.10257e-08 1.10726e-12
3 4.25993e-13 1.56168e-07 1.86751e-12

38



Table 55: The resulting log(µ) values from traversing the “line of best fit” for the inverse problem to
determine the mean and standard deviation of a normal distribution of relaxation times for each frequency
and initial value case (recall the exact solution is log(µ∗) = −7.62525).

Frequency (Hz)
case 1011 109 106

1 -7.62526 -7.62525 -7.62526
2 -7.62524 -7.62525 -7.62524
3 -7.62524 -7.62525 -7.62527

Table 56: The resulting σ values from traversing the “line of best fit” for the inverse problem to determine
the mean and standard deviation of a normal distribution of relaxation times for each frequency and initial
value case (recall the exact solution is σ∗ = 0.0457575).

Frequency (Hz)
case 1011 109 106

1 0.0456376 0.0457564 0.0456871
2 0.0458453 0.0457592 0.0458442
3 0.0458207 0.0457551 0.0456102

Table 57: The resulting log(µ) values from performing a two parameter Levenberg-Marquardt optimization
for fine-tuning of the solution for the inverse problem to determine the mean and standard deviation of a
normal distribution of relaxation times for each frequency and initial value case (recall the exact solution is
log(µ∗) = −7.62525).

Frequency (Hz)
case 1011 109 106

1 -7.62526 -7.62525 -7.62525
2 -7.62524 -7.62525 -7.62525
3 -7.62524 -7.62525 -7.62525

Table 58: The resulting σ values from performing a two parameter Levenberg-Marquardt optimization for
fine-tuning of the solution for the inverse problem to determine the mean and standard deviation of a
normal distribution of relaxation times for each frequency and initial value case (recall the exact solution is
σ∗ = 0.0457575).

Frequency (Hz)
case 1011 109 106

1 0.0456376 0.0457576 0.0457575
2 0.0458453 0.0457576 0.0457575
3 0.0458207 0.0457575 0.0457575
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8 Inverse Problem Results Using a Bi-Gaussian Distribution

In this section we combine the two ideas from Sections 5 and 7 in that we consider a material comprised of
primarily two distinct polarization mechanisms, but rather than assuming two atoms at τ1 and τ2 as before
we let µ1 = τ1 and µ2 = τ2 in two Gaussian distributions. Essentially, we are decomposing the distribution
function into two components, each dependent on distinct means and standard deviations as follows:

dF̂ = αdF (τ ;µ1, σ1) + (1 − α)dF (τ ;µ2, σ2), (25)

where dF is given by (24) (we take α = .5 in our numerical experiments).
We now have a four parameter inverse problem, namely

min
(µ1,σ1,µ2,σ2)∈Q

J(F̂ )

where Q is the admissible region for our unknown parameters (e.g., σi > 0). For the following examples, the
true values of the means were taken to be (µ∗

1, µ
∗
2) = (10−7.80134, 10−7.50031), with the standard deviations

ranging from .02 to .07 As in the previous gaussian case, we expect the objective function to be relatively
less dependent on the standard deviations than the means, therefore we address the dependency on the
means first. Figure 22 shows a surface plot of the objective function with respect to µ1 and µ2. Here we
can see the similarities to the distribution function from Section 5, namely the presense of the “line of best
fit” with two (symmetric) global minima. (When comparing to Figure 3, note that here we have rotated the
axis for better viewing of the minima under the surface.) Our minimization approach is thus the same as
that which worked well in the previous sections. We perform a one parameter Levenberg-Marquardt search
in the µ1 direction (and just to be sure, a one parameter Levenberg-Marquardt search in the µ2 direction),
then optimize along the “line of best fit”, and finally fine-tune with a two parameter Levenberg-Marquardt
search for both µ1 and µ2.
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Figure 22: The log of the objective function for the bi-gaussian distribution inverse problem versus the log
of µ1 and µ2 using a frequency of 1011Hz.
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Thus far we have completely ignored the standard deviations. Figures 23 and 24 show the objective
function versus µ1 and µ2 for two distinct cases: using the exact values for the standard deviations and
using significantly incorrect ones. The fact that the location of the “line of best fit” does not change
drastically suggests that we should be able to at least determine the values of λ̃ or τ̃ with just our one
parameter searches, as in the previous sections. However, the location of the local minima along this curve
has changed, therefore we should not expect our µ1 and µ2 estimates so far to be our final answer. We
must first attempt to optimize with respect to the standard deviations, and then finally attempt a full four
parameter minimization to make sure we have accounted for all interdependencies. These are the last two
steps of our now six step optimization process for the four parameter inverse problem involving a Bi-Gaussian
distribution.
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Figure 23: The log of the objective function for the bi-gaussian distribution inverse problem versus the log
of µ1 and µ2 using correct values for the standard deviations.
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Figure 24: The log of the objective function for the bi-gaussian distribution inverse problem versus the log
of µ1 and µ2 using incorrect values for the standard deviations.

42



The true values of the optimization parameters and the initial conditions considered for each case we
attempted are given in Table 59. These values correspond to roughly the same relative initial error as the
initial value cases in the single gaussian problem of Section 7. The µ1 and µ2 estimates resulting from the
one parameter Levenberg-Marquardt searches are given in Tables 60 and 61, respectively.

Remark 3 Note that in Case 2 at f = 1011 the value of µ1 diverged toward zero in our first attempts.
Therefore the results shown in the tables for Case 2 at each frequency represent first minimizing in the µ2

direction followed by minimization in the µ1 direction. In general better results are achieved when optimizing
the smaller of the values (i.e., corresponding to a more negative logarithm) first.

Several of the µ2 estimates did not change from their initial values during the one parameter optimization
for µ2 suggesting that the µ1 search arrived sufficiently close to the λ̃ or τ̃ curve (likewise for Case 2, the
two higher frequency estimates for µ1 did not change suggesting that the µ2 search converged sufficiently).
The values of λ̃ or τ̃ from the two one-parameter searches are given in Table 62. These values, on average,
have about two fewer decimal places of accuracy as those in the single gaussian case. Still, as the following
results shall show, in general this is sufficiently close to allow for good final estimates.

We now hold λ̃ or τ̃ fixed and search for µ1 and µ2. The µ1 and µ2 estimates resulting from the one
parameter tracing of the “line of best fit” are given in Tables 63 and 64, respectively. Finally, the µ1 and µ2

estimates resulting from the two parameter Levenberg-Marquardt fine-tuning are given in Tables 65 and 66,
respectively. The lack of a significant difference after the two parameter search suggests that we have found
local minima with respect to µ1 and µ2 given our initial standard deviation estimates.

Remark 4 Note that in some cases (actually, about half !) µ1 is converging toward µ∗
2 (we have highlighted

these cases in each subsequenct table). This is the same problem that we encountered in the discrete case
in Section 5. For our examples here, α = .5 so the problem is symmetric provided the standard deviations
converge to the corresponding symmetric solution as well (i.e., σ0

1 converges to σ∗
2). We could restrict our

optimization problem to, for instance, only allow µ1 > µ2, but we perfer the idea that there are two equally
viable solutions to choose from since it may actually double our chances of finding one of them! If our initial
estimates for each σi were based on a certain ordering of the µi’s (for example, say we know the distribution
of the smaller relaxation time is much more narrow) we could easily test for that ordering and rearrange our
σi estimates if necessary (though we would need to optimize with respect to each µi once more to reflect the
changes).

While the results for determining the means of the unknown Bi-Gaussian distribution are surprisingly
decent, the optimization of the standard deviations was expectedly more difficult. Figure 25 demonstrates
that the objective function behaves in a similar way with respect to the standard deviations as it did to the
means in that there is a “line of best fit”. Unfortunately, when compared to Figure 22 it becomes obvious
that the scale involved in traversing along this curve is too small to be accurate enough for optimization.
This is in fact what we experienced in attempting to minimize with respect to σ1 along the “line of best
fit”. The changes in each σ1 were in almost all cases less than six decimal places. Applying a two parameter
Levenberg-Marquardt for fine-tuning afterwards gave slightly better results for some cases, and we display
these approximations in Tables 67 and 68. Using these values along with the best estimates so far for our
means, we run a four parameter Levenberg-Marquardt search. The results for this procedure are given in
Tables 69 through 72.

One may argue that the lack of sensitivity to σ may be due to starting initial estimates too close to
the true solution, but this would not explain why, with all other parameters held fixed, gradient based
methods take the standard deviation estimates farther from the true solution in half of the cases we tried.
It is more likely that the numerical errors involved in the simulations are affecting the gradients. However,
the results here reflect attempts that have been made to account for this using varying gradient step sizes
(our Levenberg-Marquardt routine exits only after verifying small gradients with three different step sizes
as explained in [13]).

Our conclusion for the problem of determining the means and the standard deviations for a bi-gaussian
distribution of relaxation times is that the means are very readily determined with reasonable initial esti-
mates, even with significantly incorrect standard deviations. However, the standard deviations are not easily
determined even with quite accurate estimates for the means.
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Table 59: Initial estimates for the inverse problem to determine the means and standard deviations of a
bi-gaussian distribution of relaxation times. For each case, (µ∗

1, µ
∗
2) = (10−7.80134, 10−7.50031). For Case 1,

(σ∗
1 , σ∗

2) = (0.0457575, 0.0457575). For Cases 2 and 3, (σ∗
1 , σ∗

2) = (0.0705811, 0.0222764).
case log(µ0

1) σ0
1 log(µ0

2) σ0
2

1 -8.50031 0.036606 -6.80134 0.0571969
2 -7.10237 0.0846973 -8.19928 0.0185637
3 -8.50031 0.0352905 -6.80134 0.0445528

Table 60: The resulting log(µ1) values from performing a one parameter Levenberg-Marquardt optimization
in µ1 for the inverse problem to determine the means and standard deviations of a bi-gaussian distribution
of relaxation times for each frequency and initial value case (recall the exact solution is log(µ∗

1) = −7.80134).
Frequency (Hz)

case 1011 109 106

1 -7.94848 -7.94847 -8.37177
2 -7.10237 -7.10237 -7.39253
3 -7.95035 -7.95034 -8.37264

Table 61: The resulting log(µ2) values from performing a one parameter Levenberg-Marquardt optimization
in µ2 for the inverse problem to determine the means and standard deviations of a bi-gaussian distribution
of relaxation times for each frequency and initial value case (recall the exact solution is log(µ∗

2) = −7.50031).
Frequency (Hz)

case 1011 109 106

1 -6.80134 -6.80377 -7.36944
2 -7.91764 -7.91763 -8.13781
3 -6.80134 -6.80375 -7.36803

Table 62: The corresponding λ̃ and τ̃ values from performing each one parameter Levenberg-Marquardt
optimization in µ1 and µ2 for the inverse problem to determine the means and standard deviations of a
bi-gaussian distribution of relaxation times for each frequency and initial value case. Note that the absolute
values of the differences between the estimates and the exact values are shown.

Frequency (Hz)
case 1011 109 106

1 7.945e-10 5.7109e-05 1.45861e-10
2 5.00444e-10 1.73813e-06 4.24458e-10
3 1.74996e-08 5.57019e-05 1.46209e-10
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Table 63: The resulting log(µ1) values from traversing the “line of best fit” for the inverse problem to
determine the mean and standard deviation of a normal distribution of relaxation times for each frequency
and initial value case (recall the exact solution is log(µ∗

1) = −7.80134). The highlighted values denote
convergence to the symmetric solution.

Frequency (Hz)
case 1011 109 106

1 -7.80682 -7.5052 -7.79549
2 -7.47853 -7.47881 -7.50275

3 -7.81476 -7.48674 -7.79517

Table 64: The resulting log(µ2) values from traversing the “line of best fit” for the inverse problem to
determine the mean and standard deviation of a normal distribution of relaxation times for each frequency
and initial value case (recall the exact solution is log(µ∗

2) = −7.50031). The highlighted values denote
convergence to the symmetric solution.

Frequency (Hz)
case 1011 109 106

1 -7.48957 -7.79775 -7.50821
2 -7.81299 -7.81285 -7.78246

3 -7.47935 -7.8106 -7.50706

Table 65: The resulting log(µ1) values from performing a two parameter Levenberg-Marquardt optimization
for fine-tuning of (µ1, µ2) for the inverse problem to determine the means and standard deviations of a bi-
gaussian distribution of relaxation times for each frequency and initial value case (recall the exact solution
is log(µ∗

1) = −7.80134). The highlighted values denote convergence to the symmetric solution.
Frequency (Hz)

case 1011 109 106

1 -7.80682 -7.5052 -7.79549
2 -7.47851 -7.47881 -7.50275

3 -7.81442 -7.48674 -7.79517

Table 66: The resulting log(µ2) values from performing a two parameter Levenberg-Marquardt optimization
for fine-tuning of (µ1, µ2) for the inverse problem to determine the means and standard deviations of a bi-
gaussian distribution of relaxation times for each frequency and initial value case (recall the exact solution
is log(µ∗

2) = −7.50031). The highlighted values denote convergence to the symmetric solution.
Frequency (Hz)

case 1011 109 106

1 -7.48957 -7.79775 -7.50821
2 -7.813 -7.81285 -7.78246

3 -7.47962 -7.8106 -7.50706
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Figure 25: The log of the objective function for the bi-gaussian distribution inverse problem versus σ1 and
σ2 using a frequency of 1011Hz.

Table 67: The resulting σ1 values from a two parameter Levenberg-Marquardt search for σ1 and σ2 for the
inverse problem to determine the means and standard deviations of a bi-gaussian distribution of relaxation
times for each frequency and initial value case (recall the exact solution is σ∗

1 = 0.0457575 for Case 1 and
0.0705811 otherwise). The highlighted values denote convergence to the symmetric solution.

Frequency (Hz)
case 1011 109 106

1 0.036606 0.00603311 0.0136791
2 0.0846974 0.0844293 0.0761876

3 0.0352905 0.00857058 0.0374784

Table 68: The resulting σ2 values from a two parameter Levenberg-Marquardt search for σ1 and σ2 for the
inverse problem to determine the means and standard deviations of a bi-gaussian distribution of relaxation
times for each frequency and initial value case (recall the exact solution is σ∗

2 = 0.0457575 for Case 1 and
0.0222764 otherwise). The highlighted values denote convergence to the symmetric solution.

Frequency (Hz)
case 1011 109 106

1 0.0571969 0.060935 0.0658016
2 0.0185637 0.0192023 0.044288

3 0.0445528 0.0482781 0.0456734
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Table 69: The resulting log(µ1) values from performing a four parameter Levenberg-Marquardt optimization
for all parameters in the inverse problem to determine the means and standard deviations of a bi-gaussian
distribution of relaxation times for each frequency and initial value case (recall the exact solution is log(µ∗

1) =
−7.80134). The highlighted values denote convergence to the symmetric solution.

Frequency (Hz)
case 1011 109 106

1 -7.80682 -7.5052 -7.78543
2 -7.47851 -7.47911 -7.50072

3 -7.81432 -7.48831 -7.78507

Table 70: The resulting log(µ2) values from performing a four parameter Levenberg-Marquardt optimization
for all parameters in the inverse problem to determine the means and standard deviations of a bi-gaussian
distribution of relaxation times for each frequency and initial value case (recall the exact solution is log(µ∗

2) =
−7.50031). The highlighted values denote convergence to the symmetric solution.

Frequency (Hz)
case 1011 109 106

1 -7.48957 -7.79687 -7.50993
2 -7.813 -7.81279 -7.80691

3 -7.47506 -7.80992 -7.50848

Table 71: The resulting σ1 values from a four parameter Levenberg-Marquardt search for all parameters
in the inverse problem to determine the means and standard deviations of a bi-gaussian distribution of
relaxation times for each frequency and initial value case (recall the exact solution is σ∗

1 = 0.0457575 for
Case 1 and 0.0705811 otherwise). The highlighted values denote convergence to the symmetric solution.

Frequency (Hz)
case 1011 109 106

1 0.0366059 0.0056312 0.0136811
2 0.0846973 0.0832475 0.0736677

3 0.0352905 0.00879725 0.037513

Table 72: The resulting σ2 values from a four parameter Levenberg-Marquardt search for all parameters
in the inverse problem to determine the means and standard deviations of a bi-gaussian distribution of
relaxation times for each frequency and initial value case (recall the exact solution is σ∗

2 = 0.0457575 for
Case 1 and 0.0222764 otherwise). The highlighted values denote convergence to the symmetric solution.

Frequency (Hz)
case 1011 109 106

1 0.0571968 0.0604793 0.0663628
2 0.0185637 0.0198981 0.0442772

3 0.0445528 0.0477348 0.0463262
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9 Summary

In this report we have discussed theoretical and numerical results for inverse problems involving Maxwell’s
equations with a general polarization term which includes probability distributions for both dielectric pa-
rameters and mechanisms. A theoretical framework to treat such classes of problems was given along with
stability results for the corresponding least squares inverse problems. We presented examples of distribu-
tions of parameters including discrete, uniform, log-normal, and log-bi-gaussian. In each case the objective
function was characterized by a “line of best fit” corresponding to a curve of constant value of either λ or τ
depending on the relative values of the interrogating frequency ω, and 1/τ̃ , where τ̃ is the weighted average
of the relaxation times. The constant values of these curves turned out to be, in fact, τ̃ and λ̃, which is the
weighted average of the inverses of the relaxation times (scaled by the speed of light for convenience). The
similarities between the cases were exploited in determining effective optimization procedures for subsequent
cases.

For the discrete case involving two atoms, each value of τ was readily determined if the volume propor-
tions were known. Likewise, the volume proportion could be determined given the values of each relaxation
time. However, the problem of determining all three parameters simultaneously is under-determined. Al-
though, in certain situations, interrogating with a different frequency (in particular, greater than the critical
frequency if the original interrogating frequency is smaller) can provide enough new information for the
volume proportions and the relaxation times to be determined simultaneously.

The uniform distribution is generally straight-forward to optimize; each endpoint of the distribution was
determined, on average, to about three decimal places of accuracy.

The inverse problem involving the log-normal distribution, or rather a gaussian distribution on the
logarithms of the relaxation times, behaved similarly to the discrete distribution, and therefore the previous
solution methods worked well. The mean of the distribution was determined to about four decimal places in
log-space. The standard deviation was also determined quite accurately (about three decimal places), but
it was evident in the surface plots that the objective function was particularly insensitive to the standard
deviation. Any amount of noise in the system may prevent accurate results.

Finally, we considered a log-bi-gaussian distribution of relaxation times. As in the gaussian distribution
problem, the objective function was insensitive to the standard deviations. Therefore, even with quite
accurate estimates for the means, no usable estimates for the standard deviations could be found. However,
in contrast, rather accurate solutions for both of the means could be determined using substantially incorrect
estimates for the standard deviations. Still, the effect of the standard deviation on the objective function
is sufficient to be able to distinguish distributions which are fairly broad (large standard deviations) from
those that are nearly delta functions (very small standard deviations). This is important as it suggests that
systems which truly have continuous distributions for their parameters should not be modeled using discrete
distributions. Further, an objective function of the type in this report may be used to create a measure of
the error induced in the signal by opting to use a discrete distribution instead of a continuous one when it
is sufficiently helpful for computational simplicity to do so.

In fact, homogenization techniques determine single values of relaxation times which produce signals that
closely match those generated with more complex mechanisms (such as a distribution of Debye polarization
mechanisms)–for example, see [7]. It turns out that from our analysis here that for lower frequencies (ωL <
ωc = 1/τ̃) the effective relaxation time is simply the weighted average of the actual relaxation times (or for
continuous distributions, the integral of τ with respect to the distribution). However, for higher frequencies
(ωH > ωc = 1/τ̃) the effective relaxation time is actually the inverse of the weighted average of inverses (or
the inverse of the integral of 1/τ with respect to the distribution in the continuous case). For example,

τe =
1

∑

i
αi

τi

,

where αi represents the volume fraction of the material with discrete relaxation times τi. Both the low
frequency and high frequency estimates are common results in homogenization theory. However, any ho-
mogenization procedure which does not take the interrogating frequency into account will not be able to
determine which is the correct effective relaxation time for the situation.

Lastly, it should be noted that the procedure of traversing a “line of best fit”, as done in this report, is
only a valid approach to solving non-linear optimization problems (which have relations that are relatively
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optimal) if the equation of this curve is known. Other possible solutions methods for more general problems
include taking an “arbitrary orthogonal step”, or resorting to a simplex search for those parts of the inverse
problem that are particularly difficult for the gradient based methods.
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