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Abstract

An analysis of the instability of axially compressed thin walled
columns is performed, using a plate finite element. obtained through an
incremental lagrangian formulation. which is based on the Mindlin-Reissner
plate theory. The secondary bifurcation phenomena, which are characterized
by the local failure of the flanges, in standard thin walled columns with L
and U cross sections, are studied.

1. INTRODUCTION

The great effort devoted during the last decades in using numerical
methods applied to structural analysis have consolidated their reliability for
solving a significant number of problems in engineering. Particularly, the
finite element method (FEM) has experienced major developments., compared to
other numeric techniques used and, considering the solution of elastic
stability problems of structures, the FEM has been utilized with great success
(Gallagher, 1987).

Nevertheless, the correct solutions of certain non-linear problems in
beams and plates, even with the help of the FEM, are still being highly
investigated in order to assure the appropriate simulation of these phenomena.
One of these cases is the instability analvsis of thin walled structures, such
as columns with thin webs and flanges. To solve these type of problems, the
classical approach for the elastic stability problems of columns is often
used. However, with the use of beam-column finite elements, some local
effects, such as the local buckling in axially compressed columns, which
characterizes a secondary bifurcation case, are not allowed to be simulated.
This phenomenon is characterized by the failure of a part of the column, such
as the flange and, therefore, differs very much from the classical Euler type
of buckling, especially considering the critical loads and the correspondent
mode shapes (Rhodes and Walker, 1980).

This work presents a study of the instability of axially compressed
columns, made of thin webs and flanges, using a plate finite element. This
plate finite element is obtained through an incremental updated lagrangian
formulation of the non-linear plate bending problem, based on the
Mindlin-Reissner plate theory. To solve properly this type of problem, the
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coupling between bending and stretching has to be taken into account. The use
og the Mindlin-Reissner plate theory has the advantages of requiring only
C -continuity for the displacements interpolation functions to be used, and
the uncoupling between the rotational and translational degrees of freedom of
the element (Pica et alli., 1980).

The updated lagrangian formulation leads to a set of finite element
equations, which is solved at each increment of the load, thus producing the
equilibrium paths of the thin walled columns studied. To avoid the problems of
bad conditioning of this set of equations, when the equilibrium path passes by
a bifurcation point or a limit load point, small imperfections are introduced
into the flanges of these thin walled columns, in order to investigate the
occurrence of secondary bifurcations, which are characterized by the local
instability of the flanges (Brush and Almroth, 1975). From this incremental
formulation, one can also obtain the linearized eigenvalue problem for an
axially loaded thin walled column, which gives the Euler critical loads and
the correspondent mode shapes (Ramm and Stegmiiller, 1982).

In this work, an application of this methodology is presented, which
constitutes a study about local instabilities in standard thin walled columns
with L and U cross sections, using a Lagrange-type plate finite element of 9
nodes, obtained from the above referred incremental formulation.

2. THE PLATE FINITE ELEMENT

An incremental lagrangian formulation, often used in the study of
non-linear problems in structural stability (Pica et alli., 1980), is taken as
the basis upon which the updated lagrangian version used here is developed,
and which results in the finite element equations for the problem of buckling
and post-buckling of flat plates. The incremental principle of virtual work
for an elastic body, such as a plate, can be written, in its updated
lagrangian version, as (Washizu, 1982)
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and where the displacement field, that represents the motion of a point
outside the reference surface of the plate, is given by
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U (X,¥,2) = uo(x,y) + 20 (x,y) , «=1,2 (2a)

w(x,y) , (2b)

R

u (x,y,2)

u; being the axial displacements, and w being the transversal displacement of

a point on the reference surface, and Ga representing the rotations of the
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normals to the reference surface, prior to the deformation process of the
plate. The measure of deformation used is the Green strain tensor, written in
its incremental form (Washizu, 1982). The incremental principle of virtual
work, given by (1), is submitted to a discretization procedure in which the
whole plate is assumed to be divided into E elements, and inside of each plate
element the incremental and virtual displacements are interpolated in terms of
the incremental and virtual nodal displacements, in the following manner:

bu(x,y) = N (X.y)dug (3a)
86 (x,y) = N (x,y)86 . (3b)
Bw(x.y) = N (x,y)bw (3c)

where I varies from 1 to 9, and Nl(x,y) are the interpolation functions for a

Lagrange~type isoparametric finite element of 9 nodes, which are given by
(Pica et alli., 1980)

N, = %{ +EE }(1+nnl}[ggl+nnl—1} 1 =1,3,5 and 7 (4a)
N, = %[ }(1+nnl} 1 =2 and 6 (4b)
N, = %[HEE J[l rz] I =4 and 8 (4c)
N, = [ ]( } 1=9 . (4d)

The discretization procedure leads to a set of equations., given by
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which are the incremental finite element equations for a problem of buckling
of a plate, or of whatever structure, submitted to buckling efforts. and which
is being modelled by plate finite elements. Notice in equation (5), that the

th
—

Ay . . . ..
terms K 183 are the components of incremental stiffness matrix, similar to the
stlffness matrix obtained in a linear analysis., and that the terms k «1By are

the components of the geometric, or initial stresses, stiffness matrix. In
this work, the finite element obtained is being used to study the phenomenon
of local instability in thin walled columns, whose flanges and webs are
discretized by using plate finite elements and to which small imperfections
are added. With this procedure, one can study the behaviour of imperfect
columns but, mainly, search for the possible secondary bifurcation cases that
exist for certain ratios between the width and the thickness of the flanges.

Additionally, to compute the classical Euler buckling loads, and the
correspondent mode shapes, of these thin walled columns, one can obtain from
the equation (5), the following linear eigenvalue problem for the linearized
problem of buckling of a plate (Ramm and Stegmiiller, 1982):
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b?“¢+x£1 X = 0 , (6)

where A is the factor that has to multiply the value of stress or load at any
given configuration, in order that the critical load can be achieved.

3. NUMERICAL RESULTS

The plate finite element above described was used to numerically
study the local instabilities in thin walled columns. In this work, aluminium
thin walled columns, with E=74.5 GPa and v=0.30, were considered.

The first standard thin walled column investigated is the one with
the L cross section, whose flanges have width b and thickness t. Various
ratios between the thickness and the width of the flanges were tested for the
same column length of 559.0 mm (Boresi and Sidebottom, 1985). The results of
these analyses are shown in Figure 1 where, along with the loads that
characterize the secondary bifurcations for certain ratios t/b, the classical
Euler buckling curve is also presented. One can conclude that below the value
t/b = 0.032 , a structural designer should be aware of the inadequacy of the
classical Euler approach to evaluate the critical loads of these structures
since. below that value, the local instability of the flanges are the biggest
possible reason for the failure of the column. The behaviour of a L-shapped
cross section column, with a given ratio t/b. below the value above discussed,
can be illustrated by the load(stress) X displacement diagram shown in
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Figure 2, where is very clear the occurrence of a secondary bifurcation at a
level of load way below the value of the classical Euler critical load. The
numerical values presented should be compared to reliable experimental data,
which were not available to the authors while this study was being performed.

Other standard thin walled column studied is the one with the U cross
section, whose flanges have width b and thickness t. Once again, various
thickness/width ratios of the flanges were tested, and the results are
presented in Figure 3 where, as well as the classical Euler buckling curve,
the loads that characterized the secondary bifurcations are also shown.
Following similar behaviour observed in the study of the L-shapped cross
section column, for values below the ratio t/b = 0.030, if the use of this
type of column cannot be avoided, one should be aware that, in order to
evaluate its capacity of taking loads, he cannot use the classical Euler
approach, which is clearly inadequate for this range of t/b ratio. The
behaviour of a U-shapped cross section column, with a ratio t/b below the
value above presented, is illustrated in the Figure 4, where the occurrence of
a secondary bifurcation at a load level much smaller than the classical Euler
critical load is well demonstrated. Once again, reliable experimental data,
that could be used for checking the performance of this numerical simulation,
were not available.
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4., CONCLUSIONS

A methodology for solving nonlinear structural stability problems of
thin walled columns, using plate finite elements to discretize its webs and
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flanges, was proposed. The main objective was the study of the local
instabilities, which, for certain values of the ratio between the thickness
and the width of the flanges, may cause the failure of the column at load
levels much smaller than the ones predicted by the classical Euler approach.
The results presented have shown that this methodology is capable of modelling
such undesirable situations. Nevertheless, additional studies are needed to
obtain a more precise evaluation of this secondary bifurcation loads, and to
provide a comparative study with experimental results. The inclusion of the
residual stresses at the formulation is a key matter to be addressed in future
works.
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