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ABSTRACT This paper deals with steady-state response of a piping system with nonlinear
support which are motion-limiting constraint. Considering the energy loss in a collision, an
analytical method of approximate solution for the continuous system with asymmetrical and
symmetrical hysteresis loop characteristics in which the beam end collides with the
nonlinear support once and twice in one period of its vibration is presented. Some numerical
results of the approximate solution are shown.

1.LINTRODUCTION

The forced response of piping system with nonlinear supports which are motion-limiting
constraints or clearances is of great importance for the nonlinear vibration problem
concerning piping systems in nuclear power plants and others[1]-[3]. Sufficiently accurate
knowledge of the system response, for a given set of nonlinear parameters concerning the
" support, also helps in designing and controlling the system and avoiding unacceptable levels
of vibration. In analysis of such systems, analytical model with bilinear restoring force
characteristics in which stiffness increases after collision is generally used[4],[5]. On the
other hand, there is energy loss in a collision which is represented by coefficient of
restitution. However, few papers on vibraton analysis of the continuous system with
collision taking account of energy loss have been published. Modelling of energy loss in a
collision is carried out by assuming hysteresis loop characteristics in relation between force
of restitution and penetration[6].

In this paper, analytical methods of approximate steady-state solution for the piping
system with asymmetrical and symmetrical hysteresis loop characteristics in which the beam
end collides with the nonlinear support once and twice in one period of its vibration,
respectively, are presented. In these methods, force of restitution is expanded into Fourier
series. Some numerical results of resonance curves for the system with asymmetrical and
symmetrical hysteresis loop characteristics are shown.

Next, analytical methods of approximate steady-state solution for the piping system
without hysteresis loop characteristics are obtained. Some numerical results of resonance



curvess are shown.

The objectives of this paper are to provide the reader the methods of the approximate
steady-state solution of the continuous system with asymmetrical and symmetrical collision
characteristics under harmonic excitation and to show the numerical results of the
approximate solution for designing the piping system.

2. ANALYTICAL METHOD FOR THE SYSTEM WITH HYSTERESIS LOOP CHARACTERISTICS
2.1 System with asymmetrical collision characteristics

A simplified dynamical model of the continuous system with asymmetrical collision
characteristics is shown in Fig.1. Namely, this model consists of a beam clamped at one
end, with one-sided amplitude constraint by the nonlinear support having hysteresis loop
characteristics (Fig.2) at the other end.
Let p be the mass density, A the cross-sectional area, and EI the modulus of flexural
rigidity. The equation for transverse free vibration of a beam can be written as follows:
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The relations between y and z as shown in Fig.1 are given by
y=2ztyocos ot ©))
Hence we have
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Assuming the solution for Eq.(1) as

[e.e]
y= r:z;]X a (X)cosn w t 4
a formal solution of Eq.(3) can be expressed as follows:
7= -y 0 COS @ t+n§ (A ncosh 2ax+Bxsinh 4.x
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where A o, B, Ca, Da are constants to be determined in each particular case from the
boundary conditions of the beam, where
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The boundary conditions for this case are as follows:
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where z 1 1s the transverse displacement at the beam end (x=4 and the nonlinear shearing
force f(z 1 ,z 1) is defined by the following piecewise-linear characteristics as shown in
Fig2:
flz:1z1)=Ki1(z:1-€0) c zizeo, 2120 (1)
f(z1,z1)=Kz2(z1-z13) s ozizzai3,z1=0 (1) (12)
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where K 1 and K 2 are the spring constants of the nonlinear support at the beam end as
shown in Fig.2 and e o is a clearance. Displacement at the beam end of the interval ( I )
z 13 is written as follows:
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where z 1max denotes the maximum displacement at the beam end.
Employig the equations of boundary conditions (8) and (9), Eq.(5) can be reduced to
z=y o (cos 41 x-1)cos wt
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And then, from Eq.(14) with the boundary condition equation (10), the following equations
will be obtained: ,
(cosh 21 /+cos 21 /)A 1 +(sinh A1 ¢+sin A1 /)B1=yocos 41¢, (n=1) (15)
(cosh 22/ +¢c0s An/)Ao+(sinh Ao s+sin 4as )B =0, (n=2,34,....) (16)
In this paper, the steady-state vibration is dealt with for the case in which the beam end
collides with the nonlinear support once in one period of its vibration. Once the impact
vibration becomes steady and periodic, the nonlinear shearing force f{z / ,z 1 ) becomes also
periodic and can be represented as a periodic functin g( 6 ) of # with the period 2 7 .
And @ is defined by the following equation:
0=wta a7
where a is the phase lag angle.
This periodic function g( # ) must satisfy the conditions of the given characteristics of
the nonlinear shearing force equation (12), which is, in this case, to be written as the
following equations:
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where #1 and # 2 denote the range of the phase angle & during the period of the contact

of the beam end with the nonlinear support. In the foregoing, one period 2 7 of the

resulting vibration is divided into three intervals. During the first and the second intervals of

length A1 and @ 2, respectively, the beam end moves in contact as shown in Fig.3. And

during the third interval of length 2 = - ( # 1 + @ 2 ), the beam end moves without contact.
Introducing a Fourier series expansion for the periodic function g( 8 ) as

ao oo
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In this paper, let the function g( # ) be approximated by
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As shown in referece [7], when g( @ ) is approximated by only the fundamental
term of the Fourier expansion, approximate solution agree with exact solution for relatively
small nonlinear parameter (K 1 /k and K = /k) used in this paper.
Thus, from Eq.(14) with the last equation of boundary conditin (11), the following
equation is derived:
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Neglecting the higher order terms than n=1, the formal solution Eq.(14) with the aid of
Eq.(15) and Eq.(16) yields to the following equation:
z=yo(cos A1x-1)cos( 8 + a)
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Then, displacement of beam end z : is
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Meanwhile the switching-over conditions from one to another of the three intervals ( I ),
( I )and ( I ) are expressed by
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Eqation(26) can be written as follows:
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Introducing I" and c as

a1 €o Miao
I'=yoNicosa+M1 = - (34)
k cos 81 2kcos 8 1
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Equation(33) is to be reduced to
z1=1 cos 0 +c (36)
And the nondimensional Fourier coefficients are defined as follows:
ao a1 3 b1 37
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Then,
1
z;=1"(cosl9+-:-z— Mixo) (38)

From Egs.(34), (37), (38) and (30)-(32), the amplitude of the beam end I' , the phase
lag angle o and the amplitude y o of sinusoidal excitation are determined as:

' vyo N | (39)
eo eo J(IMix1)2+M1y1)2
-1 M1y
a =tan "} ——— (40)
I-Mi1x1
yo 1 JAOMix1)2+M1y1)?2 )
eo cosB1+Mi1x0/2 N

Since the function g( # ) in Eq.(18) has been approximated by Eq.(20), the
piecewise-linear characteristics expressed by Eq.(18) of nonlinear shearing force, combined
with Eq.(38), can be approximately written as follows:
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Applying a techmque similar to that for determinig Founer coefficients, namely,

multiplying both sides of Eq.(42) by 1, cos § and sin # and integrating through the

whole period of 2  , the nondimensional coefficients x o, x 1 and y 1 are obtained as
follws:
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Assuming that 6 1 and # 2 are small, x 0, x 1 and y 1 are approximately given by
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where 8 o denotes the range of the phase angle @ duration the period of the contact of the
beam end with the nonlinear support, and # 1 and @ 2 are expressed as follows:
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From Eqgs.(46), (47) and (48), Eq.(39) and Eq.(41) can be written as follows:
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Fixing the parameter Q1, o can be obtained from the following equation derived by
Eq.(52) for a given value of yo /e o .
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Then, I" /e o can be obtained, utilizing Eq.(51).

2.2 System with symmetrical collision characteristics

For the symmetrical system with hysteresis loop characteristics shown in Fig.4, Eq.(20) is
written as:
g(f#) = ai1cos § +bisin 8 (57)
And Eq.(53) and (54) are expressed as:
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Eq.(52) is written as:
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Fixing the parameter Q1, # o can be obtained from Eq.(60) for a given value of y o /e o .
Then, I" /e o can be obtained, utilizing Eq.(51).

3. ANALYTICAL METHOD FOR THE SYSTEM WITHOUT HYSTERESIS LOOP CHARACTERISTICS
3.1 System with asymmetrical collision characteristics

For the asymmetrical system without hysteresis loop characteristics, the nonlinear force of
restitution f(z 1 )of the system with asymmetrical collision characteristics shown in Fig.1 is
defined by the following piecewise-linear characteristics as shown in Fig.5:
flz:1>K(zi1-e0); z1Z2eo (1)
flz:1)=0; z:=eo () ‘
where K is the spring constants of the stop at the beam end as shown in Fig.5.
The periodic function g( 6 ) must satisfy the conditions of the given characteristics of
the nonlinear force of restitution equation (61), which is, in this case, to be written as the
following equations:

(61)
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where @ o denotes the range of the phase angle # during the period of the contact of the
beam end with the nonlinear support at one side as shown in Fig.6.
In this paper, let the function g( # ) be approximated by

f(z:)=g(ﬁ):K(21—eo);-*20—(" == (1)
(62)
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The amplitude of the beam end I' and the amplitude y o of sinusoidal excitation are
determined as:

I' yo N

(64)
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Fixing the parameter 21, fo can be obtained from the following equation derived by
equation (65) for a given value of y o /e o .
M:K M1 K 1 /
(— LN =2y 002 - XN 002+ LN m1=0 (66)
24 tkeo 12k 8eo €eo
Then, utilizing equation (66), I" /e o can be obtained.

3.2 System with symmetrical collision characteristics

For the symmetrical system without hysteresis loop characteristics, Eq.(63) is written as:

g( 6 Faicos (67)
The amplitude of the beam end I' and the amplitude y o of sinusoidal excitation are
determined as:
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Fixing the parameter €1, o can be obtained from the Eq.(69) for a given value of y o
/e o . Then, utilizing equation (68), I' /e o can be obtained.

4. NUMERICAL EXAMPLES
4.1 Results of the system with hysteresis loop characteristics
Figures 7 and 8 show resonance curves of the system with asymmetrical collision

characteristics with the amplitude I' /e o of the beam end versus the frequency ratio Q1
obtained by the method of approximate solution utilizing a digital computer in which



sevenl exciting ratios y o/eo are taken to be constant. Figures 7(a) and 7(b) show
resonance curves for y o /e 0 =1.0 and 0.5 of a system with low ratio of nonlinear parameter
K 1 k=3 and K 2 /k=10. Figure 8 shows resonance curves of the system with high ratio of
nonlinear parameter K 1 /k=10 and K 2 /k=30. The resonance curves of nonlinear response
of approximate solution are shown as discontinuous line. In the discontinuous region, the
periodic solution can not be obtained. From Fig.7 and Fig.8, it is clear that the region
depends on the nonlinear parameter K 1 /k and K 2 /k. For yo/eo, as y o /e o decreases,
I’ /eo decreases. The effect of y o/e o on discontinuous region is less than nonlinear
parameters.

Figures 9 and 10 show resonance curves of the system with symmetrical collision
characteristics. In this case, resonance curves are shown as continuous curves.

4.2 Results of the system without hysteresis loop characteristics

Figures 11 and 12 show resonance curves of continuous system with asymmetrical
collision characteristics. For comparing the results of the system with hysteresis loop
characteristics, K 1 /k is taken to be equal to K/k. The resonance curves of nonlinear
response of approximate solution are also shown as discontinuous line. In the discontinuous
region, the periodic solution can not be obtained. Comparing Fig.10 with Fig.7 or Fig.11
with Fig.8, discontinuous regions are wider than those of the system with hysteresis loop
characteristics. Since energy is not dissipated, resonance curves tend to infinite at resonance
frequency.

Figure 13 shows resonance curves of the system with symmetrical collision
characteristics. In this case, resonance curves are shown as continuous curves.

5. CONCLUSIONS

An approximate solution for the steady-state response of continuous system with
asymmetrical and symmetrical collision characteristics in which the beam end collides with
the nonlinear support once and twice in one period of its vibration has been proposed.
Resonance curves are obtained for several exciting ratios y o /e o of the systems with low
and high ratio of nonlinear parameter K 1 /k and K 2 /k or K/k by applying the approximate
solution. For the system with asymmetrical collision characteristics, the resonance curves of
nonlinear response of approximate solution are shown as discontinuous line. In the
discontinuous region, the periodic solutions can not ‘be obtained. It is clear that the
discontinuous region depends on the nonlinar parameters K 1 /k and K 2 /k or K/k. This is
especially noteworthy, it may be connected with chaotic vibration. The discontinuous region
of the resonance curves of continuous system without hysteresis loop characteristics is wider
than that with hysteresis loop characteristics.

Stability problems and random excitation problems of these continuous systems will be
discussesd in the forthcoming papers by the authors.

Finally, the authors would like to acknowledge their deep appreciation for the valuable
suggestions given to this work by Professor Emeritus Heki Shibata of the Unversity of

Tokyo.
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