
ABSTRACT

APSANGI, CHANDAN. Scalable Locks with Backoff Suspension for Manycore Systems. (Under
the direction of Dr. Frank Mueller.)

A number of scalable locking mechanisms have been explored in the past to provide the

best possible performance on many core systems. This includes various optimized versions

of spin locks, ticket locks and queued locks. Of these, the queued lock variant proposed by

Mellor Crummy and Scott(MCS) has been most widely adopted. In this paper we propose an

enhanced version of MCS locks that aims to provide better scalability in terms of running time

and saves useful CPU cycles and hence power consumption. Similar to MCS locks, scalability

is provided by using a queue-based locking mechanism, where each thread spins on a locally

cached variable. Savings in CPU cycles are achieved by means of a back-off mechanism, where-

in the threads suspend after spinning for a predefined number of iterations. Experiments were

conducted on a 64-core TilePro processor, running applications with 4 to 128 threads. Running

time improvements in the order of 1.5x compared to existing locking mechanisms were noted as

we scaled the number of threads as well as the number of cores. The results indicate scalability

and power savings of this scheme and make it well suited for high-performance computing

applications today and large scale main-stream many cores in the future.

© Copyright 2013 by Chandan Apsangi

All Rights Reserved

Scalable Locks with Backoff Suspension for Manycore Systems

by
Chandan Apsangi

A thesis submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Computer Science

Raleigh, North Carolina

2013

APPROVED BY:

Dr. George Rouskas Dr. Xiaosong Ma

Dr. Frank Mueller
Chair of Advisory Committee

DEDICATION

To my wonderful parents and my most affectionate brother.

ii

BIOGRAPHY

Chandan Apsangi was born and raised in Karnataka, India. After completing high school in

Dharwad, he joined Sri Jayachamarajendra College of Engineering (SJCE), Mysore for a Bach-

elor’s program in Information Science and Engineering. After working on a research project

under the guidance of Dr. T.N.Nagabhushan at SJCE, he developed a greater passion to con-

tribute back to the field of computer science. After obtaining the Bachelor’s degree in 2008, with

the intent of acquiring some industry experience, he joined Nokia India Pvt. Ltd., Bangalore

as Mobile Software Engineer. After working for 3 years developing middleware software mostly

on Symbian platform, his curiosity in System software drove him to pursue further studies in

the Operating Systems area. In 2011, he joined North Carolina State University (NCSU) for

a Master’s program in Computer Science department. After an Internship with NetApp in the

summer of 2012, he got an opportunity to pursue research under the guidance of Dr. Frank

Mueller at NCSU. The focus of his research was on operating systems enhancements for many-

core systems. He will be joining Intel in an Operating Systems Engineer role after completing

his Master’s degree.

iii

ACKNOWLEDGEMENTS

In the retrospect, what seemed like a short and exciting time has been a pretty long and arduous

journey. I can only credit all the wonderful people I have been surrounded by, for making this

so simple. I would like to start by thanking my Parents who are the reason for my comfortable

and adventurous life here. I am very grateful to you for instilling in me the values of hard work,

honesty and generosity which made this a whole lot easier. I would like to thank my brother

for being my personal and professional mentor since the day I was born. You are the classic

definition of ”leading by example” and I’m most grateful for all the support and encouragement

you have provided all along.

I would like to thank my advisor Dr. Frank Mueller for his invaluable guidance and en-

couragement throughout my research work. I consider myself blessed to have been a witness to

his incessant flow of ideas. It was really a great experience working with you Sir. I’d also like

to thank my committee members – Dr. Rouskas and Dr.Ma, for taking time out of your busy

schedule to support me through the defense. I would also like to thank my flatmates (present

and past) and friends at Raleigh who’d alleviate any stress just by a few minutes of jokes and

laughter. You folks are the prime reason why I’d cherish this place a lot. Special thanks to

Dr.Chi and Dr.Adela Westedt from TU Berlin for providing access to Tilera-GX machine for

the experiments. I would also like to thank National Science Foundation (NSF) for funding this

project and encouraging me to give my best. In the short space available, I may have forgotten

some important names. In such a case, I’d like to ask your forgiveness and sincerely hope that

I will get another chance to thank you.

iv

TABLE OF CONTENTS

LIST OF FIGURES . vi

Chapter 1 Introduction . 1

Chapter 2 Related Work . 4

Chapter 3 Design And Implementation . 6
3.1 Backoff-Test-and-set Locks . 6
3.2 Backoff-Test and Test-and-set Locks . 8
3.3 MCS Locks . 10
3.4 Backoff-MCS Locks . 12

Chapter 4 Empirical Study . 15
4.1 Experimental Setup . 15
4.2 Results . 15

4.2.1 Running time . 16
4.2.2 Fairness . 19
4.2.3 Core-resident execution time . 20
4.2.4 Context switch overhead . 21

Chapter 5 Conclusions and Future work . 23

REFERENCES . 25

v

LIST OF FIGURES

Figure 3.1 Lock Data structure for B-T&S . 7
Figure 3.2 Lock Datastructure for B-TTS . 8
Figure 3.3 Lock Datastructure for MCS . 10
Figure 3.4 Lock Data structure for B-MCS . 12

Figure 4.1 Average time taken when we do over-subscription. Also shows the mini-
mum and maximum time taken. 16

Figure 4.2 Average time taken when we have a single thread per core. 17
Figure 4.3 Average time taken when we have a single thread per core with a Barrier.

There’s no code in critical section. 17
Figure 4.4 Time taken by each thread when using B-MCS with one thread per core

along with a barrier. 18
Figure 4.5 Average values of fairness counter when a two threads are assigned to

each core. 19
Figure 4.6 Average time suspended when a single thread is assigned to each core. . . 20
Figure 4.7 Average Core resident execution time when a single thread is assigned to

each core. 21
Figure 4.8 Total number of Voluntary context switches when over-subscription is

involved. 22
Figure 4.9 Total number of Involuntary context switches when over-subscription is

involved. 22

vi

Chapter 1

Introduction

A number of techniques for synchronization have been explored in the past. These can be

broadly classified into two categories: 1) busy-waiting protocols and 2) blocking protocols. Busy

waiting protocols perform well if either the length of the critical section is small or if there is no

alternate work for the CPU until the lock is obtained. Test-and-set (T&S) locks implemented

using atomics provide the basis for spin lock implementations. Anderson [1] deals with several

different ways of optimizing T&S locks. The major performance degradation in case of T&S

locks comes from the way the atomic operations are implemented at the hardware level. An

atomic read operation invalidates the caches of all other processors (in case of invalidation

based protocols). Since bus lines used for atomic updates are also used for general memory

references, any general memory references may be slowed down as well due to contention. In

order to mitigate this, spin lock alternatives such as test-and-test-and-set locks(TTS), ticket

locks, etc. are considered. In case of TTS locks, when the lock is busy, the waiting threads

spin on the locally cached variable without using atomics, i.e, without inducing network/bus

transactions. When the lock is freed, the cache entry for the lock on all the spinning processors

is invalidated, the new value is read-in, and each processor tries to atomically acquire the lock.

Only one processor succeeds while all others continue to spin on their local cache variables.

This helps reduce the network traffic substantially, but leads to what is known as ”Thundering

herd problem” [13]. Another problem associated with the pure spin implementation is that of

Fairness. Since all the spinning processors are allowed to contend for the lock almost at the

same time, the next lock holder is decided based on factors such as locality with respect to

the unlocking processor, scheduling policies, cache coherence protocols, etc. Ticket locks [12]

implemented in the Linux kernel fix this fairness problem. However, even with ticket locks it

is not possible to get a constant bound on number of coherence transactions since each unlock

(cache invalidation) takes O(P) transactions if P processors are waiting for the lock[2, 4]. This

makes ticket locks unsuitable for high performance computing applications.

1

Considering these factors, Mellor-Crummey and Scott (MCS) [2] proposed a novel queuing

based synchronization that addresses most of the problems discussed above. The MCS lock

has the following properties: 1) It guarantees FIFO ordering of lock acquisition, i.e, ensures

fairness. 2) Each thread spins on locally cached flags, i.e, it reduces network transactions. 3)

A constant bound on network/bus transactions is established for unlocking. 4) A constant

amount of space per lock is required. Mellor-Crummey and Scott [2] discuss the running time

improvements provided by MCS locks as compared to other spin lock alternatives. They prove

that the distributed nature of MCS locks provides better scalability on almost any architecture.

We verified the same through our experiments where we compare MCS locks with backoff

versions of T&S and TTS locks. As we scale the number of threads and number of cores, we

note that in case of MCS locks, the increase in running time is directly proportional to the

increase in the number of threads. In case of spin locks, the running times are very short for

small number of threads but increases quickly for larger number of threads and cores.

Despite all these advantages, MCS locks still belong to the first category of locking protocols

- busy waiting protocols. Considerable research has been done to highlight the drawbacks of

busy-waiting protocols [15, 5]. For instance, the TurboBoost feature present in most modern

Intel processors [14] implies that the total power draw of a chip is capped, i.e, divided between

the active cores. Hence, threads using spin locks, while spinning, deprive the other cores of

their potential performance boost without getting any real work done. Also, when multiple

threads are scheduled per core, the CPU time is divided between the spinning thread and other

active threads. Even though spinning threads are not doing any useful work, an almost equal

amount of CPU time is dedicated to them. This also leads to higher context switches as our

experiments demonstrate. To address these issues, we develop a novel locking protocol on the

lines of MCS but in combination with the second category of synchronization mentioned above –

blocking protocols. This algorithm (referred to as Backoff-MCS or B-MCS henceforth) involves

suspension of the waiting thread after a few initial spins until the lock becomes available. This

results in better performance especially for longer critical sections and where over-subscription

(more than one thread per core) and barrier synchronization is involved, which is true about

Single program multiple data (SPMD)-style programs. We argue that this combination of backoff

and queued locks provides a bifold advantage. On the one hand, we get equal, if not better

performance as MCS locks, and on the other, we conserve CPU cycles which may become

available to other active threads or provide savings in power consumption. Our experiments

show that, as we scale the number of cores and threads, in case of applications with longer

critical sections, about 95% of the waiting time is spent in the backoff/suspended state. Through

our experiments we reaffirm some of the problems with the traditional spin locks - fairness,

quiescence and wastage of CPU cycles, and present how B-MCS addresses these problems. We

also invalidate the context switch overhead argument against backoff based protocols and show

2

that over-subscription can lead to higher context switching overhead in case of spin-only MCS

locks as compared to Backoff-MCS locks.

Hypothesis

Considering the above discussed limitations of the exisiting locks, we aim to develop an enahnced

version of MCS locks which would address these limitations. Hence the hypothesis of this work

is: The backoff-enhanced MCS locking algorithm provides a scalable and performant solution

for reducing both lock contention and the number of context switches on large-scale multicore

platforms that caters particularly to SPMD-style codes.

3

Chapter 2

Related Work

Substantial research has been done in the past to identify the best possible synchronization

solutions. There is no single best universal solution to all synchronization problems. Depending

on various criteria such as computer architecture, application behaviour, application expectation

(fast running time vs. high throughput), etc., some solutions look more attractive than others.

Anderson et al.[1] deal with various enhancements for spin-based locks to achieve scalability.

They emphasize the suitability and efficiency of spin-only locks for the uncontended case and

backoff-based locks for the contended case. They highlight the scalability challenges posed by

shared memory spin locks and propose a queue-based lock similar to Ticket locks in Linux. Our

contribution is a novel queue-based lock with suspension of contending threads. In this paper,

we highlight the situations where these locks would perform better and also the magnitude by

which they do so compared to their predecessors.

Sandor et al.[6] experiment with existing spin locks (originally designed for multiprocessor

systems) on multi-core systems. They conclude that with multi-cores, since the cost of core

local memory is not significantly different from the global memory, both T&S and TTS show

similar performance. However, under high contention and with large numbers of threads they

recommend utilizing queue-based ticket locks as proposed by MCS [2]. Our work reaffirms the

scalability problems inherent to T&S and TTS locks. We also present a comparison of our

suspension-based queue locks with standard MCS locks and analyze the impact of suspension

on the overall performance. This takes into account the time that threads remain suspended and

the total number of context switches while providing similar running times as MCS locks. Boyd-

Wickizer et al. [3] have shown that with a few modifications to the application benchmarks and

the Linux kernel, existing OS mechanisms can scale well with many-core systems. This shifts

the focus of research from enhancing existing OS mechanisms to developing new code around

bottlenecks. In another contribution, Boyd-Wickizer et al.[4] have highlighted the impact of

non-scalable locks on the overall system performance by developing a Markov model to explain

4

why performance collapses. This, along with the Anderson’s paper [1], serves as a motivation

for our work on queue locks. In the Hierarchical CLH paper [9], Victor Luchangco and others

design a new queue lock based on the CLH locks for CC-NUMA systems. David Dice and others

propose a more robust design called ”lock cohorting” [7], which involves passing on the lock

ownership to the threads in the same NUMA cluster before releasing it for global contention.

They employ a queue-based approach and rely on atomics for enqueuing onto the queues. In

this paper, we design a similar solution based on atomic operations but for SMP systems,

where a single queue per lock is maintained. Our implementation also provides the fairness and

scalability that these locks generally promise.

5

Chapter 3

Design And Implementation

In order to evaluate our implementation in the light of existing algorithms, we have implemented

three of the existing algorithms in C. Here, we present the pseudocode for the Backoff-T&S,

Backoff-TTS and standard MCS locks. Later in this section, we present the implementation of

Backoff-MCS and discuss the data structures and design decisions made.

3.1 Backoff-Test-and-set Locks

Algorithm 1 B-T&S Lock algorithm

1: procedure Lock(thread lock t lock)
2: size t notdone
3: repeat
4: retry = 100
5: repeat
6: notdone = atomic cas(lock.spin, 0, 1)
7: retry = retry-1
8: until (notdone = 0 or retry = 0)

9: if (notdone) then
10: notdone = atomic cas(lock.spin, 0, 1) . Make another attempt to avoid the race
11: if (notdone) then
12: futex down(lock.thread futx)
13: end if
14: end if
15: until notdone = 0
16: return 0
17: end procedure

6

Algorithm 2 B-T&S Unlock algorithm

1: procedure Unlock(thread lock t lock)
2: lock.spin = 0
3: futex up(lock.thread futx)
4: return 0
5: end procedure

Figure 3.1: Lock Data structure for B-T&S

This is one of the most basic spin-lock algorithms. Our implementation uses an atomic

compare and swap instruction (signature: prev = atomic cas(addr, old, new)) for performing

the test-and-set operation. We spin for 100 attempts to acquire the lock before suspending the

thread. This speeds up the lock acquisition substantially when the size of critical section is

small, as shown in the experiments later. The lock data structure used for test-and-set lock is

shown in Figure 3.1. Here we have a lock.spin variable which is initialized to 0. The thread that

manages to atomically set this to 1 gets the lock. The other variable that is used is lock.lock futx.

This is used to suspend the waiting threads. Note that all the threads are suspended on the

lock futex. Hence in the unlock, all of them are woken up at once and contend for the lock.

7

3.2 Backoff-Test and Test-and-set Locks

Figure 3.2: Lock Datastructure for B-TTS

This is similar to the test-and-set lock shown above except for an additional while loop in the

lock code. This tests the value of the lock variable from the cache instead of making an atomic

compare and swap each time. The unlock code remains the same. The lock data structure used

for test and test-and-set lock is shown in Figure 3.2.

8

Algorithm 3 B-TTS Lock algorithm

1: procedure Lock(thread lock t lock)
2: size t notdone
3: repeat
4: retry = 100
5: repeat
6: while (lock.spin = 1) do
7: . Busy wait
8: end while
9: notdone = atomic cas(lock.spin, 0, 1)

10: retry = retry-1
11: until (notdone = 0 or retry = 0)

12: if (notdone) then
13: notdone = atomic cas(lock.spin, 0, 1) . Make another attempt to avoid the race
14: if (notdone) then
15: futex down(lock.thread futx)
16: end if
17: end if
18: until notdone = 0
19: return 0
20: end procedure

Algorithm 4 B-TTS Unlock algorithm

1: procedure Unlock(thread lock t lock)
2: lock.spin = 0
3: futex up(lock.thread futx)
4: return 0
5: end procedure

9

3.3 MCS Locks

MCS locks are one of the most widely discussed locking mechanisms. The implementation

shown here is based on the original MCS paper [2]. Figure 3.3 shows the lock datastructure

used by our implementation of MCS locks. It demonstrates how a queue of waiters can be

constructed by means of the tail pointer in the lock datastructure and next pointer in the

thread t datastructure. The top half of the Figure 3.3 shows the state of the lock data structures

initially. The bottom half is the state when two threads have queued up on the lock.

Figure 3.3: Lock Datastructure for MCS

10

Algorithm 5 MCS Lock algorithm

1: procedure Lock(thread lock t lock, thread t current)
2: current.locked = UNLOCKED
3: current.next = 0
4: repeat
5: opred = lock.tail
6: pred = atomic cas(lock.tail, opred, current)
7: until pred = opred
8:

9: if pred != 0 then
10: current.locked = LOCKED
11: pred.next = current
12: while (current.locked = LOCKED) do
13: . Busy wait
14: end while
15: end if
16: return 0
17: end procedure

Algorithm 6 MCS Unlock algorithm

1: procedure Unlock(thread lock t lock, thread t current)
2: if current.next = 0 then
3: if atomic cas(lock.tail, current, 0) = current then
4: current.next = 0
5: return 0
6: end if

7: while (current.next = 0) do
8: . Busy wait
9: end while

10: end if

11: current.next.locked = UNLOCKED
12: current.next = 0
13: return 0
14: end procedure

11

3.4 Backoff-MCS Locks

Figure 3.4: Lock Data structure for B-MCS

Just as MCS locks, we rely on atomic operations to update a queue of waiters. We use

atomic compare and swap to check the status of the queue and to enqueue the waiters. We

make use of two opaque data structures: 1) The lock data structure – thread lock t, a pointer

passed as an argument to the lock() and unlock() functions. The user instantiates this once, and

may use it for synchronization multiple times. 2) Per thread data structure – thread t, which is

used to enqueue a thread onto the lock queue (The user is unaware of the existence of this data

structure). We maintain a state variable (called locked) in thread t data structure, which can

take any of the three states: LOCKED, UNLOCKED and BACKOFF. The BACKOFF state

indicates that the thread has suspended itself and needs to be woken up. We use futex APIs

[11, 10] provided by the Linux Kernel to implement thread blocking and unblocking. Figure 3.4

12

shows the state of these two data structures for different cases. The lock data structure has

a tail pointer which enables the requesting threads to enqueue onto the lock queue. The per

thread data structure contains a struct futex pointer (shown as thread futx), which is used to

block/unblock a thread. When the lock is free, the tail pointer is set to NULL.

Algorithm 7 B-MCS Lock algorithm

1: procedure Lock(thread lock t lock)
2: thread t current = thread self()
3: repeat
4: opred = lock.tail
5: pred = atomic cas(lock.tail, opred, current)
6: until pred = opred
7:

8: if pred != 0 then
9: current.locked = LOCKED

10: pred.next = current
11:

12: retry = 100
13: while (current.locked = LOCKED) & (retry > 0) do
14: retry = retry-1
15: end while
16:

17: if (atomic cas(current.locked, LOCKED, BACKOFF)
18: = LOCKED) & (retry = 0) then
19: futex down(current.thread futx)
20: end if
21: end if
22: return 0
23: end procedure

The psuedocode for the lock() operation is shown in Algorithm 7. Each thread attempts

to add itself to the tail of the lock atomically using a compare and swap instruction. Only

the thread that finds the previous value of the tail to be NULL obtains the lock. This is

similar to MCS lock implementation. In case of contention (non-null tail pointer), we update

the predecessors next pointer to point to the current thread by means of the next pointer of the

thread t data structure. Note that the user simply calls lock() with the thread lock t parameter.

The creation and enqueuing on the per thread data structure is transparent to the user. After a

few iterations (100 in the above algorithm), the thread atomically sets its state to BACKOFF

and transitions to the suspended state using a futex down() call.

13

Algorithm 8 B-MCS Unlock algorithm

1: procedure Unlock(thread lock t lock)
2: thread t next
3: thread t current = thread self()
4: if atomic cas(lock.tail,current,0) = current then
5: current.next = 0
6: return 0
7: end if
8: while current.next = 0 do
9: . busy wait

10: end while
11:

12: next = current.next
13: current.next = 0;
14: if atomic cas(next.locked, LOCKED, UNLOCKED)
15: = BACKOFF then
16: next.locked = UNLOCKED;
17: futex up(next.thread futx);
18: end if
19: return 0
20: end procedure

The psuedocode for the unlock() operation is shown in Algorithm 8 . We try to atomically

set the lock.tail to NULL. If some other thread added itself before this instruction, then we

have to wait for it to update the current.next and hence the subsequent while loop. Then we

consider the current.next as the next thread to be granted the lock. We update current.next to

NULL and unlock/wake up the immediate waiter.

14

Chapter 4

Empirical Study

4.1 Experimental Setup

We conducted our experiments on a Tilera board with 64 cores under Linux (2.6.x kernel).

Cores are arranged in a 2D array of compute engines (cores) called tiles. Each tile consists of

a complete, full-featured processor with a frequency of 700MHz to 866MHz. Each tile has a

physically tagged split L1 cache and a shared L2 cache. Tilera uses a directory based cache

coherence protocol. One of the tiles is dedicated to I/O handling and not available for our

experimentation. Hence, we have a maximum of 63 tiles at our disposal.

4.2 Results

We compare and contrast the performance of our implementation (B-MCS locks) with the

standard MCS implementation, a backoff test-and-set lock (B-T&S) and a backoff test-and-

test-and-set lock (B-TTS). We have developed synthetic benchmarks consisting of 10 iterations

of lock-unlock operations with the above mentioned algorithms. The benchmarks circumvent

the effects of core relocation issues by pinning the threads to cores as they are created. To warm

up the caches, each thread initially runs 40 iterations of a lock-unlock sequence before starting

the actual measurements. In addition, these extra iterations help us control the adverse effects

of the scheduler, which would potentially run the threads (and grant locks) as soon as they are

created, instead of a fair competition with each other to acquire the locks. We also ensure that

the data structures are padded and aligned with cache lines so that the false sharing of cache

lines does not affect the results.

15

Figure 4.1: Average time taken when we do over-subscription. Also shows the minimum and
maximum time taken.

4.2.1 Running time

In the first set of experiments we measure the per thread running time for 10 iterations of the

lock-unlock sequence for each of the algorithms. In order to analyze the advantages of queued

variants over the spin variants, we first consider the case of over-subscription where more than

one thread is mapped to a single core. Figure 4.1 shows the average running time on the y axis

along with the minimum and maximum variations (error bars) for different number of cores

on the x axis, when two threads are assigned to a single core. We notice that even with large

numbers of threads and cores (63 cores in our case) B-T&S and B-TTS outperform B-MCS

and MCS in terms of average running time. This is due to the small size of the critical section,

and the resulting overhead of queuing and suspension in case of queued locks, which adversely

affects the overall running time. But if we look at the minimum and maximum running times,

the queued algorithms show very little variation as opposed to the spin counterparts. In case

of B-T&S and B-TTS, some threads will complete all 10 iterations much faster than others

depending on the scheduler. But in case of MCS and B-MCS, the lock is granted in a first-

come-first-serve (FCFS) manner. Hence, all threads complete each iteration at nearly the same

time.

Anderson et al.[1] tune the spin lock performance by introducing a delay 1) at the beginning

16

Figure 4.2: Average time taken when we have a single thread per core.

Figure 4.3: Average time taken when we have a single thread per core with a Barrier. There’s
no code in critical section.

17

Figure 4.4: Time taken by each thread when using B-MCS with one thread per core along
with a barrier.

of the critical section to wait for contending threads to quiesce before beginning the critical

section and 2) at the end of each test-and-set call to prevent all threads from executing test-

and-set at the same time, which would reduce the flooding of the bus. We consider a third case

where we introduce a barrier at the end of each lock/critical section/unlock sequence. This is

motivated by the BSP/SPMD paradigm of parallelizing codes, which relies on computational

balance to achieve high processor utilization and best overall system performance. A barrier

introduces fairness in case of B-T&S and B-TTS, as no thread is allowed to proceed to the

next iteration of the lock-unlock sequence until all the threads finish the current iteration.

Figure 4.3 shows the results. This experiment highlights the quiescence effect described by

Anderson et al. [1]. The Quiescence effect is seen in case of B-T&S because of the large number

of atomic operations and the associated bus transactions (cache invalidations). The number

of invalidations performed is proportional to the number of threads spinning to acquire the

lock. This is not seen in case where the barrier is not present (Figure 4.2) because the threads

are allocated locks randomly and, hence, some threads finish all of their iterations while some

others are yet to start. Hence, the number of invalidations would be drastically reduced. This

effect is not seen in case of B-MCS and MCS because they involve invalidating only the cache

of next thread in the queue without interfering with other threads. B-TTS also performs well

because of the in-cache tests performed after a failure to acquire the lock. Another interesting

18

result of this experiment is shown in Figure 4.4. In case of MCS and B-MCS the total time

taken per thread decreases as we move towards the trailing end of thread queue. This can be

attributed to the fact that in case of MCS and B-MCS an atomic compare and swap is used

to enqueue onto the lock queue. For the first few threads this contention is higher than for

the trailing threads. Our test case features empty critical sections. But if the critical section

contained memory accesses, then due to bus contention between threads performance would

degrade significantly.

4.2.2 Fairness

Figure 4.5: Average values of fairness counter when a two threads are assigned to each core.

The fairness guarantee provided by queued locks has been well established in past work

[2][4]. Here, we reaffirm this using per-thread ”fairness counters”, which are incremented when

a thread lags behind any other thread by more than one iteration. Figure 4.5 shows the results

for 10 iterations when oversubscribed. Due to random lock allocation in case of B-T&S and

B-TTS, we consistently observe an average lag of 7 to 8 iterations out of 10. This means that

on an average some threads lag behind the others by 70 to 80%. This value is much lower

(30-50%) in case of MCS and B-MCS confirming the fairness guarantee.

19

4.2.3 Core-resident execution time

Figure 4.6: Average time suspended when a single thread is assigned to each core.

In another set of experiments, we analyze the tradeoff between the overhead of queuing

plus context switching on one hand versus the fairness plus the savings in CPU cycles on the

other, as seen in the backoff algorithms. As already noted in Figure 4.2, B-MCS is the slowest

of the four algorithms. Figure 4.6 depicts the average amount of time threads are suspended.

This fraction is zero for MCS, since it does not involve any backoff. It is also small for B-TNS.

By comparing Figure 4.2 and Figure 4.6, we observe that in case of B-MCS, threads spend a

majority of their time in the suspended state. Hence, we assess another metric to model the

performance of the algorithms, namely Core-resident execution time, which represents the time

that the threads are actually running on the cores. Figure 4.7 shows the core-resident execution

time measured as the difference between total time and suspended time. Because of the large

percentage of suspension time, B-MCS has almost exactly the same core resident execution

time as B-TNS. In case of B-MCS, even though the overall time is larger, the core-resident

time is much less, meaning that for a large part the cores remain available for execution of

other background work. In this respect, MCS fares very poorly. Hence, when comparing various

queued lock algorithms, we can consider core resident execution time as an additional metric

to enable high throughput along with scalability and fairness capabilities of the queued locks.

20

Figure 4.7: Average Core resident execution time when a single thread is assigned to each core.

4.2.4 Context switch overhead

Context switch overhead has been considered as a major deterrent in adopting backoff-based

locking protocols [8]. Even in our implementation of the B-MCS protocol, context switch over-

head along with the queuing overhead seem to be the major hindrances for achieving short run

times. In another experiment, we measured the number of context switches performed during

the benchmark run for different algorithms. Figure 4.8 and Figure 4.9 show the total number of

context switches due to self-suspension and due to preemption, respectively. We have reverted

back to using over-subscription experiments in order to observe the behavior of non-backoff

(in our case MCS) algorithms when multiple ready tasks are available on each core. Here, 2

threads are pinned to each core as we scale the number of cores. As can be seen, the number of

self-suspensions (due to futex system calls) is about 6000 in the worst case for B-MCS. This is

true for B-TNS as well, since for the given benchmark the size of the critical section is causing

more threads to suspend. However, note the number of preemptions in case of MCS, which

is close to 250,000. For B-MCS the number of preemptions is just in the hundreds as threads

voluntarily relinquish cores. This suggests that when oversubscribed, it is best to utilize B-MCS

as the context switch overhead is 1000s of orders lower compared to MCS and it is almost the

same as B-T&S.

21

Figure 4.8: Total number of Voluntary context switches when over-subscription is involved.

Figure 4.9: Total number of Involuntary context switches when over-subscription is involved.

22

Chapter 5

Conclusions and Future work

Conclusion

Our experiments confirm many of the established results about spin locks and queued locks.

With barrier experiments and fairness counters we confirmed the impact of fairness and qui-

escence effect on the running times. In order to better evaluate queued lock algorithms we

proposed a new metric, namely core-resident execution time, to account for the saved CPU

cycles in case of backoff-based algorithms. This metric provides a holistic measurement of per-

formance including throughput and saved CPU cycles, which helps reduce power and assesses

the ability to accommodate background jobs effectively. The over-subscription experiments indi-

cated a slow down of spin-based algorithms, especially MCS locks (Figure 4.1). We also highlight

the dramatic increase in context switch overhead of spin-only locks when oversubscribed. Our

experiments confirm the Thesis statement, namely that the backoff-enhanced MCS locking al-

gorithm provides a scalable and performant solution for reducing both lock contention and

the number of context switches on large-scale multicore platforms that caters particularly to

SPMD-style codes.

Future Work

Our experiments involve synthetic benchmarks which do not always simulate the real world

applications. It would be interesting to see how real world benchmarks (especially when over-

subscribed) would perform with B-MCS locks. We could also quantify the percentage of power

savings this scheme proposes to achieve. This should be substantial, since threads using B-MCS

spend a majority of time being suspended while the lock is busy. As pointed out, another way

to utilize the savings in CPU cycles would be to schedule background job on the idle cores. It

would be interesting to note how the quiescence effect (seen B-T&S) impacts the running time

23

of background tasks and if it is alleviated in case of B-MCS.

24

REFERENCES

[1] Thomas E Anderson, Performance of Spin lock alternatives for shared memory multipro-
cessors, IEEE Transactions on parallel and distributed systems, 1990.

[2] M. Crummey and Scott, Algorithms for scalable synchronization for shared memory mul-
tiprocessors, ACM Transactions on Computer Systems, 1991.

[3] S. Boyd-Wickizer, F. Kaashoek, R. Morris and N. Zeldovich, et al., Analysis of Linux Scal-
ability to Many Cores, Proceedings of the 9th USENIX conference on Operating systems
design and implementation, 2010.

[4] S. Boyd-Wickizer, F. Kaashoek, R. Morris and N. Zeldovich, Non-scalable locks are dan-
gerous, Linux Symposium, Ottawa, Canada, 2012.

[5] Vladimir Cakarevic, Petar Radojkovic, Javier Verdu, Alejandro Pajuelo, et al., Under-
standing the overhead of the spin-lock loop in CMT architectures, 2008.

[6] Sandor Juhasz, Akos Dudas, Tamas Schradi, Cost of mutual exclusion with spin locks on
multi-core CPUs, Proceedings of the 1st international conference on Biologically Inspired
Computation(BICA), 2012.

[7] David Dice, Virendra J. Marathe, Nir Shavit, Lock cohorting: a general technique for de-
signing NUMA locks, Proceedings of the 17th ACM SIGPLAN symposium on PPoPP,
2012.

[8] Ryan Johnson, Manos Athanassoulis, Radu Stoica, Anastasia Ailamaki, A new look at the
roles of spinning and blocking, DaMoN, 2009.

[9] Victor Luchangco, Dan Nussbaum, Nir Shavit, A hierarchical CLH queue lock, Proceedings
of the 12th international conference on Parallel Processing, 2006.

[10] Ulrich Drepper, Futexes are Tricky, 2011.

[11] Franke, Russell and Kirkwood, Fuss, Futexes and Furwocks: Fast User level Locking, Pro-
ceedings of 2002 Ottawa Linux Summit, 2002.

[12] J Corbet, http://lwn.net/Articles/267968/, LWN.net.

[13] Thundering Herd Problem, http://en.wikipedia.org/wiki/Thundering herd problem.

[14] Intel TurboBoost, http://en.wikipedia.org/wiki/Intel Turbo Boost.

[15] Bruce Dawson, http://www.gamasutra.com/view/news/172072/, 2012.

25

