
ABSTRACT

GHASSEMI, PEDRAM. Multilevel Quasidiffusion Methods with Hybrid Temporal Discretization
for Thermal Radiative Transfer Problems. (Under the direction of Dmitriy Y. Anistratov).

In this work, a new hybrid temporal discretization of the multi-level quasidiffusion equations

is presented for time-dependent multifrequency thermal radiative transfer problems in 2D. This

is a mixed-order method that consists of a first-order scheme for the high-order radiative transfer

equation and a second-order scheme for the low-order quasidiffusion equations. A monotonization

procedure is applied to the second-order hyperbolic low-order equations. The numerical results

show that the hybrid scheme generates a more accurate solution than the uniform first-order

method. The monotonization procedure does well in removing the oscillatory behavior in the

solution inherently produced by hyperbolic equations discretized with a high-resolution scheme.

Approximate models of time dependence in the radiative transfer equation are presented and

α-approximation is analyzed. The numerical results show that the radiative transfer equation in

α-approximation evolves the temperature and radiation waves well while reducing the memory

requirements by a significant amount. The solution obtained with this model deviates from that

calculated with the time-dependent radiative transfer equation when the change rate is large

and where there are significant transport effects.
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CHAPTER

1

INTRODUCTION

There exists a wide class of problems where the transport of particles must be described

to correctly simulate physical processes. This includes important areas of research such as

astrophysics, plasma physics, nuclear reactor physics, and atmospheric science. Due to the

complex nature of these problems, numerical simulations are required to accurately and efficiently

model these phenomena and to achieve this, one must solve the transport equation. Specifically,

the focus of this work is on radiative transfer problems. This introduction outlines the motivation,

challenges, and previous efforts contributed to this area of research and then states the research

items of interest.

1.1 Motivation

There is a strong motivation arising from the abundant applications that are modeled with

the equations of radiative transfer. This ranges from high temperature combustion phenomena

to lower temperature applications where the effects of radiative energy cannot be neglected.

Radiative transfer problems became important first in astrophysics [1, 2]. In a field that does

not have the luxury of laboratory experiments, detailed radiation transport is the only means of

understanding the physics of these radiation dominated objects and astrophysical phenomena.

Some examples of what scientists are interested in modeling are the formation, evolution, and

death of stars, supernova core-collapse, and accretion disks near super massive black holes. The
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need for solving radiative transfer problems began to spread into other areas as well.

There are multiple applications in the nuclear engineering field that are interested in this type

of problem. The exchange between radiation and matter must be modeled with the interaction

of the combustible rods and the surrounding heat conducting fluid. High energy density physics

is another area of interest. With the start of research for nuclear fusion reactors, there became a

need to model particle transport for inertial confinement fusion. This could be for either direct

drive through photon or ion beams or with indirect drive via thermal photons in a hohlraum. It

is also applicable to describing radiative transfer phenomena in the Tokamak or other magnetic

confinement devices as well.

In atmospheric sciences, radiation interacts with different types of matter: gaseous, aqueous,

particles, and surfaces [3]. Cloud variability and radiative transfer play a key role in understanding

climate. Coupling radiative transfer with cloud fields is one example; another is coupling to

plant canopies and the oceans. These problems consider different scales such as the wave spectra

of solar and terrestrial radiation fields as well as the emission spectra of the Sun and Earth.

Another application is related to the observation of Earth with satellites. This is used to estimate

various quantities that drive climate change as well.

Glass manufacturing also involves temperatures high enough that radiation contributes to

the exchange of energy. Other applications at a lower temperature scale also have effects that

require the modeling of energy exchange due to radiative transfer. The design of ceilings and

building insulation takes this phenomena into account when trying to reduce the amount of heat

draining. This is only part of the research areas that require the detailed solution of radiative

transfer problems.

1.2 Thermal Radiative Transfer Problems

The interaction of radiation and matter is a fundamental process that occurs in a variety of

complex models. In thermal radiative transfer (TRT) problems, photons are absorbed and

emitted by the material and both of these processes change the material temperature. Thermal

radiation is radiation that is emitted by matter in a state of thermal excitation. If a region is in

thermal equilibrium, the energy distribution can be described by the Planck function. Generally,

this is not the case, and therefore it is necessary to solve a radiation transfer equation [4]. The

radiative transfer equation describes the propagation, emission, scattering, and absorption of

light. It is coupled with the energy balance equation which accounts for the effect of energy

exchange on the temperature. The spectral radiative transfer (RT) equation in the absence of

scattering and hydrodynamic motion is given by,
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1

c

∂Iν(rrr,ΩΩΩ, ν, t)

∂t
+ ΩΩΩ · ∇∇∇Iν(rrr,ΩΩΩ, ν, t) + κν(ν, T )Iν(rrr,ΩΩΩ, ν, t) = κν(ν, T )Bν(ν, T ) , (1.1)

r ∈ G, for all ΩΩΩ, t ≥ t0, 0 ≤ ν < +∞, (1.2)

with initial and boundary conditions,

Iν |t=t0 = I0
ν , for r ∈ G and all ΩΩΩ, (1.3)

Iν |r=rγ = Iinν , for rγ ∈ ∂G and ΩΩΩ · eeen < 0, t ≥ t0, (1.4)

where G is the spatial domain of the problem,

G = [0 ≤ x ≤ X, 0 ≤ y ≤ Y ] , (1.5)

and the Planck function is,

Bν(T ) =
2hν3

c2

(
e
hν
kT − 1

)−1
, (1.6)

which is the distribution of black-body radiation. Iν(rrr,ΩΩΩ, ν, t) is the specific intensity of radiation,

κν(ν, T ) is the spectral opacity. rrr is the position in space, ν is the photon frequency, ΩΩΩ is the

direction of motion, and t is time. The energy balance (EB) equation without heat conduction

is defined as,

∂ε(T )

∂t
=

∫ ∞
0

∫
4π

κν(ν, T )
(
Iν(rrr,ΩΩΩ, ν, t)−Bν(ν, T )

)
dΩdν , (1.7)

with the initial condition,

T (rrr, t)|t=t0 = T 0(rrr), for r ∈ G, (1.8)

where ε(T ) is the material energy density which is a known nonlinear function of material

temperature.

1.3 Challenges

There are many obstacles one faces when solving radiative transfer problems. One feature that

creates difficulty is the high dimensionality of the problem. The radiative transfer equation

has 7 independent variables: three dimensions in space (x, y, z), two dimensions in angle (θ,

φ), frequency, and time. When possible, approximations to the transfer equation are used to

decrease the computational expense while minimizing the loss of accuracy in the solution. Some

examples are solving a steady state equation that has no time dependence, a diffusion equation

3



which has no angular dependence, and grey equation which has no frequency dependence.

Another challenge is the radiative transfer problem encompasses different spatial and time

scales. If the mean free path is much smaller than the characteristic length of the material

and absorption is very small then the radiation field is virtually isotropic. In this regime, the

radiative transfer equation can be approximated using the diffusion approximation. When

modeling radiative transfer in a transparent medium, a different regime is entered that requires

the radiative transfer equation because the radiation field is no longer isotropic and it requires

nonlocal treatment. There are methods that perform well for each scale, but the difficulty lies in

finding a method that performs well everywhere.

TRT problems are also highly nonlinear. In thermal equilibrium, the total radiation energy

density is proportional to T 4. In addition, all material properties depend on the solution

(temperature) which is changing due to both the absorption and emission of photons. For

most problems, it is necessary to couple other physics to the radiative transfer equation which

is another source of nonlinearity. In this class of problems, the transfer equation becomes a

part of a complicated nonlinear system of multi-physics equations. The dimensionality of this

multi-physics problem is determined by the dimensionality of the transfer equation.

Another challenge comes from the discretization of the TRT equations. High resolution

discretization methods are desirable because they give a more accurate solution, but as a

consequence they add complexity to the problem. Godonov’s theorem states a two-level uniform

linear scheme for approximating the advection (transport) equation is monotonic only if it is

first order accurate [5]. A higher order scheme can produce artificial oscillations in the solution.

Another requirement is then to apply a montonization procedure that adequately suppresses

oscillations while maintaining a higher accuracy solution compared to the first order method.

1.4 History of Methods for TRT Problems

There are a variety of methods used to solve TRT problems and these are categorized as either

stochastic or deterministic. A stochastic method possesses intrinsic randomness of particle

transport phenomena. For stochastic methods, the implicit Monte Carlo (IMC) method has

been the workhorse for many decades in this area. This method was developed by Fleck and

Cummings as a solution methodology for frequency and time dependent TRT problems [6]. The

previously proposed Monte Carlo methods had difficulties in optically thick regions and systems

near thermal equilibrium [7, 8] which would require extremely small time steps to correctly

resolve physics. IMC addresses these issues by calculating radiation and material energy fields

implicitly by treating the absorption and emission of photons as a fission-like source that is

converged on a given time level. This method is stable and can handle both optically thick and

thin regimes.
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There is also a wide range of approaches for solving TRT problems using deterministic

methods. There is work ranging from radiation diffusion calculations to SN and PN transport

methods as well. A class of methods used to solve these problems based on the quasidiffusion

(QD) method which was introduced by Gol’din [9]. The QD method was developed for solving

the linear Boltzmann transport equation. It is a two-level method that is formulated by a

nonlinear system of equations consisting of the high-order RT equation for the intensity and

low-order equations for the angular moments of the intensity. Gol’din and Chetverushkin used

QD as a solution method for solving radiation hydrodynamics problems [10]. These problems

involve the coupling of hydrodynamics equations with the radiative transfer equation. The

solution of the hydrodynamics equations are dependent only on space and time; whereas, the

solution to the radiative transfer equation depends of frequency and angle as well. Coupling is

done through radiative energy flux which can be efficiently determined from equations that do

not depend on frequency or angle. The high-order transport solution is used to define the QD

tensor (also known as Eddington tensor). The QD factors are elements of the QD tensor. The

multigroup QD equations can be reduced to a grey problem by averaging with respect to energy.

The multigroup equations give a more accurate solution because it accounts for the spectral

dependence of the opacities and source. This is the earliest example of multiphysics coupling

using the QD method. The benefit is that the coupling is done in the lowest dimensional space

possible without approximation of the equations. Gol’din, Gol’dina, Kolpakov, and Shilkov

further developed the multilevel QD method for radiative hydrodynamics that involves also a

methodology for multiphysics coupling based on multigroup and grey low-order QD equations

[11, 12]. This multi-level QD methodology was applied to high-energy density physics problems

in general 1D geometry.

Stone, Mihalas, and Norman developed independently such a method (referred to as Variable

Eddington factor method) to evolve the radiative transfer equations for astrophyiscal flows in two

dimensions [13]. One-dimensional calculations are not adequate for modeling some astrophysical

phenomena such as accretion flows onto compact objects or radiatively driven winds from hot

stars. Before this, multi-dimensional calculations used the diffusion approximation which is

only valid in optically thick regions and also require flux limiters. The QD method does not

require flux limiters and is valid in optically thick and thin regions because it is a full transport

algorithm. The QD factors are obtained by solving a steady state, frequency integrated RT

equation using the method of short characteristics. A cylindrical coordinate system is used.

While it is possible to obtain a consistent solution between the RT equation and moment

equations, this is unnecessary for multi-dimensional calculations. The QD factors are a measure

of the anisotropy of the radiation field and can account for the transport equations when solving

the radiation moment equations [14–16]. In some cases, the factors can be lagged in time if

the system is not evolving on a radiation flow time scale. The results show the method does
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well in the streaming limit as well as the diffusion limit which improves upon the previous

multi-dimensional diffusion method.

Anistratov, Aristova, and Gol’din developed a multi-level QD method for TRT problems

[17]. This consists of (i) the radiative transfer equation (ii) the multigroup QD equations and

(iii) the grey QD equations coupled with the energy balance equation. A Frechet derivative

is introduced which approximates the change in opacity with respect to temperature. Results

showed it reduces the number of iterations by a significant amount. Aristova, Gol’din, and

Kolpakov extended the multi-level QD method to 2D r-z geometry [18]. They also proposed

a monotonic scheme for the low-order QD (LOQD) equations in r-z. Aristova used this QD

method to simulate radiation transport in a channel [19]. Park, Knoll, Rauenzahn, Wollaber, and

Densmore derive a general consistency term for the QD equations [20]. Anistratov performed

stability analysis of multilevel QD method with independent discretization of high-order RT

equation and low-order QD equations that demonstrated effectiveness of the iteration scheme of

this method [21].

Morel, Larsen, and Matzen developed a linear synthetic acceleration method for 1-D multi-

group radiation diffusion calculations which accelerates convergence using a one-group, or

grey, diffusion equation [22]. Synthetic acceleration methods have been used extensively for

neutron transport calculations [23–25]. This method is compared to the standard nonlinear

multifrequency-grey acceleration method [26]. Alcouffe, Clark, and Larsen extend this work

to accelerate transport iterations with the diffusion synthetic acceleration (DSA) method for

TRT problems [27]. They introduced an additional multifrequency-grey problem that consists of

frequency-dependent diffusion equations as well as a grey equation to accelerate the convergence.

There is a linear and nonlinear variant of these methods. Fourier analysis shows this method has

better convergence properties than source iterations and numerical results show the nonlinear

and linear versions perform similarly in regards to acceleration. Consistent discretization be-

tween the multifrequency transport equations and multifrequency and grey diffusion equations

is required for stability. This work was done for 1-D slab geometry as well. Larsen developed

a grey transport acceleration method [28] for solving multifrequency TRT problems which

improves on the standard source iteration method by additionally solving a grey RT equation.

Morel, Yang, and Warsa recast the linear multifrequency-grey acceleration [29] in terms of a

preconditioned Krylov method to resolve the degradation in convergence of iterations when

applied to multidimensional problems or with significant material discontinuities. These issues

were seen when using DSA as well. Banoczi and Kelley developed and analyzed a multi-level

algorithm for conductive-radiative heat transfer equations [30] and this work was also extended

to 2D [31].

McClarren, Holloway, and Brunner develop a spherical harmonics (PN ) method for TRT

problems [32] in both 1D and 2D. The P7 approximation reproduces most of the transport
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effects. In 2D, the PN method cannot guarantee a positive solution, but this result is mitigated

by increase the order of expansion. McClarren, Evans, Lowrie, and Densmore presented a

semi-implicit time integration scheme for the PN equations for TRT problems [33]. They use a

second-order Runge-Kutta scheme that treats the material coupling implicitly and the streaming

term explicitly. This method allows for cheap computation at the cost of a time-step size

restriction.

1.5 Significance and Novelty

This works focuses on a specific class of TRT problems. The geometry of interest is two-

dimensional Cartesian. The discretization methods are developed for orthogonal spatial grids

and the problem is frequency dependent. The radiative equation is discretized in angle using

discrete ordinates. Various spatial approximations are used, ranging from robust first-order

schemes like the subcell step method to high-order methods like simple corner balance. The

low-order equations are discretized in space using the finite volume method. The focus of

this work is the time discretization schemes for multi-level QD methods. Previous work uses

α-approximation rather than the time-dependent high-order radiative transfer equation. A

fully-implicit method in time is applied to the transport equation. The low-order equations

are discretized using the θ-method which allows for high-order schemes. The opacities will be

treated implicitly which means they are evaluated using the temperatures from the current time

step. This approach is referred to as an implicitly balanced method [34].

The goal of this project is to develop an accurate and efficient computational methods for

solving TRT problems. This work is based on the multi-level quasidiffusion method. The main

results are:

1. Development of an approximation for the multi-level system of QD equations based on

first-order accurate temporal-discretization schemes.

2. Development of a hybrid (mixed-order) temporal discretization of multi-level system of

QD equations.

3. Development of a monotonization method for high-order schemes for approximating the

hyperbolic time-dependent low-order QD equations.

4. Development and analysis of an approximation of time dependency in the radiative transfer

equation for TRT problems based on multi-level QD method.

It is apparent that there is great motivation to solve this challenging problem. To understand

the significance of the main results, it is important to highlight the beneficial features of the
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multi-level QD method [9, 11, 17, 18]. Firstly, this method converges rapidly for thermal radiative

transfer problems. The convergence rate is approximately the same as other rapidly converging

acceleration methods such as DSA [35]. While there are other methods that exhibit similar

efficiency in this respect, the performance of the QD method is realized without the restraint

of consistent discretization of the high-order and low-order equations. This feature allows for

extensive flexibility in development of discretization methods for different types of problems [36].

The versatility of this method is exploited to improve the accuracy and efficiency of an already

well-performing scheme.

The efficiency of the multi-level QD method goes beyond just convergence of iterations.

It reduces the dimensionality of the problem with respect to both the angular and energy

dependence. Since the closures are exact, there are no approximations made to the RT equation.

In addition, it is seldom that the transfer does not require coupling to other physics. The solution

to most of these problems are dependent only on space and time. This method allows for very

efficient coupling in a space of similar dimensionality as other equations [11, 17, 18, 37] and

mimic tightly coupled physics.

The results of this research were presented at:

1. Winter Meeting of American Nuclear Society (ANS) in Washington DC (November 2015)

in the technical section on Transport Methods of Math & Comp. Division,

2. Annual Meeting of ANS in Philadelphia (June 2018) in the technical section on Transport

Methods of Math & Comp. Division,

3. Scientific Seminar at Lawrence Livermore National Laboratory (October 23, 2018),

and are published in [38, 39].

The remainder of this dissertation is organized as follows: in Chapter 2, the multi-level QD

equations for TRT problems are formulated. This includes the discretization methods used to

approximate the equations as well as the algorithm for solving the multi-level QD equations. In

Chapter 3, new temporal discretization methods for the multi-level QD equations are introduced.

This includes a first-order and hybrid temporal discretization in addition to a monotonization

procedure for the second-order temporal discretization method. In Chapter 4, approximation

models of time dependence in the RT equation are developed and analyzed. In Chapter 5,

iterations of the multi-level QD methods are analyzed. The final chapter is the conclusion of

this work.

8



CHAPTER

2

MULTI-LEVEL QD METHOD FOR TRT

PROBLEMS

In this chapter, the multi-level QD method for TRT problems is formulated. Then, the dis-

cretization methods used to approximate these equations are detailed. The RT equation is

discretized in time using the backward-Euler method and discretized in space using several

different schemes. The multigroup low-order QD equations are discretized in time using the

backward-Euler and Crank-Nicolson methods and in space using a finite-volume method. The

grey low-order equations are consistently discretized with the multigroup low-order equations

and coupled with the energy balance equation.

2.1 Formulation of the QD Method

The spectral radiative transfer equation (1.1) is discretized in frequency using the multigroup

approximation. The multigroup RT equation is solved for the group intensity and is obtained by

integrating Equation (1.1) over frequency interval νg < ν < νg+1,

1

c

∂Ig(rrr,ΩΩΩ, t)

∂t
+ ΩΩΩ · ∇∇∇Ig(rrr,ΩΩΩ, t) + κE,g(T )Ig(rrr,ΩΩΩ, t) = κpl,g(T )Bg(T ) , (2.1)
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with initial (2.2) and boundary conditions (2.3),

Ig(rrr,ΩΩΩ, 0) = Ig,0, rrr ∈ G, (2.2)

Ig(rrrb,ΩΩΩ, t) = Ig,in, rb ∈ ∂G, t ≥ t0, (2.3)

The group intensity (2.4) and group Planckian function (2.5) are defined as,

Ig(rrr,ΩΩΩ, t) =

∫ νg+1

νg

Iν(rrr,ΩΩΩ, ν, t)dν, (2.4)

Bg(T ) =

∫ νg+1

νg

Bν(ν, T )dν, (2.5)

and the group opacities (2.6) and (2.7) are,

κE,g(T ) =

∫ νg+1

νg
κν(ν, T )Bν(ν, Tr)dν∫ νg+1

νg
Bν(ν, Tr)dν

, (2.6)

κpl,g(T ) =

∫ νg+1

νg
κν(ν, T )Bν(ν, T )dν∫ νg+1

νg
Bν(ν, T )dν

. (2.7)

The group opacity, κE,g, should be computed with the spectral intensity, Iν , as the averaging

function, but this function is unknown. Instead, it is averaged with the Planck function evaluated

at the temperature of radiation, Tr, which is defined by some approximation. κpl,g is averaged

with the Planck function evaluated at the material temperature, T.

The multigroup low-order quasidiffusion (MLOQD) equations are obtained by taking the

zeroth and first angular moments of the multigroup radiative transfer equation. These equations

are solved for the angular moments of the RT equation. The MLOQD equations are defined as,

∂Eg(rrr, t)

∂t
+∇∇∇ ·FFF g(rrr, t) + cκE,g(T )Eg(rrr, t) = 4πκpl,g(T )Bg(T ), (2.8)

1

c

∂FFF g(rrr, t)

∂t
+ c∇∇∇ ·fg(rrr, t)Eg(rrr, t) + κros,g(T )Fg(rrr, t) = 0, (2.9)

with initial (2.10) and boundary (2.11) conditions,

Eg(rrr, t)|t=t0 = E0
g (rrr), FFF g(rrr, t)|t=t0 = FFF 0

g(rrr), for rrr ∈ G (2.10)

nnn ·FFF g(rrrγ , t) = cCg,n(rrrγ , t)(Eg(rrr, t)− Eg,in(rrrγ , t)) + Fg,in(rrrγ , t), rγ ∈ ∂G, t ≥ t0, (2.11)
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where the zeroth angular moment is the group radiation energy density,

Eg(rrr, t) =
1

c

∫
4π
Ig(rrr,ΩΩΩ, t)dΩ, (2.12)

and the first angular moment is the group radiative flux,

FFF g(rrr, t) =

∫
4π

ΩΩΩIg(rrr,ΩΩΩ, t)dΩ. (2.13)

The system of equations is closed exactly with the QD tensor (2.14) which is also known as the

Eddington tensor,

fg(rrr, t) =

∫
4πΩΩΩΩΩΩIg(rrr,ΩΩΩ, t)dΩ∫

4π Ig(rrr,ΩΩΩ, t)dΩ
. (2.14)

where the components of the tensor have the form,

fαβ,g(rrr, t) =

∫
4π ΩαΩβIg(rrr,ΩΩΩ, t)dΩ∫

4π Ig(rrr,ΩΩΩ, t)dΩ
. (2.15)

The boundary factor (2.16) is defined as,

Cg,n(rrrγ , t) =

∫
(nnn·ΩΩΩ)>0(nnn ·ΩΩΩ)Ig(rrr,ΩΩΩ, t)dΩ∫

(nnn·ΩΩΩ)>0 Ig(rrr,ΩΩΩ, t)dΩ
. (2.16)

The nonlinearity of this method stems from the QD and boundary factors dependence on the

intensity. Because the factors weakly depend on the solution of the high-order problem, iterations

converge rapidly for different types of problems. The initial group energy density and group

radiative flux is,

E0
g (rrr) =

1

c

∫
4π
I0
g (rrr,ΩΩΩ)dΩ, (2.17)

FFF 0
g(rrr) =

∫
4π

ΩΩΩI0
g (rrr,ΩΩΩ)dΩ, (2.18)

and the incoming group energy density and group radiative flux is,

Eg,in(rrrγ , t) =
1

c

∫
(nnn·ΩΩΩ)<0

Ig,in(rrrγ ,ΩΩΩ, t)dΩ, (2.19)

FFF g,in(rrrγ , t) =

∫
(nnn·ΩΩΩ)<0

ΩΩΩIg,in(rrrγ ,ΩΩΩ, t)dΩ. (2.20)

Note that in the first moment equation, the Rosseland opacity is used instead of the standard
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absorption opacity. The group Rosseland opacity (2.21) is defined as,

κros,g(T ) =

∫ νg+1

νg
(κν(ν, T ))−1 dBν(ν,Tr)

dT dν∫ νg+1

νg

dBν(ν,Tr)
dT dν

−1

, (2.21)

where the reciprocal of the opacity is averaged with the derivative of the Planck function with

respect to temperature evaluated at the temperature of radiation. The Rosseland opacity is used

to guarantee the correct flux is yielded in the equilibrium diffusion limit [40] and is derived for

these equations in this regime.

The MLOQD equations are collapsed in energy thus formulating the effective grey low-order

quasidiffusion (GLOQD) equations. This is the level in which the radiative transfer problem is

coupled with the energy balance (EB) equation. The effective GLOQD equations are,

∂E(rrr, t)

∂t
+∇∇∇ ·FFF (rrr, t) + cκ̄E(T )E(rrr, t) = cκ̄pl(T )aRT

4, (2.22)

1

c

∂FFF (rrr, t)

∂t
+ c∇∇∇ · f̄(rrr, t)E(rrr, t) + κ̄ros(T )FFF (rrr, t) + η(rrr, t)E(rrr, t) = 0, (2.23)

with initial (2.24) and boundary (2.25) conditions,

E(rrr, t)|t=t0 = E0(rrr), FFF (rrr, t)|t=t0 = FFF 0(rrr), for rrr ∈ G (2.24)

nnn ·FFF (rrrγ , t) = cC̄n(rrrγ , t)(E(rrr, t)− Ein(rrrγ , t)) + Fin(rrrγ , t), rγ ∈ ∂G, t ≥ t0, (2.25)

coupled with the EB equation,

∂ε(T )

∂t
= cκ̄E(T )E(rrr, t)− cκ̄pl(T )aRT

4, (2.26)

where the total radiation energy density is,

E(rrr, t) =

Ng∑
g=1

Eg(rrr, t) (2.27)

the total radiative flux is,

FFF (rrr, t) =

Ng∑
g=1

FFF g(rrr, t), (2.28)

and ε(T ) is the material energy density. aR is Stefan’s constant. The grey QD and boundary

12



factors averaged such that,

f̄αβ(rrr, t) =

∑Ng
g=1 fαβ,g(rrr, t)Eg(rrr, t)∑Ng

g=1Eg(rrr, t)
, (2.29)

C̄n(rrrγ , t) =

∑Ng
g=1Cn,g(rrrγ , t)

(
Eg(rrrγ , t)− Eing (rrrγ , t)

)∑Ng
g=1

(
Eg(rrrγ , t)− Eing (rrrγ , t)

) , (2.30)

The initial total energy density and total radiative flux is,

E0(rrr) =

Ng∑
g=1

E0
g (rrr), (2.31)

FFF 0(rrr) =

Ng∑
g=1

FFF 0
g(rrr), (2.32)

and the incoming total energy density and total radiative flux is,

Ein(rrrγ , t) =

Ng∑
g=1

Eing (rrrγ , t), (2.33)

FFF in(rrrγ , t) =

Ng∑
g=1

FFF ing (rrrγ , t). (2.34)

The grey opacities are defined such that,

κ̄E(T ) =

∑Ng
g=1 κE,g(T )Eg(rrr, t)∑Ng

g=1Eg(rrr, t)
, (2.35)

κ̄pl(T ) =

∑Ng
g=1 κpl,g(T )Bg(T )∑Ng

g=1Bg(T )
, (2.36)

κ̄ros(T ) =

∑Ng
g=1 κros,g(T )|FFF g(rrr, t)|∑Ng

g=1 |FFF g(rrr, t)|
. (2.37)

Since the radiative flux is an alternating function, it is possible that
∑Ng

g=1FFF g(rrr, t) = 0. The

corresponding term in the grey first-moment equation can be re-formulated such that,

Ng∑
g=1

κros,g(T )FFF g(rrr, t) = κ̄ros(T )FFF (rrr, t) +

∑Ng
g=1(κros,g(T )− κ̄ros(T ))FFF g(rrr, t)∑Ng

g=1Eg(rrr, t)
E(rrr, t). (2.38)

13



This compensation term is defined as,

η(rrr, t) =

∑Ng
g=1(κros,g(T )− κ̄ros(T ))FFF g(rrr, t)∑Ng

g=1Eg(rrr, t)
. (2.39)

which leads to the following closure,

Ng∑
g=1

κros,g(T )FFF g(rrr, t) = κ̄ros(T )FFF (rrr, t) + η(rrr, t)E(rrr, t). (2.40)

The dimensionality of the problem has been reduced as the solution to these equations

no longer depend on frequency or angle. The GLOQD problem is now coupled to the energy

balance equation with an equation of similar dimensionality. The nonlinear coupling is simplified

immensely by doing so in this reduced dimensional space.

2.2 Discretization of the High-Order Radiative Transfer Equa-

tion

The multigroup RT equation (2.1) is dependent on angle, time, and space. Discrete ordinates, or

the SN method [41], is used to discretize the RT equation in angle. This approximation consists

of solving (2.1) only for a distinct number of directions. The multigroup RT equation discretized

in angle is,

1

c

∂Ig,m(rrr, t)

∂t
+ ΩΩΩm · ∇∇∇Ig,m(rrr, t) + κE,g(T )Ig,m(rrr, t) = κpl,g(T )Bg(T ) , (2.41)

where the m index indicates the direction of motion of particles.

2.2.1 Backward-Euler Temporal Discretization Method

The RT equation (2.41) is discretized in time using the backward-Euler (B-E) scheme,

1

c

Ing,m(rrr)− In−1
g,m (rrr)

τn
+ ΩΩΩm · ∇∇∇Ing,m(rrr) + κnE,g(T )Ing,m(rrr) = κnpl,g(T )Bn

g (T ), (2.42)

where τn = tn − tn−1 and the opacities and Planckian source are evaluated at the current

time step. This fully implicit method is first-order accurate. The terms in Equation (2.42) are

rearranged and take the form of a steady state RT equation,

ΩΩΩm · ∇∇∇Ing,m(rrr) +

(
κnE,g(T ) +

1

cτn

)
Ing,m(rrr) = κnpl,g(T )Bn

g (T ) +
In−1
g,m (rrr)

cτn
(2.43)
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The advantage of independent discretization of the high-order and low-order equations allows

one to optimize the benefits of different approaches where possible. In regards to temporal

discretization, alternate methods can be applied to the low-order problem in order to gain an

increase in accuracy. Chapter 3 details the work done using mixed-order temporal discretizations

for the whole system of multi-level QD equations. Another approach involves alternate treatments

to the RT equation. Approximate models of time dependence can be used as a means to avoid

temporal discretization of an equation with high dimensionality. Chapter 4 introduces new

models of the time dependence of the transfer equation as well as analysis of previous models.

The flexibility of the QD method allows for a wide range of spatial discretizations of the RT

equation. The subcell step method [42] and simple corner balance method [43] are described. To

avoid complicated notation, the indices for groups and angles are omitted for the description of

these methods. The steady-state RT equation (2.44) is presented in a compact form such that κ̃
is the effective total opacity and S is the effective source term.

ΩΩΩ · ∇∇∇I(rrr) + κ̃(rrr)I(rrr) = S(rrr) . (2.44)

For the backward-Euler temporal discretization, the effective total opacity is defined as,

κ̃(rrr) = κnE,g(T ) +
1

cτn
, (2.45)

and the effective source term is,

S(rrr) = κnpl,g(T )Bn
g (T ) +

In−1
g,m (rrr)

cτn
. (2.46)

Based on the treatment of time dependence in the RT equation, the definition of the effective

opacity and source can vary. A 2D Cartesian spatial mesh is considered where the domain is

defined over,

G = [0 ≤ x ≤ X, 0 ≤ y ≤ Y ] . (2.47)

Orthogonal spatial grids are considered. The indices i and j refer to the x and y-direction,

respectively. The area of a cell (i,j) is defined as, Aij = ∆xi∆yj , where ∆xi = xi+ 1
2
− xi− 1

2
and

∆yj = yj+ 1
2
− yj− 1

2
.

2.2.2 Subcell Step (SS) Method

The basic idea of subcell transport discretization schemes is to subdivide the spatial cell into

subcells defined by characteristics going through cell vertices [42, 44, 45]. This class of subcell

methods are shown to be robust even when extended to unstructured grids.

The rectangular cell (ij) is split into subcells along the streaming direction which creates 3
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subcells: 2 triangles and 1 parallelogram. For each subcell, a local coordinate system (u,v) is

defined such that the origin exists at the point joining the inflow and parallel to flow faces. The

u-axis is defined along the given direction of particle motion in the 2D plane and the v-axis is

perpendicular to the u-axis. Figure 2.1 shows the subcells formed by a particular streaming

direction and the local coordinate system for the first triangle subcell in cell (ij). Equation (2.44)

is reformulated on this local coordinate system,

µ′
∂I(u, v)

∂u
+ κ̃(u, v)I(u, v) = S(u, v), (2.48)

where µ′ is given by,

µ′ =
√

Ω2
x + Ω2

y =
√

1− Ω2
z = sin θ, (2.49)

i-1/2 i+1/2
j-1/2

j+1/2

Figure 2.1 Subcells formed by a particular streaming direction and the local coordinate system for
the first triangle subcell in cell (ij).

and Ωx, Ωy, and Ωz are the components of ΩΩΩ that are defined for Cartesian geometry as follows:

Ωx = sin θ cosχ,

Ωx = sin θ cosχ,

Ωx = cos θ,

(2.50)

where 0 ≤ θ ≤ π and 0 ≤ χ ≤ 2π. The effective opacity, κ̃(u, v) = κ̃, and source, S(u, v) = SA,

are constant in a cell. The subcell step method assumes the incoming intensity is constant along

the incoming face of the subcell Iin(v) = Iin, and that the flux is constant in the interior and on
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the outflow face of the subcell. In each subcell p, the subcell-averaged intensity is obtained by

integrating the intensity over the subcell area, Ap,

IA,p =
1

Ap

∫ ∆vp

0
dv

∫ uout(v)

uin(v)
I(u, v)du, (2.51)

where uin(v) is the inflow face of the subcell, uout(v) is the outflow face of the subcell, and ∆vp

is the height of the subcell with respect to the v-axis. The face-averaged intensity is obtained by

Iout,p =
1

Lout

∫ Lout

0
Iout(sout)dsout, (2.52)

where sout measures the distance along the outflow face and Lout is the length of the outflow

face. It can be rewritten as,

Iout,p =
1

∆vp

∫ ∆vp

0
I(uout(v), v)dv. (2.53)

The auxiliary condition for the subcell step method is that it assumes,

IA,p = Iout,p. (2.54)

These quantities are defined for both the triangle and parallelogram case and the equations are

derived for each type of subcell. For the triangle subcell, the inflow and outflow face are defined

as,

uin(v) = γ∆u
v

∆v
, (2.55)

and,

uout(v) = ∆u(1− (1− γ)
v

∆v
), (2.56)

where ∆u is the base of the triangle, ∆v is the height of the triangle, and γ is the ratio of ∆u
∆v .

The area of the triangle subcell is,

Ap =
∆u∆v

2
. (2.57)

The equation for the subcell-averaged intensity is given by,

IA,p = Iout,p =

SA∆u
µ′ + 2Iin

τ + 2
, (2.58)

where Iin is the incoming intensity on the incoming face of the subcell, and τ is given by,

τ =
κ̃∆u

µ′
. (2.59)
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For a parallelogram, the inflow and outflow face are defined as,

uin(v) = γ∆u
v

∆v
, (2.60)

uout(v) = γ∆u
v

∆v
+ ∆u, (2.61)

where ∆u is the base of the parallelogram, ∆v is the height of the parallelogram, and γ is the

ratio of ∆u
∆v . The area of the parallelogram subcell is,

Ap = ∆u∆v. (2.62)

The equation for the subcell intensity is given by,

IA,p = Iout,p =

SA∆u
µ′ + Iin

τ + 1
, (2.63)

where τ is given by,

τ =
κ̃∆u

µ′
. (2.64)

The cell-averaged intensity is calculated with an area-weighted average of each subcell averaged

intensity such that,

IA =
IA,1A1 + IA,2A2 + IA,3A3

A1 +A2 +A3
, (2.65)

where A1 + A2 + A3 is equal to the area of the cell, Aij . The face-averaged intensity on the

outflow face of the cell is a length-weighted average of each subcell outflow intensity such that,

Iout =
Iout,1uout,1 + Iout,2uout,2

uout,1 + uout,2
, (2.66)

where uout,1 + uout,2 is equal to ∆xi or ∆yj depending on the face that shares two subcell

faces. The main benefit of this method is that it is robust and cheap. This method is first

order accurate and therefore preserves monotonicity. It also does not require the evaluation

of expensive functions like exponentials and each subcell has one unknown. The downside is

that this method is not very accurate and smears the solution in a cell. The unknowns for this

method are 4 cell-face values, 1 cell-averaged value, and 3 subcell-averaged values.

2.2.3 Simple Corner Balance (SCB) Method

The Simple Corner Balance (SCB) method [43, 46–48] is a robust and accurate for optically

thick problems on orthogonal grids. The SCB method for orthogonal grids in 2D is presented.

Each cell in the grid is divided into rectangular subcells that are called corners which is shown
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in Figure 2.2. The corner, c, has two neighboring corners, c1 and c2. It also has 4 bounding

surfaces: 2 inside the cell and 2 outside the cell. The inner surfaces are denoted as s1 and s2

which correspond to the neighboring corners, respectively. The outer surfaces are defined as c+

and c−. There are 16 unknowns within a cell: 4 corner-averaged intensities, 4 inner face-averaged

intensities, and 8 outer face-averaged intensities.

Ic

Ic+

  Ic- 

i+1/2 i-1/2 

j-1/2

j+1/2 

Is2

Ic2

Ic1Is1

Figure 2.2 Cell unknowns of the SCB scheme.

The 2D RT equation is integrated over each corner which leads to 4 corner balance equations,

1

2
Ωx∆yj

(
Is1 − Ic−

)
+

1

2
Ωy∆xi

(
Is2 − Ic+

)
+

1

4
κ̃ijAijIc =

1

4
AijS̃c, (2.67)

where Ic is the corner-averaged intensity, Ic+ and Ic− are the face-averaged intensities on the

outer faces, Is1 and Is2 are the face-averaged intensities on the inner faces, and S̃c is the effective

source in corner c. One auxiliary condition relates the inner face-averaged intensities to the

corner-averaged intensities such that,

Is1 =
(Ic + Ic1)

2
, Is2 =

(Ic + Ic2)

2
, (2.68)

The other auxiliary condition used to close the system of equations is to relate the outgoing

face-averaged intensities to the corner-averaged intensities through upwinding such that,

Ic± = Ic, nnn ·ΩΩΩ > 0, (2.69)

where nnn is the outward facing normal. Figure 2.3 shows the upwinding condition for Ωx > 0 and

Ωy > 0. There are 4 corner balance equations, 4 equations for the inner faces, and 4 equations
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for the outgoing faces. 4 outer face-averaged intensities are known from information from the

downstream neighboring cell or boundary conditions. The cell-averaged intensity is obtained by

averaging the 4 corner-averaged intensities and the cell face-averaged intensities are obtained by

averaging the two outgoing face-averaged intensities on each corner that correspond to the face

of the cell.

I2+

  I4-

i+1/2 i-1/2

j-1/2

j+1/2 

I4

I
2

Ω 

I3+

I3-I
3 

Figure 2.3 Upwinding condition for SCB scheme.

2.3 Discretization of Multigroup Low-Order QD Equations

The MLOQD equations are discretized in space using the finite volume method which is second

order accurate. For each cell, there are 9 unknowns: 4 face-averaged energy densities, 4 face-

averaged radiative fluxes, and 1 cell-averaged energy density. The spatially discretized zeroth

moment equation is dervied by integrating Equation (2.8) over the area of the cell,

d

dt
EgijAij +

(
F g
x,i+ 1

2
j
− F g

x,i− 1
2
j

)
∆yj

+

(
F g
y,ij+ 1

2

− F g
y,ij− 1

2

)
∆xi + cκgE,ijE

g
ijAij = Qgpl,ijAij ,

(2.70)

where the group cell-averaged Planckian source is,

Qgpl,g,ij = 4πκgpl,ijB
g
ij (2.71)

and Egij is the group cell-averaged energy density, F gx,i±1/2,j is the group face-averaged radiative

flux in the x-direction, and F gy,i,j±1/2 is the group face-averaged radiative flux in the y-direction,
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and κgE,ij is the group cell-average absorption opacity. For the first moment equations, Equation

(2.9) is integrated over the left, right, bottom, and top halves of the cell and this gives 4 discrete

first moment equations. The shaded regions of Figure 2.4 show the areas of integration.

1

c

d

dt
F g
x,i− 1

2
j
Aij+c∆yj

(
fgxx,ijE

g
ij − f

g

xx,i− 1
2
j
Eg
i− 1

2
j

)
+
c∆xi

2

(
fg
xy,ij+ 1

2

Eg
ij+ 1

2

− fg
xy,ij− 1

2

Eg
ij− 1

2

)
+

1

2
Aijκgros,ijF

g

x,i− 1
2
j

= 0,

(2.72)

Xi-1/2j Xij 

Yij-1/2 

Yij+1/2 

Xi+1/2j Xi+1/2j Xi+1/2j 

Yij+1/2 

Yij 

Yij+1/2 

Yij-1/2 Yij-1/2 

Yij 

Xij Xi-1/2j Xi-1/2j 

Figure 2.4 Areas of integration for Left, Right, Bottom, and Top first moment equations, respec-
tively.

1

c

d

dt
F g
x,i+ 1

2
j
Aij+c∆yj

(
fg
xx,i+ 1

2
j
Eg
i+ 1

2
j
− fgxx,ijE

g
ij

)
+
c∆xi

2

(
fg
xy,ij+ 1

2

Eg
ij+ 1

2

− fg
xy,ij− 1

2

Eg
ij− 1

2

)
+

1

2
Aijκgros,ijF

g

x,i+ 1
2
j

= 0,

(2.73)

1

c

d

dt
F g
y,ij− 1

2

Aij+c∆xi

(
fgyy,ijE

g
ij − f

g

yy,ij− 1
2

Eg
ij− 1

2

)
+
c∆yj

2

(
fg
xy,i+ 1

2
j
Eg
i+ 1

2
j
− fg

xy,i− 1
2
j
Eg
i− 1

2
j

)
+

1

2
Aijκgros,ijF

g

y,ij− 1
2

= 0,

(2.74)

1

c

d

dt
F g
y,ij+ 1

2

Aij + c∆xi

(
fg
yy,ij+ 1

2

Eg
ij+ 1

2

− fgyy,ijE
g
ij

)
+
c∆yj

2

(
fg
xy,i+ 1

2
j
Eg
i+ 1

2
j
− fg

xy,i− 1
2
j
Eg
i− 1

2
j

)
+

1

2
Aijκgros,ijF

g

y,ij+ 1
2

= 0.

(2.75)
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fgαβ,ij is the group cell-averaged QD factor where α, β = x, y. fgαβ,i±1/2j is the group face-

averaged QD factor in the x-direction and fgαβ,ij±1/2 is the group face-averaged QD factor in the

y-direction. κgros,ij is the group cell-averaged Rosseland opacity. A θ-weighted time integration

scheme is applied to the spatial discretized equations (2.70-2.75) to get the MLOQD equations

fully discretized in space and time. θ is a specified parameter that can range from zero to one.

The zeroth moment equation is,

(
F g,n
x,i+ 1

2
j
− F g,n

x,i− 1
2
j

)
∆yj +

(
F g,n
y,ij+ 1

2

− F g,n
y,ij− 1

2

)
∆xi

+

(
cκg,nE,ij +

1

θτn

)
Eg,nij Aij = Qg,npl,ijAij +

Aij
θτn

En−1,g
ij +Gg,n−1

ij ,

(2.76)

where,

Gg,n−1
ij =

θ − 1

θ

[(
F g,n−1

x,i+ 1
2
j
− F g,n−1

x,i− 1
2
j

)
∆yj

+

(
F g,n−1

y,ij+ 1
2

− F g,n−1

y,ij− 1
2

)
∆xi +

(
cκg,n−1

E,ij Eg,n−1
ij −Qg,n−1

pl,ij

)
Aij

]
.

(2.77)

The first moment equations are discretized such that the left moment equation is,

c∆yj

(
fg,nxx,ijE

g,n
ij − f

g,n

xx,i− 1
2
j
Eg,n
i− 1

2
j

)
+
c∆xi

2

(
fg,n
xy,ij+ 1

2

Eg,n
ij+ 1

2

− fg,n
xy,ij− 1

2

Eg,n
ij− 1

2

)
+

1

2
Aij

(
κgros,ij +

1

θcτn

)
F g,n
x,i− 1

2
j

=
Aij

2θcτn
F g,n−1

x,i− 1
2
j

+ P g,n−1
L,ij ,

(2.78)

where,

P g,n−1
L,ij =

θ − 1

θ

[
c∆yj

(
fg,n−1
xx,ij E

g,n−1
ij − fg,n−1

xx,i− 1
2
j
Eg,n−1

i− 1
2
j

)
+
c∆xi

2

(
fg,n−1

xy,ij+ 1
2

Eg,n−1

ij+ 1
2

− fg,n−1

xy,ij− 1
2

Eg,n−1

ij− 1
2

)
+

1

2
Aijκg,n−1

ros,ij F
g,n−1

x,i− 1
2
j

]
,

the right moment equation is,

c∆yj

(
fg,n
xx,i+ 1

2
j
Eg,n
i+ 1

2
j
− fg,nxx,ijE

g,n
ij

)
+
c∆xi

2

(
fg,n
xy,ij+ 1

2

Eg,n
ij+ 1

2

− fg,n
xy,ij− 1

2

Eg,n
ij− 1

2

)
+

1

2
Aij

(
κgros,ij +

1

θcτn

)
F g,n
x,i+ 1

2
j

=
Aij

2θcτn
F g,n−1

x,i+ 1
2
j

+ P g,n−1
R,ij ,

(2.79)
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where,

P g,n−1
R,ij =

θ − 1

θ

[
c∆yj

(
fg,n−1

xx,i+ 1
2
j
Eg,n−1

i+ 1
2
j
− fg,n−1

xx,ij E
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ij

)
+
c∆xi

2

(
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2

Eg,n−1

ij+ 1
2
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xy,ij− 1
2

Eg,n−1

ij− 1
2

)
+

1

2
Aijκg,n−1

ros,ij F
g,n−1

x,i+ 1
2
j

]
,

the top moment equation is,

c∆xi

(
fg,nyy,ijE

g,n
ij − f

g,n

yy,ij− 1
2

Eg,n
ij− 1

2

)
+
c∆yj

2

(
fg,n
xy,i+ 1

2
j
Eg,n
i+ 1

2
j
− fg,n
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2
j
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2
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+

1

2
Aij
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κgros,ij +

1

θcτn

)
F g,n
y,ij− 1

2

=
Aij

2θcτn
F g,n−1

y,ij− 1
2

+ P g,n−1
B,ij ,

(2.80)

where,

P g,n−1
B,ij =

θ − 1

θ

[
c∆xi

(
fg,n−1
yy,ij E

g,n−1
ij − fg,n−1

yy,ij− 1
2

Eg,n−1

i− 1
2
j

)
+
c∆yj

2

(
fg,n−1

xy,i+ 1
2
j
Eg,n−1

i+ 1
2
j
− fg,n−1

xy,i− 1
2
j
Eg,n−1

i− 1
2
j

)
+

1

2
Aijκg,n−1

ros,ij F
g,n−1

y,ij− 1
2

]
,

and the bottom moment equation is,

c∆xi

(
fg,n
yy,ij+ 1

2

Eg,n
ij+ 1

2

− fg,nyy,ijE
g,n
ij

)
+
c∆yj

2

(
fg,n
xy,i+ 1

2
j
Eg,n
i+ 1

2
j
− fg,n

xy,i− 1
2
j
Eg,n
i− 1

2
j

)
+

1

2
Aij

(
κgros,ij +

1

θcτn

)
F g,n
y,ij+ 1

2

=
Aij

2θcτn
F g,n−1

y,ij+ 1
2

+ P g,n−1
T,ij ,

(2.81)

where,

P g,n−1
T,ij =

θ − 1

θ

[
c∆xi

(
fg,n−1

yy,ij+ 1
2

Eg,n−1

ij+ 1
2

− fg,n−1
yy,ij E

g,n−1
ij

)
+
c∆yj

2

(
fg,n−1

xy,i+ 1
2
j
Eg,n−1

i+ 1
2
j
− fg,n−1

xy,i− 1
2
j
Eg,n−1

i− 1
2
j

)
+

1

2
Aijκg,n−1

ros,ij F
g,n−1

y,ij− 1
2

]
.

To solve this system of equations, the radiatve flux is eliminated such that the primary unknowns

are the cell-averaged and face-averaged energy densities. After the system of equations have

been solved, the radiative fluxes are restored. The equations are solved with BiCGStab and an

incomplete LU preconditioner [49].
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2.4 Discretization of Grey Low-Order QD Equations and the

Energy Balance Equation

The MLOQD equations are summed over all energies to form the spatial discretization scheme

for the GLOQD equations that is algebraicly consistent with the spatial discretization of the

MLOQD equations. There are a few methods to average the MLOQD equations over energy.

The averaging of the zeroth moment equation is a straightforward procedure; all of the averaging

functions are positive. The grey zeroth moment equation (2.82) is,

(
Fn
x,i+ 1

2
j
− Fn

x,i− 1
2
j

)
∆yj +

(
Fn
y,ij+ 1

2

− Fn
y,ij− 1

2

)
∆xi

+

(
cκ̄nE,ij +

1

θτn

)
Eg,nij Aij = Q̄npl,ijAij +

Aij
θτn

Ẽn−1
ij + G̃n−1

ij ,
(2.82)

where the total cell-averaged energy density is,

Enij =

Ng∑
g=1

Eng,ij , (2.83)

the total face-averaged radiative flux in the x and y-direction is,

Fnx,i±1/2j =

Ng∑
g=1

Fng,x,i±1/2j , (2.84)

Fny,ij±1/2 =

Ng∑
g=1

Fng,y,ij±1/2, (2.85)

the cell-averaged grey opacity is,

κ̄nE,ij =

∑Ng
g=1 κnE,g,ijEng,ij∑Ng

g=1E
n
g,ij

, (2.86)

and the total cell-averaged Planckian source is,

Q̄npl,ij = 4σRκ̄npl,ij
(
Tnij
)4
. (2.87)
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The terms from the previous time step are collapsed in energy such that,

Ẽn−1
ij =

Ng∑
g=1

Eg,n−1
ij , (2.88)

G̃n−1
ij =

Ng∑
g=1

Gg,n−1
ij . (2.89)

The radiative flux can be negative or zero which is not desired for an averaging function.

Averaging can be done such that the averaging function is always positive. This modified

Rosseland opacity is defined as,

κ̃g,nros,ij = κg,nros,ij +
1

θcτn
. (2.90)

which leads to the formulation of grey quantities that can be interpreted as effective diffusion

coefficients. The discretized grey first moment equations are shown. The multigroup left and

right first moment equations divided by the modified Rosseland opacity is,

c∆yj
κ̃g,nros,ij

(
fg,nxx,ijE

g,n
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+
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=
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[
Aij
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(2.91)

c∆yj
κ̃g,nros,ij
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fg,n
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j
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+
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=
1
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[
Aij

2θcτn
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j

+ P g,n−1
R,ij

]
,

(2.92)

where the grey coefficients H at the energy density are defined as,

Hc,n
xx,ij =

∑Ng
g=1

fg,nxx,ijE
g,n
ij

κ̃g,nros,ij∑Ng
g=1E

g,n
ij

, (2.93)

H
L/R,n
xx,ij =

∑Ng
g=1

fg,n
xx,i± 1

2 j
Eg,n
i± 1

2 j

κ̃g,nros,ij∑Ng
g=1E

g,n

i± 1
2
j

, (2.94)
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H
T/B,n
xy,ij =

∑Ng
g=1

fg,n
xy,ij± 1

2

Eg,n
ij± 1

2

κ̃g.nros,ij∑Ng
g=1E

g,n

ij± 1
2

. (2.95)

This leads to the grey left moment equation,

c∆yj
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Hc,n
xx,ijE

n
ij −H
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xx,ijE
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+

1

2
AijF
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2
j

= P̂n−1
L,ij ,

(2.96)

where,

P̂n−1
L,ij =

Ng∑
g=1

1

κ̃g,nros,ij

(
Aij
cθτn

F g,n−1

x,i− 1
2
j

+ P g,n−1
L,ij

)
, (2.97)

and the grey right first moment equation,

c∆yj
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(2.98)

where,

P̂n−1
R,ij =

Ng∑
g=1

1

κ̃g,nros,ij
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Aij
cθτn

F g,n−1

x,i+ 1
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j
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R,ij

)
. (2.99)

The same is done for the multigroup top and bottom first moment equations such that,
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(2.100)
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(2.101)

where the grey coefficients H at the energy density are defined as,

Hc,n
yy,ij =

∑Ng
g=1

fg,nyy,ijE
g,n
ij

κ̃g,nros,ij∑Ng
g=1E

g,n
ij

, (2.102)
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, (2.104)

This leads to the grey bottom first moment equation,
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(2.105)

where,

P̂n−1
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Ng∑
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Aij
cθτn
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x,ij− 1
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)
, (2.106)

and the grey top first moment equation,
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(2.107)

where,

P̂n−1
T,ij =

Ng∑
g=1

1

κ̃g,nros,ij

(
Aij
cθτn

F g,n−1

x,ij+ 1
2

+ P g,n−1
T,ij

)
. (2.108)

The discretized EB equation in space is,

dεij
dt

=

Ng∑
g=1

(
cκgE,ijE

g
ij −Q

g
pl,ij

)
, (2.109)

and it is discretized in time using the theta-weighted method which yields,

εnij − ε
n−1
ij

τn
= θ

 Ng∑
g=1

(
cκg,nE,ijE

g,n
ij −Q

g,n
pl,ij

)+ (1− θ)

 Ng∑
g=1

(
cκg,n−1

E,ij Eg,n−1
ij −Qg,n−1

pl,ij

)
(2.110)

After summing over all groups, the EB equation is

1

θτn
εnij + Q̄npl,ij − cκ̄E,ijEnij =

1

θτn
εn−1
ij +Rn−1

ij , (2.111)
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where,

Rn−1
ij =

1− θ
θ

(
cκ̄n−1

E,ijE
n−1
ij − Q̄n−1

pl,ij

)
. (2.112)

The unknowns in each cell are: 4 face-averaged energy densities, 1 cell-averaged energy density,

4 face-averaged radiative fluxes, and 1 cell-averaged material temperature.

2.5 Iteration Scheme for the Multi-Level QD Method

Algorithm 1 shows the general algorithm for solving the TRT problem using the QD method.

Algorithm 1: Iteration scheme for solving multi-level system of QD equations for TRT

problem.

while tn < tend do

while||∆T (s)||>εT||T (s)||+ε∗T ,||∆E(s)||>εE||E(s)||+ε∗E do

• Transport iteration: given T (s);

s = 0: T (0) = Tn−1, f
(1/2)
g,βγ = f j−1

g,βγ ;

if s > 0 then

Solve time-dependent multigroup RT eqs. for I
(s+1/2)
g ;

Compute group QD factors f
(s+1/2)
g,βγ ;

end

while ||∆T (l,s)|| > ε̃T ||T (l,s)||+ ε̃∗T , ||∆E(l,s)|| > ε̃E ||E(l,s)||+ ε̃∗E do

• Multigroup low-order iteration: given T (l,s) and f
(s+1/2)
g,βγ ;

Solve MLOQD eqs. for E
(l+1,s)
g and FFF (l+1,s)

g ;

Compute grey opacities κ̄(l+1,s)
E , κ̄(l+1,s)

ros and factors f̄
(l+1,s+1/2)
βγ ;

• Grey low-order iteration: solve GLOQD eqs. coupled with EB eq. for

E(l+1,s), FFF (l+1,s), and T (l+1,s)

end

T (s+1) ← T (l+1,s);

end

Tn ← T (s+1);

end

The first transport iteration can be skipped because the intensity from the previous time

step is a good initial guess to evaluate the group QD factors on the new time level. The

group opacities and Planckian source are evaluated at the given temperature and the MLOQD

equations are solved to obtain the spectrum. Solving the MLOQD equations is referred to as a

multigroup low-order iteration. The group coefficients are averaged with the spectrum and the

algebraically consistent GLOQD equations are coupled to the EB equation. This nonlinear system
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of equations is solved using Newton’s method to obtain an update for the material temperature.

This is referred to as a grey (Newton) iteration. Once the temperature has converged for the

given spectrum, the group opacities and source are re-evaluated and this iteration process

continues until the temperature and spectrum have converged for a given set of QD factors. This

temperature is used to re-evaluate the group opacities and source for the transport problem.

The RT equation is solved to update the angular distribution. This is referred to as a transport

iteration. Once the transport iterations have converged, the temperature and intensity have

been obtained for a given time step.

The estimation of temperature is obtained by solving the nonlinearly coupled EB (2.111)

and GLOQD (2.96), (2.98), (2.105), (2.107) equations. These equations are linearized and solved

by means of Newton’s method. The unknowns are linearized such that,

T
(k+1)
ij = T

(s)
ij + ∆T

(k)
ij ,

E
(k+1)
ij = E

(s)
ij + ∆E

(k)
ij ,

FFF
(k+1)
ij = FFF

(k)
ij + ∆FFF

(k)
ij ,

(2.113)

where k is the index of Newton iterations. A relationship between ∆T (s) and ∆E(s) is obtained

from the linearized coupled GLOQD and EB equations. Linearization also requires the evaluation

of derivatives of the grey opacities and Planckian sources,

Q
n(s+1)
pl,ij = Q

n(s)
pl,ij +

dQpl,ij
dT

∆T
(s)
ij ,

κ̄n(s+1)
E,ij = κ̄n(s)

E,ij +
dκ̄E,ij
dT

∆T
(s)
ij .

(2.114)

Both the group opacities and Planckian sources get re-evaluated after each temperature update.

The Planckian source is a local function of material temperature, but the group opacities, κgE
averaged with the group energy densities obtained from the multigroup problem. This means

the grey opacity depends on both the group coefficients and the spectrum. Accounting for the

change in spectrum is important for finding a good estimate of temperature. For an approximate

Newton method to work well, the derivative should be as accurate as possible. When only

accounting for the change in temperature, the derivative was not correct when the spectrum is

changing rapidly and sometimes would even have the wrong sign. A Frechet derivative is used to

account for the changes due to both the local temperature and the spectrum [17]. dκ̄E
dT is fixed

during Newton iterations and is updated using,

κ̄(k+1,l)
E,ij = κ̄(k,l)

E,ij +
dκ̄(l)

E,ij

dT
∆T

(k)
ij , (2.115)
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where l is the index of multigroup iterations. The Frechet derivative is calculated using the grey

opacity and temperature on successive multigroup iterations,

dκ̄E,ij
dT

(l)

=
κ̄(l)
E,ij − κ̄(l−1)

E,ij

T
(l)
ij − T

(l−1)
ij

. (2.116)

The grey opacity on a multigroup iteration is defined as,

κ̄(l)
E,ij =

∑
g=1 κ

g
E,ij

(
T

(l)
ij

)
E

(l)
g,ij∑

g=1E
(l)
g,ij

. (2.117)

Further details of this are describe in Chapter 5 where the iterations of the multilevel QD

method are analyzed.
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CHAPTER

3

TEMPORAL DISCRETIZATION

METHODS FOR THE MULTI-LEVEL QD

EQUATIONS

In this chapter, new multi-level QD (MLQD) methods based on the fully implicit time discretiza-

tion of the RT equation are introduced. The modified subcell step (MSS) and the modified

simple corner balance (MSCB) methods are formulated based on the backward Euler (B-E) time

discretization of the RT equation. Three multi-level QD methods are established such that the RT

equation is discretized in time using a first-order accurate scheme and the time discretization of

the low-order QD equations vary based on the method. The first-order, hybrid, and monotonized

hybrid schemes are formulated and analyzed. Numerical results show that the hybrid scheme

gives better accuracy compared to the first-order temporal scheme. The monotonization hybrid

scheme removes oscillatory behavior generated by the high resolution method. The convergence

study shows that the hybrid method converges with the first order. Adaptive monotonization

procedures are developed which improve the accuracy while reducing the computational expense.

Analysis of the monotonization procedures applied to the P1 equations is shown. This method is

a commonly used approach for solving TRT problems. A part of the results presented in this

chapter are published in [39].
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3.1 Modified Discretization of the RT equation

In Chapter 2, the spatial discretization methods that are described were applied to Equation

(2.44). The same is done for Equation (2.43) where the modified opacity is now defined as

κ̃ = κnE + 1
cτn and the modified source now has a term from the previous time step such that

SA = κnplBn + 1
cτn I

n−1
m . A new variant of the subcell step method and simple corner balance

method for discretization of the time-dependent RT equation is developed to resolve this.

A desired feature of the discretization of the RT equation is that it reproduces the discrete

steady state solution at equilibrium on a given spatial grid that corresponds to one of the spatial

discretization scheme itself. In the SS method, the modified source is assumed to be constant in

the cell. Since the temperature is constant in a cell, the Planckian source is constant for each

subcell. The discretized RT equation has a cell-average intensity from the previous time step

in the source term which is an area-weighted average of the subcell-averaged intensities. The

modified source takes the form,

SA,p = κnplBn +
1

cτn
In−1
A , (3.1)

where p is the subcell index and the group and angle indices are dropped for simplicity. Using

the previous cell-averaged intensity in each subcell smears the time-dependent solution over

a cell. As equilibrium is approached, the solution does not tend to the discrete steady state

solution produced by this scheme. A modification of the SS method is developed to remove this

effect which introduces the previous subcell-averaged intensity. This method is referred to as

the modified subcell step (MSS) method. Equation (3.2) shows the effective source of the MSS

method which now has a previous intensity with an index, p, for each subcell,

SA,p = κnplBn +
1

cτn
In−1
A,p . (3.2)

The numerical solution obtained with this scheme tends to the discrete steady state solution

on any given finite spatial grid as the TRT phenomenon approaches equilibrium.. The same

modification is applied to the equations for the SCB method. The effective source in the corner

balance equation, Equation (2.67), must be modified such that the previous intensity is the

corner-averaged quantity rather than the cell-averaged quantity. This method is referred to as

the Modified Simple Corner Balance (MSCB) method and the effective source is,

SA,c = κnplBn +
1

cτn
In−1
A,c , (3.3)

where In−1
A,c is the corner-averaged intensity from the previous time step. This will lead to an

increase in storage by a factor of 4 because there are 4 corners per cell.
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3.2 Formulation of First-Order and Hybrid Temporal Discretiza-

tion of the Multi-Level System of QD Equations

One benefit of the multi-level QD method is the capability to independently discretize the RT

equation and the LOQD equations. This allows for a broad range of discretization combinations

that can potentially improve the accuracy or efficiency of the method. The spatially and angularly

discretized RT equation (2.1) has the following general form:

1

c

dIg
dt

= H [Ig, T ] , (3.4)

Equation (3.4) is discretized in time using the B-E scheme which gives,

Ing − In−1
g = cτnH

n[Ing , T
n]. (3.5)

This scheme is robust with first-order accuracy. A high-order time discretization of the RT

equation gives better accuracy, but would add more complexity. High-order schemes require

storage of more previous time step data which is rather expensive due to the high dimensionality

of the RT equation. The idea is to develop a mixed-order scheme and take advantage of a

high-order discretization of LOQD equations. A class of methods are introduced such that the

RT equation is discretized with B-E while the discretization of the low-order equations is varied.

The time-dependent RT equation is discretized in space using the MSS and MSCB method.

3.2.1 Formulation of First-Order Scheme

To introduce the new MLQD methods, the spatially discretized MLOQD equations (2.8) and

(2.9) are presented in operator form,

dEg
dt

= L0,g[Eg,Fg, T ], (3.6)

1

c

dFg
dt

= LLL1,g[Eg,Fg, T ], (3.7)

and the spatially discretized GLOQD and EB equations (2.22-2.26) are presented in operator

form as well,

dE

dt
= L0[E,F, T ], (3.8)

1

c

dF

dt
= LLL1[E,F, T ], (3.9)
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dε

dt
= M [E, T ]. (3.10)

The first-order scheme consists of the B-E time discretization for the RT equation, LOQD

equations, and the EB equation. The MLOQD equations are discretized in space with the

finite-volume method which is second-order accurate presented in Chapter 2. The complete

system of discretized equations for the first-order scheme consists of the RT equation,

Ing − In−1
g = cτnH

n, (3.11)

fully discretized MLOQD equations,

Eng − En−1
g = τnLn0,g, (3.12)

Fng − Fn−1
g = cτnLLLn1,g, (3.13)

and the fully discretized GLOQD and EB equations,

En − En−1 = τnLn0 , (3.14)

FFFn −FFFn−1 = cτnLLLn1 , (3.15)

εn − εn−1 = τnMn. (3.16)

3.2.2 Formulation of Hybrid Scheme

While high resolution schemes come with complexity and increased storage, the reduced dimen-

sionality of the low-order equations mitigate these issues. Referring to Equations (2.76-2.81), the

terms from the previous time step can be lumped into a single term that is required for each

spatial cell in each group. This is negligible compared to storing the transport solution which

would require the same, but for each direction as well. The class of subcell spatial discretization

schemes would require even more storage. The hybrid scheme consists of B-E time discretization

of the RT equation and Crank-Nicolson (C-N) time discretization for the MLOQD and EB

equations. The term hybrid is used to reflect the combination of a first-order and second-order

accurate scheme. The complete system of discretized equations for the hybrid scheme consists of

the RT equation,

Ing − In−1
g = cτnH

n, (3.17)

fully discretized MLOQD equations,
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Eng − En−1
g =

τn

2

(
Ln0,g + Ln−1

0,g

)
, (3.18)

Fng − Fn−1
g =

cτn

2

(
LLLn1,g +LLLn−1

1,g

)
, (3.19)

and the fully discretized GLOQD and EB equations,

En − En−1 =
τn

2

(
Ln0 + Ln−1

0

)
, (3.20)

Fn − Fn−1 =
cτn

2

(
LLLn1 +LLLn−1

1

)
, (3.21)

εn − εn−1 =
τn

2
(Mn +Mn−1). (3.22)

The expected benefits are that it will have better accuracy. The low-order problem is

discretized with a second-order accurate scheme, but in the limit, quadratic convergence in time

is not expected. It should converge linearly because the method is restricted by the QD factors

generated by the solution of the RT equation which is discretized with B-E. Nonetheless, any

increase in the rate of convergence is beneficial. This coupled with the minimal extra storage

should provide a better method with little cost.

3.3 Monotonization of Second-Order Temporal Scheme for the

Low-Order QD Equations

Because the hybrid method involves applying a high-order discretization scheme to hyperbolic

equations, monotonization is needed to suppress numerical oscillations. A third multi-level QD

method is developed by applying the L-TRAP scheme to the MLOQD equations and is referred

to as the monotonized hybrid method.

The L-TRAP scheme [50] is used as a monotonization procedure when using the second-order

method. This scheme was developed for hyperbolic conservation laws and it is applied to the

MLOQD equations. The L-TRAP scheme is shown to significantly reduce the oscillatory behavior

of the solution, which is especially notable in the high energy groups. The θ-weighted temporal

discretization is applied to the MLOQD equations (3.6) and (3.7) which gives,

Eng − En−1
g = τn

(
θLn0,g + (1− θ)Ln−1

0,g

)
, (3.23)

Fng − Fn−1
g = cτn

(
θLLLn1,g + (1− θ)LLLn−1

1,g

)
. (3.24)
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A feature of the θ-weighted method is the order of accuracy can vary by changing a parameter,

θ. When θ = 1, this scheme is equivalent to the B-E method which is first-order accurate in

time. When θ = 1
2 , it becomes the C-N method which is second-order accurate. The L-TRAP

method restricts θ such that a local monotonicity condition is not violated [50]. It is based off

a lemma by Hyunh [51] that states: given f(x1), f(x2) and f ′(x1), f ′(x2) at x1 and x2, the

resulting quadratic interpolant is monotone in [x1, x2] if,

f ′(x1), f ′(x2) ∈ [0, 2s], (3.25)

where,

s =
f(x2)− f(x1)

x2 − x1
. (3.26)

The finite difference approximation of the derivative can be estimated by using the solution

to the equations using a first-order scheme. This extra step of calculation is analogous to a

predictor step which approximates the expected sign and value of the derivative and operator.

The derivatives and operators for the local monotonicty condition are defined as

s
g,n+ 1

2
0 =

E
n+ 1

2
g − Eng
τn

, (3.27)

s
g,n+ 1

2
α =

1

c

F
n+ 1

2
g,α − Fng,α

τn
, (3.28)

and

E
n+ 1

2
g = Eng + τnL

n+ 1
2

0,g , (3.29)

F
n+ 1

2
g,α = Fng,α + τnL

n+ 1
2

1,g,α, (3.30)

where n + 1
2 is the intermediate level of the predictor step, Fng,α = FFFng · nnnα, nnnα is the face

normal, and α = L,R,T,B is the index of the cell face. A parameter, rij , is defined for each cell

in the domain with θij = 1.0− 0.5rij . This monotonization scheme checks whether Ln0,g, L
n+ 1

2
0,g

and LLLn1,g, LLL
n+ 1

2
1,g are contained on the intervals

[
0, 2s

n+ 1
2

0,g

]
and

[
0, 2s

n+ 1
2

1,g,α

]
, respectively. If these

conditions are met, the interpolant is monotonic and rij is set to 1. If one or both quantities

are of opposite sign, they can be non-monotonic and therefore rij is set to 0 which reverts to a

first-order scheme. If neither condition is met, this is a case where the derivative has the same

sign but is too large. The minimum rij that preserves monotonicity is selected. The L-TRAP

scheme is shown in Algorithm 2,
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Algorithm 2: Monotonization procedure for L-TRAP scheme.

if L
n+ 1

2
p (L

n+ 1
2

p − 2s
n+ 1

2
p ) ≤ εH and Lnp

(
Lnp − 2snp

)
≤ εH then

rij = 1

else if L
n+ 1

2
p ≤ −ε̃H(s

n+ 1
2

p + εH)or Lnp ≤ −ε̃H(snp + εH) then
rij = 0

else

rij = min

[
2s
n+1

2
p

Lnp+εH
,

2s
n+1

2
p

L
n+1

2
p +εH

, 1

]

where εH and ε̃H are a small value that prevents breaking the condition due to small changes

in the solution. The full system of discretized equations for the monotonized hybrid scheme

consists of the RT equation,

Ing − In−1
g = cτnH

n, (3.31)

fully discretized MLOQD equations,

Eng − En−1
g = τn

(
θgL

n
0,g + (1− θg)Ln−1

0,g

)
, (3.32)

Fng − Fn−1
g = cτn

(
θgLLL

n
1,g + (1− θg)LLLn−1

1,g

)
. (3.33)

and the fully discretized GLOQD and EB equations,

En − En−1 = τn
(
θ̄EL

n
0 + (1− θ̄E)Ln−1

0

)
, (3.34)

Fn − Fn−1 = cτn
(
θ̄FLLL

n
1 + (1− θ̄F )LLLn−1

1

)
, (3.35)

εn − εn−1 = τn(θ̄εM
n + (1− θ̄ε)Mn−1), (3.36)

where θg = θg[Eg,Fg, T ], θg ∈ [0.5, 1] and θ̄E , θ̄F , θ̄ε are averaged such that the GLOQD and

EB equations are algebraicly consistent with the MLOQD equations. θg is spatially and group

dependent and no longer a constant value. Since the monotonization procedure adds a stage for

evaluating E
n+ 1

2
g and F

n+ 1
2

g,α and the weights depend on the solution, the temporal scheme is

nonlinear. However, the multilevel QD method is a nonlinear one originally. In Chapter 5, the

effects of the nonlinear monotonization algorithm on iterations for solving the multilevel system

of equations are studied.
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3.4 Numerical Results for Multi-Level QD Methods

In this section, results and analysis are presented for the first-order, hybrid, and monotonized

hybrid schemes. This is done for the MSS and MSCB methods for spatial discretization of the

RT equation. The accuracy, convergence, and shape of the temperature and radiation wave

are analyzed. The computational results are of Fleck-Cummings test problem [6]. Adaptive

monotonization procedures are analyzed in order to reduce the work of the monotonization

procedure when applicable. This monotonization scheme is also applied to the multilevel method

for TRT problems based P1 equations. In this case, the photon transport is modeled with the

P1 approximation. Thus, the group low-order equations are the group P1 equations. The RT

equation is not involved. This is rather common way of solving TRT problems. It is a part of

the family of methods based on the method of spherical harmonics.

Fleck & Cummings Test Problem

Figure 3.1 depicts a 2D version of Fleck and Cummings test problem [6]. It consists of a 4 cm x

4 cm square that is heated by a 1 keV blackbody source at the left boundary while the other

boundaries are vacuum. The initial temperature in the domain is kT0=10−3 keV. The initial

distribution of radiation is Iν |t=0 =Bν(T0). There is one material with the spectral opacity

defined as κν = 27
ν3

(1− e−
ν
T ). The material energy density is a linear function of temperature

ε(T )=cvT with cv=aT 3
b . This test is solved with a time step of τ = 2×10−3 shakes (1 shake

= 10−8 sec) up to ct = 90 cm. Results are shown for a 10x10 and 20x20 spatial meshes. 17

groups and a quadruple-range quadrature with 36 angles/octant are used [52]. The group

structure is shown in Table 3.1. The parameters of convergence criteria for transport iterations

are εT =εE =10−7.

Table 3.1 Boundaries of energy intervals [keV] defining the 17-group structure for 2D version of
Fleck and Cummings TRT test problem.

g 1 2 3 4 5 6 7 8 9

νg [keV] 0.0× 100 3.0× 10−1 6.0× 10−1 8.0× 10−1 1.2× 100 1.5× 100 1.8× 100 2.4× 100 2.7× 100

g 10 11 12 13 14 15 16 17 18

νg [keV] 3.0× 100 4.0× 100 5.0× 100 7.0× 100 9.0× 100 1.1× 101 1.5× 101 2.0× 101 1.0× 105
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y = 4 

𝐼𝜈|𝑥=0=𝐵𝜈(𝑇𝑏) 
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𝐼𝜈|𝑡=0=𝐵𝜈(𝑇0) 

𝑇0=10−3KeV 
 

𝜅𝜈 = 27
𝜈3

1 − 𝑒−
𝜈
𝑇  

𝜀 𝑇 = 𝑐𝑣𝑇 
 

Va
cu

um
 

Vacuum 

Vacuum 

Figure 3.1 2D version of Fleck and Cummings TRT test problem.

3.4.1 Modified Subcell Step (MSS) Method

In this section, numerical results of the multi-level QD method with MSS transport scheme and

different temporal discretization of the LOQD equations are presented. The solution of this test

problem is presented at the three characteristic stages of wave development. The first instant

(ct=6 cm) is the initial stage of forming the wave where the change rate of the intensity is large

at the boundary with incoming radiation. The second instant (ct=15 cm) is the developed stage

of the wave propagation at which the wave has a well-formed shape. The third one (ct=90 cm)

is the final stage when the wave reached the opposite side of the domain that is now significantly

warmed up and is close to equilibrium. Figures 3.2 and 3.4 compare the solution of the first-order

scheme with that of the hybrid scheme on a 10x10 mesh. Figures 3.3 and 3.5 show the same

comparison with the cell-averaged values of temperature and total energy density in each cell on

a 10x10 mesh. There are no oscillations in the material temperature or energy density, but at

ct = 6 cm, the energy density has a change in the sign of the second derivative after the wave

front. This is caused by non-monotonicity of the energy density in some groups. The other two

stages do not exhibit this behavior.
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Figure 3.2 Temperature (in keV) computed by the multi-level QD method using the MSS trans-
port scheme with τ=2×10−3sh using (i) the first order method (top-half) and (ii) the hybrid method
(bottom-half) on a 10x10 mesh.
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Figure 3.3 Cell-averaged values of temperature (in keV) computed by the multi-level QD method
using the MSS transport scheme with τ=2×10−3sh using (i) the first order method (top-half) and (ii)
the hybrid method (bottom-half) on a 10x10 mesh.

2.5

3.0

3.5

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.5

1.0

1.5

0.2

1.1

2.0

2.9

3.8

4.7

5.6

6.5

7.4

8.3

X [cm]

Y 
[c

m
]

(a) ct = 6 cm

2.5

3.0

3.5

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.5

1.0

1.5

0.2

1.1

2.0

2.9

3.8

4.7

5.6

6.5

7.4

8.3

X [cm]

Y 
[c

m
]

(b) ct = 15 cm

2.5

3.0

3.5

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.5

1.0

1.5

0.2

1.1

2.0

2.9

3.8

4.7

5.6

6.5

7.4

8.3

X [cm]

Y 
[c

m
]

(c) ct = 90 cm

Figure 3.4 Total energy density (E×10−13 erg
cm3 ) computed by the multi-level QD method using

the MSS transport scheme with τ=2×10−3sh using (i) the first order method (top-half) and (ii) the
hybrid method (bottom-half) on a 10x10 mesh.
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Figure 3.5 Cell-averaged values of the total energy density (E×10−13 erg
cm3 ) computed by the multi-

level QD method using the MSS transport scheme with τ=2×10−3sh using (i) the first order method
(top-half) and (ii) the hybrid method (bottom-half) on a 10x10 mesh.

Figures 3.6 and 3.8 compare the solution of the first-order scheme with that of the hybrid

scheme on a 20x20 mesh. Figures 3.7 and 3.9 show the comparison of cell-averaged values of

temperature and total energy density in each cell on the 20x20 mesh. The radiation wave at

ct = 6 cm computed with the hybrid scheme has a similar effect to what is seen on the 10x10

mesh where the shape is noticeably different compared to the first order scheme. The behavior

of the solution for each method on the refined mesh is not significantly different from what is

seen on the 10x10 mesh. The optical thickness drives the problem. For any given mesh, some

energy groups will have a large optical thickness and concurrently others will have an extremely

small optical thickness. Because of this, there is not a perfect mesh for this type of problem and

a significant change in the behavior of the solution is not expected.
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Figure 3.6 Temperature (in keV) computed by the multi-level QD method using the MSS trans-
port scheme with τ=2×10−3sh using (i) the first order method (top-half) and (ii) the hybrid method
(bottom-half) on a 20x20 mesh.
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Figure 3.7 Cell-averaged values of temperature (in keV) computed by the multi-level QD method
using the MSS transport scheme with τ=2×10−3sh using (i) the first order method (top-half) and (ii)
the hybrid method (bottom-half) on a 20x20 mesh.
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Figure 3.8 Total energy density (E×10−13 erg
cm3 ) computed by the multi-level QD method using

the MSS transport scheme with τ=2×10−3sh using (i) the first order method (top-half) and (ii) the
hybrid method (bottom-half) on a 20x20 mesh.
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Figure 3.9 Cell-averaged values of the total energy density (E×10−13 erg
cm3 ) computed by the multi-

level QD method using the MSS transport scheme with τ=2×10−3sh using (i) the first order method
(top-half) and (ii) the hybrid method (bottom-half) on a 20x20 mesh.

42



Figures 3.10 and 3.11 show the relative difference between these two methods on a 10x10

mesh. The largest difference is at the right boundary which is where the unphysical behavior

occurs. Note that this is before the wave front therefore the non-local radiation is not prominent

in this sub-domain. Figures 3.12 and 3.13 show the relative difference between the solution

obtained these two methods on a 20x20 mesh. The maps show that the largest differences are

near the right boundary.
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Figure 3.10 Relative difference in temperature computed by the multi-level QD method using the
MSS transport scheme with τ=2×10−3sh using (i) the first order method (top-half) and (ii) the hy-
brid method (bottom-half) on a 10x10 mesh.

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1.00 × 10 3

1.81 × 10 3

3.29 × 10 3

5.97 × 10 3

1.08 × 10 2

1.96 × 10 2

3.56 × 10 2

6.46 × 10 2

1.17 × 10 1

2.13 × 10 1

(a) ct = 6 cm

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1.78 × 10 3

2.54 × 10 3

3.63 × 10 3

5.19 × 10 3

7.42 × 10 3

1.06 × 10 2

1.52 × 10 2

2.17 × 10 2

3.10 × 10 2

4.43 × 10 2

(b) ct = 15 cm

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1.00 × 10 6

1.81 × 10 6

3.29 × 10 6

5.97 × 10 6

1.08 × 10 5

1.96 × 10 5

3.56 × 10 5

6.46 × 10 5

1.17 × 10 4

2.13 × 10 4

(c) ct = 90 cm

Figure 3.11 Relative difference in total energy density (E×10−13 erg
cm3 ) computed by the multi-level

QD method using the MSS transport scheme with τ=2×10−3sh using (i) the first order method (top-
half) and (ii) the hybrid method (bottom-half) on a 10x10 mesh.
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Figure 3.12 Relative difference in temperature computed by the multi-level QD method using the
MSS transport scheme with τ=2×10−3sh using (i) the first order method (top-half) and (ii) the hy-
brid method (bottom-half) on 20x20 mesh.
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Figure 3.13 Relative difference in total energy density (E×10−13 erg
cm3 ) computed by the multi-level

QD method using the MSS transport scheme with τ=2×10−3sh using (i) the first order method (top-
half) and (ii) the hybrid method (bottom-half) on 20x20 mesh.

Figures 3.14 and 3.15 compare the solution of the monotonized hybrid scheme with that of the

hybrid scheme on a 10x10 mesh. The monotonized hybrid scheme generates a solution without

oscillations. The radiation wave resembles that of the first-order scheme which is expected

because the L-TRAP method switches to a first-order method locally when the monotonicity

condition is not satisfied in a cell. Figures 3.16 and 3.17 show that the maximum difference is at

the right boundary once again. Figures 3.18 and 3.19 compare the solution of the monotonized

hybrid and hybrid scheme on a 20x20 mesh. The monotonized hybrid scheme does well in

removing the oscillatory behavior that causes the effect seen in the radiative wave at ct = 6 cm.

Like the 10x10 mesh, the solution at the other stages of evolution have no visible differences on

this scale.
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Figure 3.14 Temperature (in keV) computed by the multi-level QD method with using the MSS
transport scheme τ=2×10−3sh using (i) the monotonized hybrid method (top-half) and (ii) the hybrid
method (bottom-half) on a 10x10 mesh.
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Figure 3.15 Total energy density (E×10−13 erg
cm3 ) computed by the multi-level QD method using the

MSS transport scheme with τ=2×10−3sh using (i) the monotonized hybrid method (top-half) and (ii)
the hybrid method (bottom-half) on a 10x10 mesh.
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Figure 3.16 Relative difference in temperature computed by the multi-level QD method using the
MSS transport scheme with τ=2×10−3sh using (i) the monotonized hybrid method (top-half) and (ii)
the hybrid method (bottom-half) on a 10x10 mesh.
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Figure 3.17 Relative difference in total energy density (E×10−13 erg
cm3 ) computed by the multi-level

QD method using the MSS transport scheme with τ=2×10−3sh using (i) the monotonized hybrid
method (top-half) and (ii) the hybrid method (bottom-half) on a 10x10 mesh.
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Figure 3.18 Temperature (in keV) computed by the multi-level QD method with using the MSS
transport scheme τ=2×10−3sh using (i) the monotonized hybrid method (top-half) and (ii) the hybrid
method (bottom-half) on a 20x20 mesh.
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Figure 3.19 Total energy density (E×10−13 erg
cm3 ) computed by the multi-level QD method using the

MSS transport scheme with τ=2×10−3sh using (i) the monotonized hybrid method (top-half) and (ii)
the hybrid method (bottom-half) on a 20x20 mesh.
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The monotonization procedure is done in each group. The material temperature and total

energy density encompass the physics averaged over frequency; therefore, these results show an

accumulative effect of monotonization. To distinguish how the method performs in different

regimes, the group energy density Eg is analyzed. Figure 3.20 shows the radiation energy density

in group 1 (0 keV ≤ ν ≤ 0.3 keV) for each method at ct = 6 cm on a 10x10 mesh. This group is

optically thick and the hybrid scheme does not produce any oscillations. The other optically

thick groups perform similarly for all moments of time. Figure 3.21 shows the cell-averaged

values of the energy density in group 1 on a 20x20 mesh. There is no oscillatory behavior on

this mesh either. Monotonization is not necessary in this regime.
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Figure 3.20 Cell-averaged values of the energy density (in E×10−13 erg
cm3 ) computed with

τ=2×10−3sh by the multi-level QD method using the MSS transport scheme in Group 1 on a 10x10
mesh.
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Figure 3.21 Cell-averaged values of the energy density (in E×10−13 erg
cm3 ) computed with

τ=2×10−3sh by the multi-level QD method using the MSS transport scheme in Group 1 on a 20x20
mesh.
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Figure 3.22 shows the radiation energy density in group 13 (7 keV ≤ ν ≤ 9 keV) on a 10x10

mesh. This group is an intermediate energy group of the cusp of being a high energy group. The

intermediate groups are mildly affected by the hybrid scheme but do not have non-monotonicity

until group 13. This group is also important because the magnitude of the radiation is significant;

therefore, the oscillatory effects will contribute noticeably to the total solution. Figure 3.23

shows the solution in group 13 on a 20x20 mesh. This mesh highlights non-monotonic behavior

in regions besides what is seen beyond the wave front. There is a slight effect near the top and

bottom boundary around x = 1 cm. There is also oscillatory behavior at this point and at the

centerline, y = 2 cm. The monotonized hybrid scheme does well in correcting this behavior.
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Figure 3.22 Cell-averaged values of the energy density (in E×10−13 erg
cm3 ) computed with

τ=2×10−3sh by the multi-level QD method using the MSS transport scheme in Group 13 on a 10x10
mesh.
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Figure 3.23 Cell-averaged values of the energy density (in E×10−13 erg
cm3 ) computed with

τ=2×10−3sh by the multi-level QD method using the MSS transport scheme in Group 13 on a 20x20
mesh.
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Figure 3.24 shows the radiation energy density in group 16 (15 keV ≤ ν ≤ 20 keV) on a

10x10 mesh. This is a high-energy group and the oscillations are more prominent. Figure 3.25

shows the solution in group 16 for the 20x20 test case. There is significant oscillatory behavior

in both the x-direction and the y-direction. The monotonized hybrid method does well in this

group as well. The solution in a few orders of magnitude smaller than group 13 but the highly

non-monotonic behavior will still have an effect.
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Figure 3.24 Cell-averaged values of the energy density (in E×10−13 erg
cm3 ) computed with

τ=2×10−3sh by the multi-level QD method using the MSS transport scheme in Group 16 on a 10x10
mesh.
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Figure 3.25 Cell-averaged values of the energy density (in E×10−13 erg
cm3 ) computed with

τ=2×10−3sh by the multi-level QD method using the MSS transport scheme in Group 16 on a 20x20
mesh.

Figure 3.26 shows the spatial distribution of θg for the three groups of interest on a 10x10

mesh. Group 1 only has a derivative that is too large on the boundary of incoming radiation.

The maximum θ is 0.7 therefore the L-TRAP scheme never switches to the first order in the

optically thick group. Group 13 and Group 16 have similar distributions, but Group 16 has more

cases of violating the monotonicity condition. In Group 13, there are a few cells on the boundary

that revert to θ = 1 and on the wave front, most cells have a θ close to 1. A meaningful amount
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of non-local radiation has not reached the right boundary yet and therefore the gradient is small

and the second-order scheme works fine. Figure 3.27 shows the spatial distribution of θg for

the 20x20 test case. Since the mesh is refined, the gradient will be sharp and therefore there

will be large derivatives. This effect is seen with the weights in group 1. There is no oscillatory

behavior in the solution but the monotonicity condition is violated in a notable number of cells

near the incoming boundary. Group 13 and 16 require monotonization at the wave front and

near boundaries like the 10x10 case.
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Figure 3.26 θg computed using the MSS transport scheme with τ=2×10−3 sh by the monotonized
hybrid scheme at ct = 6 cm on a 10x10 mesh.
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Figure 3.27 θg computed using the MSS transport scheme with τ=2×10−3 sh by the monotonized
hybrid scheme at ct = 6 cm on a 20x20 mesh.

While preserving monotonicity is important, the main goal is to improve on accuracy. Figure

3.28 shows the relative difference in the L∞ norm between the solution at τ=2×10−3 sh on
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a 10x10 mesh and the numerically converged reference solution in time on the same spatial

and angular mesh. This reference solution is obtained by doing successive refinements in time

and using Aitken’s method to compute an extrapolated solution. Refinement is done until

the extrapolated solution has converged to the desired level of precision. There is a significant

increase in accuracy in the material temperature when using the hybrid scheme. At the minimum,

there is an order of magnitude smaller relative difference.
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Figure 3.28 The relative difference of the solution obtained by the multi-level QD method using the
MSS transport scheme compared to the reference solution in the L∞ norm, τ = 2× 10−3 sh on a 10x10
mesh.
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Figure 3.29 The relative difference of the solution obtained by the multi-level QD method using the
MSS transport scheme compared to the reference solution in the L2 norm, τ = 2× 10−3 sh on a 10x10
mesh.

When the change rate is large, the temperature obtained by the monotonized hybrid method

is slightly less accurate than the first-order scheme. The total energy density does not show an
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improvement on accuracy until around ct = 9 cm where the separation begins for the hybrid

scheme. The monotonized hybrid method is close to the first-order scheme in this case. It tends

to the accuracy of the hybrid scheme when equilibrium is reached which is expected. Figure

3.29 shows the relative difference in the L2 norm on a 10x10 mesh. The behavior in this norm

resembles that of the L∞ norm. Figure 3.30 shows the convergence in time of the material

temperature and total energy density in the L∞ norm at ct = 6 cm. The three methods have

first order convergence as expected. The QD factors are calculated using the solution from

a first-order time discretization of the RT equation which restricts the hybrid method from

achieving a faster rate of convergence. The monotonized hybrid scheme has a temporary increase

in convergence rate for a few time steps. This is due to the L-TRAP scheme moving from a

scheme dominated with θ = 1 to a scheme dominated with θ = 0.5. It still converges with

the first order in the limit. The energy density has a more complex behavior compared to the

temperature which shifts more uniformly. The density shows a decrease in the rate and then a

sudden increase which appears to be compensation for the small increase in the difference on

the previous time step. This behavior can be attributed to the more complicated nature of the

radiation wave which has contribution from local and non-local radiation, where the material

temperature is a local quantity.
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Figure 3.30 Convergence study at ct=6cm in the L∞ norm for the solution obtained by the multi-
level QD method using the MSS transport scheme on a 10x10 mesh.

The convergence behavior is similar in the L1 and L2 norms. At moments of time where the

temperature and radiation waves are more developed, the convergence of the monotonized hybrid

scheme resembles that of the hybrid scheme even with a large time step. It can be concluded
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that monotonization is only necessary in the early stages of wave development and only for the

higher energy groups.

3.4.2 Modified Simple Corner Balance (MSCB) Method

In this section, similar analysis is presented regarding accuracy, convergence, and shape of

the solution obtained by the multi-level QD method using the MSCB transport scheme. This

analysis reinforces what is seen with the MSS method and shows the performance with a scheme

commonly used for TRT problems. Figures 3.31 and 3.32 compare the solution of the first-order

scheme with that of the hybrid scheme using the MSCB method on a 10x10 mesh. There is

change in the shape of radiation wave at ct = 6 cm that resembles the behavior seen with the

MSS method. This effect does not appear in the comparison at the other two stages of wave

development. Figures 3.33 and 3.34 shows the relative difference in the solution between the

first-order and hybrid scheme on a 10x10 mesh. The largest difference at each stage is at the

outgoing boundary. At ct = 90 cm, equilibrium is reached and the largest relative difference is on

the order of 10−5. Figures 3.35 and 3.36 compare the solution of the monotonized hybrid scheme

with that of the hybrid scheme on a 10x10 mesh. The monotonized hybrid scheme generates a

solution without oscillations. This corroborates the behavior seen with the montonized hybrid

scheme applied to the multi-level QD method with the MSS transport scheme.
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Figure 3.31 Temperature (in keV) computed by the multi-level QD method using the MSCB trans-
port scheme with τ=2×10−3sh using (i) the first order method (top-half) and (ii) the hybrid method
(bottom-half) on a 10x10 mesh.
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Figure 3.32 Total energy density (E×10−13 erg
cm3 ) computed by the multi-level QD method using the

MSCB transport scheme with τ=2×10−3sh using (i) the first order method (top-half) and (ii) the
hybrid method (bottom-half) on a 10x10 mesh.
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Figure 3.33 Relative difference in temperature computed by the multi-level QD method using the
MSCB transport scheme with τ=2×10−3sh using (i) the first-order method (top-half) and (ii) the
hybrid method (bottom-half) on a 10x10 mesh.
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Figure 3.34 Relative difference in total energy density (E×10−13 erg
cm3 ) computed by the multi-level

QD method using the MSCB transport scheme with τ=2×10−3sh using (i) the first-order method
(top-half) and (ii) the hybrid method (bottom-half) on a 10x10 mesh.
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Figure 3.35 Temperature (in keV) computed by the multi-level QD method using the MSCB trans-
port scheme with τ=2×10−3sh using (i) the monotonized hybrid method (top-half) and (ii) the hybrid
method (bottom-half) on a 10x10 mesh.
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Figure 3.36 Total energy density (E×10−13 erg
cm3 ) computed by the multi-level QD method using the

MSCB transport scheme with τ=2×10−3sh using (i) the monotonized hybrid method (top-half) and
(ii) the hybrid method (bottom-half) on a 10x10 mesh.

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1.00 × 10 4

2.30 × 10 4

5.30 × 10 4

1.22 × 10 3

2.81 × 10 3

6.46 × 10 3

1.49 × 10 2

3.42 × 10 2

7.88 × 10 2

1.81 × 10 1

(a) ct = 6 cm

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1.00 × 10 6

2.92 × 10 6

8.53 × 10 6

2.49 × 10 5

7.28 × 10 5

2.13 × 10 4

6.21 × 10 4

1.81 × 10 3

5.30 × 10 3

1.55 × 10 2

(b) ct = 15 cm

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1.00 × 10 7

2.04 × 10 7

4.18 × 10 7

8.53 × 10 7

1.74 × 10 6

3.56 × 10 6

7.28 × 10 6

1.49 × 10 5

3.04 × 10 5

6.21 × 10 5

(c) ct = 90 cm

Figure 3.37 Relative difference in temperature computed by the multi-level QD method using the
MSCB transport scheme with τ=2×10−3sh using (i) the monotonized hybrid method (top-half) and
(ii) the hybrid method (bottom-half) on a 10x10 mesh.
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Figure 3.38 Relative difference in total energy density (E×10−13 erg
cm3 ) computed by the multi-level

QD method using the MSCB transport scheme with τ=2×10−3sh using (i) the monotonized hybrid
method (top-half) and (ii) the hybrid method (bottom-half) on a 10x10 mesh.

The group energy density is examined in group 1 (0 keV ≤ ν ≤ 0.3 keV), group 13 (7 keV

≤ ν ≤ 9 keV), and group 16 (15 keV ≤ ν ≤ 20 keV) for the first-order, hybrid, and monotonized

hybrid schemes using the MSCB method on a 10x10 mesh. The solution generated with the

hybrid scheme is non-monotonic in the intermediate and high energy groups. This behavior

is not seen in the optically thick group as seen in Figure 3.39. The oscillatory behavior is not

as extreme compared to the MSS method. Figure 3.40 and 3.41 shows the monotonization

procedure removes the oscillations in the radiation wave.
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Figure 3.39 Energy Density (in E×10−13 erg
cm3 ) computed with τ=2×10−3sh by the multi-level QD

method in Group 1 using the MSCB transport scheme on a 10x10 mesh.
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Figure 3.40 Energy Density (in E×10−13 erg
cm3 ) computed with τ=2×10−3sh by the multi-level QD

method in Group 13 using the MSCB transport scheme on a 10x10 mesh.
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Figure 3.41 Energy Density (in E×10−13 erg
cm3 ) computed with τ=2×10−3sh by the multi-level QD

method in Group 16 using the MSCB transport scheme on a 10x10 mesh.

Figure 3.42 shows the spatial maps of θg for groups 1, 13, and 16 on a 10x10 mesh. The

monotonization procedure estimates the solution in group 13 and group 16 produce derivatives

of the wrong sign in a significant number of cells at the wave front, but this seldom occurs in

group 1. The behavior in group 1 is similar when the multi-level QD method uses the MSS

method and MSCB method. The L-TRAP scheme predicts the derivative has the wrong sign

only on the boundary with the MSS scheme used for the high-order transport equation and

that the derivative needs restriction at the wave front. The multi-level QD method with MSCB

scheme has less cases of violating the monotonicity condition at the incoming boundary, but has

more cases with the derivative having the wrong sign at the wavefront.
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Figure 3.42 θg computed with τ=2×10−3 sh by the monotonized hybrid scheme at ct = 6 cm using
the MSCB transport scheme.

Figure 3.43 shows the relative difference in the L∞ norm between the solution at τ=2×10−3

sh on a 10x10 mesh and the numerically converged reference solution in time on the same spatial

and angular mesh. The hybrid scheme gives better accuracy for both the material temperature

and radiation energy density. The accuracy of the monotonized hybrid scheme tends to the

first-order method when the change rate is large and to the accuracy of the hybrid scheme as it

approaches equilibrium. Figure 3.44 shows the relative difference in the L2 norm which coincides

with that of the L∞ norm.
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Figure 3.43 The relative difference between the solution at τ=2×10−3sh and the reference solution
in the L∞ norm obtained by the multi-level QD method using the MSCB transport scheme on a 10x10
mesh.
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Figure 3.44 The relative difference between the solution at τ=2×10−3sh and the reference solution
in the L2 norm obtained by the multi-level QD method using the MSCB transport scheme on a 10x10
mesh.

The solution obtained with the hybrid scheme has better accuracy than that of the first-order

scheme. The L-TRAP monotonization procedure does well in removing the oscillatory behavior

produced from using a high-order scheme. It tends to the accuracy of the first-order scheme

when significant monotonization is required and to the the hybrid scheme when the monotonicity

conditions are not violated. These results are shown using different spatial discretizations of the

RT equation: the modified subcell step (MSS) and the modified simple corner balance (MSCB)

method. These methods are shown to perform similarly on different spatial meshes as well.

3.5 Adaptive Monotonization Procedures for the Low-Order

QD Equations

Monotonization procedures reduce the accuracy of high order methods and add more computa-

tional expense. To improve the efficiency of the method, it is beneficial to do monotonization

only when it is absolutely necessary. The L-TRAP scheme checks a monotonicity condition in

every spatial cell in every energy group which is an expensive operation. This procedure tends

to be overly strict in some cases because the quantities used to determine when monotonicity is

needed are approximate. Because of this, it performs monotonization where it is not needed.

The goal of these alternate methods is to see if monotonization can be done with less expense.

There are a few different variants of how the monotonization procedure can be improved.

The results from monotonized hybrid show that monotonzation in groups that are optically
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thick is not needed. One variant is to perform monotonization using the L-TRAP scheme only

in the transparent groups. It is clear which groups are extremely optically thick and thin but it

is more difficult to classify the intermediate groups. Different group structures are tested to see

how they perform. The naming convention of these methods will consist of AMH (Adaptive

Monotonized Hybrid) to signify using the same L-TRAP procedure as the monotonized hybrid

scheme along with the groups that are monotonized. These are the cases that are analyzed:

� AMH 8-17: C-N: Groups 1-7, L-TRAP: Groups 8-17

� AMH 11-17: C-N: Groups 1-10, L-TRAP: Groups 11-17

� AMH 13-15: C-N: Groups 1-12,16,17, L-TRAP: Groups 13-15

Another variant is to use a first-order scheme in the groups that are considered to need

monotonization and then use a second-order method for the remaining groups. This method will

be called Partial Hybrid scheme because it will be the equivalent of the hybrid scheme in some

groups and the equivalent of the first-order scheme in the other groups. The naming convention

will be the same where it will append the groups that switch to a first-order scheme as a form

of monotonization.

� P-Hybrid 8-17: C-N: Groups 1-7, B-E: Groups 8-17

� P-Hybrid 11-17: C-N: Groups 1-10, B-E: Groups 11-17

� P-Hybrid 13-15: C-N: Groups 1-12,16,17, B-E: Groups 13-15

Each grouping has a specific purpose and should highlight where improvements in the mono-

tonization method can be made. Groups 1-7 do not have oscillatory behavior. Monotonization is

not required here at any moment of time. Groups 8-10 are considered intermediate groups and

do not exhibit much oscillatory behavior either. These groups are a significant contribution to

the spectrum where Group 10 is the largest. If monotonization is not done in these groups, it is

expected that there will be a significant improvement in the accuracy. Groups 13-17 are the

optically thin groups and they have significant oscillatory behavior. While Groups 16 and 17

may have the largest effects of non-monotonicity, their contribution to the total energy density is

minimal therefore monotonization in these two groups should have a negligible effect. Therefore,

the final method will just do monotonization in groups with significant oscillatory behavior and

contribution to the total energy density.

Figures 3.45 and 3.46 show the accuracy of each montonized hybrid variant by comparing

the material temperature and total energy density in different norms. These results are obtained

with τ=2×10−3 sh on a 10x10 spatial grid. For the material temperature, the AMH 8-17 case
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shows are very slight improvement compared to the monotonized hybrid scheme. AMH 11-17

shows about half an order of magnitude increase in accuracy over all moments of time. AMH

13-15 shows significant increase in accuracy and is the same order of magnitude as the hybrid

scheme. For the total energy density, the overall trend is similar to what is seen for the material

temperature. One difference is AMH 11-17 has a dip where it significantly decreases the difference

at ct = 9 cm but this does not happen for AMH 13-15 or the hybrid scheme. Another difference

is the AMH 13-15 has consistently better accuracy than the hybrid scheme. Figures 3.47 and

3.48 show the accuracy of each P-Hybrid variant by comparing the material temperature and

total energy density in different norms. These results are obtained with τ=2×10−3 sh on a 10x10

spatial grid. The trends are similar to the montonized hybrid variants. Once again, P-Hybrid

13-15 has better accuracy than the hybrid method. The P-Hybrid scheme is significantly cheaper

than the AMH scheme because it does not need to use the L-TRAP monotonization procedure.
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Figure 3.45 The relative difference between the solution at τ=2×10−3sh and the reference solution
in the L∞ norm obtained by the multi-level QD method using the MSS transport scheme with AMH
on a 10x10 mesh.

61



3 6 9 15 21 30 45 60 90
ct [cm]

10 7

10 6

10 5

10 4

10 3

10 2

10 1
Re

la
tiv

e 
Di

ffe
re

nc
e 

in
 L

2 n
or

m

First Order
Hybrid
Monotonized Hybrid
AMH 8-17
AMH 11-17
AMH 13-15

(a) ||T − Tref ||L2/||Tref ||L2

3 6 9 15 21 30 45 60 90
ct [cm]

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Re
la

tiv
e 

Di
ffe

re
nc

e 
in

 L
2 n

or
m

First Order
Hybrid
Monotonized Hybrid
AMH 8-17
AMH 11-17
AMH 13-15

(b) ||E − Eref ||L2/||Eref ||L2

Figure 3.46 The relative difference between the solution at τ=2×10−3sh and the reference solution
in the L2 norm obtained by the multi-level QD method using the MSS transport scheme with AMH
on a 10x10 mesh.
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Figure 3.47 The relative difference between the solution at τ=2×10−3sh and the reference solution
in the L∞ norm obtained by the multi-level QD method using the MSS transport scheme with P-
Hybrid on a 10x10 mesh.
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Figure 3.48 The relative difference between the solution at τ=2×10−3sh and the reference solution
in the L2 norm obtained by the multi-level QD method using the MSS transport scheme with P-
Hybrid on a 10x10 mesh.

3.6 Analysis of Monotonization Scheme Applied to the Two-

Level P1 Method for TRT Problems

The L-TRAP scheme is applied to the two-level method for solving TRT problems using

multigroup P1 equations instead of the multigroup LOQD equations. This two-level method

consists of (i) multigroup P1 equations and (ii) grey P1 equations. The time-dependent multigroup

low-order QD equations naturally reduce to P1 equations if the QD tensor fg = diag(1
3 ,

1
3).

This also yields f̄ = diag(1
3 ,

1
3). In TRT problems, regions with significant spatial gradients are

common and diffusion theory can result in a nonphysical solution (the energy density times the

speed of light exceeds the flux). Various flux-limiting methods are used to prevent this in most

cases [53]. Figures 3.49 and 3.50 show the material temperature and the total energy density

obtained by the multigroup P1 equations approximated with the B-E scheme using τ=2×10−3

on a 10x10 mesh. The solution does not exhibit any non-physical behavior. Because these are

grey quantities, issues with flux limiting may not be apparent in the solution. These types of

issues are most likely to occur in the high-energy groups.
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(c) ct = 90 cm

Figure 3.49 Temperature (in keV) computed by the two-level P1 method using the backward-Euler
scheme with τ=2×10−3sh on a 10x10 mesh.
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Figure 3.50 Total energy density (E×10−13 erg
cm3 ) computed by the two-level P1 method using the

backward-Euler scheme with τ=2×10−3sh on a 10x10 mesh.

Figures 3.51 and 3.52 show the solution using a C-N time discretization with τ=2×10−3 sh

on a 10x10 mesh. The radiation wave at ct = 6 cm is nonmonotonic. Although this issue can

occur without flux limiting, this can be attributed to the temporal discretization because the

non-physical behavior did not appear when the equations were discretized with a first-order

scheme. There is a slight difference in the radiation wave at ct = 15 cm compared to solution

obtained with the B-E scheme, but there is not oscillatory behavior. Figures 3.53 and 3.54 show

the solution using the L-TRAP scheme with τ=2×10−3 on a 10x10 mesh. This method generates

a non-oscillatory radiation wave at ct = 6 cm where C-N did not. The solution closely resembles

the one calculated using the B-E scheme. Any differences in the solution between the methods

appear in the radiation wave; the behavior of the temperature wave is immune to the temporal

discretization.
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Figure 3.51 Temperature (in keV) computed by the two-level P1 methods using the Crank-Nicolson
scheme with τ=2×10−3sh on a 10x10 mesh.
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Figure 3.52 Total energy density (E×10−13 erg
cm3 ) computed by the two-level P1 method using the

Crank-Nicolson scheme with τ=2×10−3sh on a 10x10 mesh.
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Figure 3.53 Temperature (in keV) computed by the two-level P1 method using the L-TRAP scheme
with τ=2×10−3sh on a 10x10 mesh.
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Figure 3.54 Total energy density (E×10−13 erg
cm3 ) computed by the two-level P1 method using the

L-TRAP scheme with τ=2×10−3sh (top-half) on a 10x10 mesh.

Figure 3.55 shows the convergence in time of the material temperature and total energy

density for the P1 equations on a 10x10 mesh. Backward Euler converges with the first order and

C-N converges with the second order. The solution with the L-TRAP scheme has two distinct

convergence rates: for the first few times steps it converges linearly and then when the time step

is small enough, it converges quadratically.
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Figure 3.55 Convergence study at ct=6cm in the L∞ norm for the two-level P1 method on a 10x10
mesh.
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CHAPTER

4

APPROXIMATE MODELS OF TIME

DEPENDENCE IN MULTI-LEVEL QD

METHODS

In this chapter, approximate models of time dependence in the RT equation are analyzed.

The RT equation in α-approximation is analyzed and a new variant of α-approximation is

developed. Results show that α-approximation does well in describing the evolution of radiation

and temperature waves. Other approximate models are formulated and analyzed based on

approximating the intensity from the previous time step. The new variant performs similarly to

the original formulation of α-approximation. A part of the results presented in this chapter are

published in [38].

4.1 Formulation of Approximate Models of Time Dependence

in the RT Equation

The QD method exhibits stable convergence with varying discretization methods for the high-

order and low-order problems. This is also the case when using approximate models rather that

discretization methods. The RT equation is one of high-dimensionality and this requires some

amount of storage of the solution from the previous time step. To get an idea of the storage

of the information from the previous time step, the dimensionality of the high-order problem
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and low-order problem is compared. For the low-order problem, the solution depends on space

and energy group. If there are X number of cells and G number of groups, there will be X * G

unknowns. The solution to the high-order problem will have the number of unknowns multiplied

by the number of directions M. This increases the number of unknowns by, at least, an order of

magnitude. Because of this property of the RT equation, it is desirable to solve the problem

without storing this much data if it is possible to still obtain a reasonably accurate solution. The

RT equation in α-approximation [11, 17, 18, 54] is studied for this class of problem. In addition,

other approximate models are formulated such that the complete vector of the high-dimensional

transport solution from previous time step does not need to be stored.

4.1.1 RT Equation in α-approximation

One of the existing approaches for treating the time dependence of the RT equation is the

α-approximation [54]. The multigroup RT equation introduced in Chapter 2 is,

1

c

∂Ig,m(rrr, t)

∂t
+ ΩΩΩm · ∇∇∇Ig,m(rrr, t) + κE,g(T )Ig,m(rrr, t) = κpl,g(T )Bg(T ) . (4.1)

This approximation assumes that the high-order solution changes exponentially over a time step

in the following form:

Ig,m(rrr, t) = Ĩg,m(rrr)eαg(rrr)t , (4.2)

where αg is the rate of change in group g. This is substituted in the RT equation which lead to

the following approximation of the time derivative,

∂Ig,m(rrr, t)

∂t
≈ αg(rrr)Ig,m(rrr, t) . (4.3)

αg can be approximated using the solution from the low-order problem such that,

αg(rrr, t) =
1

Eg(rrr, t)

∂Eg(rrr, t)

∂t
=
∂ lnEg(rrr, t)

∂t
. (4.4)

Eg is the group energy density obtained by solving the MLOQD equations. With this approx-

imation, αg depends solely on the low-order solution and the previous intensity is no longer

required. The time-dependent high-order RT equation with the α-approximation takes the form

of the steady-state equation with the modified opacity,

ΩΩΩm · ∇∇∇Ing,m(rrr) +

(
κnE,g(T ) +

αng (rrr)

c

)
Ing,m(rrr) = κnpl,g(T )Bn

g (T ). (4.5)
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Equation (4.5) is discretized in angle and frequency at the current level in time, n. For the RT

equation in α-approximation, the effective total opacity is defined as,

κ̃(rrr) = κnE,g(T ) +
αng (rrr)

c
, (4.6)

and the effective source term is,

S(rrr) = κnpl,g(T )Bn
g (T ). (4.7)

This can be compared to Equation (2.43) which is the RT equation discretized in time using

the B-E scheme. Note that the effective source term is just the Planckian source and no longer

depends on the intensity.

4.1.2 RT Equation in Modified α-approximation

While the original formulation of α-approximation is general, the modified α-approxmiation

is based off the backward-Euler time discretization of the RT equation. The multigroup RT

equation with B-E temporal discretization introduced in Chapter 2 is,

1

c

Ing,m(rrr)− In−1
g,m (rrr)

τn
+ ΩΩΩm · ∇∇∇Ing,m(rrr) + κnE,g(T )Ing,m(rrr) = κnpl,g(T )Bn

g (T ), (4.8)

Here it is assumed that the group intensity varies exponentially with during a time step such

that,

Ing,m(rrr) = In−1
g,m (rrr)eα

n
g (rrr)τn , (4.9)

Solving for the intensity on the previous time step, the approximation is,

In−1
g,m (rrr) = Ing,m(rrr)e−α

n
g (rrr)τn . (4.10)

Substituting this approximation back into the RT equation gives us,

Ing,m(rrr)

cτn

(
1− e−αng (rrr)τn

)
+ ΩΩΩm · ∇∇∇Ing,m(rrr) + κnE,g(T )Ing,m(rrr) = κnpl,g(T )Bn

g (T ), (4.11)

and once again this equation is rearranged such that it is in the form of a steady-state equation,

ΩΩΩm · ∇∇∇Ing,m(rrr) +

(
κnE,g(T ) +

1

cτn

(
1− e−αng (rrr)τn

))
Ing,m(rrr) = κnpl,g(T )Bn

g (T ). (4.12)

αg is calculated the same way as the α-approximation, namely, using Equation (4.4). The

effective source term is the same as in the α-approximation, but there is a difference in the
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effective opacity term. Note that with this approximation, there is dependence on the time step;

whereas, α-approximation does not.

4.1.3 Model based on P0-approximation of the Intensity

Another approach is to use models to approximate the intensity at the previous time step

based on the RT equation discretized temporally with the B-E scheme (Equation (4.8)). The

P0-approximation assumes the group intensity from the previous time step is isotropic hence,

In−1
g,m (rrr) =

c

4π
En−1
g (rrr). (4.13)

Substituting this approximation into Equation (4.8) gives us,

1

c

Ing,m(rrr)− c
4πE

n−1
g (rrr)

τn
+ ΩΩΩm · ∇∇∇Ing,m(rrr) + κnE,g(T )Ing,m(rrr) = κnpl,g(T )Bn

g (T ), (4.14)

This equation is rearranged to take the form a steady-state one which is,

ΩΩΩm · ∇∇∇Ing,m(rrr) +

(
κnE,g(T ) +

1

cτn

)
Ing,m(rrr) = κnpl,g(T )Bn

g (T ) +
1

4πτn
En−1
g (rrr). (4.15)

For the RT equation with the P0-approximation of the previous intensity, the effective total

opacity is defined as,

κ̃(rrr) = κnE,g(T ) +
1

cτn
, (4.16)

and the effective source term is,

S(rrr) = κnpl,g(T )Bn
g (T ) +

1

4πτn
En−1
g (rrr). (4.17)

The effective opacity is the same as the RT equation with B-E discretization. The effective

source has an additional term from the previous time step. Because the cell-averaged energy

density is used to approximate the intensity, the same smearing effect is expected as discussed

in Chapter 3.

4.1.4 Model based on Minerbo Approximation of the Intensity

The Minerbo closure [55], also known as the maximum entropy closure, is used to approximate

the intensity from the previous time step. This technique is from statistical mechanics and

communication theory. It is a two moment approximation that describes the intensity by finding

its most likely form consistent with these angular moments. The most likely distribution is

the one that maximizes entropy [55–57]. The group intensity from the previous time step is
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approximated such that,

In−1
g (rrr,ΩΩΩ) ≈ Ĩn−1

g (rrr,ΩΩΩ) = an−1
g (rrr)ebbb

n−1(rrr)·ΩΩΩ. (4.18)

The conditions of an−1
g (rrr) and bbb(rrr) are defined such that,

1

c

∫
4π
Ĩn−1
g (rrr,ΩΩΩ)dΩ = En−1

g , (4.19)

∫
4π

ΩΩΩĨn−1
g (rrr,ΩΩΩ)dΩ = FFFn−1

g , (4.20)

which leads to,

an−1
g (rrr)

∫
4π
ebbb
n−1(rrr)·ΩΩΩdΩ = cEn−1

g , (4.21)

an−1
g (rrr)

∫
4π

ΩΩΩebbb
n−1(rrr)·ΩΩΩdΩ = FFFn−1

g . (4.22)

Using these relationships, and dropping the index for time and group for simplicity, bbb is related

to E and FFF which gives,
FFF

cE
=
bbb

b

(
coth b− 1

b

)
, (4.23)

where b = |bbb| and a is defined as,

a =
cEb

4π sinh b
. (4.24)

This closure is nonlinear and the equations cannot be solved for analytically. A robust nonlinear

method is required to solve the equations. An additional beneficial feature is the approximate

intensity is guaranteed to be positive. The RT equation with the Minerbo approximation of the

previous intensity is,

ΩΩΩm · ∇∇∇Ing,m(rrr) +

(
κnE,g(T ) +

1

cτn

)
Ing,m(rrr) = κnpl,g(T )Bn

g (T ) +
an−1
g (rrr)

cτn
ebbb
n−1(rrr)·ΩΩΩ. (4.25)

4.2 Truncation Error Analysis of RT Equation in α-approximation

Truncation error analysis is done to analyze the accuracy and behavior of each scheme. It is

a means of comparing the expected behavior and asymptotic properties of each method as a

compliment to the numerical results. This is done for the RT equation discretized in time and

for some of the approximate models of time dependence.
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4.2.1 RT Equation with Backward-Euler Approximation

First, truncation error analysis is performed for the B-E scheme in time. The RT equation

approximated with this method is,

1

c

Ing − In−1
g

τn
+ ΩΩΩ · ∇∇∇Ing + κnE,gIng = κnpl,gBn

g . (4.26)

The previous intensity, In−1
g is expanded about t = tn which leads to,

In−1
g = Ing − τnInt,g +

τ2

2
Intt,g +O(τ3), (4.27)

where the notation for the derivatives are defined as,

Int,g ≡
∂Ig
∂t

, Intt,g ≡
∂2Ig
∂t2

. (4.28)

Substituting the expansion back into the equation gives the modified equation,

1

cτn

(
τnInt,g −

τ2

2
Intt,g +O(τ3)

)
+ ΩΩΩ · ∇∇∇Ing + κnE,gIng = κnpl,gBn

g , (4.29)

which simplifies to,

1

c
Int,g + ΩΩΩ · ∇∇∇Ing + κnE,gIng − κnpl,gBn

g =
τn

2c
Intt,g +O(τ2), (4.30)

It is well known that this is a first-order accurate scheme and this is seen with the leading order

error term. This modified equation is compared to the RT equation with approximate models of

time dependence.

4.2.2 RT Equation in α-approximation

Truncation error analysis is done for the RT equation in α-approximation. α-approximation

is applied for the current time step (tn−1 ≤ t ≤ tn) and the RT equation is evaluated at the

current moment of time to get,

ΩΩΩ · ∇Ing +

(
κnE,g +

αng
c

)
Ing = κnpl,gBn

g . (4.31)

The approximate rate αng is equal to,

αng =
1

τn
ln

(
Eng

En−1
g

)
. (4.32)

The expansion of En−1
g about t = tn is the following,
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En−1
g = Eng − τnEnt,g +

τ2

2
Entt,g +O(τ3). (4.33)

The Taylor series expansion of αng results in,

αng =
Ent,g
Eng
− τn

(
Entt,g
Eng
−
(
Ent,g
Eng

)2
)

+O(τ2), (4.34)

which gives the modified equation,

1

c

Ing
Eng

Ent,g + ΩΩΩ · ∇Ing + κnE,gIng − κnpl,gBn
g =

τn

2c

(
Entt,g
Eng
−
(
Ent,g
Eng

)2
)
Ing +O(τ2). (4.35)

Compared to the B-E scheme, this method has some differences in the truncation errors. The

leading order term for the B-E scheme is τn

2c I
n
tt,g and for the RT equation in α-approximation

it is τn

2c

(
Entt,g
Eng
−
(
Ent,g
Eng

)2
)
Ing . The essential difference is the factor at the intensity in the first

term, namely,
Ent,g
Eng

due to approximate change rate. As the change rate goes to zero, the RT

equation in α-approximation will tend to the same steady state equation as the B-E method.

When the change rate is large, it is expected that there will be some difference between the two

methods. In addition, the solution is expected to deviate from that of the B-E scheme when the

intensity is highly anisotropic. Since αng is calculated using the energy density, these rates do not

take the anisotropy into account. These methods will also have a discrepancy in the solution

with refinement in time when the change rate is large.

4.2.3 RT Equation in Modified α-approximation

Truncation error analysis is done for the RT equation in modified α-approximation. Modified

α-approximation is applied to the RT equation and it is evaluated at the current moment of

time to get,

ΩΩΩ · ∇Ing +

(
κnE,g +

1

cτn
(
1− e−αng τn

))
Ing = κnpl,gBn

g . (4.36)

Based on the defintion of αg in Equation (4.32),

e−α
n
g τ
n

=
En−1
g

Eng
, (4.37)
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thus giving the equation,

ΩΩΩ · ∇Ing +

(
κnE,g +

1

cτn

(
1−

Eng

En−1
g

))
Ing = κnpl,gBn

g . (4.38)

The expression for the expansion of
En−1
g

Eng
about t = tn is,

En−1
g

Eng
= 1− τn

[
Ent,g
Eng
− τn

2

Entt,g
Eng

+O(τ2)

]
, (4.39)

and substituting this into the RT equation gives,

ΩΩΩ · ∇Ing +

(
κnE,g +

1

c

(
Ent,g
Eng
− τn

2

Entt,g
Eng

+O(τ2)

))
Ing = κnpl,gBn

g . (4.40)

The terms are rearranged and the modified equation of the RT equation in modified α-

approximation is,

1

c

Ing
Eng

Ent,g + ΩΩΩ · ∇Ing + κnE,gIng − κnpl,gBn
g =

τn

2c

Ing
Eng

Entt,g +O(τ2). (4.41)

The leading order truncation error term differs from the one of the RT equation in α-approximation.

As τn goes to 0, the solution obtained from this method and α-approximation will tend to the

solution of the same approximate equation.

4.2.4 Model based on P0-approximation of the Intensity

The same can be done for the RT equation with the P0-approximation of the previous intensity.

En−1
g is expanded about t = tn as show in Equation (4.33). Substituting the expansion into the

RT equation with the P0-approximation gives the modified equation,

1

c
Ent,g + ΩΩΩ · ∇Ing + κnE,gIng − κnpl,gBn

g +
1

cτn

(
Ing −

1

4π
Eng

)
=
τn

2c
Entt,g +O(τ2). (4.42)

When the change rate is large, the solutions will not match. There are a few extra terms with

time derivatives that are not seen in the other methods. The modified equation shows that this

method will only tend to the same solution as the B-E scheme when the intensity is isotropic

and the change rate is small. Even at equilibrium, there will be a discrepancy unless the intensity

is isotropic.

74



4.3 Numerical Results

The approximate models of time dependence are analyzed with numerical tests. The Fleck and

Cummings test case is used for this analysis.

4.3.1 RT Equation in α-approximation

The solution of obtained using the first-order scheme and the RT equation in α-approximation

are analyzed. The MSS transport scheme is the spatial discretization method. This is done

for a 10x10 spatial mesh and uses quadruple range quadrature set with 36 angles per octant.

Note that both methods have the same spatial and temporal discretization for the low-order

problem. Figures 4.1 and 4.3 show the temperature and radiation wave for three stages of wave

development. The RT equation in α-approximation does well in describing the evolution of the

wave for each moment of time. Figures 4.2 and 4.4 show that the largest difference is at ct

= 6cm. This is expected because the change rate is large due to the fast changing processes

near the incoming radiation. Truncation error analysis shows that there will be a difference

in the solution when this occurs. The spatial maps of the relative difference also indicate that

the largest difference occurs at the boundary. Since radiation is anisotropic in this subdomain,

α-approximation will deviate from the first-order scheme.
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Figure 4.1 Temperature (in keV) computed with τ=2×10−3sh by the multi-level QD method using
(i) the first-order scheme (top half) and (ii) RT equation in α-approximation (bottom half).
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Figure 4.2 Relative difference in temperature computed with τ=2×10−3 sh using the RT equation
in the α-approximation and the first-order scheme.
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Figure 4.3 Energy density (E×10−13 erg
cm3 ) computed with τ=2×10−3 sh by the multi-level QD

method using (i) the first-order scheme (top half) and (ii) RT equation in α-approximation (bottom
half).
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Figure 4.4 Relative difference in the energy density computed with τ=2×10−3 sh using the RT
equation in the α-approximation and the first-order scheme.
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The differences are quantified in a few norms for temperature in Table 4.5 and for energy

density in Table 4.6. The solution obtained with the first-order scheme is considered the reference.

The difference is defined to be ||Eij − Eref,ij ||p and the relative difference to be
||Eij−Eref,ij ||p
||Eref,ij ||p

where p = L∞, L2. For the L2 norm, the results show a difference larger than that of the infinity

norm in some cases. This is due to the area of test problem which is 0.16 cm2. They show

that maximum relative difference for the temperature is 5.03× 10−3 and for the total density

is 1.21 × 10−1. As equilibrium is approached, the solutions for by methods tend to the same

discrete steady state solution.

Table 4.1 Difference in Temperature computed by the multi-level QD method with the RT equation
in α-approximation and the first-order scheme in different norms.

ct L∞ L2 Rel L∞ Rel L2

6cm 3.32E-03 4.12E-03 5.03E-03 3.73E-03

15cm 2.80E-03 3.18E-03 5.17E-03 2.55E-03

90cm 2.17E-05 2.40E-05 5.00E-05 1.82E-05

Table 4.2 Difference in Total Energy Density computed by the multi-level QD method with the RT
equation in α-approximation and the first-order scheme in different norms.

ct L∞ L2 Rel L∞ Rel L2

6cm 7.83E-02 1.14E-02 1.12E-01 1.12E-02

15cm 4.64E-02 5.58E-03 7.43E-02 5.27E-03

90cm 2.17E-05 2.42E-06 5.41E-04 2.99E-05

Figures 4.5 shows the relative difference in temperature between these two methods with

refinement in time. Figure 4.6 shows the same for total energy density. The relative difference in

both temeperature and density tend to zero as equilibrium is approached. In the early stages

of wave development, there is an increase in relative difference with refinement in time. This

behavior can be explain with the modified equations. As τ goes to zero, the solutions for the

two methods will differ when the change rate is large. Therefore the solutions will not converge

with refinement in time for this stage of development.
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Figure 4.5 The relative difference in temperature in L∞ and L2 norm.
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Figure 4.6 The relative difference in energy density in L∞ and L2 norm.

4.3.2 RT Equation in Modified α-approximation

The RT equation in modified α-approximation is analyzed as well. The MSS transport scheme is

used with a 10x10 spatial mesh and quadruple range quadrature set. The temperature and total

energy density are shown in Figures 4.7 and 4.9 for the 3 stages of wave development. The relative

differences in temperature and density are shown in Figures 4.8 and 4.10, respectively. The

results show that the modified α-approximation gives a similar solution as the α-approximation.

Minor differences can be seen in the plots of the relative difference but it exhibits the same

general features regarding large change rates and transport effects.
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Figure 4.7 Temperature (in keV) computed with τ=2×10−3sh by the multi-level QD method using
(i) the first-order scheme (top half) and (ii) RT equation in modified α-approximation (bottom half).
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Figure 4.8 Relative difference in temperature computed with τ=2×10−3 sh by the multi-level QD
method using the RT equation in modified α-approximation and the first-order scheme.
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Figure 4.9 Energy density (E×10−13 erg
cm3 ) computed with τ=2×10−3 sh by the multi-level QD

method using (i) the first-order scheme (top half) and (ii) RT equation in modified α-approximation
(bottom half).
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Figure 4.10 Relative difference in the energy density computed with τ=2×10−3 sh by the multi-
level QD method using the RT equation in the modified α-approximation and the first-order scheme.

In Tables 4.3 and 4.4, the similarities in the errors at each moment of time can be seen. This

shows that the modified α-approximation performs similarly to α-approximation at all stages of

wave evolution.

Table 4.3 Difference in Temperature computed by the multi-level QD method using the RT equation
in the modified α-approximation and the first-order scheme in different norms

ct L∞ L2 Rel L∞ Rel L2

6cm 3.73E-03 4.64E-03 5.64E-03 4.18E-03

15cm 2.88E-03 3.27E-03 5.36E-03 2.65E-03

90cm 2.17E-05 2.40E-05 4.99E-05 1.82E-05

Table 4.4 Difference in Total Energy Density computed by the multi-level QD method using the RT
equation in the modified α-approximation and the first-order scheme in different norms.

ct L∞ L2 Rel L∞ Rel L2

6cm 8.12E-02 1.18E-02 1.18E-01 1.17E-02

15cm 4.73E-02 5.69E-03 7.57E-02 5.37E-03

90cm 2.17E-05 2.42E-06 5.41E-04 2.99E-05

4.3.3 Model based on P0-approximation of the Intensity

Numerical results are presented with the MSS transport scheme on a 10x10 spatial mesh and

using quadruple range quadrature set. The temperature and total energy density obtained by

the QD method with (i) the RT equation discretized in time and (ii) the RT equation with the

P0-approximation are shown and compared in Figures 4.11 and 4.13. The relative difference in

temperature and in total density are shown in Figures 4.12 and 4.14, respectively.
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Figure 4.11 Temperature (in keV) computed with τ=2×10−3sh by the QD method using (i) the
first-order scheme (top half) and (ii) RT equation with P0 approximation (bottom half).
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Figure 4.12 Relative difference in temperature computed with τ=2×10−3 sh by the multi-level QD
method using the RT equation with P0 approximation and the first-order scheme.
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Figure 4.13 Energy density (E×10−13 erg
cm3 ) computed with τ=2×10−3 sh by the QD method using

(i) the first-order scheme (top half) and (ii) RT equation with P0 approximation (bottom half).
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Figure 4.14 Relative difference in the energy density computed with τ=2×10−3 sh by the multi-
level QD method using the RT equation with P0 approximation and the first-order scheme.

The P0-approximation introduces a significant smearing effect on the wave front. Also note

that the steady state solution is different between the two methods which was shown in the

analysis above. From the relative difference maps, it is clear that these methods do not tend

to the same steady state solution. In each stage, the largest error is near the boundary where

transport effects are largest for this test. The results shown in Tables 4.5 and 4.6 confirm this.

At ct=90cm, the difference is large in all norms, most significantly for the total energy density.

When looking at the difference in the energy density for each group at ct = 90 cm, the most

optically thick group has the smallest maximum difference of 6.01× 10−5. As the groups become

more optically thin, the difference increases such that the high energy groups have not converged

to the same discrete steady state solution. P0-approximation only does well in diffusive regions,

as expected.

Table 4.5 Difference in the Temperature computed by the multi-level QD method with the RT equa-
tion in P0 approximation and the first-order scheme in different norms.

ct L∞ L2 Rel L∞ Rel L2

6cm 1.15E-02 1.43E-02 2.26E-02 1.67E-02

15cm 3.21E-02 3.64E-02 5.44E-02 2.69E-02

90cm 2.83E-02 3.13E-02 5.23E-02 1.91E-02

Table 4.6 Difference in the Total Energy Density computed by the multi-level QD method with the
RT equation in P0 approximation and the first-order scheme in different norms.

ct L∞ L2 Rel L∞ Rel L2

6cm 4.76E-01 6.93E-02 6.43E-01 6.39E-02

15cm 9.50E-01 1.14E-01 1.22E+00 8.61E-02

90cm 2.83E-02 3.15E-03 1.85E+00 1.02E-01
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4.3.4 Model based on Minerbo Approximation of the Intensity

For numerical results, the temperature and total energy density obtained by the QD method

with (i) the RT equation discretized in time and (ii) the RT equation with the Minerbo closure

are shown and compared in Figures 4.15 and 4.17. The relative difference in temperature and

the relative difference in total density are shown in Figures 4.16 and 4.18, respectively. At ct = 6

cm, the radiation wave with the Minerbo approximation has a slightly more smeared wave front.

This effect is less notable at the more developed stages, but they still exhibit this feature. The

largest differences are seen at the boundaries where there are significant transport effects. This

is the case for both temperature and energy density.
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Figure 4.15 Temperature (in keV) computed with τ=2×10−3sh by the QD method using (i) the
first-order scheme (top half) and (ii) RT equation with the Minerbo closure (bottom half).
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Figure 4.16 Relative difference in temperature computed with τ=2×10−3 sh by the multi-level QD
method using the RT equation with the Minerbo closure and the first-order scheme.
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Figure 4.17 Energy density (E×10−13 erg
cm3 ) computed with τ=2×10−3 sh by the QD method using

(i) the first-order scheme (top half) and (ii) RT equation with the Minerbo closure (bottom half).
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Figure 4.18 Relative difference in the energy density computed with τ=2×10−3 sh by the multi-
level QD method using the RT equation with the Minerbo closure and the first-order scheme.

The solution obtained with the RT equation with the Minerbo approximation is compared

to the solution calculated with the first-order scheme. The temperature and density does not

tend to the same solution at equilibrium as the time-dependent method. The density is a couple

orders of magnitude closer to the solution of the first-order scheme relative to the difference

between the P0-based approximation and the first-order scheme.

Table 4.7 Difference in the Temperature computed by the multi-level QD method using the RT
equation with Minerbo closure and the first-order scheme in different norms.

ct L∞ L2 Rel L∞ Rel L2

6cm 1.59E-02 1.97E-02 1.77E-02 1.32E-02

15cm 2.63E-02 2.98E-02 3.53E-02 1.74E-02

90cm 1.31E-02 1.44E-02 2.94E-02 1.07E-02
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Table 4.8 Difference in the Total Energy Density computed by the multi-level QD method using the
RT equation with Minerbo closure and the first-order scheme in different norms.

ct L∞ L2 Rel L∞ Rel L2

6cm 2.77E-01 4.03E-02 3.55E-01 3.53E-02

15cm 3.40E-01 4.09E-02 5.50E-01 3.90E-02

90cm 3.62E-02 4.03E-02 6.23E-01 3.44E-02
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CHAPTER

5

ANALYSIS OF ITERATIONS OF THE

MULTI-LEVEL QD METHOD

An important aspect of methods development is optimizing the efficiency of the algorithm. A

good metric to compare this aspect is by the number of iterations. Assuming each method

does the same amount of computational work per iteration, one that requires less iterations is

more efficient. The multilevel QD method consists of transport (outer) iterations, multigroup

iterations, and grey (inner) iterations. In this chapter, the transport and multigroup iterations

are analyzed for the first-order, hybrid, and monotonized hybrid scheme, as well as the MLQD

method with RT in α-approximation.

5.1 Iteration Schemes for Multi-Level QD Methods

In Chapter 2, the algorithm for the first-order scheme is presented. Now, the iterative scheme

for other multilevel QD methods are described to highlight the differences. The hybrid scheme

does not change with regards to the algorithm besides using a different temporal discretization

method for the low-order equations. Algorithm 3 shows how the MLQD equations are solved

for the monotonized-hybrid scheme. There is no difference in the methodology for the high-

order problem. In the low-order problem, there is an extra stage of calculations which can be

interpreted as a predictor step. The weights, θg, that define the temporal discretization depend
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on the solution from this stage. This adds extra nonlinearity to the problem in comparison to

the weights of the B-E and C-N schemes which are independent of the solution.

Algorithm 3: Iteration scheme for solving multi-level system of QD equations with

the monotonized-hybrid method.

while tn < tend do

while||∆T (s)||>εT||T (s)||+ε∗T ,||∆E(s)||>εE||E(s)||+ε∗E do

• Transport iteration: given T (s);

s = 0: T (0) = Tn−1, f
(1/2)
g,βγ = fn−1

g,βγ ;

if s > 0 then

Solve time-dependent multigroup RT eqs. for I
(s+1/2)
g ;

Compute group QD factors f
(s+1/2)
g,βγ ;

end

while ||∆T (l,s)|| > ε̃T ||T (l,s)||+ ε̃∗T , ||∆E(l,s)|| > ε̃E ||E(l,s)||+ ε̃∗E do

• Multigroup low-order iteration: given T (l,s) and f
(s+1/2)
g,βγ ;

Solve MLOQD eqs. with θ = 1 for E
(l+1/2,s)
g and FFF (l+1/2,s)

g ;

Compute θ
(l,s)
g using L-TRAP procedure;

Solve MLOQD eqs. with θ = θ
(l,s)
g for E

(l+1,s)
g and FFF (l+1,s)

g ;

Compute grey opacities κ̄(l+1,s)
E , κ̄(l+1,s)

ros and factors f̄
(l+1,s+1/2)
βγ ;

• Grey low-order iteration: solve GLOQD eqs. coupled with EB eq. for

E(l+1,s), FFF (l+1,s), and T (l+1,s)

end

T (s+1) ← T (l+1,s);

end

Tn ← T (s+1);

end

Algorithm 4 displays the iteration method when solving the MLQD equations with the

RT equation in α-approximation. Compared to the Algorithm 1, there is no difference in the

low-order equations. An extra calculation is required to compute the approximate rates, αg,

for each outer iteration. Since αg is dependent on the group energy density from the low-order

problem, extra nonlinearity is introduced in this method.
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Algorithm 4: Iteration scheme for solving multi-level system of QD equations with

RT equation in α-approximation.

while tn < tend do

while||∆T (s)||>εT||T (s)||+ε∗T ,||∆E(s)||>εE||E(s)||+ε∗E do

• Transport iteration: given T (s);

s = 0: T (0) = T j−1, f
(1/2)
g,βγ = fn−1

g,βγ ;

if s > 0 then

Compute α
(s)
g with E

(n−1)
g and E

(n,s)
g ;

Solve multigroup RT eqs. with α-approximation for I
(s+1/2)
g ;

Compute group QD factors f
(s+1/2)
g,βγ ;

end

while ||∆T (l,s)|| > ε̃T ||T (l,s)||+ ε̃∗T , ||∆E(l,s)|| > ε̃E ||E(l,s)||+ ε̃∗E do

• Multigroup low-order iteration: given T (l,s) and f
(s+1/2)
g,βγ ;

Solve MLOQD eqs. for E
(l+1,s)
g and FFF (l+1,s)

g ;

Compute grey opacities κ̄(l+1,s)
E , κ̄(l+1,s)

ros and factors f̄
(l+1,s+1/2)
βγ ;

• Grey low-order iteration: solve GLOQD eqs. coupled with EB eq. for

E(l+1,s), FFF (l+1,s), and T (l+1,s)

end

T (s+1) ← T (l+1,s);

end

Tn ← T (s+1);

end

5.2 Analysis of Transport Iterations

First, the transport iterations for each MLDQ method are analyzed. Figure 5.1 shows the number

of transport iterations for all considered methods as a function of time for Fleck and Cummings

test case with τ=2× 10−3 sh using the modified subcell step (MSS) method. This is done for

a 10x10 spatial mesh, 17 groups, and quadruple range quadrature set [52]. The parameters of

convergence criteria for transport iterations are εT =εE =10−7 and for the multigroup low-order

iterations are ε̃T = ε̃E =10−8 .

The number of transport iterations per time step is small in case of the first-order scheme.

On the first time there is seven transport iterations and by ct = 10 cm there is no more than

three. The hybrid scheme has a even fewer number of transport iterations with no more than

three after the first time step. The monotonized hybrid scheme requires more iterations on
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certain time steps than the first and hybrid scheme. There is also increase in number of iterations

at some instants; whereas, the first order and hybrid schemes have a steady decrease in the

number of transport iterations over time. The reason for the increase in iterations is that the

monotonization method introduces extra nonlinearity to the problem. The procedure changes

the weights of the temporal discretization based on criteria of a local monotonicity condition

that depends on the solution. The behavior in the number of transport iterations is attributed

to the non-smooth nature of the L-TRAP algorithm. The monotonization algorithm is discrete

in nature. A slight change in the solution can impact which branch of the algorithm is used

which can lead to an artificial non-convergence. This occurs rarely and with negligible impact

to the solution, but does affect convergence of iterations. The number of transports iterations

with the RT equation in α-approximation compared to the first-order scheme is twice as much

for most moments of time. Near equilibrium, the number of transport iterations are the same.

The rates αg in the α-approximation are computed from the solution of the time-dependent

MLOQD equations; thus, this method adds nonlinearity to the iteration process. The number

of transport iterations does decrease montonically over time like the first-order scheme. The

observed performance of transport iterations is consistent with prediction of stability analysis of

the multi-level QD method for TRT problems [21].
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Figure 5.1 Number of transport iterations for the MLQD method discretized with first-order, hy-
brid, and monotonized hybrid temporal schemes, and the MLQD method with first-order discretiza-
tion in time of the low-order equations and RT equation in α-approximation.
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5.3 Analysis of Multigroup Low-Order Iterations

To continue, the multigroup iterations for each MLDQ method are analyzed. Figure 5.2 shows

the total number of multigroup iterations on a time step. The hybrid scheme has the least

number of iterations. In the early stage of wave development, α-approximation has the most

multigroup iterations as a result of it having the most transport iterations. The monotonized

hybrid scheme has spikes in the iterations that correspond to the time steps with spikes in

transport iterations.
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Figure 5.2 Number of multigroup iterations for the MLQD method discretized with first-order,
hybrid, and monotonized hybrid temporal schemes, and the MLQD method with first-order discretiza-
tion in time of the low-order equations and RT equation in α-approximation.

Figure 5.3 shows the average number of multigroup iterations per transport iteration. The RT

equation in α-approximation has about the same average number of iterations as the first-order

and hybrid scheme. The montonized hybrid scheme is close to the first-order scheme until ct =

30 cm; afterwards, the number of average multigroup iterations spikes for certain time steps.

This is due to the non-smoothness of the L-TRAP algorithm. A modification to the algorithm

reduces this effect. Analysis shows the weights of the temporal discretization converge after a

few multigroup low-order iterations; any significant change in a weight on successive multigroup

iterations occurs due to an alternating selection of paths of the L-TRAP algorithm.
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Figure 5.3 Number of multigroup iterations per transport iteration for the MLQD method dis-
cretized with first-order, hybrid, and monotonized hybrid temporal schemes, and the MLQD method
with first-order discretization in time of the low-order equations and RT equation in α-approximation.

After a specified number of multigroup iterations, the weights on successive multigroup

iterations are compared. If they have converged, they are used. If they have not converged, a

conservative approach is taken and the weight is changed to 1. Hereafter we refer to this as

modified monotonization. Since this rarely occurs (less than 1 percent), this does not have an

effect on the solution but it significantly reduces the number of iterations. Figure 5.4 shows the

total number of multigroup iterations where the montonized-hybrd scheme is using the modified

monotonization procedure. There is a 50% decrease in iterations on the time steps that exhibit

the most drastic increases. There are still more multigroup iterations in comparison to the other

MLQD methods, but there is a significant decrease compared to the method with the original

L-TRAP scheme. Figure 5.5 shows the average number of multigroup iterations per transport

iteration where the montonized-hybrd scheme is using the modified monotonization procedure.

While there is a large number of total multigroup iterations compared to the other schemes,

the average number of multigroup iterations is similar to that of the first-order scheme. It is

apparent that the increased total multigroup iterations corresponds to the larger number of

transport iterations. The modified monotonization procedure does well in reducing the effect of

the artificial increase in iterations due to the non-smooth nature of the L-TRAP scheme.
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Figure 5.4 Number of multigroup iterations for the MLQD method discretized with first-order, hy-
brid, and monotonized hybrid with modified montonization temporal schemes, and the MLQD method
with first-order discretization in time of the low-order equations and RT equation in α-approximation.
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Figure 5.5 Number of multigroup iterations per transport iteration for the MLQD method dis-
cretized with first-order, hybrid, and monotonized hybrid with modified monotonization temporal
schemes, and the MLQD method with first-order discretization in time of the low-order equations and
RT equation in α-approximation.
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CHAPTER

6

CONCLUSION

A hybrid temporal discretization scheme for the multilevel system of QD equations is developed.

It is based on the backward Euler temporal discretization of the high-order time-dependent

radiative transfer equation and a second-order scheme for the time-dependent multigroup low-

order QD equations. The discretization of the grey low-order QD equations is consistent with the

scheme for the multigroup low-order QD equations. The second-order scheme is applied to the

energy balance equation as well. The numerical results show the hybrid scheme generates a more

accurate solution compared to the first-order scheme. The hybrid scheme is a first-order accurate

method in time. The L-TRAP scheme is applied to the multigroup low-order QD equations with

a second-order temporal discretization to perform montonization. This procedure does well in

removing the oscillatory behavior produced from the solution of hyperbolic equations discretized

with a high-order scheme. The conditions that determine whether or not montonization is

required are too strict in some cases. Adaptive monotonization procedures are developed to

reduce the excessive work of monotonization when unnecessary. The results indicate the adaptive

montonization procedures improve the accuracy of the solution compared to the L-TRAP

scheme.

The time dependence of the radiative transfer equation is approximated by several models.

The numerical results show that α-approximation does well in describing the evolution of

temperature and radiation waves without the need to store the high-order solution from the

previous time step. The solution obtained with the RT equation in α-approximation deviates
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from the solution generated by the first-order scheme when there are significant transport effects

and when the change rate is large. A modified α-approximation is developed based on the

backward Euler temporal discretization. This method performs similarly to α-approximation

in all aspects. Approximations of the intensity from the previous time step are studied as well.

α-approximation generates a more accurate solution compared to these models. It also has

desirable properties such as reproducing the same steady state solution at equilibrium on a

given spatial grid as the one computed by the time-dependent radiative transfer equation. Both

the multilevel QD method with the RT equation in α-approximation and the scheme with

montonization of the low-order QD equations adds further nonlinearity to the problem. There is

an increase in transport iterations, but not by a significant amount.
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