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ON THE MATHFMATICAL PRINCIPLES UNDERLYING THE THFORY OF THE X 2 TEST™

by Junjiro Ogawa

Institute of Stuatisties
University of North Carclina Carolina, Chapel Hill, N. C.

Preface

Many contributions have been made so far to the theory of the }:2 tests
among others the author would lilke to men%fon R.A. Fisher 1'5_7**,H.Hotelling
/67, H.Cramér /)y _7,G.A.Barnard /71 _7, S.N.Roy end S.K.Mitra /11 7 and
S.X. Mitra /7 /. The author should refer to W.G. Cochran /3 7 also.

The rigorous proof of the theorem which will be stated in exact form
later on, that the )12 statistic has the limiting )( 2 distribution with de-
grees of freedom reduced by the number of the independent parameters which
were estimated from the sample, was first given by H. Cramer in his famous
textbook ka_7, but some steps of the proof were skipped, Later S. N. Roy
and S. K. Mitra /711 7 and S. K. Mitra /77 7 reasoned along the same lines and

got theorems adjusted to various physical (or statistical) situations.

The purposes of this note are to present a complete and self-contained
proof of Cramér's theorem on the one hand, and on the other hand to explain
how the proof of the related theorems got by S.N. Roy and S.K.Mitra could be
thrown back on\that of Cramér's theorem from the mathematical point of view.

1. Craﬁér’s theorém and its proof. We shall first start with the following.

Theorem 1 (Cramér), Siuppose that we are given r functions pl(g), coey

' .
pr(g) of 8 <r variables g =(a1, veey as) such that for all points of a

# Sponsored by the Office of Naval Research under the contract for re-
search in probability and statisties at Chapel Hill. Reproduction in whole or
in part is permitted for any purpose of the United States government.

##* The numbers in square: brackets refer to the bibliography listed at the
end.



® ?
non-dsgenerate interval A in the s-dimensional space of the ¢ ' the functions

pi(g) satisfy the following conditions:

T
a) z pi(g) =1,
i=1

b) pi(g) > 02 >0 for all i .

2
c) Everyp (a)vhas continuous derivatives ?-}-)-i- and -—a—-}-)-}-——
L R i {9“3 30.jaak
PPy
T = A———
d) The matrix D (9“ )i=1,...,r
J=1,...,8

18 of rank s

Let the possible results of a certain random experiment é be divided inte
r mutually exclusive groups, and suppose that the probability of obtaining

a result belonging to the ¥th group is p?_ = pl(_g_é), where _c_x_(') a(ag,.. .,ag)

. is an inner point of the interval A, Let vy denote the number of results
belonging to the ith group, which occur in a sequence of n repetitions of

'ﬂ » 80 that §vi=n .
k 1=]

The eocuations

r v,-np, @9p
: A2 T ro0, 51,2, ..,

(1.1)
1=1 P1 89

{ of the modified X2—minimum method then have exactly one solution /g\' =
(3\1, seey {1\8) such that @ converges in probability to g, 885 N > 00 .
The value of X 2 obtained by inserting these values of g ==f¢_\ into

y ("i‘“pi(ﬁ"-))2
1=l npi(g)

(1-2) /('? -

P ls, in the 1imit as n —~—> o, distributed in a X 2 distribution with r-s-1

- /. degrees of freedom.
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1
. Hemark:
T ——— R,

into two parts. In the first part it will be shown that the equation (1.1) have

exactly one selution f_c} which converges in probability to the true walue g

The proof of this theorem is somewhat intricate, and will be divided

88 n ——>»> 00, In the second part we shall consider the variables

\’i'npi(,/g\,)
(1’3) yiam y i%l, 2, o.-,Y

Vnp, ()
where @ is the solution of (1.1), the existence of which was already estab-
lished in the first part. It will be shown here that 1'8 (yl, eiey yr) tends
to a certain singular r-dimensional normal distribution under the assumption
that v ' e (vl, sy vr) is the random vector whose probability distribution
is given by the multinomial distribution

‘ Pr(.!) = nl

v1! see Ve

V1 Ve
Py (9()) e P (go) .

Proof of Theorem 1

Part 1. Put
rv npi_}ai 9P 137y 1. 9%
(1h)  @lg)m 121 = /paa - (aa) - z <Pi‘pi’[p-ga - 96) 7
r 2Py 0 9 1 0
- ifl ;‘i‘(aa )0 [pi-pi kggl a k)o(ak‘ak) _7;3’1925"':8

then the eauations (1.1) can be rewritten as

(1.5) 7‘(a a) g«.—( )(9 i) = > (9

1
b2 )"’Q)(a) j=l veey8 .
k==1kkilp 0", 0 4 npiaé’jo Y

@



Let,

where

(1.6)

and

(1.7)

X = (x.y +v., xr) s
0
xi--vinpi i=1, 2, ey T,
!
195, 22k o
a,’ 0 © e a_’0
51 9% ’I//;’(_l)- 7
a.,’0 g 6.0
: 2% /(//'p'b‘r s

U&ing the matrix notations, the egquations (15) turn out to be

(1.8)

The rank of the matrix B is s, because it is easlly seen that

B'B(g-ey) = n

R 7P
0 ('g*gi)c (3“)0 ...
9p2 2 P2
0 )O (5a o "
2 aPp 9P
( T I-“)
/;?._ | La“l)o (0"“20

1
K 1 ’ .
Bx+@(a) .

(91"1

ga)O

P
(222

and the rank of the second factor matrix whieh is the matrix D calculated

] as)o

~




at & is s by the assumption d) of the theorem, and the first factor

= g5
matrix. is e non~singular diagonal matrix of degree r by the assumption b).
Hence the s x s square matrix B'B is positive definite and so has its in-
verse. Therefore we have from (1.8) that

1
(1.9) g =~gy=n ?(B'B)"]'E'zc_ » (B'B)-lg{ (a) .

Now let the probability space unerlying the present consideration be
( ) ,azg., P), 1.e., let (7) Ve the set of the elementary events. Zg, is
some additive class of subsets of () containing () itself and P 1is a
non-negative completely additdve set function defined on the subsets belonging

to Dé/ such that P(_(-)__ ) = 1. We shall denote the elementary event by &,

By the inequality due to Tchebyschev—Biena'ymg, we have, for any A > O,

010y 0
“ - 0 p;(1-p;) by
1.20) 7] & | vy(8)-np, | zxﬁjljf___P_L <;§ :

If we denote by 04, the set {&; s [vi(éj)-npg[ < X,/E} and put

r

(1.11 -
) Q, g;g QinA)
then we can see that
- T —— 1
(1.22) - p(Q,) = l-P(Qn) z21- IMQ)>1-—5 .

i=1 A

Here we shall ehoose A such that simultaneously

--)3—-—-}0 and-]-'-§-—->0as N ——> 0g 3

for example, A =n’, 0 <q <1/l satisfies the above requirements. By the



assumption b), it follows for any £ e Qn that

(1.13) 58 <X,1=1,2, ..., r.

For two inner points 4 and o2 of A, we have the difference

T v,-np

. P P [EIIER )
(L10) @ (a)-ty(ep)= 2 F-T(?aih- L (ng" Lo

n 9P p r AL
B (p3-P3)r '5'5)1‘ 2 <i—i>J <p1-pl>ﬁg<§3§)2 po<3ai>J

i=1 Py e j : 1
1 8Pt o 9 i roq 97 | 8 1P
-121 ';g(g-&g)o{})i Py- kzl 7 o 775 o8 k k)J "if'l ;?(5-3-?0[ 1" (3 ) (ak-cck)

and this can be reduced to the following form?

Wya (e~ 3 Vi'npi{ L% . gﬁi }

=1 P 1jasl
9 2Py 9 2Py 1 2P i 1 9p1

) ___91 12 91

we shall mention here as a lemma some results from elementary calculus:

If a function ¢(x1, o oy xs) is defined in some finite closed and convex
24
7 x;

domain of s-dimensional Euclidean space such that s, 1 =1,...,8, exist
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and ere contimious everywhere in that domain, then for any two points belong-
ing to that domain, we have
(1.16) |#(x)) - dxp)|s K - | xy - xp]

where K 1s a constant depending only on the function @(x)

Proof of the Lemma. This can be shown as follows: For any twe points

% and X5 belonging to the domain, put

zex, +tb(x -x,) ,0<ts1.

2
| Then, since the domain was convex it is clear that 2z Dbelongs to the domain
for 0 <t <1. We shall apply the mean-value theorem of elementary differ-
ential calculus to the function

F(t) = #lx, + t(x; -x,))
getting

F(t) = F(0)+ t._(_i'(et) y0<@ <1 .

.This means that we have for t =1

8

? L2
Py )-#xp ) 1—21(7’% X=X, +6(x; ~x5).(xy - x)) .

-Hence by applying Cauchy's ineouality we obtain

S ¢ 2 8 0 2
{¢(§1)~¢(§2), %///ifl(zriz) . iE_l(xi - x)

> 22

} ¢(§1)‘¢(§2)l =< \ o 2 xi . El - --2’ .
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The function 2 (593 ) is continuous in the domain and, since the domain
i=1

s
3 (2L

attains its maximum in that domain, which
1=1 0 *4

was finite and clossed,

we denote by Kz. Consequently we have proved the inequality (1.16).

By virtue of the inequality (1.16), we get the following

Y AE AR
(1-18) / \ ) - ( ) Qo ~ O
1 - 4
pi?aj piga 113/ ~1 21
where k is a constant depending only on the function L Qpi If
113 3.__. .
we put )
r
k..= Zk and k., = max }
1] =] 11ij 1 1< 5 lj

then we obtain

(1.19) I 5 2F Z3), - k!

=1 p 6"1 9 3)2 f <ky)g-g,| for all j .

In a similar manner we can get the following inequallties with suitable con-

stants k2, k3, kh and kS:

(1.20) ’ifl(pi - pi>l Ik, / gy - 22] s
r
(1.21) ‘121(p§ - Pg)/ = k3/32 - gol ;

(1.22)

and



. (1.23) ) ;

2P 2 3 9P 1 2
§ 28, [ 180500

3 k=1 @ %

T!J:J
O

= kg { [92°%, | 2178] * |12 Zj
for all jJ.

Hence from (1.15) we can obtain

A
|cvy(ay)-ylap)| < Kl\/_;: [21°%0] *Kp | 21725] | 21780] * %3 [217%p] | 2oz

2
+ X, [#mad | ﬁz“i’-of * Kg a8, )

or
n

. and consequently we obtain

/8 '
(1.25) |@ (a)-Wey) | "/ A @) oey) )2

=K. ‘Ql‘ﬁzf‘[(v._"} *laggy| v lﬁz‘ﬂoij’
where the constants in (1.24) and (1.25), which were denoted by the same
symbol K, may differ.
In order to solve the eruation (1.19) for Ee Qn’ we shall apply
the method of successive approximation, i.e.. we define the vector g, by

the recurrence relation
1

(1.26) gy = agr 0 288 B 5 (6'8) ) (a o)

It will easily be seen from the definition (1) of gz(g) that
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Hence we have

1
(1.27) aysy =0 BB R
and
(1.28) E\H-l—gv = (B‘B).'l_/_-g (gv)-g(gv_l) __7 .

1 =1
Tet us denote the grestest ebsolute value of the elements of (R B) 1R

and (B'B)_1 by gy3 then we have from (1.27) that

a0 f< I8
a a.‘ ——c--—-o
J oy
Hence it follows that
(1.29) |2~ 20| Sx, A |

where K2 is a suitable constant. From (1.28) we can obtain the following
inecuality by (1.26)

(1.30)

Sy+1 —vl <K "V_"\"lll‘—v -Ol + l—v-l —O‘ + 2 .

From this we can show, for sufficiently large values of n, that

(1.31) 8,178, S Ky /(UK LK JE\—/:)WI .

n

We shall prove (1.31) by the mathematical inductiont We assume that (1.31)
is true for all values of v from O up to v-1 and for v=0 the inequality

(1.31) reduces to (1.29). From (1.30) we have

(1.32) S0y | S Kg¥p £ (BE1E, 77 "‘(.-)

’+-—- .

zl 90' l~v-l 0

On the other hand, it can be shown that
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o
- *l—v'EO, ’-\;.-J_ 1< -t 2'-—1 -—OP”Q "21, Yoee +2l-—v 1 —v-2) ‘2\:'2\):],.,

y=

A
< \E +2(‘51-g0}+’22-g_11+ -v -a . 11+ oo

< .2‘_. +2K -—{h(hK +1)K —_— +[(L;K +1)K A 724» ..;} .
~ A/m /n 3V~

/\n n

Hence for sufficiently large values of n such that

A 1
0 < (hK?"']-)KB/‘-/-;_; <z
we have
2K
(1.33) = +|gpgo] |2, 18 = (1" - (k1) =
V3 Vﬁl 1-(LK,s1)K, RS n
n

Consequently from (1.32) and (1.33) we can obtain (1.31).

The infinite series

o+ (gg-ap) * (g = g% +oo

converges absolutely for any & e Qn and for sufficiently large values of nj

and if we define @ by

(1-3u) /2\ = 20-5(21—20)4'(22-21)4- vee
then
/\ A 1
a-aO} |91-¢ Ol }a2-_a_l[+ <ﬁ N >0 gsne>c ,
1-(hK2+1)K A
3
n
/N

for any £ e Qn‘ This means that “a converges in probabllity to gy as

N e=> 00 .
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{1.3L) van be expressed as

(1.35)

1e>

= lim a, ,
V = 00

for any & & Q and for sufficiently large values of nj hence from (1.26)
we get

(1.36) B magn 2 B w6 w@

for any £ & Q’n and for sufficiently large values of n.
N

Suppose that there exists another solution “g° which converges in

probability to gy 8 n—>00; then, for sufficlently large values of n,
1

A N 1A
A ro @R @,

(1.37) [+
*
for any & e Q  such that P(Q:i) ~—>1 as n-—> 00 and for sufficiently

large values of n. It is clear that
P(Q,) = QO+ PN T) 3

therefore,
Um  P(Q_ ANG)= lm  P(Q) =1 .

I —=> 00 n > 00

For sufficiently large values of n and for any £ ¢ an O:i we have

e,

Y wd-ed 7
and hence it follows by (1.25) that
o
(1.38) 2-4) <) 84 {4}, 2ol * [&- o’}
Ie Ié-—_&}{ > 0 for all n, then (1.38) leads to a comtradiction 1 <0 as

n —> 00. This means that for sufficiently large n there exists an ekactly

A

one solution ‘g’ which converges in probability to 9-0 as N ==> 00.
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Part 2, For the solution Q we have
(1.39) (B'B)-l’(g(g) *@ -ay " (2'23-21)+(23—32)+ ees

hence, by using the inequslities (1.31), we can see that every component

- 2 '
of (B'R) 1a) (@) is dominated by K' -Z_-:- in its absclute value, wherse K

is a certain constant independent of n. Therefore, we can write

(1.10) Gragn 2(r'B) R x(3"8) " ()
-% 1 ] K')‘Q 1 ' )
=n “(B B)B x+ — 8,0 - Gj <1 ,3°1,...,s .
!
let y = (yl, chay yr), where
vy-np, ()
y::._..._...._...._..,‘i'-"l, ceey I' 3 -
v‘npi(é)
then it can be rewritten as follows:
A
(1.41) vi-npg i pi(g)-pg vi-npi(f\g) 1 1
. y, = - ¢/n + -
i
A/ npif % Py Vi y@ y@
v -npo
e (p,(8)-p3)+ i/_ Q. /}3)
P n /o ¢
i VANCURTAN
A 1
~V/E(p (@)D )( —Ze - =) -
0
Now

i/ P1



b

2 2
? Py ’ J Py -
vhere { s=———=—) means that the value of is calculated at a
gakga(/ * gakaa(

certain point on the segment joining 3y and @. On the other hand, since

1.2
A o 1 0 KA° Lt 10 A
O~y = =Gyt O » % = O “\/ﬁ‘:) ’
it follows %hat
2
(1.42) B = o A e Ay o Ly
) »\/n n

Consequently we have

s Jp 2
(1.13) [E (o, @®)-00)= /B 1 (Zh) (& Oy oA
\// 00 2 11// 00 k=1 3 5 0 k%K .
In a2 similar manner we can see that
v -npO 2
(1.48) I e B L (S Y.
Ve \//‘-’;@ Vo V@ /.

and

2 2
(148) /(e ()-pD)( -1%ﬁm%m%).

Hence we obtain the relation
)

A KA~ 2 2
(1-h6> zalc."ﬁl B(E"EO)"' ﬁ g ! Of gj f ;j = 1, tvey S
Substituting (1.0) into (1.46), it follows that
1=l mz
(1.47) | y=(1-BBB) " R)x + — 8,
n

where ©  1s a random vector such that 0 < Qi 1, 1=1, ..., r, and
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K 1s a certain constant independent of n. Since the random vector

2
-@——_G_ converges in probahility to 0 as n —> ®, by using the theorem which

w3

was stated in the last paragraph of §\22.6 of Cramer's book /74 ], we can
see that the distribution of y is, in the limit as n ——> co, the same as
that of (I~B(B'B)-1B')§. The author would like to refer also to Ogawa
/8 _7 in this connection.
Now, if we out
B0/ ) R
the 1limiting distribution of x as n —> oo is the r-dimensional singular

normal distribution with mean Q and the covariance matrix

f
(1.18) A-1-pp
!
The statistic ’)CQ = ¥ ¥, whose distribution is under consideration, has

the same limiting distribution as that of the statistic
(1.L49) /’Ci = 5'(I~B(B'B)~‘le')'(I—-B(B'B)"lB') X
-x' (1-3'm) B ) x .
Since the s x s matrix B'B is positive definite (of course symmetric),

we can transform 1t by a suitable orthogonal matrix C into a diagonal form

whose diasgonal elements are all positive, i.e.,

By

In other words, it means that
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(8'5) - ot . wle! ,

whence we have the relation

(1.50) (sew™d) ' (mowly = vl "B'BoMt < 1 .

(1.50) means that s column vectors of the matrix RCM‘l form a system
of s orthogonal vectors of r-~dimensions. If we complete BCM"1 to an r-
dimensional orthogonal matrix X by adjoining (r-s) column vectors
Bs+1’ "".Pr’ i.e,, 1f we set

K= (ReM™ Ib 1 .en b))

and 1
KX=1 ,

then 1t will be seen that

(1.51) x'B(rR)™R'x = (x"sor 1)k mor™ L)’

| Is ) I, ©
= ""’Z ISEO_]’ s
0 ‘ 0 0
and conseruently we obtain
' 0o 0
(1.52) K'(I - B(B'B)™ B)K =
0 T
r-8
Now make the orthogonal transformation
!
(1.53) E=Kx ;
then
t ! '
(1.51) E (0 =0ams £zg) = k(1m0 )
and
(1.55)

X2 x'vx' (1-8(8"B) ™ )xe' x=¢ 'k (1-8(3B) 1B )k
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bive
]
.
+
+
4
»

2 2
s+1 P
9

Since p P = we have
8
K =p' (oML b b )=(0 ... 0 : 6.)
B A =B i :-—S"’l e e : es+1 e er
where
’ t
eg=_g_§g,g=s+l, eray T
Therefore,
v o] 0
Kpp K = , where
0 Q

B (qgh) 7 9n = %% 0 8 0= s+l, «ve, T

Consecuvently the covariance matrix of (& SEIREEY g ) is

(1.56) ' I _ ~Q .

=S

From the relation 315 = 0 we have
(1-57) S+1 E eaese ¥ Qrgr = O .
Consider the following generslized Helmert'!s orthogonal transformationt

' (1.58) 0 = PE

where
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I €4S\, ... . 2%S \A Z .., . Ces_\ I 248
Do a)(le o CPR 8)(To+r-- )
(Goreret™? VAN #0004 0) «w,+ o) (o e N\a

Jd 248
aC

Do

TL2+s__

AM0+..»+N+MmVAWm+...+ﬁ+va\\‘Mm+...+N+MwVAM®+...+H+Mmy\&
e PN a!hmﬁ+m®|
.Hw.?. i »+H+m® \a .H®+. .+H+mm >
2/ AR A
Ty =4,

-

-

um+...+m+mm+m+mm F
2. S 4
¢H®+. i *m\..mm
N N s
Ah®+o.-+N+MGVAH®+'.'4H+MQV >
g 2.2 2./
N#mmH+wml
ST CR N
2*S

0
0
h®+...+N+mm*H+m0
Al 2 2
mo+...$m+mm
4 4
vH®+0 L ] *H‘Twm >
H+m®

=d(65° 1)
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then 1t is clesr from {1.57) that

(1.6m Ngs1 = O
and, therefore,

' 2 _ 2 2
(1.61) ;( % = Mgyotret M, .

The covariance matrix of (“s+l“ Mgy nr) is
1 '
P(Irs Q)P P(Irs eg!)P

t
= -Pe . e!
IrS Pe . e'P ,

where
E'S(es+1’es+23"'9er) s
and
(1.62) 1
Pe = . 3
4]
ro, . g
because I e = trQ = tr pp = tr E'p = Z p;, = 1., Whence we have
g == i
g+l 1
!
o 0
(1.63) T -PQP =
-8
0 T
- r-s-1

This means that ns+1=0 with probability one, and Ngypseees M, are in-

dependent normal variates with means 0, . ., 0 and covariances Ir-s-l'
Thus the limiting distribution of;¥'§ as n —> 00. and consequently the
limiting distribution of';(e, is the )(2 distribution with degrees of

freedom r-l-s. This completes the proof of Theorem 1.

2. Some remarks to Theorem 1 and its proof.

The parameter space of a multinomial probability distribution is, in
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r

genemal, the interesction of the (r-1)-dimensional flat 2 pial and the r-
1

dimensional unit interval {B; 0< P < 1, i=1, 2, ..., r} . We shall

call the parameter space 7.
Mathematically speakine, the assumptions of Theorem 1 specify the

mapping of a non-degenerate s-dimensional interval A to the subset
(2-1) Tro * -R/\{ 'E;pi > 02 > O, ial,?,...,r}
of J{, In other words s assuming that the true parameter value . BO is an

inner point of T(O, if the subset T(O of T{ dis contained in the image

of some non-degenerate interval of Euclidean space mapped by the functien

1
P (S)a(pl(g), ceey pr(g) ) such that _go corresponds to an inner point of

that interval and the mapping funotion p(a) satisfies the condition (),
then the theorem holds true. Condition (d) assures that the dimensionality
is preserved by this mapping.

Modified Y 2-m1nimum equation (1.8) is the same as the ususal normal
equation of the least-squares method up to the term « (g_). The fundamental
idea of Cremér's proof is that, in the 1limit as n > oo, the whole situa-
tion can be reduced to that of the usual least-souares method.

In addition to the conditions (a) -~ (d), if we assume further that

ay =ag, ey @y =ag(t < s8) and put

i 1 2P ‘ ......(9 Pl) )
/'3 9%+1 ' /"oa”“
. ¥ F1
(2,2) B'= s
..l..(_.__.._; o A 3
Qpyr O 2,0
T =
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(?-3) 2%' = (at’rl’ sy aS) )

and if a) a*) j=t+1, ..., 8 are defined analogously with @j(_q);, then

the modified X -minimum equation comes out as follows:

-3

) '
*'B* (g™ B* x+ &(g™)s

(2.4) B B (a"-gg) = n
Accordingly we have in this case

0 0 #*.
vi=npy (e wivay , a7)

1/np1(ag...ag , 8 "2
(2.8) 3 = . =(1-8" (")~ 1" ' Jxs KX o* |

*

Vr p Gll «rQ v &
Q0

e
'\/np (al PeeBy
N

and 1:.heX2 statistic has, in the limit as n —> oo, the same distribution as

<)
)

(2.6) X*'l*' (I—B (B*'B*)-I'B*ij

’

which turns out to be the )( 2 distribution with degrees of freedom r-l(s-t)=
r-s+t-l .

From the usual theory of the least squares / see for example, Ogawa
£10_/), we can conclude that x*'z*-z'z is independent of _y-"z and is dis=
tributed as Xg-distribution with degrees of freedom t in the limit as
n —=> 00 .

The author wants to add one more remark: Cramér's theorem assures that
thers exlsts one and onlv one solution which is consistent of the modified

X 2-minimum equation. In our multinomial probability distribution case,
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1t will be easily seen that the modified )( z-minimum equation coincides
with the maximum likelihood equation in the Cramér's semse. A. Wald /712 7
proved that the statistic which gives the greatest maximum of the likelihood
function (if any at all) is consistent under the following 8 assumptions:

Assumption 1¢ Cumulative distribution function P(xj;e) is either discrete

for all © or is absolutely continuous for all @.

Assumption 2: We shall define auxiliary functions as follows:

» ! #* = !
f(x,e,o)=,e'f\‘1§> <(3 f(x;0 ) and £ (x,6 ,f’) i‘(x,e,r) if f(x,e,f) >1 and

=1 otherwise

#(x,r)= sup £(x30) and #¥(x,r) = @(x,r) 1if @#(x,r) >1 end
[ >r
=1 otherwise .

For sufficiently small /9 and for sufficiently large r the expected values

00
00 .
j log £ (x e, IO)dF(x eo) and f log ¢*(x,r)dF(x;Qo)' are finite and
-00 —00
QO denotes the true parameter point.
Assumption 3: If 1lim  ,=6, then lim f(x;@i)--f(x;e) for all x except

i —>00 i —>00
perhaps on a set which may depend on the limit point & (but not on the
sequence {_Qi} ) and whose probability measure is zero under the probabllity

distribution corresponding to the true parameter point 8g°

Assumption b,:' If 91 is a parameter point different from the true parameter
point 6, then F(x_;el) # F(xigo) for at least one value of x. A

Assumption 5: If 1lim & =00 , then 1lim f(x;ei)=o for any
1 —~—> 00 i —>00

x except perhaps on a fixed set (independent of the sequence { Qj)\ whose
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probehility is zero under the probability distribution corresponding to the

true parametsr point 8p+

Assumption 6: For the true paramster point QO we have

00

J ‘ log f(x,eo){ dr(xs8,) <o .
~c0

Assumption 7: The parameter space J( is a closed subset of the k~dimen-

sional Cartesian space.

Assumption 8: f(x,e, f?) is a measurable function of x for any ©, and .

In our special case we may put

!
(2.7) @=p and x = (xla’ Xpgs *++> Xpg)
n
Vi = aflxia, i = 1,2, se0gy r ’
, *1a x2a *ra
(2.8) £(x50) =y Py .. BT
where 1 if in the ith repetition of the random ex-
xia = periment the event happens which belongs

to ith class

0 Otherwise
Agsumption 1 is trivial. Assumption 2 is satisfied with

f*(x,e,f) )=1, Fx,r)=1,

Assumptions 3 and !} are also trivially satisfied. Assumption 5 is also trivisal.

r
log f(x 390) = 121x1 log p, and thus we have

rog 0 ,
g ( l log f(x;eo){ )= - izlpi log p; <00 .
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Hence Assumption 6 is also satisfied. We shall confine ourselves to the
subset T('g = Tg-‘{g;pi > c2 > 0, i=1, ..., r} s then Assumption 7 is satis~

fied. Assumption 8 is trivial because f(x;@) is a step function in this
case.
Thus the solution Q should be the one which gives the greatest

maximum of the likelihood function.

3, On some related theorems. S, N. Roy and S. K. Mitra /711 _7 proposed

the fcllowing modification of the theorem of Cramér,

Theorem 2. (Roy and Mitra) In addition to the statements of Theorem 1, let
now i‘k(g_), k=1, ..., t<8be t real valued-funciions of g such that
(e) at every point g in A, the functions fk(_q_n) are continuous and possess
continuous partial derivatives with respect to «a j up to the second order.

£,

(£) the matrix (-—g—-a-ls) is of rank t for every & in A,
J

For k =1,2,...,t, let £ be a member in the range of fk in A.

W O

Denote by H0 the hypothesis

0
HO: _i_:(_q) =1 ’
then if HO is~true, the eguations
r v,-np; QP t ZE3
(3.1) p 220 de za 2 K0, 51,28
1=1 P4 j k=l * 9%
£ (g)=£°

for minimizing )(2 in the modified sense subject to Hy, have exactly one

A'_ A

m A
system of solutions g = (al ...Ac}s), A = (M

A
.../it), such ’ohat%-—o 9

in probability as n —> oo and the statistic
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A
o r (vi-npi(g_))z
(3.2) X2- 3 A i

i=1 np,(a)
is, in the limit as n ——> co, distributed as X 2 distribution with degrees
2 2 2 :

of freedom r-s+t-1; also X .o = )(1-/L under H, is, in the limit as
n —> 0o, distributed independently of )( 2 as a ,X 2 distribution with

degrees of freedom t.

This can be proved easily from the remarks in ‘§ 2. We shal con-

sider the transformation

(3.3) £(a)= & 4,0 0t (a)=g 0, 0=E L e mE

[

here we have assumed, without any loss of generality, that the princinal

minor does not vanish identically, i.e,, that

gfl . [ 9 fl
29 T 2ay
: © | #o
aft . . . aft
2 ay 2%

This means that Qys +-+5 gy C2N be expressced as functions of 51 cae Et

and @pyq *o0s Gge

More precisely, in some neighborhood of the point
0 0

Y 0
gl =fl,.'.’ét-_-.‘-t’gt#l:o:t-yl,'..’£s=as s
there exists implicit functions

(3.4 a5 =¢i(‘§1 R E’tgt-‘-l vee gs); i=1, ..., t ,

such that
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(3.5) 0 g (1) 1) gy 0, 1, b

and they are conmtinuous and possess continuous partial derivatives up te
the second order.

If we denote by S the image in Z-space of the interval A mapped
under the transformation (3.3), the assumptions of the theorem assure that
the neighborhood contains some non-degenerate interval of s-dimensional
Cartesian space.

Hence under the hypothesis HO’ the functions

(3.6) a, =Py (13 ... fggm v B, 121, iy s

are defined in a non-degenerate (s-t)-dimensional interval Sp and possess
continuous partial derivatives with respect té €t+1’ very Es up to the 2nd
order. Conssequently the r functions ;Ei as functions of €£+1, ceey

Eé possess continuous derivatives up to the second order. In fact, for
J=t+l, ces, 8

9Py 9P 4 5P 9% 9%
78 7995 8% 3% 39y

(3.7)

and
2

o A vt A 9o ge apiea}
ﬁijgik g‘*llhl &aaath’j&gk o'l ga ot

2 2 2
, v 9P Doy b 9P 9% 9Py ,

and these are all continuous in Sge Furthermore, if for some point in So
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' there exist linear relations
2P N R _
(309) t+l(€ ) 95"_'4‘1 L2 ] 4 as(-g )9 ES - O, i“l,-oc,r k)

then this means, from (3.7), that

% 3 2% 25 #9 %t 2°1, wd Py
(28 S 5 t<t§1 ey T (8 g+ (£ )5 =0

i=1, ..., r 1

thus we get at+1(§*)= ces = as(_g*) = 0, i.e., the rank of the matrix

p
(_9_._3) i=1, oy v is 5=t .
28 5= t4l,...,s
Thus Theorem 2 is reduced to Theorem 1 with €t+1’ ooy gs playing
. the I'Ole Of (Il, ¢e ey GSQ

The second part of Theorem 2 is clear from the remark in § 2.
Next we shall consider the follewing
Theorem 3¢ (Roy and Mitra) Tet the possible results of a certain random
experiment é be divided into r mutually exclusive groups, and suppose
thd the probability of obtaining a result belonging to the ith group is

pg 2 02 > 0. Let vy denote the number of results belonging to the ith group,

4
- which occur in a sequence of n repetitions of 3@ so that 2 vi =1 .
1
Let us consider the hypothesis

fj(pls"',Pr):Os 1, «.., r-s-1

where f, possesses continuous partial derivatives up to the second order

J

AR
and the mabrix 2 1y 4 .1,.,.,r~s-1 1is of rank r-s-1
9 pt —1, ...,I’-l
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Then the modified Y % minimm eouation subject to H,

v{~Nhp,y ) V,~Tp, rgs-l ka 7% f

+ ( )'_O 11 o e r"l .
Py P k=1 ké?pi i

(3.10)

fk(B) =0, k =1,....,r-s-1
Zpi =1
A
have one and only one solution /\B and A such that /ﬁ — _EO in prob-
ability as n ~—> oo and
A2
(3.11) 2 I' (v "npi)
3.
A h T
is, in the limit as n -—>00, distributed as a )( 2 with degrees of freedom
I‘-S-l.

This theorem can also be reduced to Theorem 1. ameng r-1 independent
parameters Pyses«sPn_ 1 there are r-s-l relations (functionally independent)
and the assumptions of the theorem assure us that r-s-l1 of them can be ex-
pressed as function of the other 8 parameters and these functions satisfy
the conditions of Theorem 1.

We now state and sketch proofs of the analogous theorems in the

anal ysis of variance situation.

Theorem l')f Suppose that rs real-valued and one-valued functions pij(g) »
i=l,...,r3 j=1,...,8 of 8 are defined on a certain non-degenerate interval

A of t-dimensional Euclidean space such that

I r )
(a) = pij(§)=poj(_e_)=l for j=1,...,8 and all @ in 4,
i=1 _
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(o) pij(g) > ¢ > 0 for all i,j and 8 in 4,

(c) every pijQQ) has continuous partial derivatives with respect to

the component of @ wup to the second order, and
(d) the matrix D(e)= ( ) is of rank t for all & in .
: k
We shall consider s mutually independent random experiments
{fl)..., {fs , and in each experiment the possible outcomes are divided

into r grours. The probability of getting a result which belongs to the

ith group in the jth experiment 1{3 is pgj= pij(go), where go is an

inner point of A. Let the frequency of the result belonging %o the ith

group in n repetitions of ﬁ be n,,, so thad
0J J i3
r 8
z n,..=n =l seesS o Z n g = n.
1=1 13 03’ J=1, s 4o, of

Then the modified )C2-minimum equations

8 r n,.-n..p..(8) 7p..(8)
; 1j Oj13—913-= =1,
(3.12) | 351 1514 pij(g) Ry 0,k=1,2,.. s

Nt A A :
8 =(6 ... 8,) which is consistent, and

have one and only one solution
the statistic

. 2
8 T (n,.~n #p_.(§§
3:1 i=1 nojpij(g) |

is, in the limit as n -——> oo subject tc the ratios r /n being held

3~ Toj
fixed, distributed as a :{ ith degrees of freedom rs-s-t.

Proof of Theorem 1

Put
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qij (g) = rjpij (g)

r
80 that I qij(e)=rj for all j; then the eruation (3.12) can be written as
1=1 0~

s r n,,-nq,.(8) ga,.(8)
(312" 3 3 A= Y0C
=111 9358 g 8

# OO k = 1,2,00-,t

Put o
§ r n,,-nq Qs q; .

@ (8)= =z ijn = - 9913 - % @13)0
5=1 1=1 %39% a5, 7%

O NP v’ T
"L AT <, Gao £ ayyayy- 2 G dierep 7

then (3.12%) can be rewritten as follows:

t s r -q 294 § T ng.-ngq,
(3.15) z(e—e)z z l"“j)(. =3 2 A2l .0 (o),
k=1,2, ,t
Let
= (xll e B TR xrs)’
where
0 0
/ 0 /-0
1/ PogPi v M3

and, furthermore, let



@ (8) = (Wy(8), +.r,@p(8) )

and

1 9 913
(3.17) B = (==, )

/%3

Using matrix notation, (3.15) can be expressed as

e
(3.18) B'B(g-8,) = n B'x +&/ (8) 3
hence we get
(3.19) 9-8=02('""B'x+ 88w (9 .

For each experiment €, 3 Tchebyschev—Bienaymé inequality becomes

0 (1-r0,)
P/—{a), }nij(w)- ijij 1 > 7\\/_0-5 7 <..._1..3......2..§'_3._ < ""{é

A

or

q [+]
P[{u); ! nij(to)-nqgjl > Mﬁ"}] < _{%_ .

Let r = min. rj;"then

3

e O
s

q
, for 2all J

1

(3.20) P (-{Q) 3 inij(a))-nqgj} > )q/"r';'\/ﬁ};{ <

>

r

0
Pyy

Put Qg.g) = {Q); nij(x.u)-nojpgjf < }\‘\/ﬁaj‘} , ng)a QQ&)’ Qn=(\szj) ;

J

then we have

(3.21) PQ)>1- ;Z—- ,
r

and, for any e Qn, we have

31
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0 0
L L LI
‘ 4 0 o5 °

933 V 5Py

As before, we can show that for any two points o] and 8, in 3

S | |
(3.23) |@ (&)= W(ey)| =« [ 818 {\7.; + (81780 + 1.92-90)}’

where X 18 a constant depending only on the functional form of Py j and

the closure of the interval A. Thus we can show that the equation (3.19)
has one and only one consistent sclution A_Q .
Let y = (Fgq oo Ypq oo Fpg *- yrs)’ where

A

v/ PosP14®)

A
nij "nqij(g)

A/ nqij@)

Then we obtain in exactly the same manner as before

A '\2
(3.25) =x ~{AB@-~0)+ XX
y=x-yn 20 N Q

1 2 .
= (I-B(B B)-IB')_;S + Q—-Q) .
n

The limiting distribution of )(2 = _;)_r'_z, as n —> o0, is the same as that of
1y
(3.26) X i =;'(I—B(B'B) Y X

The 1limiting distribution of x as n —> ¢co is a rs-~dimensional normal
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distribution with mean 0O and the covariance matrix

g S~
1 f
I- ;“ 919 0
1
1- & !
(3,27)/1 - - 9295 ,
2
1
0 I--;- Sﬂ
s
where A /

95 = (ag0y +o+ Gpy)s 37 H2eenss

We shall avply the orthogonal transformation

(3.28) E=Kx

where K, defined analogously to K in the proof of Theorem 1, is given by

(3.29) R=(RCM by, -ov D)
Then
(3.30) ,;{ ; = g§+1+ ves * gﬁs .

The covariance matrix of £ is

s
(3.31) KAK=T1- = A ,
j:lr -J-_j
J
#1 .
where g, =(0 ... 0 qg “.\//q?:j 0...0), =1, .coy 58 .
Since M G o) L o)
ay K= (O ...0e4 ) «-veps’)s
where
(3.32) eﬁj j by h=tel, T8,
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we have
() 0
H
(3.33) , 1k / K = )
0 I(rs-t)-Q
where

- (30 _(3)_1 )
Q= (qgh)’ qgh= jzlqgg } gijl) j éj) (j

On the other hahd , we have mutually orthogonal s relations, i.e.,

g E=0, 3°1, s,
or
(3.34) ,(03{ Eugte- ot egg) =0, 51,y s
Let
’ g( ) = (G(E:)L egg)) ;
then ,
(3.35) Q= %,i AR (1), ‘*%:g(s)g(s)

We shd 1 apply the orthogonal linear transformation
#* 3
(3.36) n =Pk >

where the fifst s rows of P are

1 ]
E(1) //{2(1() ., 2(3) /IE(ﬁi ;
/
then we have ‘
1
’ .
(3.37) pp'= 3 Lope(d) . (3) p'= ESS .
=17y T o
.O

Thus we have shown that

(3.38) »Xi an§+s+1*“'+n§s ’
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and the covariance matrix of Te1 ¢ * 0 Thg is

T 0 0.
(3.39) I(rs-t)-pQP = )
0  T(rs-t-s)

Theorem 2*. (S.N.Roy) Under the same conditions as Theorem 1*, suppose we

have u ( < t) relations:

(3.40) Hy: £,(8) =), k=1,2, .., u,
such that

(e) t functions fk(_e_), k=1, ..., u possess continuous partial deriva-
tives up to the second order, and
L S Q,fi

(£) the matrix (2515-) is of rank u for all O in A.

N -
Then the modified )( 2~minimum equations subject to H0 has one and only
one consistent solution @, and the statistic

A2
S r (nij"‘nijpij(g)

(3.11) 2. 3 3 A
Ao 31 1=1  Byypy4(8)

is, in the limit as n ~> oo subject to the ratios r:I = an/n being held
fixed, distributed as a /’(2 with degrees of freedom rs-s-t+u.

“And if the hypothesis H, 1is true, then

2 2

Yo- X
is, in the limit as n —> oo subject to ry = an/n being held fixed, in-
dependent of %2 and is distributed as a X 2 with degrees of freedom u.

Proof of Theorem 2*

Without eny loss of generality, we can assume that
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D
o

!
LN

7%
(3.h2) . s s+ o . ¥ o ,
9 gl ¢« o e 9 eu

0=

and the determinant of the left-hand side of (3.42) is a continuous function
of i therefore (3.42) holds true in some neighborhood of &g Let a non-
degenerate interval Ao of which @5 1s an inner point be contained in
that neighborhood of QO. We can proceed by taking Ay as a domain of 8,
instead of A. Thus we may assume that (3.42) holds for all @ in A.

Consider the transformat ion
(3 A3) f1(§)= 519 0. "fu(g)aél’eu"‘l:%*ﬁl”. Qtf'gt’
then by a well-known theorem on implicit functions, we have

(3 ’hh) 91: ¢1(.§), LA sgu=¢u(£) ,ou*l"_gu,‘,l’ ¢ ,Qt’=€b’
where the functions ¢( _g) 's are continuous and possess continuous partial

derivatives up to the second order such that
0_ 0 0o .0 0y 4.
(3‘&5) gi—ﬁi(fl...fu’ gu"'l eve Qt),i—l,Q,...,‘b [}
Substituting (3.L4) into pij(_q), we get
(3.46) P;5(8) = 9;,4(%)

such that functions ay j( _é_) are continuous and possess continuous partial

derivatives up to the second order.

Hence under the null-hypothesis Hy, rs functions Py j(_e_) becomes
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functions qij( E*) , where _g*' = §;+1"" s é;t)’; and these functions
qij(_g*) satisfy the conditions (a), (b), (¢) and {(d). We shall show that
only (d) is satisfied; indeed, since,

29y PPy 38 OGPy 25 Py
7% 5098 3% 0% 79

q
if the rank of the matrix (g-—igh'i) is less than t-u at some point & * 4n a¥

(3.47)

(which is the projection of A into the sub~space spanned by the last te-u

coordinate axes), then we can find

- I W
such that
; P93 2Py # 7% 2 Pij %9 Sy
o= 2 PP A BN G Gt S 5 (
h-u-leh('gs a 89 nhé 2 & +9gu hxhé)agh

2P
sy @ Pig
+}Z::Xh('§)39h )

On the other hand, we have assumed that the matrix (g—:%i) is of rank
t for all @ in 4. Thus we get

M(E) =0, h = w1, L, b
Consequently the problems are reduced to the case of Theorem 1 with inde-

pendent t-u parameters g* .

Theorem 3'”~ (8.N.Roy). Suppose that we have s mutually independent random
experiments 1{ 19 *ves g g2 and the possible outcomes in each experiment
are divided into r exclusive groups. Let the probability of getting a re~
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sult belonging to the 1th class in fé j be

0 2
pijzc >0 .,

Let ng 3 denote the number of results belong to the ith c¢lass in n, 3 repeti-
tions of ?gj’ so that iz ni;j 03’ and let

Z n..mn .

g1

Let us consider the hypothesis

Hyr £ (_1.)).5' 0, k=1, %,y :TS=8~t
where fk are continuous and possess continuous partial derivatives up to

the second order in the parameter space

2 = asne
-ﬂ- 3{39 O<e = pij _<_ 1’ ipij':poj 1,3“13"'3sf
0 AN
of which p~ is an inner point and the matrix T) is of rank rs-s-t.
1)
Then the modified ij minimum equations subject to HO have one
and only one consi stent solution /2\, and the statistic

S (nij‘no;]pij>
N
7( J1i anpi;)

is, in the limit a8 n —> oo subject to all ratios r

3 being held fixed,
distributed as a ;{ 2 with degrees of freedom
rs-s-t
This theorem can also be reduced to Theorem 1*.

L. On the distribution of a modified 12 statistic.

In testing goodness of fit by the X 2 method, there are many cases in
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which we already have sample values (not the frequencies). TFor simplicity
of discussion, we shall mention the simplest situation, because in this
way the statistical feature of the problem will become clearer. For the
multiparameter case the author would like to refer to Herman Chernoff and
E. L. Lehmann /71 7,

_ Suppose that we have random samples Xqs Xpy eoey xn from a certain
population having an gbsolutely continuous distribution function F(x;a)
and & probability density function f(x;_a) which satisfies the following

regularity conditions:(see Cramér /7 7)
- 3

2,
1) For almost 41 X, the derivatives %l.%i s %5‘-9%-—2 and -g—-k)-%—g
a a

exist for every a belonging to a non-degenerate interval A,

2) For every a in A, we have 2f < F_(x) ng < F,(x) and

3
_%_lo_%_;f_‘ < H(x), the functions Fl(x) and Fz(x) being integrable over
a

(=00, +00), while
0o

J H(x)f(xya) ax < M,

=00
where M is independent of a.
3) For every a« in A, the integral foo (—9—-5-—9 1: f)24‘3‘dx is finite
=00
and positive. Furthermore, we assume that the true value of the unknown
parameter is Gge
Let the whole interval of x be divided into 'r classes as follows:
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r

eand let the class frequencies be Vys s Vs 80O that 2 vy = 1. In other
1

words, if we define auxillary random varisbles as follows:

{1 if xj_<_ai

(k1) =]
0 otherwise
and
no,
(4.2) v(ai) = I Xyqs 11,2, ooy 1 ,
J:l j
then we get
(4.3) vy = v(ai) - v(ai_l), i=1,2,...,r .
Further let
0 -
(L.b) ny = F(ai;ao), 1=1,2, ..., r s

where, of course, we have put o= F(-00; a0)=0, nr=F(oo;aO)=1, and

00 0
(4.5) Py= My = My, 1=1,2,..0r .

Then it 1s a well-known fact that the statistic

042
r (v,-np;)
(14.6) 3 5 :
i=1 npy

is, in the limit as n —> 0o, distributed as A 2 yith degrees of freedom
r-1. If 49‘ is that modified 1}(2—minimum estimate of a, in Cramér's sense,
from the frequency data which satisfies the condition of consistency, then
Theorem 1 in éf 1 tells us that the statistic
A
r (v,-np,(a)?
3 i
—_——
i=1 npi(a)

is, in the 1limit as n —> co, distributed as ‘;( 2 with degrees of freedom r-2,
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hl
Let o« be the maximum likelihood estimate from the original sample

in Cramér's sense, l.e., a solution of the maximum likelihood equation

Qlog Lao
3 ¢

which is a consistent estimaor of a, then it was shown by Crame/r Ve h__7 that

(h.?) /- 9 lo f(x,Cﬁ)
A/n (o™ + O(1) in probability ,
2\/ i=1 2« ag
where
(1.8) 1 2e g;. { (2.1og fc(!x,a)) .
0 2 g

Now let us consider the limlting distribution of the statistic

v (v,-np,(a*) )7
Z

(4.9) #D
X i=1 np i(a*)

in the 1limit as n =—> 00 .

Since

(4.10) ni(a*)-—-F( ai;a*)=F( ai;ao)-h(a*-ao) g%(ai;'ao)W(Fi_-) in probability.

=10 + (o0 )(9 1) + O( ) in probability ,

my 7ag

it follows that

/\/ﬁ(\}(a ) % )’('Zi) 0 " Qni

= ~F(ay3a”) )= /n{ -n; - (a"- 0)(9a )+ 0(71) in prob.

v(a ) 0. (90. g 2 log f(xj;ao)
TR g B e
in probability.

_v- + 0(1)

By using (}4.2) this can be rewritten as follows:
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"
(===) 9 log £(x,3a.)
o Fa'o 3%
(a0 B orose®) e o 5 el e 50 It

in probability.

Now it can easily be shown under the regulariiy conditions 1) - 3) that

8 0 log £(x;q
(4.12) éao,x;_jef dF(x;aO)-_-ng, f;o( 5 a O)=O s

=00

and after some calculations the covariance oy 3 between two variables

0 gni 2log f(x 3a,) ' 01 gnj 2 Log f(x{/”ao>
i(/"ni "?3a 2 a‘/ and Ryge= y- k29a D Q
comes out to be 0 0
0, Oy 1 2™ 9T
(h.lB) O’ij = 5(/['(1!:!‘(1—113)- "1:2 a ) "5“&"1) ’

where 5(('= 1if'f=(", and = 0 otherwise.

By using the Central rimit Theorem, we can see that the limiting dis-

tribution of

1 @ 01 gnl 9 log f(xj,a ) .o
(h’lh) (Fn jz( i:j l _? 90' aa FI Y S < -
1 z( 01 gn 5 log f(xdi O) ))
/B 3ol rj ' k280 D a
is the r-dimensional normal distribution with mean Q ' end the covariance
matrix
7 A0
0, 0, 1 9T FMy,
(huls) A = (ﬂ (l-ﬂ )" ) .
' O I T

Therefore, the limiting distribution of the random vector
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(a,) (a))
(4.16) (\/E(v :1 mF(al,'ct*) ),...,»\/H(v :r -F(ar;a*) y ),

88 n -—> 00, is also the same r-dimensional normal distribution.

Now, since

v(a,) (a, .)
(127) (L by (™) V(e -Flay 30—l = B(a, 30" )

i = 1,2, .Q.,r

we can conclude that they are distributed, in the limit a8 n —> o0, as

the r-dimensional normal distribution with mean _9t and the covariance matrix

(100 «0 0 0) 1-1 0 .., 0]
—"'1 l O e 0 O O 1"‘1 s O
O"‘l l 2e0 0 O . . . .
(L4.18) o N A co .
LO 0 0 LI "'1 l.J O O O o lJ
0 0
9P1 9 Py

: 1
171377155 ;2 98 Za
On the other hand, we get
3 #*
Vi'npi(a ) _ \’i-npi(a )

o

np, (a*) A/ npg

+ 0(1) in proby as n —> 00}

whence we see that the vector

vl—npl(a*) vr-npr(a*) )
q//npl(a*) npr(a*)

is, in the limit as n —> o, distributed as the r-dimensional normal
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distribution with the mean O' and the covari.ance matrix

0
0.0 1 2P 9Py )
(613" pipj 27_6_'0' 9 a ga" )ij = 1,..-,1’
or
(4.19)  =I.pp -m'
where
i 0
q//;ﬁ | -1 9P )
1 — A
/09
VA
L] 1 .
(4.20) p= . mdh=% ° . .
L] * o
P
/0 -1--2&3
Vpr.J /;6 9
‘ WAL
Now
0
' ' 1 ¥ FPy
hp=ph= = 2 =0
0
r 2P 2
(4.21) n'n = iﬁ 2 iﬁ(a L) = c?, sy .
1

It will easily be seen by Schwarz's inequality that

0 8 .
9 pi 2 ¢ 9 f(xsao) 1 Qf(x;ao
(a a ) =( J 9 o J 'f(;:;*—-y( dX [ f(x,a )dx,
831 31 %1

O

1 9P 2 4 1 g)f(x,a ) 2
(1.72) HE = [ mmeaipe—o & -
Py 8 3
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Summing up (4.22) with respect to i, we get

r /gpi f g.i‘(x;ao))de“kQ
= b
i=1 pj_ ?(x ao) > a
~00
and consequently we obtain
0
r 2
(4.23) 0_<_c?5 z -%‘-( i /k2_<_1 .
i=1 P

This quantity 02, which had already appeared in author's 1952 paper Ve 9__7,

should be called the relative efficiency of the grouped data. In fact, the

amount of information of the original data at o = a, is given by

9 1og f(x, 2
(L.21) Z 0(910g L) _ f “o) nk® |
.' U‘O

where L = T(' f(x ;a) while the amount of information of the grouped data
i=1 :

at o = ay 1s given by

, () 0
Z Pleg L 5 r Qlogpl2 r 912
(4.25) o )a;g'(iilvi ) O< =)
where
T v
L(f) - n! T(pii ,
5 vyt i=1
i=1

Therefore the relative efficlency of the grouped data compared to the original

date is given by

0
Pog 115 / 1 T 1,9Pi2 2

(1.26) 5 Y. _1 3 19Pi2 2
2 ¢ o/ é(ﬁz-_gg_%)zﬁ R T
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It we choose r-2 columns appropriately such that the matrix

r2 h
K = ( IQ v . -'a- s’ R )
is an orthogonal matrix, then it is seen that
(4.27) X' (I-pp -hh' Yk=I-K'pp'K-x'nh'K
] wo——— B— ap—
1 0]l o o] Jo o) 11 0
= . - . L . i 1 .
1 0 c? 1-c?
0 1/ to 1) (o o) |o - 0

This means that the statistic X*e is, in the limit as n —> oo, distributed
as

12‘_2+(1-c2))<§ .
where ){3_2 and )( ]2. are mutually independent )’?-variates with degrees of

freedom r-2 and 1 respectively. This result shows, so to speak, that, if we

2

use the estimator o instead of /cc\, then only the ¢~ fraction of one

degree of freedom is reduced.
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