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SUMMARY

Structures in service differ from the idealized perfect structure conceived and designed
by an engineer. Inevitably the difference is caused by the presence of numerous defects,
deviations and geometric lack-of-fit of component members in the actual structures. To serve
its intended purpose in spite of the imperfections, a real structure must function in a manner
reasonably close to the idealized structures envisaged by the engineer. Otherwise the effects
of the actual structural imperfections must be properly considered in the design analyses.

For statically indeterminate structures, the presence of geometric lack-of-fit of the com-
ponent members induces additional initial stresses to the nominal stresses caused by the
applied and thermal load. It is well known that for structures which are sensitive to bifurca-
tional buckling, the presence of initial stresses due to ill-fit reduces the buckling load capacity
of the structure. On the other hand, geometric ill-fit of members occurs at random in magni-
tude and in spatial distribution. Therefore, to consider realistically the stability of structures
with random initial stresses caused by lack-of-fit, the problem must be treated from a
probabilistic point of view.

In this study, the buckling behavior of a structure with random lack-of-fit of members
and geometric imperfections is represented by an appropriate finite element model. The
probabilistic buckling behavior of the structure can be determined from the solution of the
associating random eigenvalue problem. Generally, the probability distribution of the
buckling load of such a structure cannot be determined exactly. In practice, however, the
lower order statistical moments of the distribution can be determined approximately.

In this paper, four different approximate methods of finding the expectation and the
variance of the random buckling load of a structure are presented. These methods are the so
called perturbation method, hierarchy method, the Taylor series method and the Monte
Carlo simulation. The theoretical bases of these methods are developed, and their efficiency
and degree of accuracy are examined. Numerical results are presented for a number of simple
structures for which exact solutions are available for comparison.
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1. Introduction

For redundant structures, it is well known that the lack-of-fit of members
induces initial stresses to the assembled structures. Depending on the initial
stress state, it may or may not drastically reduce the buckling load capacity of
the structure, Very often, large scale redundant structures are constructed from
a large number of component members of a few typical "standard" lengths. In spite
of the care and control exercised in the manufacturing and fabrication process,
the "standard" members will not have exaclly the same intended length.,  Further-
more the lack-of-fit of the members will occur randomly in magnitude and spatial
distribution. For structures with a single redundancy, the absolute bound on the
reduced buckling capacity can be assessed deterministically by assigning the same
maximum and/or minimum lack-of-fit of the members to all the members, However,
for multiple redundant structures, there is no way to evaluate such a deter-
ministic bounds on the buckling load., The only rational approach to the problem
is to treat the lack-of-fit of members as random, so that from the specified toler-
ance 1limits of error on member sizes, the buckling capacity of the assembled
structure is evaluated probabilistically, Actually, from & designer's point of
view, it may be more logical to specify a suitable tolerance limit on the member
size error so that the probability of buckling of the structure due to the randomly
distributed lack-of-fit of members is acceptably small., In any case, as far as it
is known, such approaches have not been explored systematically.

In a different context, a number of investigators have previously studied the
various aspects of random eigenvalues problems. Boyce [1], McDaniel [27], and
Bernard and Bogdanoff [3] studied the buckling of columns with random imperfections
by integrating the stochastic differential equation, Wirsching and Yao [4] used
an analog computer to simulate the buckling behavior of columns subjected to
pandom axial load, whereas Shinozuka and Astill [5] used Monte Carlo simulation
technique to study the buckling behavior of beam columns containing random param-
eters. Haines [6] studied the random vibration of beams, and Fraser [7] and
Amazigo, et al. [8], the buckling of columns with random imperfections using the
so called heirarchy technique, For large scale structures, Collins and Thompson
[97,[10] applied the linear perturbation technique to investigate the random matrix
eigenvalue problem in which the elements are correlated. Also Hart and Collins
[11] Hasselman and Hart [12] and Hart [13] using a technique of linear Taylor
series expansion about the mean value to evaluate the lower order statistics of
large scale random eigenvalue problems,

In this study, the buckling behavior of a rigid skeletal structure with ran-
dom lack-of-fit of members is represented by an appropriate finite element model,
In principle, the probabilistic buckling behavior of the structure can be deter-
mined from the solution of the associating random eigenvalue problem as demonstra-
ted by Mak and Kelsey, using a simple hexagonal frame [14], In practice, however,
for practical large scale structures, the probability distribution of the buckling
load of the imperfect structure can only be determined approximately in terms of
lower order statistical moments of the distribution, In this paper, three differ-
ent approximate methods of finding the mean value and the variance of the random
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buckling load of a structure is presented, These are the perturbation method,
hierarchy method, and the Monte Carlo simulation. The theoretical bases of these
methods are presented.

2, Method of Analysis

The probabilistic buckling behavior of structure due to externally applied
deterministic load and random lack-of-fit of members can be defined as a random
elgenvalue problem as follows:

[K + AKy + WK, 13 = 0 L

in which q is a nodal displacement vector, and K and Eg are the usual
assembled elastic and geometric stiffness matrices commonly employed in the dis-
placement method of analysis of structures [15]. In this case, “Ke can be con-
sidered as a modification of the geometric stiffness matrix caused by the lack-of-
fit of members, Eq, 1 can be explained from the following physical argument, Due
to external load, if initial member forces Ni are present in the i th member,
in addition to forces K , forces Aﬁg are required to produce nodal displacement
q. Furthermore, if the structure is not perfectly fit, additional member forces

Si are induced in the 1 th member by the lack-of-fit of the members, It is,
therefore, necessary to require additional pEe forces to maintain the same q .
In general, AK is related to the elemental geometric stiffness (Eg)i «and Ni’
according to the following:

-
N (k
- 1(~9)1.
K-8 Nyt 8 (2)
L .
in which E is a connectivity matrix, Similarly, pﬁe must have the following
form:
[ s (k
1(~ 9%.
bk, = 8" TSk | B (3)

in which Si can be found by the following relation [15]:-

S,k (B Ktelk - I ley (4)

1 ~1

Therefore Si is a random variable depending on the probability distribution of
the random lack-of-fit of member ey, Mathematically, KK, can be interpreted
as a random perturbation from the base operators K and Eg, so that )\ and q
are the random eigenvalues and random eigenvectors of the problem defined by

eq. (1), The desired solutions of eq. (1) are therefore the probability distribu-
tion of ) and q. For most practical problems, such probability distribution of
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% and q are difficult to determine. Nevertheless, a great deal of the statis-
tical information can be obtained from the lower order moments of the distribu~
tion such as the mean and variance of A and q . These lower order moments can
be estimated by the following approximate methods; perturbation, truncated hier-
archy, and Monte Carlo simulation.

2,1 Perturbation Method
In general, the parameter u in eq. (1) is related to the induced
initial member force S and can be expressed in terms of the random lack-of-fit
of member e, For sufficiently small |u], pK, is a small perturbation from
% and K_, Therefore both ) and q can be expanded into the following power
series of the small parameter p @

=)

A=) g H (5)
i=o0

q =) au (6
i=0

To determine A and q; » eas. (5) and (6) are substituted into eq. (1),
Collecting the like coefficient of each power of p, the following 1s obtained:

Zb?\'

(K + kg D)+ 1 (e + K, oKy &+ 2, %y %)

+“2(K~eﬂi+59@+>‘o E"z+)‘1}~(qq +)\2K q)+ ... =0 (7

K
~J ~ ~3 ~o

In order to satisfy eq. (1), the bracketed terms in eq. (7) must vanish identi-
cally, i.e.,

K+r, Kg) & = O (8)
+Xq = - -

KeQotKY =K g - K )
K = - - -

Ked *Xa =2 Koa = 2K q =2 Ky (10)

from eq. (8), it is observed that j, and @, are the eigenvalues and eigenvector
of the unperturbed problem, i.e., they are the buckling load and buckling mode of
the perfect structure and can be obtained routinely. On the other hand, X ,

can be found by forming the scaler product of eq. (9) with q, S° that '

(ﬁgi,go)+xo(§ggl,go)=-(5ego,go)

- Ky L %) (11)



M 7/10
From the orthogonality condition of 9 the left-hand side of eq, (11) vanishes

so that

A= (12)

Keeping only the linear terms in eq, (5), then

e 0 )

Mo TR ) e

Therefore the expected value of the random variable 3 becomes

. a E[
ElA] = Ao +%E;ﬂ) E[,}Se 9y Elo] (14)

and the variance of ) becomes:

var 1] = rg—gye Var (X, 40 ] (15)
~g

It is noted that if the imperfection e has a zero mean so that E[u] = 0 , then
E[A] equals to the eigenvalue of the perfect structure, Ao in eq. (8).

2.2 Hierarchy Method

Another very powerful approximate technique to solve the random eigen-
value problem is the truncated hierarchy method. The advantage of this method
over the perturbation technique is that the random parameter of the problem does
not need to be restricted to small perturbation about the mean value. However,
it is worthy to note that in the previous method, the solution of the problem is
first expressed in terms of the random coefficients of the problem so that the
statistical implication of the solution is evaluated "honestly'" (though honesty
does not necessarily imply accuracy). Whereas the hierarch method is really a
"dishonest" method [167 [17]. Basically, the hierarchy method reduces the random
problem into a deterministic one by first averaging the governing stochastic equa-
tions. By making appropriate statistical independence assumptiohs for the averaged
equations, the statistical moment of the solution is determined directly (hence
dishonestly).

To apply the hierarchy method to the random eigenvalue problem, the
mean value operator E [ ] , is applied to all the random quantities in eq. (1)
to obtain the following:

K E[q] + K  EDL 4 + K, BElu gl =0 (16)

As it stands, eq, (1l6) cannot be solved because it contains E[g], as well as the
higher joint moments of E[u q] and E[) g] . Additional equations must be provided
so that the higher moment of pq  and Aq can be expressed in terms of the lower
order moments, Generally, these equations will involve still higher moments of the
random variables so that this procedure will lead to an infinite hierarchy of
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equations. In practical application, the infinite process can be truncated by some
appropriate closure assumptions. Usually these assumptions involve a systematic
replacement of higher moments in terms of lower order ones, For eq. (16) a simple
closure assumption is:

E[pq]
E(xq]

E[u] E[q]
E[}] Elq]

(17)

Substituting eq, (17) into eq. (16), the following deterministic eigenvalue prob-
lem is obtained:

(K + B[LIK,) E[q) = EIA) X, ELQ) (18)

in which E[%] and E[q] can be determined routinely. If the random lack-of-fit
of the members have a zero mean, then E[u] = 0 so that E[X] and E[g] become
simply the buckling load and buckling modes of a perfect structure or E[)] = Ao
E(a] = 4e This agrees with the results predicted by the first order perturbation
technique indicated by eq. (14).

To estimate the variance of 3, var[r], ed. (1) is multiplied by A and then
W, both equations are then averaged to obtain the following:

K E[x q) + KﬁgE[ngJ + K, Elang) = 0 (19)
K E[u gq] + KAQED\HN] + K, E[u?q) = © (20)

To solve eqs. (19) and (20), improved estimate of the second hierarchy can be made
by the cumulant discard method [6] in which the n th hierarchy neglects the
following quantity

n
{g_zt.l._.at—;_aﬁi Ln{[exp(iz £;B; +in (u(x) - E[u(x)])):l } (21)
! " k=1

It can be shown that, from eq. (21)

Eln B3] = E[u] E[l31:|
E(np B I= E[Blﬁzl Efu] + E[Uﬁlj B[] + (22)

E[ws 7 E[B ] - 2E[u] E[B ] E[R ]
2 1 1 2

From eq. (22), the following closure assumptions are obtained:

E[x ¢l

E[p q]

E(\] E[Q] (23)

E[u] E[q] (24)



E\® q] = E[\®] E[q) + 2E(x] E(AQ] - 2E[q] B(A]° (25)
B[u®q ] = E[4®] E[a) + 26(u] E[ng] - 2E[q] Elu] (26)
Elug 7 = E[au] E[q) + E[aq] E[u] + Efugq] E0A] (27)

- 2E[\] E[u] E[g]
Substituting eqs. (24) and (26) into eq. (20), the following equation is obtained:

K E[u] B[] + X EDwg) + X, {E0w*] Ela]

(28)
2
+ 2B[u] Efug) - 2E[QIE[u) } =0
Again if E[u] = 0, eq, (28) becomes
1
Bl 4 = - X X, {E0u%] ELq1} (29)

Substituting eqs. (23), (25) and (29) into eq, (19), the following equation is
obtained:

E[)2 - E[u?
@t Gnrt -5 g K () He e o &

For a given E[u®] , and E[A] and E[q] as determined from eq. (18), E[»?] can
be extracted from the eigenvalue of eq, (30), From the definition of variance,
Var[a] dis simply:

var[x] = E[}2] - E[1]? (31)

2,3 Monte Carlo Simulation

Monte Carlo simulation is also commonly referred to as synthetic samp=-
ling, It has been used extensively to study complex system performance from the
statistical data of component members, Generally it relies on a high-speed digital
computer and an efficient algorithm to randomly select the component members from
the available sample population and to analyze the assembled, synthesized system,
With the advent of the matrix and finite element methods, the deterministic sta-
bility analysis of large scale, complex structural systems does not present any
great difficulty. For a given structural system with a given applied load the
elastic and geometric stiffness matrices 5 and K in eq, (1) can be assembled
in the usual manner, From the given probability distribution of the lack-of-fit
of the members, the member size of a sample structure is selected by an appropriate
random number generator [18] so that the corresponding initial stress matrix er
of the structure can be evaluated, The resulting eigenvalue problem is completely
deterministic and can be solved in a routine manner. By repeating the synthetic
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sampling and solution process for a sufficiently large number of times, a histo-
gram as an approximate probability density function for the buckling load of the
stpucture is obtained. The statistical moments of the histogram such as the sample
mean and sample variance can be calculated easily, The entire simulation procedure

is outlined in the following flow chart:

Tnput I: Statistical distribution for each
of the random member size variables.

Using an appropriate random number generator, select the random member
size values according to their statistical distributions.

Input IT: Relations between random member Repeat the procedure
size and structural system buckling behavior, many times,
i,e., Eq. (1).

Calculation of the buckling capacity of the structural system composed of
members the size of which has been selected in the previous step, i.e.,
solution of Eq. (1),

Output: Plot the resulting buckling load histogram as an estimated probability
density function, Calculate the sample mean and sample variance,

Because Monte Carlo simulation involves the generation of random numbers, the
results are subjected to statistical fluctuations, and the estimated probability
density will have an associated error band. Generally the larger the number of
synthetic samples in the simulation, the more precise will be the histogram to
approximate the actual probability density function, In practice, however, the
allowable error band, expressed in terms of percentage of confidence limits for
the estimated parameters, (in this case, the sample moments ), is initially speci-
fied, The required number of Monte Carlo trials can then be determined from the
usual statistical methods for estimates of parameters, [19]. For instance, if
(1 - a) is the desired probability or confidence limit that the sample mean does
not differ from the real mean by more than + € , then the required number of Monte

Carlo trials, n is found approximately by [197:

(32)

in which o (1 - %) is the (1 = %) (100) percent point of a standard normal dis=-
tribution and o' is an initial estimate of the sample standard deviation,
If the buckling load of each sample structure is Ais then the sample average

of the buckling load of the structure, ), is simply
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o1
No=E ) A (33)
i=1
and the sample variance of Ays s? is:
n
s2=2 ) D (34)
B i
i=1

3., Conclusion

Three approximate methods are presented which can be used to estimate the
lower order moments of the probability distribution of the buckling capacity of
multiple redundant structures with random lack-of-fit or geometric imperfection,
Among the three methods, Monte Carlo simulation requires a large amount of compu-
tation in order to obtain reasonably reliable estimates, The perturbation techni-
que is limited to structures with small random imperfections from the mean perfect
state, whereas the hierarchy technique is not restricted to small perturbations,
It is noted these techniques can be applied to solve nonlinear random buckling
problem of shells with geometric imperfections,
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