
ABSTRACT

WANG, WENGRAN. The Design and Evaluation of Automated Examples to Support Creative,
Open-Ended Programming. (Under the direction of Thomas Price).

Open-ended programming engages students by connecting computing with their real-

world experience and personal interests. However, such open-ended programming tasks

can be challenging, as they require students to implement features that may require knowl-

edge students are unfamiliar with. Code examples can help students to generate ideas

and implement those features, but students often face barriers when searching, learning,

and integrating those examples. This work explores what challenges students face when

using code examples during open-ended programming, and how to automatically generate

personalized code examples, and how to design systems to present examples, in order to

improve students’ programming performance, sense of ownership, and perceived creativity.

In this work, I investigate three research questions: 1) What are novices’ motivations, strate-

gies, and barriers when using code examples during open-ended programming? 2) How can

we design code examples to address students’ decision, search, mapping, understanding,

and testing barriers? 3) What is the impact of having access to code examples on students’

open-ended programming? I present 5 studies to address these research questions.

In Study 1, I built Example Helper, a tool that offers galleries of code examples for

students to search and use. I conducted a lab study with 12 pairs of high school students

when using Example Helper to complete open-ended programming tasks. The goal of

this study was to systematically analyze and describe students’ example reuse during

open-ended programming - what are their needs and strategies during example reuse

in open-ended programming. I found that students request code examples primarily to

explore ideas; understand how to start a step; debug incorrect code; confirm their own code;

or avoid re-implementing the same code. I also found 4 different strategies students employ

when requesting examples: by integrating one block/feature at a time; by comparing their

code with the example code to identify the key differences; by using tinkering to understand

an example code; or by implementing a feature after closing the example. I found that some

example requests (13.8%) also exhibit a lack of strategy, which is indicated by students

copying and replacing the example code with their own code blindly, and using shallow

debugging methods, such as making arbitrary changes. These findings suggest the need to

build example systems to address these motivations and strategies.

In Study 2, I investigated the challenges students encounter when using code examples

during open-ended programming, in an authentic classroom environment. I found that

students encounter 3 types of major barriers when using code examples in open-ended

programming: decision barrier - not knowing when to use an example; search barrier -

not knowing how to find a needed example; and integration barrier - failing to use the

example in their project, caused by difficulties in understanding, testing and modifying the

example code. These insights suggest future work to build example support systems, such

as supporting experimentation and modification to address integration barriers (Study 3),

and offering personalized support to address decision and search barriers (Study 4 and 5).

In Study 3, I improved the Example Helper system by offering search recommendations,

example previews, and testing windows. In a quasi-experimental comparison, I found that

across students who used the system, these improvements significantly improved example

integration compared to its earlier prototype.

In Study 4, I developed and evaluated Pinpoint, a system that helps Snap! programmers

understand and reuse an existing program by isolating the code responsible for specific

events during program execution. Specifically, a user can record the execution of the pro-

gram (including user inputs and graphical output), replay the output, and select a specific

time interval where the event of interest occurred, to view code that is relevant to this event.

I conducted a lab study to compare students’ program comprehension experience with

and without Pinpoint, and found suggestive evidence that Pinpoint helps users understand

and reuse a complex program more efficiently.

In Study 5, using the improved version of Example Helper from Study 3, I conducted

a controlled study to evaluate the impact of having access to code examples on students’

programming and learning outcomes. I conducted the study with 46 local high school

students in a full-day coding workshop, where half of the students had full access to 37 code

examples using EXAMPLE HELPER, and the other half had 5 standard, tutorial examples. I

found that students who had access to all 37 code examples used a significantly larger variety

of code APIs, perceived the programming as relatively more creative, but also experienced

a higher task load. I also found weak evidence of a better post-assignment performance

from the EXAMPLE HELPER group, showing that some students were able to learn and apply

the knowledge they learned from examples to a new programming task. My results show

that having access to code examples during open-ended programming helped students

become more creative, build projects with a larger variety of APIs, and learn new knowledge

for future tasks.

The contribution of this thesis includes: 1) A systematic analysis of the goals, strategies,

and barriers novices experience or encounter when using code examples during open-

ended programming (Studies 1 and 2); 2) The design and deployment of two interconnected

systems, which support just-in-time example extraction (Pinpoint); and testing-centered

example integration (Example Helper); each addressing one or more barriers students

encounter during example reuse (Studies 3, 4 and 5); 3) The empirical evaluations of the im-

pact of these example support systems on students' programming performance, perceived

creativity and learning outcomes(Study 4 and 5).

© Copyright 2023 by Wengran Wang

All Rights Reserved

The Design and Evaluation of Automated Examples to Support Creative, Open-Ended
Programming

by
Wengran Wang

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial ful�llment of the
requirements for the Degree of

Doctor of Philosophy

Computer Science

Raleigh, North Carolina
2023

APPROVED BY:

Tiffany Barnes Kathryn Stolee

Eric Wiebe Thomas Price
Chair of Advisory Committee

DEDICATION

To mom and dad, for their unconditional love.

ii

BIOGRAPHY

Wengran was born into a family in Hangzhou, China that had a deep love for books and

music. Her father, Ronghao, who holds a Bachelor's degree in Computer Science from

Zhejiang University, introduced her to the magic of computing at a young age. When

Wengran was just eight years old, he gifted her with a personal website where he personally

typed and published all of her diaries. The experience of being able to share her thoughts

and ideas online through digital publishing left a profound impact on her.

Wengran's mother, Xiya, is a dedicated teacher, doctor, and mother. She spent all her

time working hard to support her family and take care of Wengran. She taught Wengran

that true beauty in life is not measured by material success or external possessions, but

rather by the internal experience of love, perseverance, and passion. Throughout her life,

Wengran's parents placed a high priority on her education, valuing it above all else.

Wengran attended Zhejiang University for her undergraduate studies, majoring in

Environmental Science and earning a minor degree in French Language and Literature.

While working on a research project focused on modeling local Carbon Dioxide emissions,

she became intrigued by the �elds of Statistics and Computer Science. This led her to

pursue a Master's degree in Statistics from NC State University, followed by a Ph.D. in the

Computer Science department, where she focused on the area of Computing Education.

Recognizing the impact that computing technology has on our world, Wengran is pas-

sionate about broadening participation in Computing Education. She �rmly believes that

involving individuals from marginalized groups can help build a more equitable future for

humanity. Through her research, she hopes to contribute to the goal of creating a more

inclusive and diverse computing community.

iii

ACKNOWLEDGEMENTS

I would like to express my deepest appreciation to my advisor, Dr. Thomas Price, for his

brilliant ideas, high standards, extensive knowledge, strong support, and sheer sincerity. I

feel extremely fortunate and grateful to be able to work with Dr. Price, who has helped me

navigate through countless research ideas, build useful systems, run rigorous studies, and

write interesting papers. Dr. Price has been a role model for how to effectively engage with

and motivate teamwork, how to passionately initiate, pursue, and persist through research

projects, and how to mentor students with care, compassion, and kindness.

I would also like to extend my sincerest thanks to the professors and committee mem-

bers, from whom I have received great support and guidance.

• Many thanks to Dr. Gordon Fraser, for sharing his extensive knowledge about pro-

gram analysis and maintaining software engineering teamwork, involving me in

several wonderful research projects, introducing me to his amazing lab, and giving

me thoughtful critiques and insightful guidance.

• Special thanks to Dr. Tiffany Barnes, for sharing her energy, enthusiasm, and innova-

tive ideas in lots of meetings, and for encouraging me to pursue Ph.D. when I was

doing my Master's degree.

• Thanks also to Dr. Chris Martens, for sharing with me her experience and knowledge

in generative methods and game design.

• I'm also grateful to Dr. Kathryn Stolee, for her brilliant ideas and actionable sugges-

tions in advancing my work.

• Thanks should also go to Dr. Eric Wiebe, for his clear, rigorous, detailed advice for

running my student studies.

I am also grateful to my collaborators and mentees, who contributed directly to my

work presented here:

• My collaborators, co-authors, and lab mates, who contributed to my work: Ally Limke,

for doing extensive, patient, careful, and insightful work in classroom and camp

studies, and for teaching me how to develop rapport with students. Samiha Marwan,

for sharing with me great insight and ideas about measures, study design, her great

paper editing skills, and her loving, optimistic life attitude. Yang Shi, for involving

iv

me in researching AI for education, and for giving me frank, honest critiques. Thank

James Skripchuk, and John Marsden, for sharing with me various ideas from different

perspectives; John Bacher, for helping me run studies with skills and care; Keith Tran,

for helping me conduct thoughtful analysis. Thank Benyamin Tarbarsi, Heidi Reichert,

and Sandeep Sthapit, for helping me with research and paper writing, even when it's

last-minute.

• My amazing collaborators from Germany. Many thanks to Andreas Stahlbauer, for his

extensive knowledge and insight on static program analysis, and software engineering.

Thank Patric Feldmeier, for his excellent programming skills and dedication. Thank

Sebastian Schweikl, for his various ideas, software knowledge, and kindness. Thank

Adina Deiner, for her support and teamwork. And thank Florian Obermüler, for his

generous help.

• Many (former) students, who helped me get started: Rui Zhi, for helping me get

to learn about the amazing �eld of Computing Education; Alexander Milliken, for

working with me through many camp studies; Nick Lytle, for sharing insights to start

my �rst research paper; Yihuan Dong, who shared with me great ideas and insights on

computational thinking. Thank Jennifer Tsan, for sharing with me excellent insights

on open-ended programming and pair programming, and for her great support and

kindness.

• My amazing mentees and undergraduate students, who gave me support and moti-

vation. Thank Mahesh Bobbadi and Audrey Le Meur, for their dedication and com-

mitment. I felt lucky to have the chance to work closely with them, who gave me

lots of inspiration and motivation, and brought novel perspectives to my research.

Thank Yudong Rao and Archit Kwatra, whose efforts and hard work went to the proto-

type systems that informed my research. Thank Neeloy Gomes and Sarah Martin, for

providing help during my student studies.

• Thank many instructors who provided me with the resources, opportunities, and

extensive support to run my studies and deploy my systems: Bita Akram, Amy Isvik,

Veronica Catété, for always being there to run camp and classroom studies with me,

and providing support with both teaching and research. Thank Shuyin Jiao, Adam

Gaweda, Sterling McLeod, John Marsden, and many other instructors, for offering

me many research opportunities with their students.

v

In the end, I want to express my deepest gratitude to my family. The completion of my

dissertation would not have been possible without their love and support. Thank Wai Po

(Yunying Lu), for her perseverance and love. She showed me the magic of words and poems

when I was just learning to speak. Thank Wai Gong (Yunfa Weng), for his brilliant, strong

mind, Wai Gong believed in and loved me, trusting me to achieve the best in my life. Thank

Nai Nai and Ye Ye (Zhenying Kong and Lishui Wang), for their silent, constant love. I carry

their love and kindness with me.

Thank Mama, Xiya Weng, for teaching me to take strong stands and live a passionate,

courageous life.

Thank Baba, Ronghao Wang, for teaching me the value of action, the long-term effect

of staying focused, and the power of details.

Thank my husband, Yudong Rao, for being such a joyful presence.

vi

TABLE OF CONTENTS

List of Tables . x

List of Figures . xi

Chapter 1 Introduction . 1
1.1 Motivation . 1
1.2 Research Outline . 3

1.2.1 Understanding students' needs and challenges during example use 3
1.2.2 Addressing the challenges in two different dimensions. 4
1.2.3 An Evaluation of Having Access to Examples in Open-Ended Pro-

gramming . 5
1.3 Research Questions . 5
1.4 Contributions . 6

Chapter 2 Related Work . 7
2.1 Open-Ended Programming . 7
2.2 Code Examples . 9

2.2.1 Code Examples for Closed-Ended Programming Problem 9
2.2.2 Code Example Systems for Open-Ended Programming 10
2.2.3 Code Examples for Informal Learning Settings 12

Chapter 3 Novices' Motivations and Strategies for Using Code Examples in Open-
Ended Programming . 16

3.1 Introduction . 16
3.2 Example Helper System . 18
3.3 Study Setup . 19

3.3.1 System . 19
3.3.2 Participants & Procedure . 21

3.4 Analysis . 23
3.5 Results . 25

3.5.1 Motivations: Why do students ask for examples? 25
3.5.2 Strategies: How do students learn and use an example? 26
3.5.3 An in-depth example . 32
3.5.4 Outcomes of example use . 33

3.6 Discussion . 34
3.6.1 Support design and planning for creating complex projects 35
3.6.2 Encourage effective example learning strategies 35

3.7 Limitations & Conclusion . 37

Chapter 4 Novices' Learning Barriers When Using Code Examples in Open-Ended
Programming . 38

vii

4.1 Introduction . 38
4.2 Example Helper System . 39
4.3 Participants & Procedure . 41
4.4 Analysis . 42
4.5 Results & Discussion . 43
4.6 Limitation & Conclusions . 50
4.7 Acknowledgements . 51

Chapter 5 Exploring Design Choices to Support Novices' Example Use During
Creative Open-Ended Programming . 52

5.1 Introduction . 52
5.2 The EXAMPLE HELPERSystem . 54

5.2.1 Interface Design . 54
5.2.2 Example Content Design . 55

5.3 Methods . 57
5.3.1 Participants & Procedure . 57
5.3.2 Data & Analysis . 58

5.4 Results & Discussion . 59
5.4.1 RQ1: How did students use examples? . 59
5.4.2 RQ2: Who used examples? . 61
5.4.3 RQ3: To what extent did our design choices address students' learning

barriers? . 62
5.5 Limitations & Conclusion . 64
5.6 Acknowledgements . 64

Chapter 6 Pinpoint : A Record, Replay, & Extract System to Support Code Com-
prehension and Reuse . 65

6.1 Introduction . 65
6.2 Related Work . 66

6.2.1 Code Reuse . 67
6.2.2 Supporting Code Comprehension & Reuse 67

6.3 System Design Goals & Formative Study . 68
6.4 The Pinpoint System . 69

6.4.1 The Pinpoint Design . 69
6.4.2 Pinpoint Implementation . 72

6.5 Methods . 73
6.5.1 Participants and Study Design . 74
6.5.2 Materials: Two Reuse Assignments . 75

6.6 Data Collection and Analysis . 76
6.6.1 Pretest . 77
6.6.2 Task Performance . 77
6.6.3 Qualitative Interview Analysis . 77

6.7 Results and Discussion . 78

viii

6.7.1 RQ1: What was the impact of Pinpoint on students' ability to extract
and reuse code from an example? . 78

6.7.2 RQ2: What are students' perceptions of their reuse experience? 80
6.8 Conclusions and Future Work . 82

Chapter 7 Investigating the Impact of On-Demand Code Examples on Novices'
Open-Ended Programming Experience . 83

7.1 Introduction . 83
7.2 Related Work . 84

7.2.1 Open-Ended Programming . 84
7.2.2 Code Examples . 85
7.2.3 Open-Ended Programming . 88
7.2.4 Code Examples . 88

7.3 Methods . 90
7.3.1 The EXAMPLE HELPERSystem . 90
7.3.2 Participants & Learning Context . 92
7.3.3 Procedure . 93
7.3.4 Measures . 94

7.4 Results . 97
7.5 Discussion & Conclusion . 101

Chapter 8 Conclusion .103
8.1 Research Questions . 103

8.1.1 Research Question 1 . 103
8.1.2 Research Question 2 . 105
8.1.3 Research Question 3 . 106

8.2 Design Principles & Future Work . 107
8.3 Contributions . 108

ix

LIST OF TABLES

Table 3.1 5 situations where students ask for code examples and their frequen-
cies among a total of 88 example requests. 25

Table 3.2 4 example reuse strategy and the copy-run-debug behavior (i.e., lack
of strategy). Strategies started with ? denotes example use strategies
not mentioned in prior work [Wan20c; Ich15]. 30

Table 5.1 EXAMPLE HELPERdesign targets to address the search, decision, test-
ing, and modi�cation barriers students encounter when using code
examples during open-ended programming. 56

Table 7.1 Statistics for the control (ctrl.) and example (exp.) groups, with the p -
value and effect sizes. * means the data follows the normal distribution. 98

Table 7.2 Statistics for the control (ctrl.) and example (exp.) groups, with the p -
value and effect sizes. * means the data follows the normal distribution. 100

x

LIST OF FIGURES

Figure 3.1 The Example Helper Interface. 18
Figure 3.2 The Example Helper Interface. 20
Figure 3.3 L3 copied, modi�ed, and tested to integrate the example code to their

own code one at a time . 26
Figure 3.4 Using the comparison strategy, E7 identi�ed meaningful differences

to use in their own context, without discarding un-meaningful differ-
ences. 27

Figure 3.5 L4 employed the strategy “ understanding through tinkering ” to
understand an unfamiliar block - “set size to”. 28

Figure 3.6 Case study: students' implementation of spawn_clones. 31

Figure 4.1 The Example Helper Interface. 40
Figure 4.2 # unfamiliar blocks v.s. integration rate. 47
Figure 4.3 example type v.s. integration rate . 48

Figure 5.1 The EXAMPLE HELPER interface, which includes a selection-based
gallery (left) and a playground view (right) for students to program
while using the example as a reference. 54

Figure 6.1 Pinpoint users can 1) record a program execution (including user
input and graphical output), 2) replay a recording and select a time
interval where an event has occurred, and 3) inspect an executable
code slice relevant to the event, where the code executed inside the
selected time interval is highlighted. 70

Figure 6.2 Users can also trace changes to individual variables by selecting “How”
questions on different variables and attributes. 72

Figure 6.3 For the 11 students without perfect performance, The Late group
(shown in yellow) showed signi�cantly more improvement than the
Early group (shown in green). 79

Figure 7.1 The EXAMPLE HELPERinterface [Wan22]. Students can browse and
search for examples in a gallery (left) interface, and then test and
modify them in a sandbox (right), where they may also click to copy
the example into their own workspace. 91

xi

CHAPTER

1

INTRODUCTION

1.1 Motivation

Open-ended programming projects, where students make apps, games, and stories that they

have designed themselves, are widely-used in many introductory programming curricula

[Gar15; McG18; Gro18] and online, informal learning settings [Pep07]. During open-ended

programming, students can freely explore, design, and implement a relatively complex

programming project, and can express their ideas creatively [Hul15]. As open-ended projects

enable learners to freely de�ne their own goals, they allow learners to connect their real-

world experiences and interests with their programming projects [Pap80], motivating them

to pursue Computer Science [Mar02; Guz05].

Open-ended programming projects are characterized by a number of properties that

make them engaging, but which can also be challenging for novice programmers: First,

they require students to engage in the complex cognitive processes of generating ideas,

designing plans and implementing solutions [Win11; Blu91]. Because the projects are

somewhat or fully student-designed, students need to engage in these activities and manage

a large and complex project. This can lead to many challenges during both design and

1

implementation [Ald18; Kok16; Wri07]. Second, open-ended programming encourages

students to be ambitious in their designs to create interesting artifacts, which often requires

students to combine different programming concepts and APIs, or make use of APIs they

are still unfamiliar with. and write larger, more complex projects than typical assignments.

Lastly, as students can freely explore among in�nite choices to generate ideas and develop

solutions, it is dif�cult for instructors to prepare students with all possible materials before

project-making; or offer students personalized feedback or suggestions when they request

help during programming. This suggests the need for better ways to support novices working

on open ended projects.

Code examples provide a promising option to help students overcome these challenges.

Many novices use code examples to explore ideas, learn new programming concepts, and

to integrate new API usage patterns into their open-ended projects [Ker17b; Kha19]. Prior

work has shown that novices consider code examples as useful learning materials [Lah05],

and that they were able to reuse new API usage patterns effectively after learning them

from code examples [Ich17]. However, exploratory studies from prior work also show that

novices encountered a number of challenges when integrating examples into their own

code [Ich15], such as dif�culties understanding the example code, and integrating the

example code to their own code [Ich15; Wan20c].

A large body of related work has focused on developing example support and studying

students' example learning for closed-endedprogramming problems (i.e., with prede�ned

speci�cations, rather than student-de�ned goals) [Ich15; Zhi19; Tra94; Bru01], while little

has explored building example support for open-ended programming projects. In particular

the open-ended programming projects addressed in this work can be characterized by

a number of distinct challenges. First, as open-ended programming includes multiple

iterative phases of design, planning and implementation, students may need code examples

for a variety of goals, and may use them in different ways. Second, as students freely decide

the goals of their projects, we do not know what examples a student will need before

project-making. This motivates my work to systematically investigate the phenomenon

of example use during open-ended programming (i.e., why and how students use code

examples during open-ended programming), to explore the ways in which students may

encounter barriers to use code examples during open-ended programming, to design and

evaluate systems to address these barriers, and to evaluate how access to examples affect

students' open-ended programming experience.

2

1.2 Research Outline

I present my thesis work in three parts. The �rst part explores the affordances and challenges

of example use during open-ended programming; the second part discusses the design,

deployment and evaluation of two complementary and interconnected example support

systems, each addressing speci�c challenges for example reuse; the third part discusses

evaluations of each of the three support systems, with implications for pedagogy and tools

to support example use during open-ended progamming.

1.2.1 Understanding students' needs and challenges during example use

I begin in Chapter 2 with a literature review on the related work on open-ended program-

ming and code examples, and discuss the design space for building example-based support

for open-ended programming.

In Chapters 3 and 4, I discuss a systematic analysis on the phenomenon of example use

during open-ended programming. To do that, I �rst built a prototype version of Example

Helper, a gallery-based example support system, and deployed it in a lab study with a

group of high school students. I employed the Case Study Research methodology to ana-

lyze students' motivations and strategies when using code examples during open-ended

programming, using an aggregation of log, think-aloud (Chapter 3). Next, I deployed the

Prototype Example Helper system to an introductory programming classroom, where I in-

vestigated the speci�c challenges students experience when using those examples. I found

that students encounter the following barriers: 1) many students do not use examples even

when they need help (decision barrier), perhaps due to the lack of personalization of the

examples' content, or due to the lack of awareness or trust towards the code examples. 2)

They encounter dif�culties in describing which examples they want when searching (search

barrier). 3) When they �nd an example they need, they encounter barriers to map a property

of the example to the property of their own code, as the example is presented in a different

context than the students' own code (mapping barrier). 4) When learning an example, they

also encounter dif�culties understanding the example code (understanding barrier). Lastly,

5) they need immediate access to modifying and testing each code examples, which the

Prototype Example Helper did not offer (testing barrier).

3

1.2.2 Addressing the challenges in two different dimensions.

In Chapters 5 and 6, I present two new systems that I have built to address the challenges

students encounter during example reuse.

• Example Helper (Chapter 5).I completely redesigned Example Helper to address the

challenges identi�ed in Chapter 4, such that the system includes immediate search

results, autocomplete suggestions, and direct running and modi�cation support in

the example browsing and testing interface. I conducted a quasi-experimental study

on the usage of Example Helper for creating open-ended programming projects, and

found that Example Helper helped students to integrate more examples into their

own code compared to its prior prototype.

• Pinpoint (Chapter 6). Pinpoint is a system that helps Snap programmers to understand

and reuse an existing complete program by isolating the code responsible for speci�c

events during program execution. Speci�cally, a user can record an execution of

the program (including user inputs and graphical output), replay the output, and

select a speci�c time interval where the event of interest occurred, to view code that

is relevant to this event. Students can search and identify a subset of code blocks

from a complex example program. I conducted a lab study with 17 students, and

found suggestive evidence that Pinpoint improves students' ability to integrate code

examples into their own projects. The students explained forming more con�dent

hypothesis about a code segment's runtime behaviors, employing more focused,

targeted example learning approach, and connecting different code segments more

easily using Pinpoint.

These two systems are complementary and address barriers students encounter at

different phases of project-making. 1) To address the decision barrier , I increase students'

awareness and trust towards the code examples, by including students in the process of

example co-creation. Pinpoint extracts code examples based on students' own toggling of

an execution trace. 2) Pinpoint also addresses the search barrier, by extending the modes

of example search from simply typing text in a searchbox, to also include allowing students

to �nd examples by drawing storyboards or searching within larger example projects. 3)

To address the understanding barrier , Pinpoint uses highlighted code blocks to directly

map the executing code to its corresponding output. 4) Lastly, to address the testing barrier ,

Example Helper allows students to quickly access, run and modify examples from within in

the example browser.

4

1.2.3 An Evaluation of Having Access to Examples in Open-Ended Pro-

gramming

In Chapter 7, I discuss a controlled study, which aims to evaluate the effect of having access

to code examples on novices' open-ended programming experience, including their 1)

project complexity, 2) self-perceived task load and creativity, and 3) learning outcomes. I ran

a controlled study in a full-day coding workshop, with students recruited from local high

schools. The examples were provided through EXAMPLE HELPER, on which students can

search, select, test and use an example from a gallery of code examples. Going beyond the

system evaluation studies discussed in Chapters 5 and 6, this work measures the impact of

example use in a longer (3 hours), ecologically valid learning setting (a day camp classroom),

where students made a project from start to �nish, which they had the freedom to design and

plan themselves. Further, I not only investigate the extent of API use from code examples, I

also investigate how access to examples affects the complexity of students' projects, their

post-task performance, and students' perceptions of task load and creativity.

1.3 Research Questions

This work investigates the following 3 high-level research questions:

• RQ1:What are novices' motivations, strategies, and barriers when using code examples

during open-ended programming? . This RQ is addressed in Chapers 3 and 4, where I

discuss the phenomena of example reuse during open-ended programming, and the

key barriers students encounter when using code examples.

• RQ2:How can we design code examples to address students' decision, search, mapping,

understanding, and testing barriers? This RQ is addressed in Chapters 5, 6, where I

discuss the design and deployment of two complementary example support systems

to address the above learning barriers.

• RQ3:What is the impact of having access to code examples on students' open-ended

programming? This RQ is addressed in Chapter 7, where I discuss the evaluation of

the Example Helper system, and evaluate its impact on students' project complexity,

self-perceived task load and creativity, and learning outcomes.

5

1.4 Contributions

The contribution of this proposed thesis includes:

• A systematic analysis of the goals, strategies, and barriers novices experience or

encounter when using code examples during open-ended programming.

• The design and deployment of two interconnected systems, which support, respec-

tively, just-in-time example extraction (Pinpoint); and testing-centered example inte-

gration (Example Helper); each addressing one or more barriers students encounter

during example reuse;

• The empirical evaluations of the impact of these example support systems on stu-

dents' programming performance and perceived creativity;

6

CHAPTER

2

RELATED WORK

I discuss the Related Work in two parts. First, I discuss the open-ended programming

context, which situates my work. Next, I discuss prior work on code examples, and the gaps

between prior work and my proposed thesis.

2.1 Open-Ended Programming

The �rst step towards creating learner-centric tools, such as those presented in this work, is

to understand students' own needs and practices [Guz15]. In order to understand how to

build tools to support open-ended programming, I �rst review the bene�ts of open-ended

programming, exploratory programming behaviors, and the challenges they may encounter

when making open-ended programming projects.

Open-ended programming allows learners to integrate personal interests into creating

an artifact that is meaningful to them. Many efforts to promote open-ended programming

draw on the theory of Constructionism [Pap80], which suggests that learners effectively

build their own knowledge structure when engaging in creating a programming artifact

they feel connected with [Pap80]. In many introductory programming curricula, the process

7

of completing an open-ended project includes the multiple phases of student-centered

activities, where students generate ideas, make designs, discuss plans, and implement their

solutions [Mil21].

Prior work also has summarized two key types of challenges novices encounter when

making open-ended programming projects. The �rst is the cognitive challenges towards the

self-directed process of designing, planning, and building an open-ended project [Wri07],

which requires self-regulatory skills [Win11], focused attention [Wri07] and high levels of

engagement [Kok16]. Prior work has shown that students encounter barriers in multiple

phases of the self-driven activities of designing and building a programming artifact. For

example, Marx et al. conducted four case studies with middle school teachers, and dis-

cussed multiple barriers towards a project-based learning approach, such as dif�culties to

engage students throughout the time-consuming process of goal setting, planning, and

implementation [Mar94]. Aldabbus conducted a qualitative survey and interview study with

24 teachers in multiple disciplines on their classroom experience of project-based learning,

and found that 3 / 4 of the teachers were unable to implement project-based learning with

their students, and discussed challenges including students seeking for expedient solu-

tions, rather than meaningfully engage in the problem-solving process [Ald18]. This shows

that students need external support when completing multiple phases of open-ended

programming, including design, planning and code implementation.

The second type of challenge novices face when making open-ended programming

projects relates to the dif�cult process of building a complete, functional programming

artifact, which requires organizing and implementing many different programming con-

cepts and API knowledge. Prior work has discussed many challenges when novices build

an open-ended programming project. 1) They may struggle to design “logically-coherent”

programming components, and may start by putting together all possible code elements

that seemed relevant [Mee11]. 2) Their programs may suffer from code smells such as dupli-

cated code [Rob17]. 3) Their �nal artifacts were shown to be lack of usage of fundamental

programming concepts (e.g., variables, operations), from a systematic evaluation of 80

novices' open-ended projects collected from 20 urban middle school classrooms [Gro18].

These show struggles to apply existing concepts into code, or to explore new programming

concepts or APIs. Kirschner, Sweller, and Clark summarized through a literature review

that open-ended discovery may lead to experiential learning, where learners rely heavily on

trial-and-error instead of learning new knowledge [Kir06]. These challenges encountered by

novices during open-ended programming are examples of “Play Paradox” [Nos96], which

explains that learning activities should strike a balance between creative exploration and

8

some levels of external support [Nos96]. This shows the need for supporting open-ended

programming with information and materials that demonstrate API knowledge and code

usage patterns.

2.2 Code Examples

Prior work on code examples for novice programmers focus primarily on supporting stu-

dents to complete closed-ended programming problems, where they are asked to make

a program to complete a set speci�cation [Gro14; Zhi19; Wan20c]. In this discussion, I

�rst summarize the Worked Example effect , and discusses evidence of the effect of code

examples to support learning and programming performance. However, little research has

focused on the open-ended programming context, which adds speci�c challenges towards

example use. I �rst review related work on code examples for closed-ended programming

tasks, which sets the foundation of my work. I next discuss the literature on using code

examples for open-ended programming, and discuss the challenges for code reuse in this

context.

2.2.1 Code Examples for Closed-Ended Programming Problem

The Worked Example Effect

Worked Examples (WEs) are a form of instructional support, which give students a demon-

stration of how to solve the problem [Cla11]. WEs are traditionally offered in lieu of problem

solving, usually “before” or “after” a student solves a distinct but related programming task

[Bru01; Tra94]. The effectiveness of WEs is primarily grounded in Cognitive Load Theory,

which argues that learners have a �nite amount of mental resources during problem-solving

(called cognitive load), and when problems impose an unnecessary burden on those re-

sources (intrinsic load), the student has fewer resources left for processing and learning the

material (germane load) [Swe88]. WEs support learning by providing support for “borrow-

ing” knowledge, reducing the unnecessary intrinsic load [Swe06]. Programming learning

environments use WEs widely. For example, WebEx provides web-based self-explaining

code examples for students [Bru01]. Such programming WEs could help students learn the

problem-solving schema [Gen03] and transfer it to another task [Tra94]. Trafton et al. evalu-

ated 40 undergraduate students' post-test scores after programming in BATBook, a Lisp

programming learning environment, and found that those with alternating WE and prob-

9

lem solving (PS) pairs performed better than those with PS pairs [Tra94]. However, another

group, who saw all WE problems, followed by all PS problems (not in pairs), solved problems

signi�cantly slower, and achieved signi�cantly lower post-test scores. These results show

the promising bene�ts of using examples to support learning and performance.

Code Example Systems for Closed-Ended Programming Problems

Based on the theory of the Worked Example Effect, prior work discussed several systems

that used code examples to support completion of closed-ended programming problem.

For example, my own prior work explored offering step-by-step examples with options to

immediately run the example code [Wan20c]. Other systems offer an online database of

annotated examples [Bru01]. Peer Code Helper offers such step-by-step code examples from

the same task, during block-based programming [Zhi19]. An evaluation on 22 high school

novice students showed that students using these code examples solved tasks quicker than

those without, without hindering their learning [Zhi19]. The FIT Java Tutor [Gro15] provides

such step-by-step code examples for Java programming. Investigation on �ve students'

programming experience showed that students occasionally followed the feedback and

improved their program over time [Gro14]. However, novices also encountered a number of

challenges when understanding code examples. For example, Looking Glass provides stu-

dents with annotated code examples from a similar task during block-based programming

[Ich15]. However, learners had dif�culties understanding these examples in Looking Glass,

encountering “example comprehension hurdles” while trying to connect example code

to their own code [Ich15]. In a study evaluating 23 students' experience with step-by-step

code examples offered during Java programming, students barely followed the examples,

reporting them being “unspeci�c and misleading” [Coe17]. Therefore, more work is needed

to design new forms of example feedback, to improve students' understandings of code

examples, and connect code examples more closely for students' own program [Col88].

2.2.2 Code Example Systems for Open-Ended Programming

Example Use During Open-Ended Programming

I �rst review the types of example reuse behaviors during open-ended programming. Open-

ended programming practice is a type of exploratory programming, which is de�ned as

practices, of which the goal is “open-ended”, and “evolves through the process of pro-

gramming” [Ker17b]. Different from programming tasks with a �xed goal or speci�cation,

10

exploratory programming typically includes many exploration / experimentation-based

activities, such as bricolage, tinkering, sketching, and hacking [Ber16; Ker17b]. In a system-

atic literature review across various types of exploratory programming practices, Kery and

Myers summarized that, different from non-explorative, speci�cation-based programming,

in exploratory programming, programmers engage in the following three key types of dis-

tinguishing activities [Ker17b]: 1) Opportunistic programming, where programmers rely

heavily on code examples found from online resources, and often use functionalities such

as copy-and-paste to patch together example code into their program [Bra09]. 2) Debugging

into existence: After directly copying code found from online resources, programmers de-

bug those code until they work correctly in their program [Ros93]; and 3) Rapid prototyping,

where programmers iteratively create, test, and experiment with a prototype at an early

stage of the programming process [Har08; Ker17a]. Based on these key distinguishing activ-

ities, Kery and Myers suggested building tools to support exploration and experimentation

among exploratory programmers [Ker17b].

Little prior work has developed code example systems to support open-ended program-

ming. To increase awareness of API usage patterns, Ichinco, Hnin, and Kelleher used a set

of static rules to automatically check programs and �nd opportunities to prompt code

examples that demonstrates a speci�c API use (e.g., for how to use a code block). In a study

with novice students making open-ended programming projects, the group of students who

have access to these static code examples used these suggestions twice as much comparing

to the group who used documentations instead of code examples, and included those new

API methods from code examples more frequently. This work shows the potential of using

code examples to support open-ended programming.

However, related work only discussed authoring static code examples when supporting

open-ended programming [Ich17], and is lack of investigation in the following aspects: First,

during open-ended programming students may use a wide variety of APIs and features,

in various combinations. Therefore, it is dif�cult to anticipat e all possible choices of

examples students may need. This suggests the need for more personalized or automatically

generated examples. Second, examples present a different context from the students' own

work, which has been shown to cause “example comprehension hurdles”, as students

encounter challenges to connect example code to their own code [Ich15], which raises the

question of how to generate code examples that best suit students' needs and are easier to

understand. Finally, related work only focused on direct measures of whether the example

were used by the students, but not how it affected the students' project-making outcomes.

11

2.2.3 Code Examples for Informal Learning Settings

In informal learning and project-making context, code examples are also one of the pri-

mary resources students and end-users use to learn programming knowledge and API

usage patterns [Bra09]. Such an example usage scenario arises when a programmer feels

in need of resources in the middle programming. They search for a code example (e.g.,

through documentation or forums) [Bra09], and then integrate the example to their project

through testing and modi�cation [Bra09]. Prior work has shown that, different from learning

traditional Worked Examples [Cla16], where programmers engage in deliberate learning

of a step-by-step demonstration beforeworking on the actual task [Mor15; Tra94; Pir94],

learning an example in the middle of programming is a type opportunistic learning [Bra09;

Gao20], where programmers search, select, and copy code examples to “get something

to work with”, and then brie�y test or modify to integrate examples into their own code

[Ros93]. When investigating experienced programmers' opportunistic learning, Rosson

and Carroll found that these programmers made effective use of examples to complete

functionalities that they were unfamiliar with, but many don't re�ect on how the example

works [Ros93]. They may also struggle to apply or extend examples afterwards [Tha20].

While this explains the experts' opportunistic learning of code examples, and described

how experts can encounter dif�culties in using and applying code examples, it is unclear

how this theory will extend to novices.

Code Reuse Behaviors

A key phase of using examples during open-ended programming is code reuse, which refers

to the process of identifying useful components of example code and integrating them

into one's own program [Hol09]. Programmers reuse code examples for different purposes,

such as exploring ideas, understanding implementation details, and debugging their own

code [Wan20c]. Learning from code examples before or while making a similar program

has been shown to help students not only complete the program faster [Zhi19], but also to

perform better on a concept-related posttest [Tra94], and to effectively learn how to use

APIs later in their own code [Ich17].

Holmes et al. conducted four case studies on programmers' process of code reuse, and

characterized the reuse process into two stages: 1) locating and selecting and 2) integrating

[Hol09]. During the locating and selecting stage, programmers need to navigate through a

complete example program to �nd relevant areas of interest [Hol09]. This process can be

challenging for both experienced and novice programmers. For example, Ko et al. found that

12

in this selection stage, software developers begin by searching for relevant information, but

they often make use of limited and misrepresented cues in the program or the environment,

causing failed searches [Ko06]. Similarly, Gross et al. conducted an observational study for 14

novice programmers to identify code responsible for a target functionality, and found that

they engage in a cyclic search process of 1) generating assumptions based on a search target

in the code or output, and then 2) read and search code to adjust or expand the potential

code region relevant to the target functionality. These programmers frequently made false

assumptions and failed 59% of the code identi�cation tasks [Gro10a]. These results suggest

that programmers need support that helps them make more accurate assumptions when

relating functionality to a relevant code segment.

During the integration stage of code reuse, programmers need to adapt and integrate

the selected code into their own program [Hol09]. During this process, programmers may

directly copy a subset of an example code to their own code, or may re-implement a func-

tionality by themselves after reading and learning an example [Wan22]. Prior work has

identi�ed many barriers programmers encounter when integrating example code [Wan21].

For example, Wang et al. analyzed 44 novice programmers' example integration process,

and found that these programmers encountered barriers in understanding how to integrate

an unfamiliar code block into their own context, mapping the functionality of a part of an

example to their own code and modifying the example to �t their own needs [Wan21]. Wang

et al. also found that students prefer smaller code examples with few or no unfamiliar code

blocks [Wan21]. This shows the need to craft examples into smaller, comprehensible code

segments, so that students may understand a speci�c segment before integrating it into

their own code.

Remixing in Scratch

To support code reuse, the Scratch online program community is built on the culture of

remixing [Das16], where users can reuse another program by making copies of an existing

Scratch program and make modi�cations to build their own code [Kha19]. Remixing al-

lows programmers of diverse background and programming skills to creatively collaborate

with one another asynchronously [Mon07], so that they may share ideas, and learn new

skills and techniques from one another [Roq16]. In the online communities offered by

Scratch and other novice programming environments (e.g. Snap !), many programmers

start programming by using another project and modifying it to make their own version

[Kha19]. As a result, a large portion of projects in Scratch are remixed projects [Mon12].

13

However, empirical research has found many issues with remixed programs, speci�cally in

the online Scratch community, pointing to potential challenges programmers encounter

when remixing. Remixed programs can lack transfer of API knowledge from the original

program to the remixed program. For example, Khawas et al. analyzed 8142 Scratch projects

remixed from 160 original programs to inspect evidence of learning of Scratch API knowl-

edge (cloning and procedures), and found that the remixed programs failed to use the

cloning APIs correctly when needed even when the original program used clones; and the

majority (98.6%) of remixed programs did not create new procedures when remixing from

an original program that uses procedure [Kha19]. As a result, Hill and Monroy-Hernandez

collected and analyzed peer rating data on more than 1 million scratch projects in the

online Scratch community, and found that the remixed projects were rated lower by their

peers. This con�rms that remixers tend to be lower skilled and may need help with program

comprehension and integrating their own code. Similarly, Amanullah and Bell conducted

an analysis on 9141 Scratch users' programs, and found that even when programmers ob-

served a sophisticated API usage pattern (e.g., Process All Items) when remixing another's

program, they generally did not use them later in their own original programs, and that

many remixing users copy the original program without understanding it [Ama19]. This

suggests the users need to understand a program in order to apply and modify it in their

remixing programs, or transfer the usage of programming concepts from the remixing

program to their own future programs.

Supporting Code Comprehension

Code comprehension refers to the process of programmers building a mental model of

how a piece of code works [Von95; Gro10a]. Von Mayrhauser de�ned that a key cognitive

process during code comprehension is generating a hypothesis of the causal effect from

a code segment to its output [Von95]. Programmers of different levels may all form an

incorrect hypothesis, but experts discard questionable hypotheses and form correct ones

more quickly than novices [Von95].

Prior work has developed tools to support program comprehension for programming

education and end users. For example, Python Tutor visualizes stack traces for students to

see internal data representations of the program state [Guo13]. However, it is not designed

for complex user inputs and graphical output of games and apps. Whyline in Alice [Coo00]

helps users to ask why and why not questions for debugging their own code [Ko04a]. How-

ever, it can only answer object-speci�c questions such as “Why did Pacman resize .5?”, but

14

not “object-relative” [Ko04a] questions such as “Why did Pacman resize after the Ghost

moved”, which were frequently asked by Alice programmers [Ko04a].

Some prior work applied record / replay systems to help users understand or debug

programs [Gro10b; Bur13]. Timelapse is a record / replay-based tool for debugging web

applications, which points to the users the lines of code responsible for a point of interest

during the recorded trace [Bur13]. Similarly, Gross et al. developed a record / replay tool

to help users in Looking Glass to record and select the timeframe of interest during the

playback. The system then highlights the code responsible for the timeframe [Gro10b].

However, both interfaces only highlight the lines of code responsible for the selected time

frame in the output, but do not extract an executablecode slice from the program.

15

CHAPTER

3

NOVICES' MOTIVATIONS AND

STRATEGIES FOR USING CODE

EXAMPLES IN OPEN-ENDED

PROGRAMMING

3.1 Introduction

Code examples are one of the primary sources of information that programmers of all

skill levels use to acquire programming knowledge and learn language usage patterns

[Rob09; Bra09; Par11; Lan89; Bai20]. In particular, novice programmers stand to bene�t

from programming examples, which can introduce new programming concepts [Mor15;

Tra94; Pir94; Wan20c], and scaffold users to create more complex and interesting programs

[Ich17]. However, prior work on systems that support novices' example use have identi�ed a

variety of barriers encountered by students, such as dif�culties to understand the example

code, to integrate the example code to their own code, and to modify the example towards

16

their own goals [Ich15; Wan20c].

These barriers raise questions about how systems can more effectively support novices'

example use. To do so, it is important to understand situations in which novices are asking

for and using examples. Speci�cally, we aim to investigate students' motivations for using

examples, as effective support systems must directly address these motivations [Guz15]. For

example, a student who is using examples to implement a feature may need very different

support from a student using examples to verify their work or generate ideas. Additionally,

we investigate students example use strategies because systems should encourage effective

strategies, and discourage less effective ones [Ko11].

In this work, we ask the research question: What are novices' motivations and strategies

for using examples when creating open-ended programming projects? We choose to

focus on open-ended projects, because these projects attract students of varying interests

by allowing them to pursue goals that feel meaningful to them [Guz05], and are therefore

widely used in many introductory programming curricula [Gar15; McG18; Gro18] as well as

after-school, informal learning settings [Pep07]. However, students are also known to face

a number of barriers to incorporate challenging new programming patterns and APIs in

open-ended programming [Gro18], which code examples that demonstrate such knowledge

may help to overcome [Ich17].

We conducted our study with 24 high school novice students as they created open-ended

programming projects. While making these projects, students were able to search, browse,

view and copy code examples from a system called Example Helpe [Wan21], an example

support system designed for open-ended programming in Snap ! [Moe12]. We analyzed

video, interview, logs, and project submissions, identifying 5 distinct motivations and 4 key

strategies that students employ when using examples. We also found that students almost

always use somestrategy, but that when they instead simply copy the example without

modi�cation, this rarely leads to successful integration. Students also reported examples

being helpful for their performance on current and future tasks, which is supported by

student outcomes in our study. Based on these �ndings, we then propose a set of design rec-

ommendations to facilitate students' learning through creative design and planning, active

code reconstruction, and comparison-based knowledge integration. Our key contributions

are:

• An analysis of novices' motivations and strategies when using code examples in

open-ended programming.

• Recommendations of design opportunities for systems to incentivize effective learn-

17

Figure 3.1: The Example Helper Interface.

ing from active use of examples.

3.2 Example Helper System

The design goal of Example Helper is to allow students to view and incorporate existing

programming patterns into their own code through effective use of code examples. To lower

the barrier for making these programming projects [Mor11], the system is incorporated into

Snap! [Moe12], a novice programming environment. Similar to other novice programming

environments (e.g., Scratch [Res09]), Snap! already offers open-source galleries of complete

programming artifacts from other programmers, but these are complete projects which

demonstrate many related programming features. By contrast, Example Helper offers small

snippets of code examples [Rob09] that demonstrate speci�c functionalities, collected in a

curated, browsable gallery. We developed this curated set of examples through an analysis

of students' programs from prior semester, extracting key program features that were shared

across students, and built these as examples. Many of these key features include usage of

multiple sprite interactions 1 (e.g., in a collision event), we therefore also included examples

that include usage of multiple sprites. Two experts then reconstructed examples from this

repository to include cleaner and higher-quality code. When a student needs an example

during programming, they can click on a “show example” button within the scripting area

1A sprite in Snap ! is an object (i.e., in object-oriented programming) that has its own code (scripts),
costumes (e.g., a button), and variables.

18

of Snap! to open a gallery of code examples. The student then follow two steps to select

and use an example within their own source code:

Step 1: Search for an example. The student can �nd an example by: browsing through the

gallery; or �ltering and search for examples by clicking on a tag, or querying in a search

box. The search box �nds a set of examples the student need by looking for words that

overlapped in the examples' names. To visually understand the functionality of the example,

the student may also hover on the example to look at the gif animation of the code's output.

Step 2: Use an example. After �nding a needed example, the student can click on the gif

animation, and learn the example using the following steps:

Read the code in relation to the output. The student may click on different sprites to

look at the example code for each sprite (shown in Figure 3.1). They may also look at the

animation of the output next to the example code, since reading code in relation to output

has been shown to trigger students to re�ect on how the example code works [Wan20c]. The

student can also click on the “Open the Project” button to view the example in a separate

window and experiment with it.

Write a self-explanation. The student can re�ect on the example by writing down a

self-explanations: “What in the code here creates the effect that you see in the animation?”.

We designed self-explanation prompt because self-explanation is a critical step towards

learning from an example [Tho20; Atk03], since it promotes students to stop and think

deeper about the code example [Ale16; Ger04].

Copy the example code. To allow students to test and modify the example easily, after

writing their self-explanation of the example, the student may then drag and copy the

example to their own code. To discourage students from immediately copying the code

without thinking about it, we restricted the length of the self-explanation answer to be at

least 30 characters.

3.3 Study Setup

Our study setup aims to collect multiple sources of data to record novices' example-usage

experience, in an authentic, engaging open-ended programming experience.

3.3.1 System

We built a system called Example Helper, which adds a “show example” button on the

Snap! editor, showing a gallery of examples upon request (Figure 3.2). Example Helper is

19

Figure 3.2: The Example Helper Interface.

particularly suitable for our goal to analyze novices' example use, for three key reasons:

High-quality examples

Example Helper includes a curated gallery of high-quality code examples, collected from a

systematic analysis of common game behaviors students make in open-ended program-

ming, and re�ned by expert researchers for the purpose of readability and integration of

advanced programming concepts (e.g., lists).

Supports for searching, copying, and testing example code

Example Helper is designed speci�cally for supporting open-ended programming, where

students may need to learn to use and integrate new concepts and code patterns on their

own [Gro18]. This process of searching for and learning programming knowledge is de-

scribed by the COIL model [Gao20], which includes information collection & organization;

and solution testing. Students are provided with supports for all these three elements by

Example Helper. First, a student can search for an example (information collection): When

clicking the “show example” button, students see a gallery of examples, where they can

20

browse; search over a search box; or �lter examples based on tags. Next, when they �nd an

example and click to open it, they can read or copy code (information organization): when

reading, the student can navigate through codes on different sprites 2, shown by different

tabs in the example interface (Figure 3.2). They may also copy example code by dragging

it to their own code. Last, to test code, they may run copied example code in their own

program, or open the example code in a separate window by clicking on the “open the

project” button (solution testing).

Prompts to self-explain

When reading an example, the student may answer a self-explanation prompt: “Why does

the code here create the effect you see in the animation?”. After typing 30 characters, they

can copy the example code by dragging blocks to their own workspace. Example Helper

encourages this self-explanation process, as it has consistently been shown to aid learning

from examples [Shi08; Atk03; Wan20c].

3.3.2 Participants & Procedure

We held our study in a summer internship program, which aimed to teach high school

students programming, and creating computing-infused projects for middle and high

school teachers. The program was held online due to the COVID-19 pandemic. Our par-

ticipants included 24 high school students in the program, 7 males and 17 females, who

self-reported as 2 White, 2 African American, 17 Asian, 1 Other, 2 Multiracial. The researchers

who conducted the study were not directly involved with the internship program outside

of instructing students during the study.

Our study occurred in the �rst 3 days of the second week, described below, before which

students completed a one-week coding bootcamp to program in NetsBlox [Bro17]. We

designed a controlled study with alternating conditions, where the Early group (n = 7 pairs)

having access to examples only on Day 2, and the Late group (n = 5 pairs) having access to

examples only on Day 3 3. A researcher demonstrated how to use Example Helper, but stu-

dents were not speci�cally prompted to use examples. To ensure an authentic and engaging

learning experience, students pair programmed in Days 2 & 3, as pair-programming has

2A sprite in Snap ! is an object, such as an actor in a game.
328 students attended the study, based on which we assigned 7 pairs in each group. However, 2 students

from 2 separate pairs in the Late group did not consent, we therefore excluded the two pairs' data from
analysis.

21

been shown to promote higher performance for novices during open-ended programming

[Gro18], and is a standard practice in many real-world classrooms [Lew11; Lyt20; Tsa21].

We, therefore, analyzed students in pairs.

Day 1: warm-up activity to assign groups & pairs

Students did a Snap ! -based warm-up activity on Day 1, where they programmed 18 short,

closed-ended tasks, including drawing shapes and programming multiple-sprite interac-

tions, using loops and conditionals [Wan20b]. We ranked students' performance based on

the time each student spent completing the warm-up activity, and used this rank to balance

groups, such that each group had a similar average performance. We also assigned students

with adjacent ranks into the same pair, which can promote better learning outcomes for

the pairs [Lew15].

Day 2 & 3: building games

On Days 2 & 3, students built games with two different themes – breakout and space-

invaders, respectively. These two themes include features such as the player interacting with

a larger group of sprites (e.g. bricks, enemies), or collision causing them to disappear. These

themes were suitable open-ended tasks, as they required the usage of many concepts (e.g.,

loops) and APIs (e.g., cloning in Snap !). Additionally, they provided �exibility and variability

in game design [Hun04] (e.g., adding new actors with different roles, and designing levels),

allowing students to incorporate their own choices and goals. To foster creativity, we started

Days 2 & 3 by introducing a variety of breakout / space invader games, retrieved from the

online Scratch community [Mal10; Wan20a]. We did not require any speci�c features in

games, and encouraged students to make unique and creative artifacts.

Interviews

To understand students' own perceptions, at the end of Days 2 & 3, we invited each pair to a

15-minute semi-structured interview, where they discussed their experience by answering

questions such as “Describe a scenario where you have requested a code example”. When

students used vague terms such as “helpful”, we encouraged them to describe a concrete

example usage scenario they experienced.

22

3.4 Analysis

We analyzed our data using the “Case Study Research” [Yin17; Ham12] method, a systematic

approach to research “decisions” – “why they were taken, how they were implemented,

and with what result” [Sch71]. Yin proposed that these “why” and “how” questions require

tracing over time, and are therefore dif�cult to be summarized as incidents or frequencies,

but rather require analysis from a time-series-based perspective, collecting data from

multiple sources to describe phenomena with their own context – “cases” [Yin17].

Data Organization. To ensure construct validity [Cro55], we collected and organized data

following the 3 principles by Case Study Research: 1) We collected data from “ multiple

sources” [Yin17], including: a) video recordings of students' screen, including transcriptions

of pair conversations; b) interview transcriptions; c) logs, including students' code and

activities (e.g., each code edit) at every timestamp; and d) students' �nal submissions. 2)

Since we focused on analyzing example usage, we de�ned each example request as a single

“case”, and created a “ case study database ” [Yin17] of all 88 example requests. For each

request, we compiled a “case pro�le”, including the data from sources (a) – (c). Because we

encouraged students to describe concrete scenarios (Section 3.3), most interview quotes

map to speci�c example requests, though some do not – for those interviews that describe

students' general experience, and for data source (d), we 3) established a “ chain of evidence ”

[Yin17] by linking interview and submissions to the case pro�les of corresponding pairs, to

enable tracing back / forward between different data sources and analysis stages [Yin17].

Analysis. We next analyzed data to investigate our research question on novices' motivations

and strategies, following the 2 analytic techniques by Case Study Research.

Finding “patterns” [Yin17] from logs

A“pattern” describes cause, effect, or events that relate to the central phenomenon of

interest [Yin17]. As log data captures most precisely students' experience comparing to

interviews, which may suffer from response bias and inaccuracies [Del12; Pau91], we start

our analysis of cases �rst on their log data, a commonly-used primary data source to

analyze programmers' [Bra09], end users' [Ko04b] including novices' [Ich15] programming

experiences.

We �nd patterns of situations where students ask for examples, based on two types of log

data: 1) the code students have to complete a feature demonstrated by an example before

asking it (called “starter code”); and 2) the activities students engaged in with examples –

23

whether they attempted reusing the example code, or they immediately closed examples.

These two data types have been shown by prior work [Wan20c] to describe students' goals

for requesting examples. For example, we can infer a “debugging goal” when a student had

buggy code and used example to locate changes to make. Based on these two data types,

we identi�ed 5 situations where students ask for examples (e.g., “when starting a step”).

Similarly, we look for patterns of strategies by analyzing students' programming activi-

ties in logs. From the case database of 88 requests, we �rst �ltered out 41, where students

immediately closed the example after opening. For the remaining 47, we analyzed those

repetitive requests of the same example in aggregate, creating a total of 29 sets of example

requests. We started with a detailed account of all activities pairs engaged in when using

examples, such as the time when the student started programming the relevant feature,

their starting code, the programming behaviors they engaged in while using examples

(e.g., “copied block x from example code”), with timestamps, students' conversations (cap-

ture by the videos), the students' �nal code after completing (or abandoning) the feature

demonstrated by the example (called “�nal code”) and their comments in the interview

when available. One researcher coded thoroughly these documents, generating 7 initial

patterns of strategies. The researcher next worked with another researcher to merge similar

strategies, generating 4 strategies, and created de�nitions of these strategies. The researcher

next re-coded these documents again to con�rm these strategies and label each example

request with its corresponding strategies.

Building “explanations” [Yin17] from conversations, interviews and submissions

Based on the found patterns, we build explanations for two goals: 1) To �nd evidence from

students' conversations and interviews to explain motivations and strategies. Towards this

goal, we coded the conversations and interview data on each case pro�le to look for presence

of existing patterns, and examine whether new patterns appeared. Based on the situations

of when students ask examples, we used evidence from conversations and interviews to

explain motivations . This extra data con�rmed our identi�ed situations and strategies,

adding students' perceptions of causes and effects of their example usage motivations and

strategies. We used this data to re-code all case pro�les the third time, con�rming that

students' discussion were accurate at describing their example reuse scenarios.

2) If students' needs were met and their strategies effectively used, we would �nd ex-

amples not only supporting students' individual requests, but also helping them to create

more complex and creative projects. We therefore analyzed all students' project submis-

24

Table 3.1: 5 situations where students ask for code examples and their frequencies among
a total of 88 example requests.

?When browsing / exploring 38.6%
When starting a step 29.5%
When debugging incorrect / incomplete code 22.7%

?When �nished with a step 8.0%
?When re-implementing a step 1.1%

sions, following the approach by Catete et al. on developing scienti�c rubrics [Cat18]. Two

researchers independently examined all student programs to generate lists of all features

created by students in their programs, with each feature to 1) describe a distinct behavior of

the game and 2) could be adapted to other game design tasks. This created a total of 23 and

25 features for breakout and space invaders respectively. Examples of such features include

“an actor moves with a key pressed” and “increase score when one actor hits another”.

The two researchers then graded each student program by how many features in the list a

student program completed. This result is discussed in Section 3.5.4.

3.5 Results

3.5.1 Motivations: Why do students ask for examples?

Table ??shows 5 distinct situations when students requested examples. Among the 5 sit-

uations, 2 were discovered by prior work as students' motivations for using examples in

closed-endedtasks[Wan20c]; others (denoted with ?in the table) correspond to new, distinct

motivations that arise from our analysis, potentially due to the context of open-ended pro-

gramming. For each example-use situation we report, we also identify students motivations ,

reported in the interview data, that corresponded with these situations.

Many example requests (68.1%) come from students who opened an example about a

new feature not implemented in their code. Some students may have a browsing / exploring

motivation (38.6%), as evidenced by opening and closing the example, without attempting

to integrate the example to their own code. Students in interviews described that they

“scrolled through the gallery” to “choose our examples”, by “click [ing] on it” to open and

check “ if it looked like something in I would be using "[E6].

Others tried to integrate the example into their own code (29.5%), showing example

25

Figure 3.3: L3 copied, modi�ed, and tested to integrate the example code to their own
code one at a time .

use when starting a step . Students' quotes explained two motivations that may be met

in this situation: 1) they wanted to know what to do next: “ [examples] isolate a step that

you wanted to do and then [you could] focus on that instead of trying to do everything at

once." [L1]4; or because 2) they know their next step, but wanted to know how to implement

it: “ We had an idea of how the code would work, but we didn't know the exact way we could

all put it together. " [E4].

22.7% example requests came from students who were debugging incorrect or incom-

plete code : students explained that they were in the middle of completing a certain feature –

“we sort of got it”, but don't know “ what wasn't working with our [code])" [E1]. 8.0% requested

examples were about features the students have already completed in their code. In these

example requests, students opened the example code, but did not try integrate the example

code to their own code, perhaps due to their code being already completed, showing a

motivation of con�rming their own implementation of a certain feature, although this

motivation was not discussed during the interviews.

One student, after spending time learning and using an example, requested the example

again in another sprite, and directly copied the example to their own code. While the student

did not explain their motivations during the interview, it seems that the student were using

the example code for the purpose of avoiding re-implementing it on their own.

3.5.2 Strategies: How do students learn and use an example?

We next discuss the students' example-use strategiesthat re�ect their own choice of how to

learn and use examples.

4A quotation from Pair 1 in the Late group. E and L denotes Early and Late group, respectively.

26

Figure 3.4: Using the comparison strategy, E7 identi�ed meaningful differences to use in
their own context, without discarding un-meaningful differences.

Integrate one block / feature at a time

In 37.9% example requests, students integrated the example code to their own code, by

copying, modifying, and testing the example code one block or one small feature at a time.

For example, in Figure 3.3, L3 separated the process of copying and reusing into 4 sub-steps,

each focused on one block, shown by the arrows from the example code to the student's

own code 5. With each sub-step, they modi�ed their code, sometimes testing it (2 / 4 times),

before copying the next code block. During interview, L3 explained that they “ individually

went into " [L3] the left code palette to copy code, and commented that “ doing that allowed

me to make my own modi�cations as I went and I better understood it. " [L3].

Comparison to identify key differences with example

When requesting examples, many students have existing code that completes partially

the target feature they need (e.g., when the feature was half-complete but was buggy).

However, students' existing code can very different from the example code they requested.

In these scenarios, students have described a comparison strategy, where they “looked at

[their] code and that [example] code side by side” and “ compare[d] it " [L1]. Figure 3.4 shows

how E7 employed the comparison strategy. To clearly illustrate the learning scenario, we

recolored the code blocks to differentiate 1) blocks that were different from student code

to example code (grey), 2) blocks that were the samein student code and example code

(yellow); 3) block that's added after reading the example code (red) 6. The students' code

5In speci�c, such copying is made by using the example as a reference, and moving the code from the left
block palette (Figure 3.2).

6Due to space limit, we simpli�ed the example and student code in Figure 3.4 to only show the feature
that the student asked example for (i.e., an explosion effect).

27

Figure 3.5: L4 employed the strategy “ understanding through tinkering ” to understand
an unfamiliar block - “set size to”.

has many differences comparing to the examples. However, while comparing their own

code to the example code, the students identi�ed the meaningful differences between their

own code and the example code, and added it onto their own code without discarding the

less meaningful differences (e.g., changing costumes).

Understanding through tinkering

Tinkering refers to “an informal, unguided exploration initiated by features visible in the

environment” [Bec06]. After copying examples to students' workspace, we found that some

students experimented code blocks by modifying (e.g., changing variables, or by removing

a block they do not understand), and testing to �nd the difference, showing a “test-based

tinkering” behavior [Don19], which aims to understand the example code. We call this

strategy “understanding through tinkering”, shown in 17.2% of the example requests. For

example, in Figure 3.5, L4 was confused by the code block “set size to Game Scale %”: “ I

do not know what Game Scale is or what it's doing. " [L4]. They right clicked on the “Game

Scale” variable to open the Help documentation, which only explained the generic usage

of a variable block, but not how “Game Scale” is used in the context. So the student then

changed the value of the variable from 100 to 20, tested again, realizing that the block

changes sizes of a sprite: “so, is it like, if you make it a larger number it would just get . . .ah I

see." [L4] They later integrated the example by deciding on value of “Game Scale” to be 30.

Implement after closing the example

In 13.8% of example requests, students closed the example, and tried to implement a needed

feature themselves.

28

Lack of strategy: copy-run-debug

13.8% example requests did not include any of the above-mentioned example reuse strate-

gies, but used more expedient, “opportunistic” [Bra09] approaches (called “copy-run-debug”),

with two representative behaviors. 1) copy/ replace blindly : In 2 example requests, the stu-

dents copied the entire example to their own code, and completely removed their own

existing code, although it was partially correct. In these scenarios, the “comparison to

identify key differences” strategy would have been useful but was not employed. 2) shallow

debugging : In 3 example requests, the students tested the copied code from example and

found it did not work as expected. However, students' conversations showed they ignored

the blocks they were unfamiliar with, but kept modifying other (correct) blocks that they

thought produced the error, making arbitrary changes in an effort to resolve the error. In

these scenarios, the “understanding through tinkering” strategy would have been helpful

for the students to �rst understand the unfamiliar blocks.

How effective are these strategies?

One way to evaluate effectiveness is to understand how these strategies helped students

to overcome their barriers when using examples. We focus on two measures: 1) Was the

example successfully integrated in students' code?; 2) To what extent did the student modify

the example code?, as integration and modi�cation are two explicit goals that students

have when using examples [Wan20c]. Table 3.2 shows 6 statistics for the above 2 measures:

1. Frequency. the percentage of strategies shown in the 29 example requests.

2. Success rate. proportion of the example requests that were successfully integrated to

students' code. We refer to this number as success rate.

3. Addition rate . # blocks students added while using the code example / # blocks in the

example code. For example, in the example request of Figure 3.4, the addition rate is

1/ 10 = 0.1, as the student added one code block (“wait 0.01 seconds”) among the 10

blocks of code examples.

4. Deletion rate . # blocks that are deleted from the example / # blocks in the example

code. For example, in the example request of Figure 3.4, the deletion rate is 0 / 10 = 0,

as the students did not delete any code blocks while using the example.

5. Adaptation rate . Adaptation rate is de�ned by the proportion of the added code blocks

that are in the example code, For example, the adaptation rate of Figure 3.4 is 1 / 1 = 1,

29

Table 3.2: 4 example reuse strategy and the copy-run-debug behavior (i.e., lack of strat-
egy). Strategies started with ? denotes example use strategies not mentioned in prior work
[Wan20c; Ich15].

strategy name frequency success rate addition rate

?one at a time 37.9% 1.0 0.53
comparison 34.5% 0.8 0.22

?tinkering 17.2% 1.0 0.87
?impl. after closing 13.8% 0.75 0.56

copy-run-debug 13.8% 0.25 0.33

strategy name deletion rate adaptation rate kept rate

?one at a time 0.02 0.71 0.38
comparison 0.01 0.9 0.42

?tinkering 0.01 0.83 0.90
?impl. after closing 0.0 0.74 0.47

copy-run-debug 0.0 0.84 0.15

as the one block the student added (i.e., “wait 0.01 seconds”) comes from the code

example.

6. Kept rate. The proportion of example code kept in students �nal code. e.g., the Kept

Rate of Figure 3.4 is 5/ 10 = 0.5, as the student's �nal code has 50% code blocks that

are the same as the ones in the example code.

For addition, deletion, adaptation, and kept rates, the number presented in Table 3.2 is

averaged across the 29 requests. Table 3.2 presents the following insights:

a) Students almost always used a strategy of some form, which often led to success

and adaptation. 86.2% (25/ 29) of example requests included the use of at least one of the 4

key strategies. Each strategy led to at least a 75% successful integration rate. The adaptation

rate shows that the majority of students do not copy blindly, as when adding example

code to their own code, students also add code blocks that are not from the example code,

showing evidence of modi�cations.

b) Different strategies have different use cases and affordances. The kept rate shows

how much similarity there was between the students' �nal code and the example code.

The tinkering strategy creates code of the highest similarity, and has the highest addition

rate, showing that students may use tinkering when copying large chunks of example code,

without much modi�cation. The comparison strategy was employed when adding a small

30

Figure 3.6: Case study: students' implementation of spawn_clones.

amount of code from example to students' own code, which was usually kept, showing

that this strategy was most often employed in scenarios such as Figure 3.4, where students

already had partially complete code blocks, and used the needed block from an example

to �x a bug. Finally, one at a time and implement after closing led to high modi�cations,

shown by the lower adaptation and kept rates. This shows that these two strategies were

more appropriate for students who needed more example adaptation, mirroring students'

interview comments presented in Section 3.5.2.

c) Lack of strategy can lead to failures of integration. While typical strategies led to

at least 75% success rate, in the 4 instances of copy-run-debug behaviors, only one led to

successful integration. It also has high kept rate (0.84), showing that students modi�ed less

of the example when adding. In addition, many parts of the example were discarded from

the students' �nal code, as they were not able to reuse them successfully, shown by its low

addition and kept rates.

31

3.5.3 An in-depth example

We use the most frequently requested example “spawn_clones” to illustrate how moti-

vations and strategies were re�ected in students' experience. “Spawn_clones” demon-

strates a commonly-seen feature in breakout and space invaders, which creates groups of

bricks / enemies by using clones, an API that creates copies of sprites in Snap ! . The grey

bars in Figure 3.6 indicates the time duration when students were implementing this fea-

ture. They removed durations of activities on creating other features, which are sometimes

interleaved in between implementations of “spawn_clones”. At the end of each grey bar

shows the implementation outcome – successful (tick) or abandoned (cross), as well as

total time spent on implementing just “spawn_clones”. The colored boxes on the grey bars

are the time when students had the example interface opened, where each color represents

a speci�c example use strategy (see Section 3.5.2). The triangles at the start of these boxes

indicate the students' situation / motivation when opening the example (see Section 3.5.1).

Figure 3.6 presents the following highlights:

Students change strategies at different stages of example use

Students employed diverse strategies for a variety of reuse scenarios. For example, E1

�rst opened, read, closed the example, and then implement after closing for a minute,

till their code was buggy, where they asked for the example again to debug for two more

minutes, using a comparison strategy. When they completed a correct implementation, they

requested the example the third time to con�rm (without changing their code). E2 shows

a transition from a lack of strategy to more active strategies . They �rst used the copy-

run-debug behavior to blindly copy the example code. They found the integration to be

erroneous, but super�cially debugged and were unable to �x the error. They next removed

all code and requested example again, this time spending more time to modify and test

different blocks in the example code. After they understand the example through tinkering ,

they removed all code again started over again, this time led to success integration. This

shows that strategies are not used in isolation, and students may start with more expedient

strategies, and move on to more time-consuming (and effective) strategies.

Integrating example code takes time

When implementing “spawn_clones” for the �rst time (on Day 2), all from the Early group

succeeded; half from the Late group, who do not have access to examples, did not attempt

32

to create this feature at all. This shows that the existence of examples create possibilities

to implement certain features . (e.g. by letting students know it was possible, or by helping

them implement it). However, those who had access to examples on Day 2 did not spend

less time programming the feature (Early group mean = 25:41), compared to those who did

not (Late group mean = 20:38). While our data is for a single challenging example with a

small population and cannot support strong claims, it does show that most students spent

longer than 15 minutes on this feature when implementing it for the �rst time, even with

the existence of the examples. This shows that students need time to integrate and use

some examples.

Program a feature the second time is easier

When students succeeded in creating the feature on Day 2, they were able to spend about

10 times less time to program “spawn_clones” on Day 3, regardless of whether example was

used. Except E4, who implemented the feature on Day 2 with help from instructors, the rest

of the students from the Early group were all able to ef�ciently create the feature on Day 3.

3.5.4 Outcomes of example use

Responding to motivations found in Section 3.5.1, students commented that examples “ gave

[them] ideas"[E6], to “ break down a task into parts " [L1], or “ with debugging "[E6]; expressing

examples have met their needs. Connecting with strategies found in Section 3.5.2, we

found students used diverse strategies to integrate example code into their own code, with

high success rate. These shows that example helped students to implement features in

individual requests . But what are the general outcomes of using examples in open-ended

programming? Our analysis on 10 pairs 7 was insuf�cient for any strong claims, but we

found suggestive insights from students' submissions and interview data, discussed below.

Examples helped students create more complex programs

During Day 2, the Early group who had access to examples created an average of 14.2

features, (n = 6, SD= 4.4), over 50% more features than the Late group, who did not use

examples and created an average of 9.25 features (n = 4, SD= 6.9). As the two groups had

7E7 and L5 were excluded from this analysis, as E7 had access to examples on both Days 2 & 3, while L5
programmed on the Snap ! server that does not have logging features on Day 2; therefore we were unable to
retrieve their projects and logs.

33

no statistically signi�cant difference in their warm-up activity performance, this �nding

shows suggestive evidence that examples helped students create complex programs.

Students keep creating complex and interesting programs after removed access to exam-

ples

In the Early group submissions of Day 3, the students created an average of 15.2 features,

(n = 6, SD= 5.1); higher than the average of 14.2 features on Day 2, showing that the Early

group kept creating many features without access to examples on Day 3. On the other hand,

the Late group, who had access to examples, created an average of 10.75 features (n = 4, SD

= 3.1) on Day 3, higher than the average of 9.25 features on Day 2.

The Early group's higher performance than the Late group on Day 3 can be likely due

to the fact that �nishing a feature, whether or not using an example, seemed to have a

clear impact to speed up implementing the feature on the next day (Figure 3.6). Therefore,

the fact that the Late group only created an average of 9.25 features on Day 2 may have

caused them to encounter creating many new features on Day 3 (e.g., L3 & L4 in Figure 3.6).

However, having examples on Day 3 did not necessarily reduce the time spent for integration

(Section 3.5.3. Therefore causing the Late group to create features less than the Early group,

as the Early group may have already learned how to program those features from Day 2.

4 pairs from the Early group expressed that learning the example prior to the current

task helped them create features independently, explaining that the process of making

project was “ a lot easier today even though the games are different" [E7], and that “ since we

learned from the one ([i.e., example]) from yesterday, we �gured out how to apply to this

one." [E3]. This shows that many students learned or memorized how to create a feature the

example demonstrated while using the example, a type of learning event (called “memory

and �uency building”) by prior work [Koe12].

3.6 Discussion

We discussdesign implications for designing systems with code examples to support novices'

open-ended programming.

34

3.6.1 Support design and planning for creating complex projects

Going beyond prior work on students' goals of using examples in closed-ended tasks

[Wan20c], we identi�ed 3 distinct and novel motivations: browsing, con�rming, and re-

implementing. In particular, the most frequent motivations is for browsing (38.6%), where

students needed to �nd features that they wanted to create. This motivation corresponds to

a design barrier identi�ed by Ko et al. [Ko04b], where end users needs support to identify

“what I want the computer to do” [Ko04b], and was novel and distinct from prior work, which

focus on identifying motivations towards implementations [Wan20c]. This motivation for

design ties in strongly with the potential bene�ts of open-ended programming, which aims

to empower students to create projects that they personally connect to, and engage them

in the process of building an artifact of their own choice [Gro18; Guz05]. Examples should

therefore, support students to create designs that feel challenging and meaningful to them.

3.6.2 Encourage effective example learning strategies

The primary highlight on our �ndings of students' strategies is the diversity of effective

strategies, where we also discover novel �ndings on 3 strategies that were not discussed from

prior work [Wan20c; Ich15]. This also contrasts with end users' example reuse strategies,

discussed by prior work, which shows that they generally rely on opportunistic strategies

(“getting something to work with”) [Ros96]. Section 3.5.3 shows a potential reason for the

diversity of strategies among novices: while examples helped students to create features

they were otherwise unable to, integrating example code to their own code is still dif�cult ,

mirroring �ndings from our prior work on barriers students encounter when reusing code

examples [Wan21], this leads to students' choice of strategies to overcome different types

of barriers [Wan21] – for example, to overcome understanding barrier (i.e., “how to use an

unfamiliar code block in the example?” [Wan21]), students use the strategy “understanding

through tinkering”; to overcome mapping barrier (i.e., “how do I map a property of the

example code to my own code?” [Wan21]), students employ the comparison strategy.

This diversity of effective strategies leads to important design implications – prior work

has shown that one way systems could do to support users is by encouraging them to

“work in the way they are used to working, but inject good design decisions into their existing

practices” [Ko11]. Based on the ICAP hypothesis [Chi14] and the evidence from our study,

we hypothesize that design decisions that encourage more active and constructive modes

of interaction with the system opens up more choices for students to effectively engage

35

with the examples. We therefore summarize two different ways we may build systems to

encourage more active use of examples, discussed below.

Transform passive code copying towards active code reconstruction

We found students who copied the example one block / feature at a time engaged in the

process of re�ecting and modifying the process, causing them to adapt the example effec-

tively in their own task. This strategy corresponds to an active learning behavior suggested

by the ICAP hypothesis, and may cause the learner to more ef�ciently integrate the new

information [Chi14]. This spontaneous reading, using, and modifying behavior resembles

the Use-Modify-Create practice [Lee11; Lyt19], which encourages learners to complete

a series of activities from re-using programming code examples (use), to making small

modi�cations (modify), to taking full ownership of learners' program by creating program

from scratch (create). We envision that following a similar progression, an opportunity

for students to progress from modify to createwould yield higher learning outcomes and

increased level of engagement. Such transformations can be made by programmers recon-

structing blocks of examples by solving it as a Parsons problem [Par06], which breaks a

correct solution into code pieces and asks students to rearrange the code to the original

solution.

Foster knowledge integration through comparison of executable examples

Comparison is a classic constructive strategy to foster knowledge integration [Chi14]. In our

study, we found students effectively employed a comparison strategy to locate the relevant

part of an example that they could use to correct their code. Example Helpers facilitated

comparison by allowing students to read their code and example code in a parallel view ,

which has been shown to enable higher transfer to solve similar, new problems, than a

traditional, sequential view of different solutions [Pat13]. In addition to the parallel view to

compare code, students were also able to run the example code to compare outputs , which

has been shown to help students identify key differences and how they relate to changes in

output [Wan20c]. Our �ndings that some students were able to infer the important part of

the example code to use, and keep their own part of the correct solution, is consistent with

the �ndings by prior work on comparison and transfer, indicating that the comparison

allowed students to reason and differentiate the important part of the problem-solving

schema [Rit07; Pat13; Gen03]. Although our system only facilitates comparison through an

convenient, embedded example support interface, we envision future example support

36

systems to offer runnable code examples in parallel, such as different approaches to solve

the same problem (similar to [Pat13]). We envision such an interface to offer support for

constructive learning and generating problem-solving schema [Gic83].

3.7 Limitations & Conclusion

Limitation: we conducted our study with 24 students in just one system — we used multiple

sources and prior work to triangulate our �ndings, and exercised rigor and re�exivity [Gui04]

when collecting, organizing, and analyzing data to �nd valid, grounded evidence. However,

we need future work to �nd statistical evidences (e.g., whether the strategies we found were

signi�cantly more effective than others) among larger-scaled populations.

In conclusion, our work identi�ed novel, distinct, and diverse motivations and strate-

gies novices employ when using code examples in open-ended programming. We found

that many students use effective strategies to reuse and modify examples, potentially lead

to creation of more complex, interesting programs. We proposed concrete recommenda-

tions for future example designs to incentivize learning through code comparison and

reconstructions.

37

CHAPTER

4

NOVICES' LEARNING BARRIERS WHEN

USING CODE EXAMPLES IN

OPEN-ENDED PROGRAMMING

4.1 Introduction

Creative, open-ended programming projects, such as making student-designed apps,

games and simulations, are widely used in many introductory programming courses (e.g.

[Gar15]). They encourage novices to pursue projects that feel authentic to them, and to

express their ideas creatively, motivating them to keep pursuing CS [Guz05]. In addition,

through open-ended programming, novices also learn to use computational thinking strate-

gies (e.g., abstraction, decomposition), and may further apply them in other areas, such as

math and engineering [Urb00; Guz03].

Open-ended projects can prove very dif�cult for novices [Gro18], in part because they

encourage novices to design unique programs that address their interests and goals, which

may require them to use new programming features, or accomplish new tasks, beyond

38

what they have already learned. Novices can also struggle to combine the individual pro-

gramming concepts they have learned (e.g. loops, variables, etc.) into a complete program

[Gro18], and they may lack experience making use of code blocks or libraries offered by the

language (i.e. APIs [Gao20]).

Code examples are a common way for programmers to learn new APIs and coding

patterns [Bra09], and are also considered one of the most useful learning material for

novices [Lah05]. For example, research in laboratory settings suggests that novices learned

to use code blocks more effectively after seeing them from code examples [Ich17]. However,

novices can also face challenges learning from examples, and integrating examples to their

own code [Ich15], and these challenges may be exacerbated by the challenges of open-

ended programming [Ich19]. In addition, there have been few real-world deployments

of code examples for supporting open-ended programming. To design example systems

that better support novices' open-ended programming, a key step is to uncover their own

barriers and frustrations [Guz15]. This suggests the need to explore how novices use code

examples in practice, especially in a classroom setting, with authentic population and

learning activities.

In this work, we ask the research question: What are the learning barriers that novices

face when using examples during open-ended programming? . To answer this, We de-

signed a system called Example Helper to support open-ended programming with a gallery

of code examples. Our analysis of log and interview data found that novices encounter

three types high-level barriers: decision, search and integration barriers. Based on these

�ndings, we discuss implications and design opportunities for better supporting novices'

open-ended programming with examples. The primary contributions of this work are:

1) The Example Helper system that offers a variety of learning support to novices during

open-ended programming. 2) An analysis of learning barriers novices encounter when

using code examples in open-ended programming, in an authentic, classroom context. 3)

Identi�cation of design opportunities to provide better example-based support to novices.

4.2 Example Helper System

The design goal of Example Helper is to allow students to view and incorporate existing

programming patterns into their own code through effective use of code examples. To lower

the barrier for making these programming projects [Mor11], the system is incorporated into

Snap! [Moe12], a novice programming environment. Similar to other novice programming

39

Figure 4.1: The Example Helper Interface.

environments (e.g., Scratch [Res09]), Snap! already offers open-source galleries of complete

programming artifacts from other programmers, but these are complete projects which

demonstrate many related programming features. By contrast, Example Helper offers small

snippets of code examples [Rob09] that demonstrate speci�c functionalities, collected in a

curated, browsable gallery. We developed this curated set of examples through an analysis

of students' programs from prior semester, extracting key program features that were shared

across students, and built these as examples. Many of these key features include usage of

multiple sprite interactions 1 (e.g., in a collision event), we therefore also included examples

that include usage of multiple sprites. Two experts then reconstructed examples from this

repository to include cleaner and higher-quality code. When a student needs an example

during programming, they can click on a “show example” button within the scripting area

of Snap! to open a gallery of code examples. The student then follow two steps to select

and use an example within their own source code:

Step 1: Search for an example. The student can �nd an example by: browsing through the

gallery; or �ltering and search for examples by clicking on a tag, or querying in a search

box. The search box �nds a set of examples the student need by looking for words that

overlapped in the examples' names. To visually understand the functionality of the example,

the student may also hover on the example to look at the gif animation of the code's output.

Step 2: Use an example. After �nding a needed example, the student can click on the gif

1A sprite in Snap ! is an object (i.e., in object-oriented programming) that has its own code (scripts),
costumes (e.g., a button), and variables.

40

animation, and learn the example using the following steps:

Read the code in relation to the output. The student may click on different sprites to

look at the example code for each sprite (shown in Figure 4.1). They may also look at the

animation of the output next to the example code, since reading code in relation to output

has been shown to trigger students to re�ect on how the example code works [Wan20c]. The

student can also click on the “Open the Project” button to view the example in a separate

window and experiment with it.

Write a self-explanation. The student can re�ect on the example by writing down a

self-explanations: “What in the code here creates the effect that you see in the animation?”.

We designed self-explanation prompt because self-explanation is a critical step towards

learning from an example [Tho20; Atk03], since it promotes students to stop and think

deeper about the code example [Ale16; Ger04].

Copy the example code. To allow students to test and modify the example easily, after

writing their self-explanation of the example, the student may then drag and copy the

example to their own code. To discourage students from immediately copying the code

without thinking about it, we restricted the length of the self-explanation answer to be at

least 30 characters.

4.3 Participants & Procedure

We conducted our study in an undergraduate CS0 classroom for non-CS-majors with no

prior programming experience, with 44 consented novice students, in a research university

in Southeast US. The course was held online due to the COVID-19 pandemic. To create

an authentic learning experience for the students, we did not collect their demographic

information.

Students created open-ended projects over 3 weeks, starting from the 7th week of the

course. Prior to that, they have learned the usage of fundamental programming concepts in

Snap! , including loops, conditionals, procedures, and lists. During the �rst week of project-

making, students were introduced to the engineering design process [Hai18], and were

asked to make project pitches that may solve a real-world problem, including innovative

ideas and user experience considerations.

Pair planning and programming. Students discussed their project pitches online, and then

may optionally form a 2-person group if they had a similar project of interests. 18 students

41

chose to work individually, while the rest (26) worked in pairs, creating 31 student groups 2.

Students then planned their project design in a digital planner [Mil21]. Before students

started programming, one researcher came to the Zoom classroom and introduced the

Example Helper. We also instrumented Snap ! to allow student pairs to easily transfer

�les through saving and loading, and encouraged them to use Zoom's screen share to

collaboratively program. We encouraged students to collaboratively program because prior

work has shown that in making open-ended programming projects, students achieved

signi�cantly higher performance in pair-projects than individual projects [Gro18].

Interviews. During the second week of project-making, we recruited 5 students to attend

individual interview sessions with two researchers, where we recorded audio and students'

screens. During these interviews, we asked students: “Is there anything you want to program,

where you think an example might help you?”, and encouraged them to use an example

and complete the feature during the interview. During this programming process, we asked

students to think aloud [Gre18]. When they asked questions, we �rst encouraged them

to think independently, and then offered them some possible next steps if needed. After

completing the feature they wanted using the example, we asked about their experience

using the examples, both during the interview and in their project-making experience, such

as: “Did you experience any dif�culties using the examples?”.

4.4 Analysis

Qualitative Interview Data Analysis. To investigate our research question about students'

barriers using code examples, we began by analyzing the interview data using thematic

analysis [Bra12]. Two researchers each read thoroughly all interview data, and then indi-

vidually conducted line-by-line inductive open coding on the �ve pieces of interview, to

take note of any quotes or students' programming activities, that re�ects their example-

usage experience and their perceptions of it. While doing the inductive coding, the two

researchers used each sentence as a segment, allowing 0 or more codes per segment. To

obtain accurate understanding of students' experience during open-coding, they also used

the screen-recording when students did the programming portion of the interview. The

two researchers then discussed and resolved discrepancies. This created a merged set of

103 initial codes. The two researchers then investigated the 103 codes to identify ones that

described students' learning barriers, and combined codes that described similar incidents

2Since some students worked alone and some in pairs, we use the term “group” to refer to the student or
students who worked on a single project.

42

of a type of barrier. This created 7 initial themes of learning barriers. They then discussed

and sorted themes that may belong to a higher-level category, which created 3 high-level

themes that described students' learning barriers, including 4 sub-themes.

Log Data Preparation. Based on the inductive and in-depth analysis on interview data, we

discovered potential learning barriers among a small set of students. We then used log data

to validate how these learning barriers are re�ected across all participants, throughout their

entire project-making classroom experience. Our log data included a total of more than 200

hours of programming activities (e.g., grabbing or destroying blocks), and students' code

snapshots at every timestamp when they made a change to their code. To elicit clean data

that may be analyzed further to uncover novices' example-usage barriers, we performed a

pre-�ltering and prepared the following three types of the log data:

Search queries.We collected all search queries that students have typed in the search

box to look for an example.

Opened examples.We manually investigated and then built a pro�le of each incident

when a student opened an example, including: 1) What examples were opened. 2) How the

students found the example (e.g., whether they opened the best matches found by their

search query). 3) What (if any) they did to integrate the example code to their own code

(e.g., how they built, modi�ed, or tested the example code).

Project submissions.We analyzed students' �nal submissions to determine: 1) whether

their project submissions included functionality demonstrated by the examples, and 2)

whether the functionality came from their integration of a opened example, or from stu-

dents' implementing the behavior independently.

Using the above �ltered data, we further conducted deductive log data analysis based

on the 7 themes collected from the interview, to �nd evidence of how these 7 learning

barriers occurred in log data of all students, described in Section 4.5.

4.5 Results & Discussion

Our thematic analysis of the interview data revealed 7 barriers that students encountered

when using code examples during open-ended programming, including 3 high-level cate-

gories: decision, search, and integration barriers. For each barrier, we report our data by

presenting the results from thematic analysis, and then the log analysis we conducted that

may explain how this barrier occurred in all 44 students. At the end of each barrier, we

brie�y discuss how this barrier relates to prior work, as well as its design implications.

43

Decision Barrier: Should I ask for an example?

Our thematic analysis revealed that students encountered decision barriers , which

occurred when students did not recognize their need or ability to ask for an example, even

when they were stuck at implementing a programming behavior. For example, students

may not consider asking for an example as an option: “[My partner] hadn't �gured out how

to implement a timer. I don't know why we didn't think about doing examples, but we didn't.”

(P3).

Among 31 student groups, 27 (87.1%) clicked on the “show example” button at least

once to browse or search for an example, suggesting almost all were at least aware of the

examples. However, we also found that 22% of these students (6 / 27) opened the example

interface only 1-2 times. This may suggest that students forgot about examples once they

got started with their work, or the examples were not salient as they worked.

Another explanation could be that students judged the examples to be unhelpful after

viewing the interface. While this may be the case for some students, we found that those

who did open the interface more than 2 times did so in an average of 11.38 times (up to 11

times for one group), suggesting that many students found it useful. We also found that 3

groups who did not use examples implemented functionality demonstrated by an example,

totaling 7 times, suggesting examples would have been useful.

Discussion. Prior work on novices' help-seeking behaviors has shown that knowing the

need to seek help is an important but challenging self-regulatory skill that requires cognitive

competencies [Kar13]. Avoiding to seek help when stuck is a maladaptive learning strategy

that can lead to reduced learning outcomes [Ale06]. This can be a particular challenge

in programming, where students may have a strong desire to work independently, or get

absorbed in their work and forget about asking for help [Pri17]. Our results suggest that

this help-avoidance behavior also applies to novices' example use during open-ended

programming. One possible way to address the problem of help avoidance in example

systems like Example Helper is to offer help automatically (e.g. with a pop-up), which can

reduce help avoidance [Mar20], especially if the system can detect when students are stuck.

Search Barrier: How do I explain the example I want?

We found that only 63.0% (17 / 27) of groups who clicked on the “show example” button

ended up opening a code example to view. Our thematic analysis suggests that this may

have been the result of search barriers , where students sought an example but were unable

to �nd or articulate what they were looking for. For example, “I think we had tried to look for

a background that was like a sky or like a stage... and I don't believe we found one of those.”

44

(P2)

The log data reveals how search barriers occurred in students' search queries. We found

63 distinct searches across the 15/ 27 groups (48%) who used the search box to �nd exam-

ples(merging consecutive, identical queries). Two researchers conducted two rounds of

coding on the queries to: 1) identify candidate themes that describe at least 10% of the

data, discuss to resolve con�icts; and 2) count the number of occurrences of each theme.

We found three primary themes: 1) interactions between multiple sprites, such as “lose a

point when touching” or `shoot” (14.3%, 9 / 63); 2) sprite movement such as “bounce”, or

“wrap around the screen” (30.2%, 19 / 63); 3) queries for how a sprite should look (rather than

what it should do), such as “dining room”, “airplane”, and “people” (47.6%, 30 / 63). While

almost half of searches were in this category of how the sprite should look, the examples

were designed to show functionality , so these searches returned no results – such that only

39.7% (25/ 63) of all example searches yielded results. This shows a disconnect between

how students articulated the example they were looking for, based on aesthetic properties,

and how examples are typically organized – leading to search barriers.

Encountering a search barrier may also deter students from looking for examples in

the future. Students who found and opened at least one example (n = 17) used the “show

example" button over 5 time more (avg = 13.2; SD= 10.5) than those who did not (avg =

2.6; SD= 0.91).

In the interview, students discussed that they avoided requesting for help because of

expectations that they won't �nd an example they needed: “When I didn't �nd [a needed

example], I kinda just steered away from [requesting examples].” (P1),

Discussion. Prior work on end-users' example search behaviors showed that they may not

know how to articulate what it is they want to see in examples [Dor13]. Our analysis found

similar results, that novices may also encounter dif�culties expressing the functionality they

need in an example, and instead search for items that they associate with that functionality

(e.g. I want a sprite to �y, so I search for “airplane”). To help novices �nd an example based

on these aesthetic properties, we might tag examples with relevant aesthetic tags, so that

novices can �nd examples that include an airplane (or other �ying object) when they search

for it. We could also try to give feedback on search queries, e.g. “Try searching for a verb –

what do you want the sprite(s) to do?”.

Integration Barrier: How do I integrate the example code into my own code?

Our interview analysis identi�ed integration barriers as the challenges students face

when trying to integrate an example into their own code, after �nding and opening it. For

45

example, students noted differences between the example and their own code: “I may have

looked at the `increase score'[example]. But I don't think I used that because I don't think we

could have made it work... It wasn't a part of like our code..” (P5). This dif�culty integrating

examples may be especially dif�cult in open-ended projects, where the students received

examples that were distinct from the tasks they were trying to solve (i.e. it “wasn't a part of”

their own code).

Low integration rate. To understand how many examples students actually integrated

into their projects, we investigated the 153 instances of opened example performed by the

17 students who opened examples. We treated an example that was revisited multiple times

by a group as one distinct opened example, creating 77 distinct opened examples, covering

all of the 48 examples we designed. We de�ne “integrated examples” as the distinct opened

example where students managed to use code from the example and integrate it into their

program to create working code 3. We also de�ne the “integration rate” as a measure of

the proportion of opened examples that were ultimately integrated to students' own code

(i.e. # integrated examples over # opened examples). We found the integration rate over

all opened examples to be (24.7%) 19/ 77. This includes 9 times where students �lled out

the self-explanation prompt and copied the code to their own code, modifying it when

needed. This number excludes 10 times where students attempted to integrate code but

were unsuccessful.

We would not expect all opened examples to be integrated into students code. For

example, sometimes students browsed examples, repeatedly opening examples in search

of one they wanted. However, even when students searched for an example and found a

relevant match, they did not often integrate it. For the 25 searched items that ended up

retrieving at least one matched example, we found all of the top matched examples have

been opened, but only 12% (3 / 25) of them were later integrated to students projects. This

suggests that students were encountering barriers to integration. Our thematic analysis re-

vealed 4 speci�c typesof integration barriers that described how these dif�culties occurred:

understanding , mapping , modi�cation , and testing barriers, discussed below.

Understanding Barrier: How do I use an unfamiliar code block?

Understanding barriers occurs when students encounter unfamiliar code blocks in

an example, e.g., P2 found a “glide” block that they were unfamiliar with and asked “What

is the glide [block]?” (P2). In addition to not understanding a new API, students may also

experience doubts about the usage of the API in the context of the example: “I don't know

3This includes 2 examples that were successfully integrated and later deleted.

46

Figure 4.2: # unfamiliar blocks v.s. integration rate.

how this will work with the broadcast start timer” (P3), where “broadcast” is a code block

that received “start timer” as its message.

The log data shows that the number of unfamiliar blocks indeed in�uenced students'

ability to integrate an example into their own code. We used the number of distinct unfamil-

iar code blocks in each code example as the measure of unfamiliar blocks, and calculated it

in the following way: 1) We took the set of blocks that appeared in at least 80% 4 student

submissions in at least 1 of the 11 programming assignments prior to this open-ended

project as a set of familiar blocks . 2) In each example, A distinct code block that doesn't

belong to the set of familiar block is an unfamiliar block . Figure 4.2 shows that the example

integration rate continuously decreased from 30% (6 / 205) to 0 (0/ 4), as the number of

distinct unfamiliar blocks increased from 0-3 to 12-15. This shows that some students were

unable to overcome the barrier of using unfamiliar blocks when the number of unfamiliar

blocks increased in an example.

Discussion. During open-ended programming, students can bene�t from examples that

demonstrate how to use features (e.g. blocks, APIs) that are unfamiliar, so it is important not

to eliminate unfamiliar code. Instead, our results show that students may �nd it dif�cult to

understand examples when there are too many new features (blocks) at once. Therefore,

code example systems for novices may bene�t from limiting the number of unfamiliar

concepts to a certain threshold (e.g., 0-3 blocks). A system could also proactively show or

link to documentation on unfamiliar concepts that students have likely not encountered

before.

Mapping Barrier: How do I map a property of the example code to my own code?

Students encountered mapping barriers when trying to understand which parts of the

4Other thresholds produced similar results.
56 integrated among 20 opened, shown by the right and left number in each bar

47

Figure 4.3: example type v.s. integration rate

example corresponded to existing parts of their own code, such as sprites — P3 explained

not knowing whether the example code should go into their current sprite or a new sprite:

“I don't know if creating another sprite is necessary.”; P5, when working with a multi-sprite

example, had mistakenly copied example code to the wrong sprite, and later acknowledged

that “Any dif�culties that I might have had were... taking some time to understand how to

change sprites to �t my project.” (P5).

Mapping barrier is also shown in students' challenges to integrate examples with multi-

ple sprites. The 77 instances of opened examples included 4 primary categories: multiple-

sprite interactions, single-sprite examples, user interactions, and movement. One example

may belong to multiple categories. We calculated the integration rate for each category

(shown in Figure 4.3), and found that multiple-sprite interaction examples, despite be-

ing the second-most popular category (with 34 distinct opens), had only an 11.8% rate

of successful integration, the lowest among all other types of examples. This �nding may

be explained by the mapping barrier, since when integrating multiple-sprite examples,

students face the two-fold barrier of �nding “which part of the example code completes

my needed behavior”, as well as �nding “where in my code does the example go?”

One might argue that perhaps the challenge of integrating multiple-sprite examples may

also be due to them being longer. We investigated students' ability to integrate examples as

the size of the example grows. We divided examples into size bins (i.e. 1-25 blocks, 25-50

blocks, etc.) and compared multiple-sprites examples to other examples within each bin.

We found the integration rate was always lower for multiple-sprite examples. For example,

for examples of size 1-25 blocks, the integration rate was 13% (3 / 23) for multiple-sprite

examples v.s. 34% (9/ 26) for others. This shows that students struggle to integrate multiple-

sprite examples to their code even when their sizes were small. However, students were still

able to integrate some large (50-75 block) single-sprite examples (60%, 3 / 5). This suggests

that mapping barriers with multiple-sprites, rather than an example's size, may explain

48

students' challenges with integration.

Discussion. This dif�culty in mapping an example's property to one's own code suggests

that students need support to understand the example in the context of their own code ,

e.g., potentially through adapting examples to match the student's current program. For

Example Helper, this might mean changing the sprites in the example to match the student's,

based on code similarity, or annotating when an example requires creating a new sprite.

Modi�cation Barrier: How to modify the example code to �t my own needs?

Modi�cation barriers occurred when students were in the middle of or have completed

integrating an example code into their own code, but encountered dif�culties in modifying

the example to what they actually needed. For example, P2 asked for an example to imple-

ment a bounce behavior. However, the example demonstrated how to bounce when hitting

a sprite vertically , while the students wanted to bounce after a horizontal collision. The

student gave up using the example because they were unable to modify the example to turn

the correct number of degrees: “We were going to stick to what the code said, but the ball

keeps falling off the paddle and we didn't know how to �x that, so I'm trying new stuff.” (P2)

In our log data, we found 19 instances of example modi�cation, which followed two

distinct strategies: 1) build, test, modify, test (n = 15): students started by making code

blocks based on example code, then tested and modi�ed the examples by changing blocks.

Among these students, 11 succeeded and kept the new code, while 4 were unsuccessful

and removed the example code entirely. 2) modify while building (n = 4): students directly

modi�ed the example code as they constructed it (2 / 4 succeeded). Although with relatively

high success rate (68 %), some students who attempted to modify examples have been

shown to have failed in doing so.

Discussion. Students' needs to modify the example show an active learning strategy [Chi14],

which may cause the learner to mentally integrate the new information with their activated

prior knowledge [Chi14]. Because example code introduce a different context, and therefore

not work correctly, students need debug the examples through modi�cation, which can

be challenging [Sor07]. We may therefore include options to toggle the example, or to

encourage modi�cation of a speci�c part of an example after they have used it in their

program, which is also supported by the Use-Modify-Create practice [Lee11].

Testing Barrier: How to test the example code?

Testing barriers occurred when students were expecting to test the example quickly , but

encounter dif�culties in doing so. During our interview, two students asked the interviewer

about how to test the example code immediately after the student has opened the example

49

(e.g., “Is there anywhere to see how the code actually works in the example?” (P1)). In our log

data, all 19 integrated examples were immediately tested once the students have completed

making it. In addition, 9 opened example were tested in short time intervals, marked by

at least two writing - testing cycles. This showed that students who managed to integrate

the example code to their own code may have overcome the barrier of �nding how to test

the example code. However, our interview showed that some who were able to test the

example code were still expecting quicker testing than what they experienced, and it's

possible that students who did not integrate the examples successfully to their own code

were discouraged by the dif�culties of testing immediately.

Discussion. Although our log data showed that all students who integrated examples to

their own code have tried testing the example code by running it, students in the interviews

were unsatis�ed with the expectation that they have to �rst reconstruct the example in

order to run it. Prior work has shown that when learning code examples, actually running

the code and see how the code executes may lead to further re�ections of the code itself

[Wan20c]. Our �ndings shows that just allowing students to view the animation next to

the example code is insuf�cient; we should allow students easy access to run and test the

example program directly.

Summary & Discussion. We found evidence that students encounter decision, search

and integration barriers, leading to lower levels of exploring, opening and using examples.

Despite our focus on barriers, our results still suggest that code examples have strong

potential to support open-ended programming, as many students were able to successfully

integrate examples into their code. Our results on learning barriers also show a strong

connection between the challenges faced using examples, and more general programming

skills, such as appropriate help-seeking [Mar20], articulating what code does [Dor13], and

modifying code [Lee11]. In addition to design opportunities discussed above, our results also

have implication for instructors, who often integrate examples into lectures and debugging

sessions[Sor07], where students may still face each of the integration barriers we discussed.

4.6 Limitation & Conclusions

This work includes several limitations. With only �ve interviewees, our interview data may

not generalize to other student groups. However, we validated our interview data with

evidence from log data, showing some generalisability of these barriers. Additionally, some

students programmed in pairs, others alone. We treated them equally as one unit of analysis,

although they engage in different modes of programming. However, since the majority of

50

our log analysis focused on each unit of example requests, and therefore the unit of analysis

does not affect the validity of the data we reported.

In conclusion, in this work, we presented the Example Helper system, which supports

students' open-ended programming using code examples. We also identi�ed students'

learning barriers while using examples in open-ended programming, leading to design

opportunities that may better support students.

4.7 Acknowledgements

This material is based upon work supported by the National Science Foundation under

Grant No. 1917885.

51

CHAPTER

5

EXPLORING DESIGN CHOICES TO

SUPPORT NOVICES' EXAMPLE USE

DURING CREATIVE OPEN-ENDED

PROGRAMMING

5.1 Introduction

Open-ended programming projects, such as making apps, games, and stories, encourage

students to create projects that are aligned with their own motivation and interests [Gro18].

These projects are widely used as activities and assignments in many introductory program-

ming curricula [Gar15; McG18; Gro18] and informal learning settings [Pep07]. They engage

students by allowing them to express ideas creatively [Hul15], and motivate students to

keep pursuing CS [Guz05] by tying their authentic, real-world interest with their program-

ming experience [Pap80]. However, open-ended programming can also be challenging for

novices [Gro18], as implementing unique and authentic ideas may require knowledge of

52

programming concepts and APIs they are unfamiliar with [Gro18].

Code examples are often used by professional programmers to learn and use APIs and

code usage patterns [Rob09; Bra09; Par11]. However, novice programmers lack skills such

as program tracing [Lis04] and fundamental programming concepts such as variables

[Ich15], which may prevent them from using those examples effectively during open-ended

programming. In our prior work, we conducted the �rst known study to systematically

analyze the types of barriers students encounter when using code examples during open-

ended programming, using a basic example system (which we refer to as PROTOTYPE-EH in

this paper). We found that students encountered barriers such as not knowing when to use

an example (decision barrier); how to �nd an example they need (search barrier) and how

to test and experiment with the examples (testing barrier) [Wan21].

How to design code examples to address students' decision, search, and testing barri-

ers?In this work, we describe our experience designing, building and deploying EXAMPLE

HELPER, a fully remodeled example support system based on PROTOTYPE-EH. EXAMPLE

HELPERsupports students' open-ended programming with a gallery of code examples. To

design EXAMPLE HELPER, We explored additional design choices to encourage students'

exploration and experimentation with code examples. We deployed EXAMPLE HELPERin an

undergraduate CS0 course, with 46 novice students working on an open-ended program-

ming project in Snap ! , a block-based programming environment. We analyzed students'

programming log data, project plans, and project submissions. We found that students

used many different strategies to browse, understand, experiment with, and integrate code

examples into their code. We also found a signi�cant, positive correlation between the

complexity of a student's project plans and the number of integrated examples, showing

that students who had more ambitious project goals used more code examples. Finally, we

discuss to what extent EXAMPLE HELPERaddressed the decision, search and testing barriers,

and suggest ways to better support students' example use. The contributions of this work

are:

1. A synthesis of design choices for building code example systems to address novices'

learning barriers, and for enabling effective example use during open-ended pro-

gramming.

2. EXAMPLE HELPER, a system that instantiates the principles for providing code exam-

ples to students.

3. An in-depth analysis of students' example-usage experience, as well as the factors

53

Figure 5.1: The EXAMPLE HELPERinterface, which includes a selection-based gallery (left)
and a playground view (right) for students to program while using the example as a refer-
ence.

that in�uenced students' example use, in an authentic, classroom study.

5.2 The EXAMPLE HELPER System

5.2.1 Interface Design

Figure 5.1 shows the interface of EXAMPLE HELPER. When a student needs a new idea, or is

stuck on implementing an existing idea, they can click on a show example button on the

top-center of the screen to open a gallery of code examples (Figure 5.1-a). Inside the gallery,

they can use the search box or the tags to �nd an example, or click through the left-right

arrows to browse through the gif-animations of the output of each code example. When a

student clicks on a code example, it opens up a preview window, which shows editable code

with its output shown on the right side of the example code. The student can modify the

example code, and click on the button “Run Example Code” or the green �ag on the top right

of the example to run and test the example code. If the student wants to use the example in

their own code, they can click on the “try it” button on the bottom-left of the interface. After

clicking on the “try it” button, the student is prompted with a new “playground” window,

where they can continue to edit and test the example, or use the example code as a reference

to implement their own code. They can also click on the “Copy to my code” button on the

bottom-left of the example, which prompts them to copy the example code to their own

code. The design of EXAMPLE HELPERis informed by the following two design choices, to

54

address the 3 learning barriers from prior work (Table ??) [Wan21].

1) Incentivise ideation. A key activity exploratory programmers engage in is exploring

and discovering new ideas in the middle of programming [Ker17b]. In addition to the

support for browsing and viewing gif animations, EXAMPLE HELPERadded two more features

to support ideation and exploration of examples: 1) Autocompletion suggestions when

searching for an example. The search mechanism matches students' search with words

in the name of an example, and instantly provides autocomplete suggestions, showing

potential items a student needs; 2) Preview window. Whenever a student clicks on an

example, they can view edit, test, and run the example in the preview window (shown in

Figure 5.1 left). The goal of this feature is to address decision barriers, as we hypothesized

that with easier access to the preview, students would become more willing to view and

test an example they need.

2) Encourage prototyping. Prior work shows that exploratory programmers experiment

with the code to implement and test new ideas [Har08; Ker17b; Ker17a]. Our prior work

showed that students needed immediate, straightforward ways to experiment with the

example, and need multiple modi�cations and test cycles to use examples effectively in

their code, but was unable to do so ef�ciently in PROTOTYPE-EH [Wan21]. EXAMPLE HELPER

encourages prototyping by allowing students to experiment and modify the example and

view its immediate output on the right output stage, as a single, standalone prototype.

5.2.2 Example Content Design

While the Snap ! website [Moe12] offers galleries of complete projects for students to browse,

prior work has shown that novices [Ich17] and experienced programmers [Rob09] preferred

using “snippet-sized” examples that teach an API usage pattern – how code can be organized

to produce a certain behavior [Rob12; Tha21]. We designed example content through a

manual process of decomposing steps towards completing multiple large programming

projects.

To do that, we �rst collected 27 pieces of CS0 students' project submissions, where

students did open-ended programming in Snap ! . We systematically coded all submissions

on dimensions such as game mechanics, code quality, and project aesthetics, and listed

features that each submission included. We found a total of 37 code usage patterns in

student programs, such as moving with the keyboard, displaying and initializing a variable,

and initializing actor positions. In addition, we found that students' projects also avoided

using advanced code blocks (e.g., lists and clones) that may have been helpful for them to

55

Table 5.1: EXAMPLE HELPERdesign targets to address the search, decision, testing, and
modi�cation barriers students encounter when using code examples during open-ended
programming.

Barrier De�nition PROTOTYPE-EH EXAMPLE HELPER Design choice
Search
Barrier

Students' typed
queries some-
times did not
return search
results.

No query recom-
mendations.

Provides immedi-
ate search results
and autocom-
plete suggestions.

Incentivise
Ideation

Decision
Barrier

Students are re-
luctant to open
an example even
when stuck and
need help.

No preview win-
dow.

Allows preview-
ing and testing
the example in
the browsing
interface.

Testing
Barrier

Students need
quick, iterative ex-
perimentations
with the example.

No interactive
output. Does
not support test-
ing/ experimentation
inside the exam-
ple window.

Allows running,
modifying, and
viewing immedi-
ate output inside
the example
window.

Encourage
Prototyping

create clean and concise code and their code sometimes included logic errors. Leveraging

the collection of code usage patterns we found from this formative analysis, we built 18

sample programs to cover all behaviors (one program can include multiple behaviors),

with known game themes that students may be familiar with (e.g., a quiz app, or an arcade

game).

We next decomposed sample programs into code examples that represent distinct

program behaviors, which should be meaningful semantically, and can be described in

short human language [Wan20a]. For example, a space invader game can be decomposed

into the following 6 examples: 1) actor moves with key; 2) creating a spawn of enemies;

3) enemy moves intermittently; 4) shoot actors; 5) an enemy explode when hitting bullet;

6) increases score when a bullet hits an enemy. After constructing those examples, we

did multiple passes to break down long examples into smaller sub-components, merged

examples that are of similar functionalities, and �ltered out examples that include a large

number of code blocks and could not break down into sub-components. This creates a

total of 31 examples.

56

5.3 Methods

We conducted a student study to understand how students used the EXAMPLE HELPERin a

real-world classroom environment. To generate a comprehensive, in-depth understanding

of students' experience, we used the following three research questions, each from broader

to more speci�c, to guide our study and analysis.

• RQ1: How did students use examples? We aim to identify the types of behaviors and

strategies students engaged with when using code examples.

• RQ2: What are the types of students who used examples? We aim to look at student-

speci�c factors that may in�uence students' example use.

• RQ3: To what extent did the new features introduced by EXAMPLE HELPERaddress

students' learning barriers? We used data collected from the study to qualitatively eval-

uate whether the speci�c features we added are useful in helping students overcome

barriers.

5.3.1 Participants & Procedure

We conducted our study in an undergraduate CS0 classroom, among 46 non-CS-major

novice students, in a research university in Southeast US. The course was held remotely

during the COVID-19 pandemic. To ensure an authentic learning experience, we did not

collect students' demographic information. The study happened during the second month

of the students' programming course, and includes the following procedure:

Pre-test. Before the study, students completed a pre-test, which tested students' knowl-

edge on concepts they learned in the �rst month before the study: variables, lists, loops,

and Snap! APIs.

Project pitch. To guide students towards designing a free-choice, open-ended project,

we introduced students to the engineering design process [Hai18]. They were asked to

design their products following this design process, to solve a real-world problem with

creative ideas, and publish a project pitch in the online class discussion platform, which

allows follow-up discussions of each pitch.

Pair planning and programming. After the project pitches and follow-up discussions,

students had the choice to form a two-person team on a project idea that they were both

interested in. They could also choose to work independently on their project. This led to

57

36 student groups, among which, 10 were pairs and 26 were students who work indepen-

dently 1. After forming groups, students started with a week of planning in a digital planning

system [Mil21], where they listed the features they wanted to complete in their project

(e.g., “once the snake crash into itself the game is over”), as well as a project description,

and then worked on their projects for two weeks. To allow collaborative programming, we

instrumented the Snap ! interface with a “save / load” button, on which students can click

to save/ load their / their pair's project. We encouraged pair programming, as prior work

has shown that students achieved signi�cantly higher performance in pair projects when

creating open-ended projects [Gro18].

5.3.2 Data & Analysis

We conducted the following three types of data collection & analysis to investigate our

research questions:

Interaction with code examples. EXAMPLE HELPERlogs all students' interaction data

with the system, as well as their code snapshots at every individual timestamp. To investigate

RQ1 and RQ3 on students' experience using EXAMPLE HELPER, we conducted a qualitative

coding to the log data to generate patterns of interaction behaviors students engaged

in when using examples [Gao20]. To begin with, three researchers manually inspected

students' logs from 16 example requests 2 on one randomly-selected student group, to

describe actions students take while using the example, creating 3 note documents on

example-related activities, such as running the example code or modifying the code in the

playground. Next, one researcher conducted an initial coding of the note documents to

generate a list of example interaction events that took place. After discussing and generating

the initial lists of interaction events, two researchers coded all students' log data to con�rm

and collect counts on those events. They �rst each did independent coding on 10% of

the data based on the initial list of events, achieving an initial inter-rater agreement of

82.8%. They next discussed to resolve con�icts and re�ned the event lists and de�nitions,

achieving a �nal inter-rater agreement of 100%. Based on the new re�ned de�nition, the

second researcher conducted the rest of the log analysis. At the end of the log analysis,

the two researchers then inspected the events, merged events that describe similar usage

behaviors (e.g., running example in the preview and running in the playground), and

sorted these events into high-level categories. This creates 3 high-level categories and 8

1We use the term “group” to refer to single-student or pairs, who worked on a single project
2An example request includes all log data when a student opened, tested, closed or used an example.

58

example-usage events. We present them in Section 5.4.1.

Pretest, planned & completed features. To investigate RQ2, we hypothesized that

students' programming knowledge, or the complexity of their plans may affect students'

example use. Therefore, we collected students' pre-test scores as an indicator of students'

programming prior knowledge. We also collected students' planning data by collecting the

list of features they planned in the digital planning system [Mil21]. Some students included

extra features in the project description text �eld. For those student groups, we added

from the project description each sentence that describes an extra planned feature into the

planned feature list. We used the number of features students included in their plans to

indicate the complexity of their plans, and rated students' project submissions based on

how many planned features students ended up completing in their projects. If a student

slightly changed a feature's implementation (e.g., by changing variable names), we also

mark those features as completed.

Example integration. To understand the outcome of using examples, for each example

a group has requested, we also inspected the full log data to check whether the examples

were integrated by the example. We de�ne “integration” as when a student used an example

in their projects, and kept it in their projects for submissions. To inspect how students

modi�ed the examples during integration, two researchers collectively rated the level of

modi�cations students used when integrating an example into their project, based on the

following three different levels of adaptations: 1) full copy, where students copied the entire

example with no modi�cations; 2) slight modi�cation, where students only modi�ed the

examples slightly, such as changing variables and starter blocks. 3) structural modi�cation,

where students did bigger changes to the events, either deleting many blocks they did not

need, or modifying them more to use them in their projects. We rated students' integrated

examples according to the level of modi�cations, and present the result in Section 5.4.3.

5.4 Results & Discussion

5.4.1 RQ1: How did students use examples?

Our analysis revealed 3 high-level themes on students' example interaction behaviors:

general example usage behavior, experimentation behavior, integration behavior, and

other general example usage behaviors. General example usage behaviors described generic

example usage events, including opening an example (14 students), clicking on the “try it”

button to open playground (7 students), and opening documentation to learn unfamiliar

59

code blocks in an example (4 students). This shows that some students could not understand

code blocks in the example, but used the documentations to learn instead. We next present

students' experimentation and integration behaviors when using examples:

Experimentation behaviors.

Experimentation behavior described how students test, tinker, or modify the example

inside the preview or playground window. We found that among the 14 groups who opened

an example, most groups (85%, 12 / 14) tested the example code in the example window,

and over half of the groups (57%, 8 / 14) modi�ed the example inside the preview or gallery

window to test. This shows that many students bene�ted from the immediate test and

experimentation features.

Integration behaviors.

Integration behavior describes how students applied and used the example in their workspace.

Our log analysis found three key integration behaviors: by using the example as a refer-

ence and building code themselves (reference) (14%, 2 / 14); by clicking on the “copy to my

code” button to copy code directly (copy) (50%, 7 / 14); or by closing the example and then

implemented the example code on their own (re-implement) (64%, 9 / 14).

Use cases

We illustrate below how students used the experimentation and integration strategies to

understand and reuse an example code. We demonstrate how three different students used

the “Move when the key is pressed” (keymove) example. Keymovedemonstrates how to

move actors with the key. The example code uses a forever loop to listen to user inputs (i.e.,

left and right keys) and move the actor position accordingly.

Copy-run-modify. After failing to implement the example themselves, Bo copied the

example directly to their code by clicking on the “copy to my code” button. They then ran

the example code 4 times, modi�ed the example by adding up and down movement on

their respective keys. The student ran their code four more times to test the added behavior.

Run-understand-reference. Mo had incomplete code about keymovebefore looking

for examples. They browsed several examples and then opened keymove. After running the

example several times in the gallery, they then opened the playground. Instead of copying

60

the code directly, they used the example code as a reference and built the example one

block at a time into their workspace.

Run-close-re-implement. Jo also requested the keymove example, ran it once, then

closed the example. They then re-implemented a modi�ed version of the example which

allowed users to use either the up arrow or the w key and controlled the sprite's direction

rather than position.

Discussion

Our use case shows three different types of opportunistic programming strategies, sum-

marized by prior work [Bra09; Ker17b]. In addition, Copy-run-modify also resembles the

behavior of debugging into existence [Ros93; Ker17b], where students engaged in iterative

test and modi�cation to update an existing program. We found that EXAMPLE HELPER

allowed students to interleave many experimentation behaviors with example copying

strategies, with 85% and 57% students who ran and modi�ed examples, respectively. This

shows the potential for the EXAMPLE HELPERto enable active example integration strategies.

5.4.2 RQ2: Who used examples?

We found that only 22% (8 / 36) students integrated at least an example into their project.

Many (61.1%, 22/ 36) did not view any examples. Therefore, we investigate what types

of students were more likely to use EXAMPLE HELPER to integrate examples into their

projects. We hypothesized that students' programming knowledge, or the complexity of

their plans would affect their example use, and conducted a spearman's rank correlation

test to investigate the relationship between students' pretest scores, their planned events,

and their example use.

Is programming knowledge predictive of example use? We found no observable corre-

lation between students' pretest scores and their number of integrated examples (r = -0.07,

p = 0.71). This indicates that both low and high-performing students integrated examples

into their project, and that a student's previous programming knowledge does not predict

whether a student will successfully integrate examples or not .

Is project planning predictive of example use? We found a signi�cant, moderate cor-

relation between students' number of planned features and their number of integrated

examples (r = 0.40, p = 0.02). This shows that students who make more ambitious plans

integrated more examples into their projects.

61

In addition, we also found a signi�cant, moderate correlation between the number of

completed planned events with the number of integrated examples (r = 0.44, p = 0.01).

The number of completed events, on the other hand, is also strongly correlated with the

number of planned features (r = 0.65, p < 0.001). Because all three numbers (number of

planned features, number of integrated examples, and number of completed features) were

signi�cantly correlated, we are unable to claim causal relationships, but only hypothesize

that the students who make more ambitious plans integrated more examples, and also

complete more complex projects at the end. None of these three variables, on the other

hand, had a signi�cant correlation with students' pre-test scores, showing that pre-test

scores likely didn't affect how well students make plans and build their projects.

Discussion Different from prior work, which found that students with likely lower prior

knowledge would request more code examples during closed-ended programming [Wan20c],

our results on students' open-ended programming shows that students' prior knowledge is

unrelated to whether they may bene�t from using the examples. However, the complexity

of students' plans – which shows how invested students are in their projects – does have a

positive effect on how many examples students end up integrating into their projects. This

suggests that in future work, we may help students ideate more features for their project in

the planning phase (e.g., by detailed instructions or adaptive support during planning),

which may lead to more example use, and potentially towards making better projects.

5.4.3 RQ3: To what extent did our design choices address students' learn-

ing barriers?

We next investigate whether the new features we included in EXAMPLE HELPERwere able to

address students' decision, search, and testing barriers. To better interpret results, we use

our prior work [Wan21] as a baseline for reference. Although this work and our prior work

happened in the same CS0 course with the same curriculum, the two studies happened

in different semesters with different instructors. Our analysis, therefore, does not aim

to provide strong claims on the bene�ts of the system (i.e., as in a quasi-experimental

comparison), but rather drawing qualitative hypotheses on how our design choices may

have addressed the learning barriers.

Search barrier. We found a total of 34 search queries across students. 85.2% (29 / 34)

returned results, as auto-complete suggestions showed students search �ndings when

typing, and prompted students to use queries that returned results. This is about twice the

62

percentage of student search queries that returned results from PROTOTYPE-EH [Wan21],

showing that providing students with autocomplete suggestions during searching has the

potential to address students' search barriers.

Decision barrier. The EXAMPLE HELPERused a preview window for students to browse

and test the interface. With this feature, we found that students who used EXAMPLE HELPER

opened the gallery an average of 16.8 (286/ 17) times3, which is two times higher than the

average of 5.67 times from PROTOTYPE-EH. However, about half of the students also did not

click on the “show example” button at all, which EXAMPLE HELPERwasn't able to support.

This shows that the preview window only addressed to some extent the decision barriers

among those students who opened the example gallery at least once.

Testing barrier. Section 5.4.1 shows that students actively interleave experimentation

behaviors such as running the example, and modifying to test different functions on the

example when reading and integrating code examples into their code. While none of these

experimentation behaviors were supported by PROTOTYPE-EH, the high percentage of

students who ran (85%) and modi�ed (57%) examples shows that the editable example

windows in E XAMPLE HELPERaddressed students' testing barriers.

Outcomes. We also inspected students' integrated examples (Section 5.3.2) to check

whether students blindly copied examples. We found that among the 27 examples that are

integrated by 8 student groups, only 7.4% (2 / 27) were completely copied with no modi-

�cations (full copy); in about half (55.6%, 15 / 27) of the copied examples, students only

modi�ed slightly; for the rest (37%, 8 / 27), students did structural modi�cations (de�ned in

Section 5.3.2), making bigger changes to the example. This shows that EXAMPLE HELPER

encouraged students to meaningfully integrate examples into their own code by making

necessary modi�cations – not copying them blindly.

Discussion Our results show the autocomplete searches, as well as the accessible, editable

preview and playground features lead to relatively low incidents of search, decision, and

testing barriers. This shows that the design choices we made have the potential to be

successful in addressing students' learning barriers and lead to effective example use. Since

EXAMPLE HELPERis built as an extension in Snap ! , instructors can directly use EXAMPLE

HELPERin introductory programming classrooms, as support features that students can

use to request examples.

3Among the 36 student groups, 17 have clicked on the “show example” button to open the gallery and use
the EXAMPLE HELPER.

63

5.5 Limitations & Conclusion

Limitation: Students may still encounter search barriers. Our prior work showed that

47.6% searched queries were theme/ asset-based, such as “people”, “airplane” and “dining

room” using PROTOTYPE-EH [Wan21]. However, because EXAMPLE HELPERdirected students

to complete phrases that would only return results, students did not end up making search

queries that were theme / asset-based. This shows that auto-complete suggestions may have

limited students' choices to express ideas. In addition, the total amount of 31 examples

limited the students' ability to �nd their own, personalized examples. For future work, we

should support more diverse ways of searching, such as inferring the possible behavior or

interactions students may need through their descriptions of game themes and assets.

Limitation: Some still encountered decision barriers. Our work found that about half

of the student did not use the EXAMPLE HELPERsystem at all, showing that they may still

encountered decision barriers. Prior work suggest that students avoid seeking help for many

reasons, such as viewing requesting help as a threat to their independence and competence

[But98], or forgetting about the choice to ask for help [Pri17]. The design choices we made

for EXAMPLE HELPERassumes that students would open the interface at least once to use

and bene�t from its features, but none targeted those who would never use the system at

all. In the future work, to encourage �rst-time usage, we may suggest students to read or

learn relevant examples earlier in the programming process (e.g., before or just when they

started programming).

Conclusion. In this work, we presented our design process for building EXAMPLEHELPER,

a system that supports students with gallery-based code examples during open-ended

programming in Snap ! . We found that EXAMPLE HELPERsupports a variety of exploration

and integration strategies, and that students' engagement with the planning process signi�-

cantly affected students' use of code examples. We found suggestive evidence that EXAMPLE

HELPERaddressed search, decision, and testing barriers students encounter when using

code examples in open-ended programming, pointing to insights that designers can take

to build code examples to support effective example use.

5.6 Acknowledgements

This material is based upon work supported by the National Science Foundation under

Grant No. 1917885.

64

CHAPTER

6

PINPOINT : A RECORD, REPLAY, &

EXTRACT SYSTEM TO SUPPORT CODE

COMPREHENSION AND REUSE

6.1 Introduction

Block-based programming environments, such as Scratch [Mal10] and Snap! [Har13], pro-

vide novice-friendly features such as block-based editors, and visual, interactive output.

They engage programmers by allowing them to easily create artifacts that feel interesting

and meaningful to them [Res09], such as games, apps, animations, or stories.

A common way for users to get started in Scratch or Snap ! is by reusing and modifying

another programmer's work as an example project [Mon12]. Reusing such example projects

allows programmers to create artifacts that go beyond their own abilities, while maintain-

ing a sense of ownership over their work [Roq16]. Such example-centric programming

[Bra10] is commonly seen when learners remixing (i.e., copy and modify) other projects

in Scratch's online community [Kha19], or when students learn new APIs by exploring

65

examples [Wan22].

However, program reuse requires not only knowledge of the programming language

and APIs in the example [Wan21], but also skills such as code navigation and code compre-

hension [Gro10a]. Many Scratch or Snap ! users are beginner programmers without strong

prior programming experience [Fie14], and can easily encounter barriers when identifying,

understanding, and integrating features from example programs [Wan21]. This suggests

a need to help such users to navigate complex examples, identify and understand which

code is responsible for speci�c features, and integrate them in their own program.

In this work, we present Pinpoint , a system that helps Snap ! programmers to under-

stand and reuse an existing program by isolating the code responsible for speci�c events

during program execution. Speci�cally, a user can record an execution of the program

(including user inputs and graphical output), replay the output, and select a speci�c time

interval where the event of interest occurred. Pinpoint then identi�es and displays the

code responsible for creating that event, including the needed set-up code. Unlike prior

systems to support example playback and understanding (e.g. [Bur13; Gro10b]), which

only highlight a relevant line of code, Pinpoint presents users with complete, executable

code slices[Xu05] that demonstrate speci�c functionality. We use dynamic program slic-

ing [Agr90] to create such code slices for selected time intervals, and then further subdivide

these according to different aspects of functionality (e.g., movement, cloning, etc.) by

creating slice pro�les [Ott93].

We evaluated Pinpoint in a user study with 17 programmers, with various levels of

programming background. We found suggestive evidence that Pinpoint improved users'

ability to integrate example code into their own projects. Follow-up interviews revealed

speci�c ways that Pinpoint helped, including allowing users to relate speci�c example

code to output, and helping to focus on relevant parts of the example code. Our primary

contributions are 1) the Pinpoint system, including design goals derived from a formative

study, 2) Suggestive evidence of Pinpoint 's impact on learners, and 3) a summary of students'

perceptions of their reuse experience.

6.2 Related Work

While much prior work has been discussed in Chapter 2, we summarize the key �ndings

from prior work, and discuss the gap from prior work to Pinpoint .

Pinpoint is based on Snap ! , which is a block-based, graphical programming environ-

66

ment [Har13]. A core feature of Scratch and Snap ! are their online communities, which are

built on the culture of remixing [Das16], where users can click the “Remix” button to make a

copy and modify to start their own version [Kha19], allowing them to creatively collaborate

[Mon07] to share ideas and learn from one another [Roq16]. A large portion of projects in

Scratch are remixed projects [Mon12], but as many projects to remix are relatively complex

[Kha19], remixers might not always learn from reuse.

6.2.1 Code Reuse

Remixing is an example of code reuse, which refers to the process of identifying useful

components of example code and integrating them into one's own program [Hol09]. Holmes

et al. conducted four case studies on programmers' process of code reuse, and characterized

the reuse process into two stages: 1) locating and selecting and 2) integrating [Hol09]. During

the locating and selecting stage, programmers need to navigate through a complete example

program to �nd relevant areas of interest [Hol09]. This process can be challenging for both

experienced and novice programmers. For example, Ko et al. found that in this selection

stage, software developers begin by searching for relevant information, but they often make

use of limited and misrepresented cues in the program or the environment, causing failed

searches[Ko06]. These results suggest that programmers need support that helps them

make more accurate assumptions when relating functionality to a relevant code segment.

6.2.2 Supporting Code Comprehension & Reuse

Code comprehension refers to the process of programmers building a mental model of

how a piece of code works [Von95; Gro10a]. Von Mayrhauser de�ned that a key cognitive

process during code comprehension is generating a hypothesis of the causal effect from

a code segment to its output [Von95]. Programmers of different levels may all form an

incorrect hypothesis, but experts discard questionable hypotheses and form correct ones

more quickly than novices [Von95].

Prior work has developed tools to support program comprehension for programming

education and end users. For example, Python Tutor visualizes stack traces for students to

see internal data representations of the program state [Guo13]. However, it is not designed

for complex user inputs and graphical output of games and apps. Whyline in Alice [Coo00]

helps users to ask why and why not questions for debugging their own code [Ko04a]. How-

ever, it can only answer object-speci�c questions such as “Why did Pacman resize .5?”, but

67

not “object-relative” [Ko04a] questions such as “Why did Pacman resize after the Ghost

moved”, which were frequently asked by Alice programmers [Ko04a].

Some prior work applied record / replay systems to help users understand or debug

programs [Gro10b; Bur13]. Timelapse is a record / replay-based tool for debugging web

applications, which points to the users the lines of code responsible for a point of interest

during the recorded trace [Bur13]. Similarly, Gross et al. developed a record / replay tool to

help users in Looking Glass to record and select the timeframe of interest during the play-

back. The system then highlights the code responsible for the timeframe [Gro10b]. However,

both interfaces only highlight the lines of code responsible for the selected time frame in

the output, but do not extract an executablecode slice from the program. In contrast, Pin-

point directly addresses the learning barriers Snap ! programmers encounter when reading

and understanding code examples that are long and include multiple sprites, leveraging

techniques including static [Xu05] and dynamic code slicing [Agr90]. Pinpoint allows users

to select in the recorded replay a time interval, and inspect a decomposition of the origi-

nal program, which only includes the part of the code responsible for the desired output,

helping users learn their desired functionality in a targeted executable code example.

6.3 System Design Goals & Formative Study

Before introducing the Pinpoint system, we �rst present the design goals. To develop these

design goals, we conducted a formative, think-aloud study with 6 students in our university's

introduction to engineering course (a required prerequisite for all CS courses) to investigate

their code comprehension experience. The 6 students had various levels of programming

experience. During the study, we asked the students to spend 2 minutes exploring the code

of a mid-sized Snap ! programming project (4 sprites, 57 code blocks), with the goal of being

able to explain how that code achieves the output on the stage. The project was a simpli�ed

version of a space-invaders style game, explained in more detail in Section 6.4.1. Using

thematic analysis [Bra12], two researchers transcribed the audio recordings of students'

think-aloud utterances and conducted open-coding on the transcripts, while referencing

corresponding screen recordings for context. They next discussed and sorted the open

codes into 3 high-level themes, which revealed patterns of students' code comprehension

experience when reading an unfamiliar, complex program.

68

Mapping from code to its runtime behavior

While reading code, students frequently make hypotheses about a piece of code's effect on

the output, e.g.,“ this is the code for when the bullet touches the enemy, they disappear. " [P1].

However, these hypotheses were frequently erroneous. Prior work has found that such

false hypotheses could lead to errors and inef�ciencies in code maintenance tasks [Ko04a].

Therefore Design Goal 1 is to help students better map a code segment to its runtime

behavior.

Bottom-up, linear reading for the whole program

Many students read code linearly from the top of the �rst sprite to the bottom of the last

sprite (4 / 61). Instead of starting from the output of the code and relating functionalities to

code (top-down [Von95; Bro83]), many students' learning approach was primarily bottom-

up [Von95; Gro10a], where they read code �rst, and then related the code to its output.

As the students were trying to understand the whole program, our video data shows that

only one student was able to completely read through the project within two minutes,

perhaps due to the length of the program and the different task of being asked to explain

the output. Therefore Design Goal 2 is to help students to �nd and focus on the most

important / relevant code for their goal.

Not running or modifying code

Many students either ran the code only once (2 / 6) or did not run the code at all (3 / 6), which

may explain students' misconceptions about its output, perhaps due to the complexity of

the project and not knowing where to start. Therefore Design Goal 3 is to present users with

relevant, executable code examples that are small and speci�c enough to run and modify.

6.4 The Pinpoint System

6.4.1 The Pinpoint Design

To illustrate the use of Pinpoint , assume a user wants to create a game with a character

that shoots a bullet, based on a space invaders game (shown in Figure 6.1), which includes

14 among 6 students. Among the 2 other students, one started from another sprite, perhaps due to it having
the least amount of code blocks; one student ran the code multiple times, but it was unclear how the student
read the code, as they did not think-aloud to verbalize their thoughts although prompted

69

Figure 6.1: Pinpoint users can 1) record a program execution (including user input and
graphical output), 2) replay a recording and select a time interval where an event has
occurred, and 3) inspect an executable code slice relevant to the event, where the code
executed inside the selected time interval is highlighted.

this desired feature. In Space Invaders, the player controls a ship (blue) and tries to destroy

a group of enemy ships (red) by shooting bullets with the space key. Space Invaders also

has other features that add code complexity: the enemy ships also move and �re randomly

toward the player, and the player can dodge left and right. The player wins when all enemies

are destroyed. The user wants to identify the relevant shooting code and incorporate it

into their own program. Using Pinpoint , they can do the following steps, whose numbers

correspond to those highlighted in Figure 6.1.

Step 1: Record an execution

Our �rst design goal is to help users visually map code to its runtime behavior. Pinpoint al-

lows students to record their program execution by pressing the green �ag to start recording

and then pressing the stop button when they want the recording to stop. Users can view a re-

play of their program execution by clicking the “NEXT" button, or re-record by pressing the

green �ag again. While recording, Pinpoint creates an execution trace that records all user

interactions (e.g., key presses), program states (e.g., variable values and sprite positions),

and code executed. This is used to completely reproduce the program execution.

70

Step 2: Select an event

Our second design goal is to help users �nd and focus on the most important / relevant

code for their goal. To do that, Pinpoint uses the slider bar for students to navigate through

the recorded execution trace (Figures 6.1 - 2). The slider bar is automatically annotated

with key events during the program execution, such as clone creation / deletion and user

inputs (e.g., , which refers to when the left arrow key pressed). A student can select the

start and end frame (each corresponding to the Snap ! stage at the time index) to identify an

event they want to explore. For example, an event of interest could be “when the space key

is pressed, the bullet shoots”. For this, a user could select the time interval demonstrated in

Figure 6.1-2.

Step 3: Inspect the code

Our third goal is to present users with relevant, executable code examples that are small

and speci�c enough to run and modify. To do that, as the user selects a time interval in the

slider bar, Pinpoint automatically updates the relevant code slice to show only the code

necessary to 1) set up the relevant event (e.g., moving the sprite to a starting location) and

2) carry out the event (cf. Section 6.4.2).

To help students understand the extracted code, Pinpoint includes the following 3

features: 1) “How” questions. One way to improve code comprehension is asking students

to explicitly track changes to variables while reading code [Xie18]. However, as code slices

may include multiple variables and implicit properties (e.g., a sprite's position, size, and

appearance), it is dif�cult to track all changes. The user can therefore �lter the code using

the menu tabs above each sprite to select questions, such as “How does the enemy change

its position?”. This will show only the code relevant to movement and relevant control

structures. This may also be useful if students are only interested in one aspect of an event

(e.g., how the bullet was destroyed) but not others (e.g., how the bullet moves). We discuss

the implementation of “how” questions in Section 6.4.2. 2) Highlights for executing blocks .

Helping users quickly navigate to the key blocks for a code example has been shown to

improve code comprehension [Ich15]. Therefore, Pinpoint highlights the executing blocks

in yellow for a selected interval, while the code blocks that are not highlighted are required

for the program to execute (e.g., setup code). 3) The “show full project” button . To allow

users to compare the simpli�ed code slice with the original program, students can toggle

the “show full project” button to view the complete original program.

Pinpoint provides an augmented Snap ! editor, with the following features: 1) It places

71

	List of Tables
	List of Figures
	Introduction
	Motivation
	Research Outline
	Understanding students' needs and challenges during example use
	Addressing the challenges in two different dimensions.
	An Evaluation of Having Access to Examples in Open-Ended Programming

	Research Questions
	Contributions

	Related Work
	Open-Ended Programming
	Code Examples
	Code Examples for Closed-Ended Programming Problem
	Code Example Systems for Open-Ended Programming
	Code Examples for Informal Learning Settings

	Novices' Motivations and Strategies for Using Code Examples in Open-Ended Programming
	Introduction
	Example Helper System
	Study Setup
	System
	Participants & Procedure

	Analysis
	Results
	Motivations: Why do students ask for examples?
	Strategies: How do students learn and use an example?
	An in-depth example
	Outcomes of example use

	Discussion
	Support design and planning for creating complex projects
	Encourage effective example learning strategies

	Limitations & Conclusion

	Novices' Learning Barriers When Using Code Examples in Open-Ended Programming
	Introduction
	Example Helper System
	Participants & Procedure
	Analysis
	Results & Discussion
	Limitation & Conclusions
	Acknowledgements

	Exploring Design Choices to Support Novices' Example Use During Creative Open-Ended Programming
	Introduction
	The Example Helper System
	Interface Design
	Example Content Design

	Methods
	Participants & Procedure
	Data & Analysis

	Results & Discussion
	RQ1: How did students use examples?
	RQ2: Who used examples?
	RQ3: To what extent did our design choices address students' learning barriers?

	Limitations & Conclusion
	Acknowledgements

	Pinpoint : A Record, Replay, & Extract System to Support Code Comprehension and Reuse
	Introduction
	Related Work
	Code Reuse
	Supporting Code Comprehension & Reuse

	System Design Goals & Formative Study
	The Pinpoint System
	The Pinpoint Design
	Pinpoint Implementation

	Methods
	Participants and Study Design
	Materials: Two Reuse Assignments

	Data Collection and Analysis
	Pretest
	Task Performance
	Qualitative Interview Analysis

	Results and Discussion
	RQ1: What was the impact of Pinpoint on students' ability to extract and reuse code from an example?
	RQ2: What are students’ perceptions of their reuse experience?

	Conclusions and Future Work

	Investigating the Impact of On-Demand Code Examples on Novices' Open-Ended Programming Experience
	Introduction
	Related Work
	Open-Ended Programming
	Code Examples
	Open-Ended Programming
	Code Examples

	Methods
	The Example Helper System
	Participants & Learning Context
	Procedure
	Measures

	Results
	Discussion & Conclusion

	Conclusion
	Research Questions
	Research Question 1
	Research Question 2
	Research Question 3

	Design Principles & Future Work
	Contributions

