
ABSTRACT

MASHAT, SARA JAMEEL A. CPU Autoscaling in Cloud Computing Environments. (Under
the direction of Ioannis Viniotis).

In this thesis, we address CPU autoscaling, a technical problem related to resource

provisioning in cloud computing environments.

Pay-as-you-go models are the prevalent financial models in public cloud computing

environments due to the cost reduction they offer to cloud users. CPU consumption is a

major part of such costs, so using (and paying) only for what a user needs is critical. Given

that the CPU load a user generates varies with time and may also be random, there is a need

to adjust (up or down) the CPU resources the cloud provider offers to the user, in order to

match the user need as close as possible. This is the CPU autoscaling problem.

There is a number of technical challenges one needs to address in tackling the problem.

A healthy amount of work has been done in both industrial as well as academic settings.

In this thesis, we focus on utilizing historical measurements regarding CPU utilization in

order to improve system performance. We design three algorithms for processing such

measurements and use actual load traces to test them. We use four industry-standard

metrics introduced by the SPEC Research Group in 2016 to compare how they fare against

each other as well as against the Horizontal Pod Autoscaler, the default (CPU and mem-

ory) autoscaling algorithm in kubernetes, a popular resource orchestration tool in cloud

computing.

© Copyright 2022 by Sara Jameel A Mashat

All Rights Reserved

CPU Autoscaling in Cloud Computing Environments

by
Sara Jameel A Mashat

A thesis submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Computer Engineering

Raleigh, North Carolina
2022

APPROVED BY:

Gregory Byrd Shih-Chun Lin

Ioannis Papapanagiotou
External Member

Ioannis Viniotis
Chair of Advisory Committee

BIOGRAPHY

Sara Mashat was born in Jeddah, Saudi Arabia in 1993. She received her Bachelor of Sci-

ence degree in Computer Science from Effat University, Jeddah, Saudi Arabia in 2016. She

defended her computer engineering master thesis under Prof. Ioannis Viniotis supervision.

During her master at NC state university, Sara worked as a teaching assistant. . . .

ii

ACKNOWLEDGEMENTS

First of all, I am sincerely grateful to my supervisors, Prof. Ioannis Viniotis for his continuous

guidance and patience during my Master thesis. His guidance carried me through all the

stages of writing and implementing my thesis. Working under Prof. Viniotis supervision

has been a true honor and I appreciate for everything he has done for me in the past year.

I would also like to thank my committee members, Prof. Greg Byrd, Prof. Shih-Chun Lin,

and Dr. Ioannis Papapanagiotou for their comments and feedback. I would like to thank Dr.

Sudhendu Kumar for his suggestions and advice that have helped me in accomplishing the

thesis.

My sincere thanks go to my family and friends who have been constant sources of love,

friendship, hope and strength. Thank you for being there for me without your love and

continuous support this research would not have been possible.

iii

TABLE OF CONTENTS

List of Tables . vii

List of Figures . viii

Chapter 1 Introduction . 1
1.1 Problem Statement and Our Objectives . 1
1.2 Thesis Organization . 2

Chapter 2 Background and Literature Review . 3
2.1 Cloud Computing . 3
2.2 Containers . 5
2.3 Infrastructure Management . 6
2.4 Kubernetes . 7

2.4.1 Kubernetes Cluster Architecture . 8
2.4.1.1 Control Plane . 8
2.4.1.2 Worker Plane . 10

2.4.2 Kubernetes Objects . 10
2.4.2.1 Pods . 11
2.4.2.2 Replica-Sets . 11
2.4.2.3 Deployment . 11
2.4.2.4 Services . 12
2.4.2.5 Metrics Server . 12

2.4.3 Autoscaling Types . 12
2.4.4 Autoscaling Built-in Kubernetes . 15

2.4.4.1 Horizontal Pod Autoscaler . 15
2.4.4.2 Vertical Pod Autoscaler . 16
2.4.4.3 Cluster Autoscaler . 16

2.5 Feedback-based Algorithms . 16
2.6 Related Work . 18

2.6.1 Platform for Dynamic Cloud Resource Provisioning 19
2.6.2 KHPA-A . 20
2.6.3 Microscaler . 20

Chapter 3 Problem Statement and Proposed Solution . 22
3.1 Problem Statement . 22

3.1.1 Research Questions . 23
3.1.2 Research Approach . 23

3.2 System Model . 24
3.2.1 System Design Components . 25

3.2.1.1 K8s Control Plane . 25
3.2.1.2 K8s Worker Plane . 25

iv

3.2.1.3 Metrics Server . 26
3.2.2 MAPE Loop . 26

3.2.2.1 Monitor Phase . 26
3.2.2.2 Analyze Phase . 27
3.2.2.3 Plan Phase . 27
3.2.2.4 Execute Phase . 28

3.2.3 System Model Flow . 28
3.3 Metrics Selection . 29
3.4 Proposed Algorithms . 31

3.4.1 Algorithm 1: One-step history . 31
3.4.1.1 Algorithm Description . 31

3.4.2 Algorithm 2: Rolling Averages . 34
3.4.2.1 Algorithm Description . 34

3.4.3 Algorithm 3: Moving Window Averages . 37
3.4.3.1 Algorithm Description . 37

Chapter 4 Evaluation and Results . 40
4.1 Workload . 40

4.1.1 FIFA World Cup 98 Web Servers . 40
4.1.1.1 NASA web server . 41

4.1.2 Load Generator Setup . 43
4.2 Experiment Setup . 47

4.2.1 Calculating Average CPU Utilization . 49
4.2.2 Calculating the number of Desired Replicas 53

4.3 Results . 55
4.3.1 The Top-Level Evaluation Questions . 55

4.3.1.1 The Baseline Scenario . 55
4.3.1.2 The Evaluation Questions . 56
4.3.1.3 The “Winners” . 57
4.3.1.4 Autoscaling Performance Metrics 57
4.3.1.5 Overhead comparisons . 59

4.3.2 Overall Evaluation . 67

Chapter 5 Conclusion and Future Work . 71
5.1 Conclusion . 71
5.2 Future Work . 72

References . 73

APPENDICES . 78
Appendix A Php-Apache Server and Load Generator Setup 79

A.1 Docker Image . 79
A.2 Load Generator . 80
A.3 Deployment . 81

v

A.4 Metrics Server . 82
Appendix B Podmetrics Golang Implementation . 87

B.1 Current Metrics Function . 87
B.1.1 Algorithm 1: One-Step History . 87
B.1.2 Algorithm 2: Rolling Average . 89
B.1.3 Algorithm 3: Moving Window Average 91

B.2 Scaling Function . 92
B.2.1 Algorithm 1: One-Step History . 92
B.2.2 Scaling Using HPA Formula . 94

B.3 Scaling Policy Function . 95
B.4 Poll Replica Function . 95
B.5 Find Duplicate Measurement Function . 96
B.6 Updating Measurement Function . 97

Appendix C Experiments Results . 99

vi

LIST OF TABLES

Table 4.1 Details of the experimental setup. 48
Table 4.2 Pod Con�guration. 48
Table 4.3 The best-performing algorithm among the three de�ned ones, per

metric considered. 57
Table 4.4 Autoscaling performance metrics for all the four experiments. 59
Table 4.5 The Number of Requested Replica for Each Autoscaling Algorithms

using dif�dent Workload. 68
Table 4.6 The performance of One-step history algorithm with different scaling

Time. 69

vii

LIST OF FIGURES

Figure 2.1 How clients and cloud providers share the management burdens. . . 5
Figure 2.2 Kubernetes Cluster Architecture. 9
Figure 2.3 The taxonomy for auto-scaling web applications in clouds, [42]. . . . 13
Figure 2.4 The Abstract Feedback (MAPE) Model. 17
Figure 2.5 The MAPE loop in Kubernetes. 19

Figure 3.1 The main system design components in a Kubernetes cluster. 25
Figure 3.2 Kubernetes HPA as a MAPE Loop implementation. 27
Figure 3.3 Flow of steps, from monitoring to a decision taking effect. 28
Figure 3.4 Algorithm 1 Explanation. 33
Figure 3.5 Algorithm 2: 5-minutes Rolling Averages Explanation 36

Figure 4.1 FIFA World-Cup Dataset, three months. 41
Figure 4.2 Subset of six hours of FIFA World-Cup Dataset on day May 1st, 1998. 42
Figure 4.3 Subset of six hours of FIFA World-Cup dataset (random selection). . 43
Figure 4.4 NASA-HTTP Workload, two months. 44
Figure 4.5 First subset of six hours of NASA-HTTP Workload. 44
Figure 4.6 Second subset of repeating 2 hours of NASA-HTTP Workload. 45
Figure 4.7 Duplicate Measurements. 52
Figure 4.8 Comparison of The Under-Provisioning Accuracy Percentage for All

Algorithms (E1: FIFA Dataset . 60
Figure 4.9 Comparison of The Over-Provisioning Accuracy Percentage for All

Algorithms (E1: FIFA Dataset . 61
Figure 4.10 Comparison of The Under-Provisioning Timeshare Percentage for All

Algorithms (E1: FIFA Dataset . 62
Figure 4.11 Comparison of The Over-Provisioning Timeshare Percentage for All

Algorithms (E1: FIFA Dataset . 63
Figure 4.12 Comparison of The Exact Provisioning Accuracy for All Algorithms

(E1: FIFA Dataset . 64
Figure 4.13 Comparison of The CPU Utilization Percentage for All Algorithms

(E1: FIFA Dataset . 65
Figure 4.14 Comparison of The Desired Replica e for All Algorithms (E1: FIFA

Dataset . 66

Figure C.1 Comparison of The Under-Provisioning Accuracy Percentage for All
Algorithms (E2: NASA Dataset) . 100

Figure C.2 Comparison of The Over-Provisioning Accuracy Percentage for All
Algorithms (E2: NASA Dataset) . 101

Figure C.3 Comparison of The Under-Provisioning Timeshare Percentage for All
Algorithms (E2: NASA Dataset) . 102

viii

Figure C.4 Comparison of The Over-Provisioning Timeshare Percentage for All
Algorithms (E2: NASA Dataset) . 103

Figure C.5 Comparison of The Exact Provisioning for All Algorithms (E2: NASA
Dataset) . 104

Figure C.6 Comparison of The CPU Utilization Percentage for All Algorithms
(E2: NASA Dataset) . 105

Figure C.7 Comparison of The Desired Replica for All Algorithms (E2: NASA
Dataset) . 106

Figure C.8 Comparison of The Under-Provisioning Accuracy Percentage for All
Algorithms (E3: FIFA Random) . 107

Figure C.9 Comparison of The Over-Provisioning Accuracy Percentage for All
Algorithms (E3: FIFA Random) . 108

Figure C.10 Comparison of The Under-Provisioning Timeshare Percentage for All
Algorithms (E3: FIFA Random) . 109

Figure C.11 Comparison of The Over-Provisioning Timeshare Percentage for All
Algorithms (E3: FIFA Random) . 110

Figure C.12 Comparison of The Exact Provisioning for All Algorithms (E3: FIFA
Random) . 111

Figure C.13 Comparison of The CPU Utilization Percentage for All Algorithms
(E3: FIFA Random) . 112

Figure C.14 Comparison of The Desired Replica for All Algorithms (E3: FIFA Ran-
dom) . 113

Figure C.15 Comparison of The Under-Provisioning Accuracy Percentage for All
Algorithms (E4: NASA Repeat) . 114

Figure C.16 Comparison of The Over-Provisioning Accuracy Percentage for All
Algorithms (E4: NASA Repeat) . 115

Figure C.17 Comparison of The Under-Provisioning Timeshare Percentage for All
Algorithms (E4: NASA Repeat) . 116

Figure C.18 Comparison of The Over-Provisioning Timeshare Percentage for All
Algorithms (E4: NASA Repeat) . 117

Figure C.19 Comparison of The Exact Provisioning for All Algorithms (E4: NASA
Repeat) . 118

Figure C.20 Comparison of The CPU Utilization Percentage for All Algorithms
(E4: NASA Repeat) . 119

Figure C.21 Comparison of The Desired Replica for All Algorithms (E4: NASA
Repeat) . 120

ix

CHAPTER

1

INTRODUCTION

In the past decade and a half, cloud computing has become a popular topic that has

gained considerable attention in both academic as well as industrial environments [37].

A very large number of companies, such as Net�ix, Dropbox, and Spotify are adopting

cloud-based applications due to the scalability, reliability, and cost-effectiveness that cloud

computing provides [13] [29] [44]. By connecting to the cloud via the public or private

Internet, consumers can access compute, storage and network resources on-demand;

cloud resources can be utilized only whenever needed. Therefore, cloud vendors provide

pay-as-you-go billing, so consumers are only responsible to pay for the amount of service

they use.

1.1 Problem Statement and Our Objectives

In the cloud environment, traf�c levels may usually change throughout the day, leading

to a dynamic demand of resources. To meet this demand in a cost-effective manner, most

cloud systems employ an auto scaling feature , by which the number of resources provided

is automatically increased or decreased based on the workload. There is one main issue

1

that must be considered in the design and operation of an auto scaling algorithm. This

issue is responsiveness: that is, the speed at which the auto scaling algorithm responds to

the frequent change of traf�c while maintaining other desirable properties such as cost

ef�ciency and quality of service. The algorithm must recognize short time increases as

well as decreases of demand; if needed resources are not given in time, underprovisioning

occurs, and the user's quality of service will deteriorate. If resources are not taken in time

when they are no longer needed, overprovisioning occurs, and user costs will increase.

So, at a high level, the problem is to design an auto scaling algorithm that will have small

(ideally zero) over- or underprovisioning mismatches .

We will de�ne later, in Section 3.3, page 29, four speci�c, industry-standard metrics that

quantify these mismatches. We use these metrics in our evaluations in Chapter 4.

In this thesis, we propose three simple algorithms that use past history to decide how to

scale up or down the CPU resource. This history includes past resource utilizations as well

as previous decisions. We have implemented the algorithms using the Go programming

language. Our goal is to evaluate how these algorithms fare against each other with respect

to the four metrics.

1.2 Thesis Organization

This thesis is structured as follows. In Chapter 2, we provide the necessary background

knowledge and present our literature review. In Chapter 3, we propose the system model,

de�ne the selected metrics, and describe the proposed algorithms. In Chapter 4, we use

actual data from two realistic datasets in order to measure, evaluate, and analyze the

ef�ciency of our proposed solutions. We also compare them to kubernetes HPA, the most

widely used autoscaling algorithm in the industry. In Chapter 5, we summarize the major

�ndings, describe the challenges we faced in this work and provide some recommendations

for future work. Finally, we describe the major features of our code in the two Appendices.

2

CHAPTER

2

BACKGROUND AND LITERATURE

REVIEW

In this chapter, we highlight the most important background information needed in this

research; more speci�cally, in Sections 2.1 through 2.5, we brie�y outline the concepts

of cloud computing, containers, infrastructure management, Kubernetes, and feedback-

based algorithms respectively. We conclude this chapter with an overview of literature that

is closely related to our problem in Section 2.6.

2.1 Cloud Computing

In the past decade and a half, cloud computing has received great interest in the industrial

and academic �elds [14]. At its 2019 state of the cloud report that surveyed 786 enterprises,

RightScale has reported that 94% of them utilize (private or public) cloud computing [25].

For example, cloud computing has been used as an alternative solution to a traditional data

warehouse due to its ability to provide instant access to a wide range of shared computing

resources such as networks, servers, storage, applications, and services that are managed

3

by cloud service providers such as Amazon, Google, and Microsoft.

Consumers using cloud computing pursue numerous cloud bene�ts such as wide

network access, pooling of resources, elasticity, and pay-as-you-go billing. The �rst of these

bene�ts is that cloud offers its clients convenient, on-demand access to shared computing

resources [34] [22]. This means that clients can easily connect to their cloud from any

geographical location and through different platforms, like a laptop or phone, using a web

browser. In addition, cloud offers provisional services to their clients [33] [15] [34]. In other

words, pooling computing resources, physical or virtual resources, is more �exible and

ef�cient since it allows multiple clients to access a resource at the same time. Elasticity

is the third bene�t of cloud computing as it is able to adjust to clients' varying demands

by adding and removing resources such as CPU and memory in real time [28] [27] [36]

[49]. Thus, the cloud dynamically calculates the required amount of resources in a current

situation, so clients will not worry if the system is under-provisioned or over-provisioned.

This feature is also known as scalability. Finally, the last bene�t is that cloud charges their

clients based on their usage [15]. This means that consumers only pay for the resources

that are needed.

There are three1 different cloud service models that offer unique solutions to meet

customers' needs [26] [24] [34]. The following is a brief description of these cloud service

models:

1. Software as a Service (SaaS)

In the SaaS model, consumers access a single, cloud-based application through the

internet, typically through a browser; the providers manage everything related to the

application (e.g., licencing, backups, storage, faults, etc.). This means that clients are

not required to install any infrastructure. An example is Overleaf, the latex editor used

to write this thesis. Another example is Dropbox, the cloud service for storing and

sharing �les and data.

2. Infrastructure as a Service (IaaS)

In this model, the provider allocates (virtual) computing, storage and network re-

sources to the client. Clients are responsible for managing them (e.g., install their

preferred operating systems and applications, scale the resources, balance the load

among resources). Amazon Web Services, Microsoft Azure, and Google Compute

Engine are examples of providers who offer IaaS services [47].

1Recently, a fourth one, Function as a Service (FaaS) has also gained steam.

4

3. Platform as a Service (PaaS)

This model is in the middle between IaaS and SaaS. In PaaS, cloud providers manage

virtual machines and operating systems and most management tasks (e.g., load bal-

ancing). Consumers can deploy applications using speci�c programming languages,

libraries, services, and tools supported by the provider. Google App Engine, and AWS

Elastic Beanstalk are examples of PaaS[47].

Figure 2.1 depicts the delineation of management tasks between client and cloud provider

under the three models.

Figure 2.1: How clients and cloud providers share the management burdens.

2.2 Containers

The container technology has emerged with the Linux kernel introduction of control groups

(c-group) [31]; its main purpose was to address challenges associated with the preceding

technology of virtual machines. A virtual machine (VM) is a virtualization technique that

packages a host operating system and desired applications along with their libraries and

dependencies [46]. Thus, VMs are a technology created by building images with the op-

erating system, applications and the root �le system that is important to deployment.

5

Moreover, VMs provide strong security as they are completely isolated from the guest OS

and other VMs running on the same physical server. However, VMs are heavyweight and not

portable [18]; these challenges were addressed by the newer (Docker and Linux) container

technology.

More speci�cally, containers are executable units of software that contain an operating

system, application code, runtime environment, system tools, system libraries, binaries,

etc.; they are ready to deploy applications [40] [38]. Being lightweight and portable are the

main advantages of containers in the cloud. Their �rst bene�t is due to the fact that they

share the machine operating system kernel [39]. This means that containers eliminate the

need to have a complete operating system instance for each application, so containers have

a small code footprint. Therefore, many containers (e.g., Docker and Linux) are portable

because they are built around container engines [39]. In other words, containers can run

anywhere as they do not need to include an operating system in every instance.

The following is a brief explanation of two popular container implementations, Linux

and Docker.

• Linux Containers

A Linux container (LXC) provides an isolated software bundle that is similar to VMs,

but LXC is lightweight as they are running their own kernel [45] [35]. This means the

kernel in LXC allocates computing resources to provide full access without interfer-

ence to the processes within the container. LXC is managed by a separate program

due to Kernel name-spaces that ensure process isolation.

• Docker

Docker is the leading container platform because it is convenient to use. Docker

[12] has an active online community that provides multiple pre-built containers for

public use. Docker builds an image that packages user applications by reading the

instructions from a Docker�le. Then, users can pull and push Docker images from

the Docker Hub repository to run the containers.

2.3 Infrastructure Management

Broadly speaking, supplying the required resources to external and internal customers

through following speci�c processes and using appropriate tools is attained by cloud

infrastructure management. The essential parts of cloud infrastructure include hardware,

6

network, storage, and virtualization. Examples of hardware used in the cloud are servers,

switches, and routers. Storage is responsible for keeping data while network is responsible

for connecting users to the cloud through internet connections [9]. Virtualization mainly

refers to servers, even though the switches and routers connecting the servers are also

virtualized.

Management of cloud infrastructure is particularly paramount to providing optimal

and affordable cloud computing solutions. In this thesis, we limit our attention to elements

of management of cloud infrastructure that are essential to achieve the following goals [30]:

• Provisioning and Automation

Users can request, con�gure, and provision assigned resources using tools given by

the cloud infrastructure management interface. For example, users are able to initiate

new servers, VMs or containers. In addition, these tools can be con�gured to become

automated, and provide auto-provisioning and / or auto-scaling features.

• Monitoring

Monitoring the system's health and performance in the form of real time alerts, noti-

�cation, periodic analytical reports or utilization measurements is one of the advan-

tages attained from cloud infrastructure management.

• Resource allocation and Cost optimization

Resource allocation and cost optimization are closely related to each other; giving

users their needed resources only for an appropriate period of time instead of provid-

ing a constant number of resources all the time is a powerful way to reduce cost. This

allocation can also be done automatically by enabling auto-scaling features.

2.4 Kubernetes

While containers are essential and provide multiple advantages to the cloud computing

domain, managing containers poses a huge challenge especially when containers fail or

when they are deployed in very large scale. Therefore, container orchestration became as

crucial as containers themselves [23]. Container Orchestration achieves the automation of

packaging, scaling, and container recovery, as well as deployment and management [37].

One of the platforms that deliver container orchestration (and arguably the most widely

used) is Kubernetes.

7

Kubernetes, shortened as k8s or kube, is a Google product, based on their Borg and

Omega cluster management systems, but it was donated to the Cloud Native Computing

Foundation, CNCF [1]. Its popularity has grown enormously and it is now used by various

organizations. In addition, managed Kubernetes services are offered by key cloud platform

providers such as Amazon, IBM, and Azure. Kubernetes is known for its ability to facilitate

running containerized workloads, applications, and other services. Moreover, its architec-

ture allows scalability for distributed systems. Below are pivotal advantages of Kubernetes

that motivated its use in this thesis.

1. API consistency: Kubernetes deployment for different public and private providers

is easier due to its consistent API across all clusters [17].

2. High Level of Abstraction and Interoperability: Resources for a speci�c provider

are automatically assigned by Kubernetes as abstract resource types and units for

each provider are already integrated in [16]. Moreover, interoperability across various

providers is vastly enhanced in Kubernetes compared to other orchestration platforms

[43].

2.4.1 Kubernetes Cluster Architecture

A cluster is a result of deploying Kubernetes, and it consists of two main components: the

control plane and the worker plane. The control plane manages a set of nodes that run

containerized applications and host the application workload components called Pods

[6]. In this thesis, we use replica and container as synonymy to pods Figure 2.2 shows the

Kubernetes cluster architecture.

2.4.1.1 Control Plane

The control plane, known as master nodes, is the brain of the kubernetes system as its

components control the cluster. Each cluster has at least one control plane [37]. Having

more than one master nodes increases the availability of the cluster, as if one of the master

nodes fails, there is an alternative master node to take control of the cluster. The control

plane continuously communicates with the compute machines to detect and respond to a

variety of cluster events. This means that the control plane makes a decision to match the

current or actual state with the desired state [6].

Four major components comprise the control plane, as drawn in the right side of Figure

2.2.

8

Figure 2.2: Kubernetes Cluster Architecture.

• kube-controller-manager

This component manages Kubernetes by applying control processes such as repli-

cation, deployment, job, and services controllers. All these controllers are compiled

into one binary controller and apply a single, separate, speci�c function. For example,

the Replication controller [7] monitors nodes and responds in case a node is down or

missing by creating a new node; the job controller [5] establishes pods that execute

the work�ow, and then monitor these pods until the job is completed. The deploy-

ment controller [4] updates the pods and replica-set by matching the actual state to a

speci�ed, desired state; the service controller [8] generates default accounts and APIs

that are used to access the running Pods in the cluster.

• kube-scheduler

Kube-scheduler places new or unassigned workloads (pods) to the most “appropri-

ate” worker node in the cluster by considering prede�ned constraints and run-time

statistics [41]. This means that the kube-scheduler selects a node with the most free

resources, and distributes pods across different nodes to maintain resource utilization

balance in the worker plane.

• etcd

Etcd is a key-value store database that acts as back storage for all Kubernetes con�gu-

ration data and information regarding the cluster state.

• kube-api-server

9

The kube-api-server is the front-end of the kubernetes orchestrator. It is commu-

nicating with all other components in the control plane and interacts with worker

nodes through kubelet and kube-proxy. In other words, kube-api-server is a means

to access the internal and external components in the control plane.

2.4.1.2 Worker Plane

Kubernetes system has at least one worker plane that connects to the control plane through

kube-api-server to maintain the running pods and report the status of the computing

resources [6]. Worker plane elements are also known as (worker) nodes, and contain the

required services to run pods.

There are three node components as Figure 2.2 shows.

• kubelet

kubelet is a local agent in every node that ensures that the containers are running a

pod as described in PodSpecs, which is the pod speci�cation. The kubelet command

line (kubctl) is a tool for the user to interact with the worker plane (e.g., in order to

retrieve the cluster state).

• kube-proxy

kube-proxy is the component that's responsible for maintaining the network rules by

routing and load-balancing pods in the cluster.

• Container Runtime

The container runtime is a required software agent in all nodes and control plane to

run containers in the cluster. There are several container runtimes that Kubernetes

supports such as Docker [12], containerd [2], and CRI-O [3]. Docker is arguably the

most popular one.

2.4.2 Kubernetes Objects

Kubernetes objects are persistent entities used to display the state of the kubernetes cluster.

The following are some of the Kubernetes objects:

10

2.4.2.1 Pods

Deployable units in Kubernetes vary, and the smallest ones are called Pods. As can be

inferred from the name, Pods carry a single one or multiple containers that share the same

resources and storage [1]. In other words, Pods are vital in Kubernetes as they provide

containers with required computing resources such as CPU, storage and network commu-

nication. Kubernetes runs the application workload by placing containers into Pods to run

on Worker Nodes. Additionally, an application can run in multiple Pods by having multiple

instances of that application working in different Pods. It is important to understand that

Pods areephemeral, which means that they are temporary resources that will not restart

once destroyed. Hence, when more Pods are required, new ones will be created instead

of restarted. Moreover, each pod is assigned a unique IP address, and is linked to a con-

�guration setup, PodSpec, that determines which containers are running on this pod, the

method of running these containers as well as assigned resources [1]. This is helpful when

an application is trying to request a speci�c service, running on a speci�c Pod, so it will

look for the Pod's IP address to connect to that service's container. Finally, the creation of

Pods can be manual or through a controller.

2.4.2.2 Replica-Sets

Each running pod can have multiple instances, called replicas, of it running. In order to

maintain these replicas, Replica-sets are de�ned [7]. Identifying pods is achieved using

a selector �eld, metadata.ownerReferences, de�ned in each Replica-set; this also helps

Replica-sets to maintain the set of pods it is responsible for. Furthermore, Replica-sets are

the speci�c components that create and delete active pods' replicas, based on the desired

number of replicas in addition to the prede�ned maximum / minimum number of allowed

replicas. Each Replica-set contains a pod template based on which new pods are created.

2.4.2.3 Deployment

Deployment is a higher-level controller provided by Kubernetes. Deployment controllers

are in charge of maintaining Replica-sets and Pods through de�ned updates [4]. It is a more

recent controller that introduces a few features, one of which is allowing Kubernetes to

create new pods whose type is similar to a recently failed Pod under that speci�c deployment.

It also allows declaring new Replica-sets to update to, or return to a previously de�ned

Replica-set.

11

2.4.2.4 Services

As explained previously, application instances run on Pods; however, Pods are ephemeral,

they are created and destroyed constantly. Therefore, a more reliable solution needs to be

addressed to allow application instances to communicate with each other. This solution

is realized de�ning Services in a con�guration �le. Services are an abstract method for

discovering pods [8]. For example, to reach a speci�c Pod, an application will communicate

with a Service associated with Pods using selectors and labels, de�ned by Replica-sets.

Services are crucial for applications to speak to each other.

2.4.2.5 Metrics Server

Metrics server plays a signi�cant role in autoscaling algorithms, such as HPA and VPA, as it

provides them resource-speci�c metrics through the Metrics API and Kubernetes API [11].

For example, the Metrics Server collects CPU and memory utilization at a given time for all

Worker nodes and Pods (using HTTP). Moreover, the Metrics server has the capability of

checking Pods health and metadata both of which can be accessed through an extended

API [11].

2.4.3 Autoscaling Types

Applications constantly experience �uctuating workloads, so the autoscale feature in cloud

computing is important to maintain availability and performance as utilization increases.

Moreover, autoscale helps cloud's clients to pay less as consumers only pay for the resources

they use. An autoscaler monitors the application's utilization due to the incoming traf�c,

then it adjusts the amount of resources to provide the expected Quality of Service (QoS).

An enormous amount of work has been done on autoscaling; several taxonomies have

been presented in recent survey papers. Figure 2.3 illustrates the autoscaling taxonomy for

web applications provided in a recent survey by [42]. The taxonomy covers the following

points:

• Application Architecture

This is the architecture of the web application that the autoscaler is managing. There

are three types of architecture: single-tier, multi-tier, and service-oriented architec-

ture. Single-tier architecture is composed of all the application components into a sin-

gle server or platform. While multi-tier architecture consists of multiple, sequentially-

connected software tiers. Thus, application processing, data management functions,

12

Figure 2.3: The taxonomy for auto-scaling web applications in clouds, [42].

and other components are physically separated. The last architecture type is a service-

based architecture that is a collection of independent services which communicate

over already de�ned APIs.

• Session Stickiness

A session is de�ned as a sequence of interactions between a client and the application,

so the client after each operation waits for the application reply. This feature is to

indicate if the auto-scaler supports sticky sessions.

• Adaptivity

Adaptivity refers to how the auto-scaler adjusts to the workload changes; there are

three approaches: non-adaptive, self-adaptive, and self-adaptive switching. The non-

adaptive approach is prede�ned by the users, so the scaling decision is applied based

on the users' instructions and current status. The self-adaptive approach is able to

automatically scale according to real-time events by monitoring the target perfor-

mance. On the other hand, self-adaptive switching alternates the autoscale control

between non-adaptive and self-adaptive controllers based on the current application

performance.

• Scaling Indicators

13

This classi�cation represents the metrics that the system will monitor, and then

the auto-scaler tools determine the necessary actions. Low-level metrics are the

resources collected from the server (physical, container or virtual machine). Examples

of low-level metrics are CPU utilization, memory, memory swap, cache miss rate,

and network utilization. On the other hand, high-level metrics are monitored in the

application layer; examples are request rate, session creation rate, throughput, and

average response time. In addition, some autoscalers use hybrid metrics, computed

as a combination of high-level and low-level metrics.

• Resource Estimation

Resource estimation is the essence of the auto-scaler as it aims to provide the mini-

mum required computing resources to handle the incoming workload. This is the

most dif�cult part of the auto-scale system as it attempts to supply an accurate

resource to satisfy the antagonistic goals of great QoS levels and low costs.

• Oscillation Mitigation

Oscillation Mitigation aims to reduce the frequency of provisioning oscillations. A

typical method is the introduction of “cooling time”. This is the waiting for a �xed

minimum period of time between each scaling decision. In Kubernetes, the default

cool time is �ve minutes when the system scales down and 15 seconds when it scales

up.

• Scaling Timing

There are two approaches for scaling timing: reactive and proactive. The reactive

is an approach in which the application is scaled based on the current status while

the proactive approach analyzes historical data to provide the most accurate scaling

decision.

• Scaling Methods

The scaling method determines the scaling type. There are three types: autoscaling

vertically, horizontally, and cluster. However, it is possible to used hybrid scaling

method as horizontal and vertical scaling can be combined to increase the scaling

performance.

• Environment

Cloud environment can be single cloud data center or multiple cloud data centers.

14

2.4.4 Autoscaling Built-in Kubernetes

Kubernetes supports three different types of autoscaling: Horizontal Pod Autoscaler (HPA),

Vertical Pod Autoscaler (VPA), and Cluster Autoscaler (CA). While all autoscalers can exist

in a kubernetes environment, the technical details of VPA and CA were not included in the

descriptions of this section, as they are not relevant to the work of this thesis.

2.4.4.1 Horizontal Pod Autoscaler

The aim of HPA is to coordinate the decrease or increase of the workload with the number

of provided resources by instructing the workload controller (e.g., a deployment), to auto-

scale [10]. This means that if the workload decreases or the number of demanded resources

decreases, HPA will instruct the workload controller to scale down the number of assigned

pods leading to the removal of unused replicas / pods. If the workload increases, HPA will

add to the number of existing pods. HPA is a Kubernetes API resource as well as a controller

in the control plane [10]. HPA commands its workload resource to scale up / down based

on metrics such as CPU utilization, or memory utilization, etc. Observed metrics can be

either resource metrics or a combination of custom and external metrics. Both the targeted

resources and observation metrics are de�ned in the con�guration �le.

HPA's algorithm is driven by Equation 2.1. It is important to note that HPA scales down

slower than scaling up. This is due to the fact that (by default) scaling up decisions are made

every 15 seconds while scaling down decisions are performed every 5 minutes (de�ned

as the cooldown period). This cooldown period is modi�able, and its main purpose is to

ensure that the client will not scale up during this cooldown period when scale down is

needed. Another important consideration is that the new number of replicas will not be

immediately available as scaling up decisions visit multiple control plane components

before a new Pod is created.

N (k + 1) =
¡
N (k) �

m (k)

M

¤
(2.1)

In Equation 2.1, d.eis the ceiling function and

• M is the desired value of the metric

• m(k) is the value of the metric during the kth interval of measurements

• N(k) is the number of containers in use during the kth interval of measurements.

15

• N(k + 1) is the scaled number of containers to be in use during the k + 1st interval of

measurements.

2.4.4.2 Vertical Pod Autoscaler

VPA automatically changes the amount of resources provided for each Pod [48]. In other

words, VPA autoscales CPU and memory assigned to a speci�c pod instead of scaling

the number of assigned pods as HPA does. Initially, VPA assigns resources to pods based

on historical information. After that, autoscaling of resources is achieved by restarting

the targeted pod and assigning the appropriate amount of resources to that pod, thereby

interrupting applications running on that pod. For example, if a pod has 1 GB of memory,

but the client needs 2 GB of memory, VPA will restart that pod and assign it 2 GB of memory.

In addition, unlike HPA, in which autoscaling can be conducted based on custom / external

metrics, autoscaling in VPA is only determined by CPU and memory usage. The advantage

of VPA is reducing the amount of excess resources that is due to static resource assignment.

However, the algorithm (not presented here) is more complex and requires disrupting

running applications.

2.4.4.3 Cluster Autoscaler

The third type of kubernetes scaler is CA. As the name suggests, CA autoscales the number

of worker nodes instead of scaling resources or pods, thereby adjusting the cluster size [32].

Unused nodes will be removed from the cluster, and new nodes will be added when there

is an inadequate number of computing resources in the cluster. For example, if a worker

node's pod utilization is low, CA can schedule the pods to other worker nodes leading to a

decrease in the number of existing worker nodes. However, scaling using CA only occurs

when it detects the presence of unscheduled pods, which could be the result of HPA and

VPA autoscalers or the deployment of a new application in the cluster.

2.5 Feedback-based Algorithms

The abstract model, shown in �gure 2.4, captures the feedback characteristic of autonomic

systems. The model is also known as MAPE (Monitor - Analyze - Plan - Execute) loop that

is used in kubernetes to continuously monitor the system to analyze and response to the

current state.

The abstract feedback model consists of four components:

16

Figure 2.4: The Abstract Feedback (MAPE) Model.

Setting a Goal: The �rst step is setting the objectives of the system that are acquired by

cloud users. This step requires answering three questions in order to formalize what the

management objectives are.

• What are the goals?This will dictate how computational resources are monitored.

• Who sets the goals?Usually, this would be cloud clients.

• When are the goals set?Usually before the system starts operation.

Example: before deploying the system, a cloud user speci�es the target CPU uti-

lization to be 50%. This means that the goal of the system is to ensure that the CPU

utilization is kept under or equal to 50%, as long as possible, throughout the operation

of the system.

System Under Management (SUM): This is the set of resources (e.g., pods) that is con-

trolled. The current status of the SUM (with respect to the stated goal) is monitored. This

step requires answering three questions in order to de�ne the details of the monitoring

phase:

17

• Who monitors? Could be cloud monitoring tools, software, humans, container or-

chestration.

• What is monitored? Depending on the goal as it could be CPU, memory, network

resources.

• How long should we monitor? For cloud computing, continuous monitoring may

be required, but sometimes the user may prefer to “sleep for a speci�c time” and

re-monitor the computational resources (e.g., monitor only over busy periods).

Processing The Measurements: This step involves analyzing the collected, monitored

information in order to determine which actions should the controller take. In general, the

analysis involves some comparison of the actual status to its desired state. Note that the

measurements may have to be transported to the processing location, since the SUM will

not, in general, be colocated with the SUM.

• What is needed for processing?It depends on the autoscaling algorithms, but usually

target utilization and current status that includes CPU usage and the current number

of replica.

Taking Actions: This is the execution step that applies the action decided by the previous

step.

• Who decides on what actions are taken? Based on the goal and the reactive or proactive

scaling type. It could be the cloud infrastructure or container orchestration such as

kubernetes.

• Who is affected by the actions?Usually, the action affects the monitored system (e..g,

by reducing the CPU utilization) and impacts the amount that the users pay to the

cloud providers.

In Figure 2.5, we depict how the generic MAPE loop is applied in kubernetes.

2.6 Related Work

This section provides an overview and discussion of some of the existing research for

Kubernetes autoscalers, speci�cally Horizontal Pod Autoscaling (HPA), as this type of scaling

is the focus of this work.

18

Figure 2.5: The MAPE loop in Kubernetes.

2.6.1 Platform for Dynamic Cloud Resource Provisioning

In the paper [21], a generic platform for dynamic resource provisioning in Kubernetes

is introduced by three essential features for operating a distributed system on top of an

orchestration platform, e.g. Kubernetes.

• Comprehensive monitoring: The platform takes the system computational resources

and QoS metrics into account, which provides better provisioning decisions. There-

fore, the monitoring stack is based on four steps of dynamic resource provisioning as

follows:

1. Heapster for collecting low-level system metrics

2. Apache JMeterfor generating application load and measuring response time

3. In�uxDB for time-series database for storing metrics

4. Grafana as a visualization tool

• Deployment �exibility: The separation of tasks into the four-piece stack helps the

users to easily replace an existing algorithm without affecting other modules.

• Automatic operation: This feature automatically applies the resource provisioning

operation.

The Resource Scheduler Moduleand Pod Scaler Module was described that modify the

replica number based on CPU usage with static thresholds. The application cannot directly

set these thresholds as the cluster operator is needed to set these thresholds.

19

2.6.2 KHPA-A

The focus of [19] and [20] were on CPU- intensive utilization. The authors investigated the

relation between relative and absolute CPU-intensive usage in micro-services autoscaling.

Kubernetes Horizontal Pod Autoscaling algorithm calculates the relative CPU utilization

to provide the desired number of containers that maintain the desired threshold for CPU

utilization. Relative utilization is the average CPU usage reported as a percentage that is

exposed through the control groups (cgroups). Moreover, the authors found that relative

usage cannot determine the required amount of resources needed as it underestimates the

required capacity. Therefore, they introduced the KHPA-A algorithm that is similar to the

default HPA, but utilizes absolute CPU metrics for CPU-intensive workloads by taking into

account two correlation coef�cients as shown in equation 2.2.

Ua b so l u t e = b + a � Ur e l a t i v e (2.2)

In Equation 2.2,

• b and a are the correlation coef�cient

• Ur e l a t i v e is the average of CPU utilization value during an interval of measurements.

The paper compared the performance of default HPA and KHPA-A under four workloads,

sysbench and stress-ngd. KPHA-A's pod scaling number is 10% higher compared to HPA. Yet,

it has been found that the performance of KPHA-A is better than regular HPA for different

use cases with single or multi-containers as KPHA-A responded faster than HPA by 50% to

application workload in single container use cases. In addition, the response time of HPA

was triple that of KPHA-A in multi-containers workloads.

2.6.3 Microscaler

Microscaler [50] is a horizontal autoscale algorithm that identi�es the need for scaling

services to meet the service level agreement (SLA). Microscaler combines an online learning

approach with a heuristic approach to provide an optimal scaling cost and maintain QoS. In

the paper, the authors establish a service power criterion that determines the necessity for

scaling when the system is under-or over-provisioned. Service power is the ratio between

P50 and P90 as shown in equation 2.3.

Se r v i c e Pow e r =
P50

P90
(2.3)

20

In Equation 2.3,

• P50 is the average latency of the slowest 50% during the last 30 seconds.

• P90is the average latency of the slowest 10% during the last 30 seconds.

Therefore, if the result of the service power is above or equal to one, the system QoS

level is managed as the system can handle the incoming requests. However, if the service

power is below one, the QoS is low. This means that Microscaler only scales when the SLA is

violated even if there is high CPU utilization or increased response time. Furthermore, the

results presented in the paper are vague as the difference between Microscaler and other

autoscaling approaches, such as Amazon Emulated auto-scaler , are not signi�cant.

21

CHAPTER

3

PROBLEM STATEMENT AND PROPOSED

SOLUTION

In this chapter we state the problem and propose three algorithms for its solution. More

speci�cally, in Section 3.1, we provide a clear explanation of the problem including the

research questions and objectives. In Section 3.2, we describe the system model. In Sec-

tion 3.3, we list four speci�c metrics for the evaluation of the three algorithms we propose

in Section 3.4.

3.1 Problem Statement

Autoscaling is a feature that the cloud utilizes to dynamically adjust the number of com-

putational resources based on the system load. The workload may change dramatically

throughout the day, so an autoscaling algorithm increases or decreases the number of

resources to (hopefully) match the needs of the changing traf�c. The main problem with

the autoscaling algorithm is not adding or removing resources, but rather the speed of

the algorithm's response to meet traf�c changes to maintain scalability, reliability, and

22

cost-effectiveness. For example, in many cases, there are short bursts of load that can affect

Quality of Service (QoS). They can trick the autoscaling algorithm into over scaling. It takes

time to provision and create a new replica of a resource, and the short-burst may not exist

by that time. This issue results in sub-optimal cost ef�ciency: customers may spend money

on resources that are not used.

3.1.1 Research Questions

This thesis attempts to answer the following three speci�c questions:

• RQ1: suppose we use CPU utilization measurements. Can the incorporation of pre-

vious scaling decisions and measurements into the scaling algorithm meet the re-

quired performance and reduce over or under provisions?

The algorithm should identify the required measurements (e.g., how many past mea-

surements) and past decisions to be involved. We have opted to investigate three

possible implementations.

• RQ2: compare the three algorithms against each other with respect to under- and

over-provisioning. Moreover, compare with Kubernetes' HPA.

Evaluating the proposed feedback algorithm is a critical step to verify its effectiveness.

Therefore, we have selected two realistic datasets with different loading patterns for

this evaluation. We describe them in detail in Section 4.1, page 40.

• RQ3: how to monitor the incoming workload?

THe monitoring phase is the primary step to establish the feedback loop in autoscal-

ing. In this thesis, we will consider only a low-level metric, speci�cally CPU utilization.

We do this for two reasons. The datasets we employ for utilization do not provide

information about connections; moreover, CPU utilization can be observed through

built-in monitoring tools in Kubernetes (connections would need more advanced

monitoring tools).

3.1.2 Research Approach

We propose the following approach for answering the research questions of the previous

section.

23

• (1) Develop multiple feedback-based algorithms that take into account past deci-

sions and measurements (aims to answer RQ1)

The proposed feedback algorithms aim to be self-adaptive to CPU usage. The intuition

(to be checked) and hope is that by incorporating past measurements as well as past

decisions will “improve performance”. The challenge we faced was the use of “clean”

CPU measurements, as we explain later.

• (2) Reduce oscillatory behavior for both up and down decisions (aims to answer

RQ2)

An alternative would have been to focus only on reducing only up or only down

“mismatches”. We have chosen to evaluate the behavior of our algorithms using real

datasets.

• (3) Use the built-in kubelet monitoring for CPU utilization (aims to answer RQ3)

The kubelet monitoring tool inside each pod checks (a running) pod continuously

and supplies an (inaccurate) load measurement to the metrics server. The inaccuracy

comes from a variety of reasons. For example, even if we set a measurement period of

1 minute, kubelet may report a measurement over 50 seconds or 67 seconds. With, say,

10 pods running, we may get 10 measurements taken over 10 different intervals. Even

though the kubernetes documentation says that the average utilization reported for

the 10 pods is weighted, the implementation does not employ a weighting formula 1.

The rationale behind this is that the CPU utilization is not calculated accurately in the

�rst place; moreover, the intuitive tendency of HPA is to “correct” such inaccuracies

with the next decision. So the tradeoff made in kubernetes was in favor of simplicity

over accuracy.

3.2 System Model

In this section, we explain the proposed system design in depth.

1It took us a good amount of time searching the code to discover this; that was painful but valuable
experience...

24

3.2.1 System Design Components

There are three main system components, as illustrated in Figure 3.1, that bring the mea-

surements from a pod in the worker plane to the control algorithm in the master plane

through the metrics server.

Figure 3.1: The main system design components in a Kubernetes cluster.

3.2.1.1 K8s Control Plane

The control plane in kubernetes is responsible for making decisions such as scheduling

and managing active (running, error-free) pods. In this thesis, we focus on the two sub-

components, kube-controller-manager and Kube-api-server.

3.2.1.2 K8s Worker Plane

The worker plane in Kubernetes hosts pods and manages them following the control plane's

instructions. In this thesis, the components of interest are only the kubelet, pods, and

25

Docker runtime.

3.2.1.3 Metrics Server

The metrics server component collects pod measurements from kubelet through the kube-

api-server. This collection follows a push model, as a result of which only the most recent

measurement is stored. It is the responsibility of whoever wants to process the measurement

to “pull it in time”. This architecture created unforeseen issues for us, regarding coding for

history-based algorithms, that are not present in algorithms that do not utilize history.

More speci�cally, suppose that you have a control algorithm that uses two consecutive

measurements M 1,M 2 in making its decision. It is the responsibility of the algorithm to pull

them from the metrics server. In an ideal environment in which the algorithm, the kubelets

and the metrics server are fully synchronized, pulling is periodic and there is no problem.

However, there is randomness in when the kubelets report and when the algorithm pulls. If

we do not want to miss a measurement, teh algorithm should pull with a frequency higher

than the reporting frequency of the kubelets.

This discrepancy in the frequency creates duplicate measurements, that must be dis-

carded in the processing of a history-based algorithm 2.

3.2.2 MAPE Loop

The proposed system model is based on the Monitor-Analyze-Plan-Execute (MAPE) loop;

we have seen it in Section 2.5, page 16. MAPE loop is considered to be a self-adaptive

feedback loop in software systems. Figure 3.2 shows the four phases that are part of the loop,

specialized for a kubernetes-controlled system (and using a goal of 50% CPU utilization as

an example). Each stage has its own role and purpose in achieving the system's goal. The

various phases are described as follows:

3.2.2.1 Monitor Phase

Metrics server continuously stores information from the worker and control planes that

fully characterizes the state of the deployment at a given time. There are two different types

of raw measurement data. The �rst is pod-related information reported by the kubelet(s);

examples are metrics timestamp, window size, and CPU utilization. The second is data

obtained from the kube-api-server that contains information about all running nodes;

2It was not easy to make this realization at �rst.

26

Figure 3.2: Kubernetes HPA as a MAPE Loop implementation.

examples are the number of current replicas, previous decisions or measurements, and

the number of desired replicas. Users can con�gure parameters such as reporting duration

and frequency of decisions.

3.2.2.2 Analyze Phase

In this phase, the collected information is analyzed in the autoscaler (e.g., one of the three

algorithms we propose later in this chapter) to determine if any change in the number

of running pods (replicas) is required. Since the proposed autoscaler is proactive, it will

predict future CPU usage by utilizing historical data (i.e. previous scaling decision or mea-

surements). We will discuss details in Section 3.4.

3.2.2.3 Plan Phase

The Analysis phase evaluates the new current state, so the planning phase calculates the

total number of replicas required to achieve the goal, and decides whether scale up or scale

down is required.

27

3.2.2.4 Execute Phase

In this phase, the new desired state, determined in the planning phase, will be implemented.

kube-api-server is responsible for executing the desired change by passing the new informa-

tion to a kubelet through the metrics server. Kubelet updates the running pods by scaling

up or down based on the new instruction. Note that the implementation of this decision

may take some (random) time; this time is not controllable.

3.2.3 System Model Flow

There are eleven sequential steps that the system goes through in order to implement a

scaling decision. Figure 3.3 depicts them.

Figure 3.3: Flow of steps, from monitoring to a decision taking effect.

1. Each Kubelet in Kubernetes worker plane gathers the current CPU utilization from

the running pods. This measurement is (slightly?) inaccurate and not synchronized

across all pods.

2. Each Kubelet sends its measurement to the metrics server. There is unavoidable

variation in the time the measurements are received.

28

3. Metrics server stores the measurements sent by all the pods. Metrics server reports

the current utilization to kube-api-server in kubernetes control plane.

4. Kube-api-server transfers the pods' measurements and the current replica based

on the deployment status to kube-controller-manager as inputs for the autoscale

feedback algorithm.

5. Auto-scale feedback algorithm “checks” (e.g., cleans up) the previous data based on

the autoscaling algorithm.

6. At this time, the auto-scale feedback algorithm calculates the desired state based on

collected inputs.

7. The feedback algorithm sends the calculated desired state to the replication-controller

to check the policy and stores the data in its historical database.

8. The Replication-controller transfers the desired state to kube-api-server (to commu-

nicate with the worker plane so all nodes can update their status).

9. Kube-api-server sends the new instructions to metrics server.

10. Metrics server transfers the new instructions to kubelet(s).

11. Each Kubelet manages and updates its pod based on the new instructions.

3.3 Metrics Selection

The following four are the criteria that will be considered for evaluating the proposed

algorithm s:

1. Reduce/ Minimize the duration of time during which a user is running on low re-

sources. The Under-Provisioning Time, shown in Equation 3.3, is the quantitative

measure used in this criterion.

2. Reduce/ Minimize the duration of time during which a user is using more resources

than needed. The Over-Provisioning Time, shown in Equation 3.4, is the quantita-

tive measure used in this criterion.

29

3. Allocate the minimum amount of resources needed to achieve a stated CPU utilization

goal. This can be captured by the Under-Provisioning Accuracy, shown in Equation 3.1

and the Over-Provisioning Accuracy, shown in Equation 3.2 metrics.

The ideal, optimal value for all these metrics is zero. The computations in the equations

below have been de�ned by the Research Group of the Standard Performance Evaluation

Corporation (SPEC) [27].

• Provisioning Accuracy Metrics

Provisioning accuracy metrics calculate � U , the under-provisioning accuracy that de-

�nes the number of missing resources that are required, and � O , the over-provisioning

accuracy that de�nes the number of unused resources during the time interval T .

The metrics are expressed as percentages.

� U [%] =
1

T
.

K � 1X

k =0

max(N (k + 1) � N (k),0)

N (k + 1)
� Tk � 100 (3.1)

� O [%] =
1

T
.

K � 1X

k =0

max(N (k) � N (k + 1),0)

N (k + 1)
� Tk � 100 (3.2)

• Provisioning Timeshare Metrics Provisioning timeshare metrics (� U) and (� O) mea-

sure the total duration of time when the system is under-provisioned and over-

provisioned, respectively, during the experiment time. These metrics capture whether

the deviation between request and provide measurements is big or small. The metrics

are expressed as percentages.

� U [%] =
1

T
.

K � 1X

k =0

max(sg n(N (k + 1) � N (k),0)� Tk � 100 (3.3)

� O [%] =
1

T
.

K � 1X

k =0

max(sg n(N (k) � N (k + 1),0)� Tk � 100 (3.4)

In Equations 3.1-3.4:

• T is the total experiment duration. It is split into K non-overlapping subintervals of

duration � Tk . In our experiments, we took all of them to be of equal length.

30

• N(k) is the number of running replicas (containers) during the kth interval of mea-

surements.

• N(k+1) is the requested number of replicas to be in use during the k+1st interval of

measurements.

• sgn is the signum function.

Note that for any subinterval, only one of the terms max(N (k + 1) � N (k),0),max(N (k) �

N (k + 1),0) will be nonzero. In the ideal scenario of exact provisioning, both should be zero.

Smaller values of the metrics are better.

3.4 Proposed Algorithms

In this section, we propose three autoscaling algorithms that consider history. All algorithms

follow the concept of Horizontal Pod Autoscaler (HPA), described in Section 2.4.4.1.

3.4.1 Algorithm 1: One-step history

Algorithm 1 is our starting point; it is a simple scaling algorithm that takes into account

only one, the most recent decision when it calculates the desired number of replicas for

the next time interval. The goal of Algorithm 1 is to reduce high �uctuation by taking into

account one previous decision Dk � 1, to scale up or down.

3.4.1.1 Algorithm Description

As previously discussed in Sections 3.2.2 and 3.2.3, the kubelet in the worker plane measures

the CPU utilization and sends it through the metrics server and the kube-api-server to

Algorithm 1. The kube-api-server passes all the inputs mentioned in Algorithm 1, in order

to calculate nk , the desired number of replicas at the current period, and of course the

scaling decision Dk .

For simplicity, the initial values needed are set as follows: nk � 1 = 1, Dk � 1 = UP. A typical

value for U in our experiments is 50%.

Before calculating the desired number of replicas, the algorithm should calculate U(k),

the average CPU utilization during the current period [Tk � 1,Tk) (as a percentage). The

31

Algorithm 1 One-step history
Input:
I: Goal U ; . The desired threshold for CPU utilization.
I: Utilization U (k); . CPU utilization during the current period [Tk � 1,Tk).
I: Decision instant Tk ; . The current decision instant.
I: Decision Dk � 1; . The Up / Down decision made at the previous instant Tk � 1.
I: nk � 1; . The number of containers requested at the previous instant Tk � 1.
Output:
O: Decision Dk ; . The decision made at the current instant Tk .
O: nk ; . The desired number of containers at the current period.
Description:

1: At Tk , input U (k)
2: if U (k) > U then . Goal not met, scale up
3: if Dk � 1 == U p then . Scaled up before
4: nk = dnk � 1 � U (k)

U e . scale up more vigorously
5: Dk = U p
6: else . Scaled down before
7: nk = nk � 1 + 1 . scale up lightly
8: Dk = U p
9: end if

10: else . Goal is met, scale down
11: if Dk � 1 == U p then . Scaled up before
12: nk = nk � 1 � 1 . scale down lightly
13: Dk = D ow n
14: else . Scaled down before
15: nk = dnk � 1 � U (k)

U e . scale down more vigorously
16: Dk = D ow n
17: end if
18: end if

32

average is over all pods that were active during the current period. This is done by using

the following equation:

U (k) =

P
n Un � b a s e M i l i c o r e

r e q ue s t V a l ue � numPod s
� 100 (3.5)

In Equation 3.5,

• the summation is over all active pods n during this period;

• Un is the CPU utilization of pod n during in time interval [Tk � 1,Tk); note that the

utilization is reported in the standard kubernetes unit of cores, not percentage;

• baseMilicore converts the CPU utilization to milicore by multiply by 1000.

• requestValue is the minimum amount of resources that containers need.

• numPods is total number of pods that were collected during the period [Tk � 1,Tk).

After calculating the total CPU utilization U (k), Algorithm 1 compares it with the target

utilization U yielding the four cases as Figure 3.4 illustrates.

Figure 3.4: Algorithm 1 Explanation.

33

If the goal utilization is not met as U (k) is greater than U , the algorithm must scale up.

The algorithm checks the previous decision Dk � 1 that has been stored inside the database

as shown in step 5 in Figure 3.3. If the previous decision was UP, the autoscaling algorithm

will scale up more aggressively, by using the HPA Equation 2.1. The reason for scaling up

vigorously is that we predict that the workload is increasing in the next interval, so we

increase the resource to maintain adequate performance. However, if the previous decision

was to scale down, the algorithm lightly scales up by only one replica.

On the other hand, the algorithm must scale down if U (k) is less than U . The scaling

algorithm scales down lightly or aggressively based on the last decision. If the previous

decision was to scale up, the algorithm lightly scales down by decreasing the number of

replicas by one as there is a high chance that in the next time interval the workload is

decreasing. However, if the previous decision was to scale down, the algorithm scales down

by a bigger amount using the HPA equation.

3.4.2 Algorithm 2: Rolling Averages

Algorithm 2 is our next suggestion. It does not utilize the previous decision; instead, it uses

a rolling average of previous measurements. Recall that the rolling average of a quantity X is

a metric that utilizes the past L measurements M i � L ,M i � L+1, . . . ,M i � 1, in order to calculate

the average at time i . The intuition (and hope) then is that this averaging (acting as a

low-pass �lter) will smooth out short-term �uctuations in the workload.

At every decision instant, Algorithm 2 uses this average (see lines 7 and 8 in the algorithm

pseudocode).

3.4.2.1 Algorithm Description

As an example, suppose that the last �ve measurements are used in the calculation; the

required initial values are set as follows: nk � 1 = 1, M [0..4] = 0,0,0,0,0. Measurements are

taken every one minute.

The monitoring phase will collect the total CPU utilization and number of pods. In

other words, the measurements that the algorithm stores are the average utilization during

the previous �ve minutes. Fore example, at minute 7, the algorithm utilizes the latest �ve

minute (M3, M4, M5, M6, and M7) values. However, at the �rst four decision instants, the

algorithm should consider rolling 1, 2, 3, and 4 measurements only.

Then, the analysis phase calculates the rolling average using equation 3.6.

34

Algorithm 2 Rolling Averages
Input:
I: Goal U ; . The desired threshold for CPU utilization.
I: Utilization U (k); . CPU utilization during the current period [Tk � 1,Tk).
I: Decision instant Tk ; . The current decision instant.
I: nk � 1; . The number of containers requested at the previous instant Tk � 1.
I: M [0..M c].C PU ; . An array store �ve measurements of CPU utilization.
I: M [0..M c].nPod s; . An array store �ve measurements of number of pods.
I: Ut ; . The total average utilization during the previous �ve measurements.
I: Pt ; . The total number of pods during the previous �ve measurements.
I: M c ; . Number of measurement we take into account for scaling.
I: Output:
O: nk ; . The desired number of containers at the current period.
Description:

1: At Tk , input U (k)
2: M [k] = U (k)
3: for i : 0 to M c do
4: Ut = Ut + M [i].C PU
5: Pt = Pt + M [i].nPod s
6: end for
7: U (k) = Ut

Pt

8: nk = dnk � 1 � U (k)
U e

35

5 � minu t e Ro l l i ng Av e r ag e =

P k
i =k � 5Ui

P k
i =k � 5 Pi

(3.6)

Figure 3.5: Algorithm 2: 5-minutes Rolling Averages Explanation

Figure 3.5 shows that the algorithm stores the average utilization in an array every one

minute. For instance, the total CPU Ut is 7.422e-05 cores and the total number of pods Pt is

2 in once minute. Therefore, the average utilization during this time interval is 7.422e � 05

2 =

0.00003711. While at four minutes, there will be four measurements as follows:

• for minute 1, Ut = 7.422e � 05 and Pt = 2.

• for minute 2, Ut = 0.203781431 andPt = 1.

• for minute 3, Ut = 0.451052744 andPt = 3.

• for minute 4, Ut = 0.14972116600000002 andPt = 2.

In this case, the rolling average is the sum of the previous four CPU utilization measurements

divided by the total number of pods during the �rst four minutes.

36

Once the analysis phase calculates the rolling average, the planning phase uses it as the

value for U (k) in line 7 of the pseudocode, when it calculates nk , the desired number of

replicas for the current period Tk , in line 8.

3.4.3 Algorithm 3: Moving Window Averages

This algorithm is a slight variation of the previous one; instead of rolling, it uses moving

window averages. Since an average is taken, we expect to have a low-pass effect as well. The

difference with the previous algorithm is that with moving averages, we “forget” the history

before the current window. The motivation for studying this algorithm is curiosity.

We'll use again an example of a 5-minute window, with measurements taken every one

minute. Then the moving window average reduces �ve individual, one-minute measure-

ments into one. The algorithm takes a decision every 5 minutes. Any workload �uctuations

with the �ve-minute interval will be absorbed.

The idea is described as Algorithm 3.

3.4.3.1 Algorithm Description

The proposed system gathers �ve one-minute measurements that will be utilized to calcu-

late a 5-minute window average and will be considered as input for the HPA equation. This

algorithm needs at least 5 consecutive minutes of measurements to calculate the window

average. For example, let's assume that the following measurements were collected every

minute.

• for minute 1, Ut = 7.422e � 05 cores and Pt = 2.

• for minute 2, Ut = 0.203781431 cores andPt = 1.

• for minute 3, Ut = 0.451052744 cores andPt = 3.

• for minute 4, Ut = 0.14972116600000002 cores andPt = 2.

• for minute 5, Ut = 0.159225618 cores andPt = 3.

The 5-minute moving window average equation is similar to the rolling average for-

mula in Equation 3.6. However, instead of rolling the values by taking into account the

latest 5 minutes measurements, the 5-minutes window average will consider 5 minutes

measurements every 5 minutes.

37

Algorithm 3 Moving Window Averages
Input:
I: Goal U ; . The desired threshold for CPU utilization.
I: Utilization U (k); . CPU utilization during the current period [Tk � 1,Tk).
I: Decision instant Tk ; . The current decision instant.
I: nk � 1; . The number of containers requested at the previous instant Tk � 1.
I: M [0..M c]; . An array store �ve measurements.
I: Ut ; . The total average utilization during the previous �ve measurements.
I: M c ; . Number of measurement we take into account for scaling.
Output:
O: nk ; . The desired number of containers at the current period.
Description:

1: At Tk , input U (k)
2: if M c = 5 then . Autoscaling algorithm applies every 5 minutes
3: M [k] = U (k)
4: for i : 0 to M c do
5: Ut = Ut + M [i].C PU
6: Pt = Pt + M [i].nPod s
7: end for
8: U (k)[%] = Ut

M c

9: nk = dnk � 1 � U (k)
U e

10: else . Collecting and storing CPU utilization
11: M [k] = U (k)
12: end if

38

5-minute window average =
P k

i =k � 5 t o t a l C PU usag e
P k

i =k � 5 t o t a l pod s numb e r

= 7.422e � 05+0.203781431+0.451052744+0.14972116600000002+0.159225618
2+1+3+2+3

= 0.963855179
11

= 0.08762319809

After calculating the 5-minute average, the system passes the information as an input

to the autoscaling algorithm, HPA. The desired number of containers at the current period

Tk considers the 5-minute window average utilization as U (k), nk � 1, and U . The decision

instants are minutes Tk = 5, 10, 15, 20, etc.

39

CHAPTER

4

EVALUATION AND RESULTS

In this chapter, we evaluate the proposed algorithms presented in section 3.4. First, in

Sections 4.1 and 4.2, we describe the workload and experimental setups that were used to

evaluate the performance of the algorithms. Then, in Section 4.3, we �rst discuss details

of experiments in order to explain the steps and challenges we faced in implementing the

proposed algorithms; we then present our evaluations.

4.1 Workload

In this section, we consider two different real-time workloads, namely the traces from

the FIFA World Cup 98 web servers and a National Aeronautics and Space Administration

(NASA) web server.

4.1.1 FIFA World Cup 98 Web Servers

This dataset contains 1,352,804,107 requests, logged from 30 April 1998 to 26 July 1998,

almost three months worth of data. It has a high degree of variation in its values and has

peaks that are dif�cult to predict. This dataset shows every day in a separate row with two

40

elements, creation time and number of bytes the server has responded with. For example,

5/ 1/ 1998 22:00 | 352 .

In our experiments we selected two subsets with only six hours worth of data in each.

Each experiment of ours runs in real, not simulated time, so using the entire dataset would

be unrealistic. We scaled the number of bytes by a factor of 100,000. This was done in

order to create proper utilization levels at our CPUs. The �rst subset was collected from

the number of requests on day May 1st, 1998as shown in Figure 4.2. The other subset was

randomly collected from the entire FIFA dataset as illustrated in Figure 4.3.

Figure 4.1: FIFA World-Cup Dataset, three months.

4.1.1.1 NASA web server

NASA Web server logs are publicly available; the one we used contains collected HTTP

requests sent to the NASA Kennedy Space Center Web server in Florida. There are two

months worth of datapoints, from 1 July 1995 to 31 August 1995. However, there were no

logs during the period 1 August 1995 (11:59:59 PM) until 3 August 1995 (04:36:13) due to a

server lock down. There were 1,891,714 and 1,569,898 datapoints in the July and August

periods, respectively. In total, the two logs contain 3,461,612 HTTP Requests. Moreover,

the NASA-HTTP workload includes three different types of HTTP requests: GET, POST, and

HEAD with eight status codes (e.g. 200, 302, 304, 400, 403, 404, 500, and 501).

There is no speci�c pattern, but each HTTP request is logged as one row with six columns

as follows:

199.72.81.55 - -[01/ Jul/ 1995:00:00:01 -0400] "GET / history / apollo / HTTP/ 1.0" 200 6245

41

Figure 4.2: Subset of six hours of FIFA World-Cup Dataset on day May 1st, 1998.

• IP address or host name who is the requested client; e.g., 199.72.81.55 .

• Timestamp indicating when processing the request started and its format "Day / Mon-

th / Year:Hour:Minute:Second -Timezone"; e.g., [01/ Jul/ 1995:00:00:01 -0400] .

• HTTP request type that includes path and protocol version;. e.g., "GET / history / apollo

/ HTTP/ 1.0" .

• HTTP status code; e.g., 200 .

• The size of reply content to the client in bytes; e.g., 6245 .

The original dataset has been pre-processed by aggregating all rows that occur in the

same minute into one cumulative number, so NASA dataset shows the total workload for

each minute. Similar to FIFA dataset, we are considering two subset of six hours from July

1st, 1995 as illustrated in Figures 4.5 and 4.6, and multiply the number of bytes by 100.

42

Figure 4.3: Subset of six hours of FIFA World-Cup dataset (random selection).

HTTP Request Types GET POST HEAD
Number of Requests 3,453,473 222 7,917

4.1.2 Load Generator Setup

One of thesis's objective is to evaluate the proposed auto-scaling algorithm performance

when the system faces real-time workload �uctuations. To generate a load inside the kuber-

netes cluster, we need to follow three steps.

Step 1: Reading The Number of Requests The aim of using load generator image is to

setup the php-apache development environment related to PHP �le based on web apps.

The �rst step to generate a load inside kubernetes is creating two shell scripts to read the

records data from NASA-Dataset.csv and FIFA-Dataset.csv . In the below script, we used

the read command to read a line from the CSV �le and sleep six seconds to read the next

43

Figure 4.4: NASA-HTTP Workload, two months.

Figure 4.5: First subset of six hours of NASA-HTTP Workload.

44

Figure 4.6: Second subset of repeating 2 hours of NASA-HTTP Workload.

45

line.

1 #! /bin /sh
2 while IFS=, read -r reply ; do
3 #echo " $reply "
4 reply =$(echo $reply | sed ' s / , , ,// ')
5 echo " $reply "
6 wget -q -O- http :// php - apache / index .php? bytes = $reply
7 sleep 6
8 done < NASA_Dataset . csv

Listing 4.1: Shell script that reads the number of requests from the datasets.

Step 2: Computing Load This step de�nes a way to apply load in the kubernetes cluster to

generate some CPU intensive computations. The �rst line ini-set('max-execution-time', 600)

sets the maximum time a script can run before it is terminated. The reason for adding this

line is to prevent tying up the containers in the server. Then, the code gets the number of

bytes, call it B, from the previous step, and runs a loop for calculating square roots B times.

1 <?php
2 in i_set (' max_execut ion_t ime ' , 600) ;
3 $x = 0.0001;
4 $arg = $_GET [' bytes '] ;
5 $bytes = (int) $arg ;
6 for ($i = 0; $i <= $bytes ; $i ++) {
7 $x += sqrt ($x) ;
8 }
9 echo $bytes ;

10 ?>

Listing 4.2: Shell script that creates load in a container.

Step 3: Importing Load Generator Image Docker�le is the �nal step to insert a set of

instructions to create a docker image inside kubernetes. The content of Docker�le is shown

below. The �rst line in the Docker�le is FROM 1234nag/ loadgenerator:latest ; it pulls an

image from an existing docker image. Then, the next four lines are used to add the datasets

(NASA and FIFA, from their CSV �les) and the shell scripts that read the number of requests

from the CSV �les. The following four lines are running a permission to read the added �les,

which are NASA-Dataset.csv, FIFA-Dataset.csv, NASA-Dataset.sh, and FIFA-Dataset.sh .

1 FROM 1234 nag / loadgenerator : latest

46

2 ADD ./ NASA_Dataset . csv /
3 ADD ./ FIFA_Dataset . csv /
4 ADD ./ NASA_Dataset .sh /
5 ADD ./ FIFA_Dataset .sh /
6 RUN chmod +r / NASA_Dataset . csv
7 RUN chmod +r / NASA_Dataset .sh
8 RUN chmod +r / FIFA_Dataset . csv
9 RUN chmod +r / FIFA_Dataset .sh

Listing 4.3: Docker�le

Now, all the instructions have been set, so it is time to build the docker image by using

-t switch to set the tag of 1234nag/ loadgenerator2:latest .

1 docker build -t 1234 nag / loadgenerator2 : latest .
2 docker tag loadgenerator : latest 1234 nag / loadgenerator : latest
3 sudo docker push 1234 nag / loadgenerator : latest

Listing 4.4: Docker�le

4.2 Experiment Setup

The experiment setup, whose details are shown in Table 4.1, consists of a kubernetes cluster

con�guration and a workload generator. In this thesis, we perform four experiments, each

repeated �ve times by using a different autoscaling algorithm to evaluate their performance

in terms of provisioning accuracy and timeshare. Each algorithm has a speci�c scaling

period as described previously in Section 3.4. For example, Algorithm 3: moving window

averages calculates the required number of pods every �ve minutes. In addition, we set

the starting number of replica to one, and the autoscaling algorithm scale sup or down as

response to the workload changes. We also set the target utilization threshold to 50% and

the replica number between 1 and 10 as illustrated in Table 4.2.

All the experiments run on kubernetes version V1.21.1 on Ubuntu version 18.04.6 LTS

that contains four CPU cores. Moreover, the metrics server scrapes CPU utilization from

kubelet every 50 seconds, by setting the metric-resolution to 50. For Algorithms 1, 2, and

3, we collect information every ten seconds and store them in a database.

47

Table 4.1: Details of the experimental setup.

Experiments Algorithm
Scaling
Time

Workload

One-step history 2min
Rolling Average 1min
Moving Window Average 5min
HPA with Cooling Down 1min

E1

HPA without Cooling Down 1min

FIFA World Cup 98
(6 hours from day:

May, 1st 1998)

One-step history 2min
Rolling Average 1min
Moving Window Average 5min
HPA with Cooling Down 1min

E2

HPA without Cooling Down 1min

NASA-HTTP Workload
(6 hours from day:

July, 1st 1995)

One-step history 2min
Rolling Average 1min
Moving Window Average 5min
HPA with Cooling Down 1min

E3

HPA without Cooling Down 1min

FIFA World Cup 98
(6 hours randomly)

One-step history 2min
Rolling Average 1min
Moving Window Average 5min
HPA with Cooling Down 1min

E4

HPA without Cooling Down 1min

NASA-HTTP Workload
(almost 2 hours and

repeat them for 6 hours)

Table 4.2: Pod Con�guration.

Scaling
Metrics

Target
Threshold

Min
Replica

Max
Replica

CPU
Request

CPU
Limits

Metric
Resolution

Low level metric
(CPU)

50% 1 10 200 500 50 second

48

4.2.1 Calculating Average CPU Utilization

At the time a decision to scale is made, the algorithm will calculate the total CPU utilization

in millicores and the number of pods to use until the next decision. In this section, we

explains the necessary steps for storing measurements and the challenges we faced and

solved.

The �rst step (see listing 4.5) to storing the pod measurement in an array is importing

Kubernetes packages that provide authentication to work properly with Kubernetes.

1 import (
2 metav1 "k8s . io / apimachinery /pkg /apis /meta /v1"
3 " k8s . io / client -go / kubernetes "
4 " k8s . io / client -go / tools / cl ientcmd "
5 " k8s . io / metr ics /pkg /apis / metr ics / v1beta1 "
6 metr icscl ientset " k8s . io / metr ics /pkg / cl ient / cl ientset / versioned "
7)

Listing 4.5: Kubernetes Packages

Client Con�guration Then, we need to con�gure the client with kubernetes cluster by

using the script in listing ??. It takes two arguments, masterURL and kubecon�gPath . The

master URL argument is the control plane URL to reach the kube-api-server while kube-

con�gPath is the location of the kubernetes con�guration �le that contains cluster, users,

namespaces, and authentication information.

1 kubeconfig := flag . Str ing (" kubeconf ig " , " / home / ece792 /. kube / config "
, " locat ion of kubeconf ig ")

2 config , err := cl ientcmd . Bui ldConf igFromFlags ("" , * kubeconfig)
3 if err != nil {
4 panic (err)
5 }

API Client Instantiating Now we need to instantiate a client set using the con�guration

we have loaded. A client set contains API groups, and the client set exported in k8s.io / client-

go/ kubernetes contains all the of�cially supported groups for the chosen package version.

This means that the latest version, as of writing, includes all the API groups available in

Kubernetes v1.20.

For the metrics API however, we need to use an additional client set which is de�ned in

k8s.io/ metrics / pkg/ client / clientset / versioned. The NewForCon�gOrDie is a helper func-

49

tion used to declare panic if an error occurs. The NewForCon�g can be used instead if you

want to handle the error manually.

1 kube_cs , err := kubernetes . NewForConfig (config)
2 if err != nil {
3 panic (err)
4 }
5 metric_cs , err := metr icscl ientset . NewForConf ig (config)
6 if err != nil {
7 panic (err)
8 }

Listing 4.6: API Client Instantiating

Querying The �nal step is querying using the client sets through metrics API. The code in

listing 4.7 is used to list all pods in the default namespaces. The list has two parameters.

context.Background() is a place to save a context that will be discussed later.

metav1.ListOptionsLabelSelector:"run =php-apache" returns only the objects that

match a supplied label.

1 podMetrics , err := metr ic_cs . Metr icsV1beta1 () . PodMetr icses (" default
") . List (context . Background () , (metav1 . ListOptions { LabelSelector :

" run=php - apache " }))
2 if err != nil {
3 fmt . Print ln (" Error : " , err)
4 return
5 }

Listing 4.7: Querying Using Client Set

Collecting Pod Measurements Then, the query returns pod information (namely, pod

name, window size, timestamp, creation timestamp, and CPU utilization) based on the

length of live container (see listing ??). The pod information is stored in two-dimensional

array called measurements [2000][10] that uses a slice of structs named measurmentPod ,

which includes six �elds.

1 type measurementPod struct {
2 PodName string
3 CPU float64
4 WindowSize float64
5 TimeStamp int64

50

6 Creat ionTimestamp int64
7 isAccountedFor bool
8 }
9 var measurements [2000][10] measurementPod

10 var measurementIndex int32 = 0
11 var containerIndex int32 = 0
12

13 for _ , podMetr ic := range podMetr ics . Items {
14 podContainers := podMetr ic . Containers
15 for _ , container := range podContainers {
16 measurements [measurementIndex][containerIndex]. PodName =

podMetr ic . ObjectMeta .Name
17 measurements [measurementIndex][containerIndex]. WindowSize =

podMetr ic . Window . Durat ion . Seconds ()
18 measurements [measurementIndex][containerIndex]. TimeStamp =

podMetr ic . Timestamp .Time .Unix ()
19 measurements [measurementIndex][containerIndex].

Creat ionTimestamp = podMetr ic . Creat ionTimestamp .Time .Unix ()
20 measurements [measurementIndex][containerIndex]. CPU =

container . Usage .Cpu () . ToDec () . AsApproximateFloat64 ()
21 measurements [measurementIndex][containerIndex].

isAccountedFor = isAccountedFor
22 containerIndex += 1
23 }
24 measurementIndex += 1
25 }

Duplicate Measurements In this thesis, the program pools pod information every ten

seconds from the metric server. Since kubelet reports new measurements to the metrics

server every 50 seconds, there will be duplicates as shown in Figure 4.7. In one minute,

there is only two fresh unique measurements that we should consider while measuring

the average utilization. However, the metrics server is sending the same measurement

(duplicate) until the kubelet updates it. Therefore, we compare the current pod name

and timestamp with the previous ones to eliminate the presence of duplicates. If current

and previous pod name and timestamp have the same values, the program considers the

current measurements as duplicate, and discards the previous measurements. However, if

current and previous pod name and timestamp are not matching, the program considers the

measurements as fresh measurements. Realizing the presence of duplicates and eliminating

them was one of the biggest challenges we faced.

51

Figure 4.7: Duplicate Measurements.

1 func FindPreviousIndexDupl icateContainer (m [][10] measurementPod ,
index int32 , name string , t imestamp int64) int32 {

2 for i := 0; i < int (maxRepl ica) ; i++ {
3 mustCheckDupl icateMeasurement := name == m[index -1][i]. PodName

&& int64 (m[index -1][i]. TimeStamp) == timestamp
4 if mustCheckDupl icateMeasurement {
5 return int32 (i)
6 }
7 }
8 return -1
9 }

Listing 4.8: Duplicate Measurements

Setting CPU Request and CPU Limit parameters There are two types of resource con-

�guration, request and limits, that can be set on the deployment �le. Request value is the

minimum amount of resources that containers need while the limits is the max amount of

resources that the container is allowed to consume. In this thesis, we set the CPU request

to 200 millicore and limits to 500 millicore.

Average CPU Utilization After all the previous steps, we can calculate the average usage

by using the formula in Equation 3.5, page 33. Based on the autoscaling algorithm, the

scaling decision instant is different. When the scaling occurs, the program checks fresh

52

measurements to calculate the total CPU usage and total number of pods at the current

period and then, applies the current metrics formula 3.5.

1 for j := pMeasurement index ; j < measurementIndex +1; j++ {
2 for i := 0; i < int (maxRepl ica) ; i++ {
3 mustTakeMeasurementIntoAccount := m[j][i]. PodName != " dummy " &&

!m[j][i]. isAccountedFor
4 if mustTakeMeasurementIntoAccount {
5 totalCpu += m[j][i]. CPU
6 m[j][i]. isAccountedFor = true
7 numPods = numPods + 1
8 }
9 }

10 }
11 currMetr ics = totalCpu * baseMil icore * 100.0 / (requestValue *

f loat64 (numPods))

Listing 4.9: Average CPU Utilization

4.2.2 Calculating the number of Desired Replicas

Depending on the scaling algorithm, the inputs needed to calculate the desired number

of containers at the current period will be different. However, the main inputs are CPU

utilization during the current period [Tk � 1,Tk), the desired threshold for CPU utilization,

and the number of containers requested at the previous instant Tk � 1.

CPU Utilization In the previous subsection 4.2.1, we discussed the steps to calculate the

CPU utilization expressed as a percentage.

Target CPU Utilization In this thesis, we set the CPU utilization goal to 50%.

Current Replica php-apache deployment watches the status of the live replicas and as-

signs it to be the number of replica count. There are three types of status: progressing,

complete, and fail to progress. Progressing status means that a new replica set is created

or updated due to scaling up or down. While, complete status indicates that the required

replicas is available and the replica set has changed. However, for some reason like insuf-

�cient quota, readiness probe failures, image pull errors, etc, the deployment may fail to

update the replica set.

53

1 repl icaCount = phpDeployment . Status . Repl icas

Listing 4.10: Current Replica

Poll Replica Since the system might get stuck trying to deploy the new replica set, we

had to create a function called poll replica. Poll replica checks the the difference between

the number of containers requested at the previous decision instant Tk � 1 and the current

number of containers to ensure that the number of replicas is updated in the current

interval. In case the current replica is not updated, we should wait until the deployment

updated before we scale up or down based on the requested number.

1 func Pol lRepl icas (desiredRepl icaCount int32 , currRepl icaCount int32
, kube_cs * kubernetes . Cl ientset) {

2 fmt . Print ln ("THIS WILL SHIFT THE TIME LINE ... ")
3 for {
4 fmt . Print ln (" Current Replica = " , currRepl icaCount , " Desired

Replica " , desiredRepl icaCount)
5 t ime . Sleep (1 * time . Second)
6 phpDeployment , err := kube_cs . AppsV1 () . Deployments (" default ") .

GetScale (context .TODO () , "php - apache " , metav1 . GetOptions {})
7 if err != nil {
8 fmt . Print ln (" Error : " , err)
9 return

10 }
11 currRepl icaCount = phpDeployment . Status . Repl icas
12 if desiredRepl icaCount == currRepl icaCount {
13 fmt . Print ln (" System in Sync ")
14 return
15 }
16 }
17 }

Listing 4.11: Poll Replica Function

Desired Replica Now, all the required inputs are available to apply the scaling algorithm

that has been explained in Section 3.4. The entire code for implementing Algorithms 1, 2,

and 3 is presented in Appendix B.

1 // Calculate the desired number of repl icas using Algori thm 1: One -
step history .

2 // Previous decision is the addit ional input .

54

3 repl icaCount , preDecision = scal ingAlgor i thm (repl icaCount ,
measurements [:][:] , measurementIndex , pMeasurementindex ,
preDecision)

4

5 // Calculate the desired number of repl icas using Algori thm 2 and
Algori thm 3.

6 // No addit ional input .
7 repl icaCount = scal ingAlgor i thm (repl icaCount , measurements [:][:] ,

measurementIndex , pMeasurement index)

Listing 4.12: Calculating Desired Replica

Updating Current Replica Once the desired replica function provides the new number of

replicas to meet the target CPU utilization, we need to update the deployment by specifying

the number of pods should run through .Spec.Replicas . Then, the replica set will add or

remove its pods.

1 phpDeployment .Spec . Repl icas = repl icaCount
2 kube_cs . AppsV1 () . Deployments (" default ") . UpdateScale (context .TODO () ,

"php - apache " , phpDeployment , metav1 . UpdateOptions {})

Listing 4.13: Updating The Number of Replica During The Current Period

4.3 Results

4.3.1 The Top-Level Evaluation Questions

4.3.1.1 The Baseline Scenario

In Listing 4.14, we show a yaml �le that creates a HPA for an existing Deployment called

php-apache (see listing A.4) that autoscales the pods to maintain the target CPU utilization

of 50%. The HPA scales up and down the replica counts between a minimum of 1 and maxi-

mum of 10. In this thesis, we run two different experiments using Kubernetes autoscaling

algorithm, HPA. The �rst experiment was the default con�guration where the cooldown

period was set to 5 minutes. In the other experiment, we recon�gure the yaml �le by adding

three lines as shown in listing 4.15 in the end to set the cooling down to zero.

The following command is utilized to con�gure the php-apache deployment with CPU

to create the HPA inside kubernetes

$kubectl create -f < �le-name >.yaml

55

The following command is used to view the current status of the HPA

$kubectl get hpa

1 apiVersion : autoscal ing / v2beta2
2 kind : Hor izontalPodAutoscaler
3 metadata :
4 name : cpu - autoscale
5 spec :
6 scaleTargetRef :
7 apiVersion : apps /v1
8 kind : Deployment
9 name : php - apache

10 minRepl icas : 1
11 maxRepl icas : 10
12 metrics :
13 - type : Resource
14 resource :
15 name : cpu
16 target :
17 type : Uti l izat ion
18 averageValue : 50m

Listing 4.14: Kubernetes Horizontal Pod Autoscaler (HPA) for CPU Utilization with

cooldown

1 behavior :
2 scaleDown :
3 stabi l izat ionWindowSeconds : 0

Listing 4.15: Kubernetes Horizontal Pod Autoscaler (HPA) for CPU Utilization with

cooldown zero

4.3.1.2 The Evaluation Questions

The central questions we attempt to answer in our evaluations are the following:

• How does an algorithm perform with regard to the four evaluation metrics?

• How is the number of replicas increasing or decreasing?

• What is the overhead associated with a given algorithm?

56

4.3.1.3 The “Winners”

Before we present detailed results, we summarize in Table 4.3 the algorithms which per-

formed the best for a given metric. We provide a detailed explanation after we present the

results, in Section 4.3.2.

Table 4.3: The best-performing algorithm among the three de�ned ones, per metric con-
sidered.

Experiments (� U) (� O) (� U) (� O)
E1 Moving Window Moving Window Moving Window Moving Window
E2 Moving Window Moving Window Moving Window Moving Window

E3
One-step history and

Rolling Average
One-step history Rolling Average Moving Window

E4 Moving Window Moving Window Moving Window Moving Window

4.3.1.4 Autoscaling Performance Metrics

To evaluate the autoscaling algorithms, we use the metrics described in Section 3.3. The

aggregated metrics for all the four experiments are presented in Table 4.4. Lower values for

the percentages of the under- and over-provisioning accuracy and timeshare indicate a

better autoscaling algorithm. For easy of presentation, we present the best values for each

metric as bold and orange shadow.

First, we compare the three proposed algorithm (One-step history, rolling average, and

moving window average) together, and then we will compare them with kuberentes' HPA

with cooldown equal to 5 minutes and zero.

Proposed Autoscaling Algorithms: By looking at E1, E2,and E4results, we can see that Al-

gorithm 3, that utilizes a moving window average, has outperformed the other two proposed

algorithms in terms of under-provisioning and over-provisioning accuracy and timeshare.

Yet, in E3, the performance of moving window average did not yield the best results due to

the randomness, random alternation, of the workload. As a matter of fact, the least percent-

ages obtained in E3for the four evaluation criteria were not achieved by the same algorithm.

To elaborate, rolling average's and One-step history resulted in similar percentage, 8%, in

under-provisioning accuracy. However, the one-step history algorithm scores a lower per-

57

centage in over-provisioning accuracy while rolling average's results for under-provisioning

timeshare is superior. Meanwhile, the moving window average over-provisioning timeshare

accomplished the minimum percentage of 30%.

Proposed Autoscaling Algorithms Comparison with HPA: HPA algorithm with a cooling

down period of �ve minutes produces low percentage of under-provisioning and over-

provisioning accuracy metrics as 1% (using FIFA May/ 1), 1% (using NASA July/ 1), 2% (using

FIFA random), and 1% (using NASA Repeat), so it provides less resources from the demand

needs compared to the other algorithms.

In addition, the over-provisioning accuracy percentage for HPA algorithm with cooling

down was also the minimal in all the experiments except E1 (using FIFA May/ 1) as it was

1%, but the HPA algorithm without cooling down was 0%.

Above all, determining which algorithm performs the worst is not a fair comparison

because the workload plays a signi�cant role in the performance of all algorithms. For

example, the under-provisioning accuracy for Moving Window Average algorithm was 10%

(using FIFA random). However, 3%, 5%, and 5% were the percentages of under-provisioning

accuracy for the moving window average algorithm using using FIFA May/ 1), (using NASA

July/ 1), and 1% (using NASA Repeat). This means that there is no guarantee that the per-

centage of provisioning accuracy will be the same while using different workloads.

Furthermore, HPA algorithm with cooling down period equal to �ve minutes performs

better as it produce the smallest values in both the under- and over-provisioning timeshare.

The only exception was that HPA algorithm without cooling down was 1% in the over-

provisioning timeshare (using FIFA May/ 1).

58

Table 4.4: Autoscaling performance metrics for all the four experiments.

Experiments Algorithm (� U) (� O) (� U) (� O)
One-step history 5% 6% 20% 20%
Rolling Average 12% 19% 34% 38%
Moving Window Average 3% 3% 11% 9%
HPA with Cooling Down 1% 1% 3% 3%

E1

HPA without Cooling Down 94% 0% 99% 1%
One-step history 8% 10% 36% 34%
Rolling Average 12% 20% 35% 40%
Moving Window Average 5% 5% 21% 17%
HPA with Cooling Down 1% 1% 4% 3%

E2

HPA without Cooling Down 9% 25% 23% 23%
One-step history 8% 10% 33% 33%
Rolling Average 8% 12% 26 36%
Moving Window Average 10% 12% 35% 30%
HPA with Cooling Down 2% 3% 8% 8%

E3

HPA without Cooling Down 4% 7% 9% 9%
One-step history 8% 10% 36% 37%
Rolling Average 11% 15% 35% 39%
Moving Window Average 5% 5% 20% 17%
HPA with Cooling Down 1% 1% 3% 2%

E4

HPA without Cooling Down 8% 21% 22% 78%

4.3.1.5 Overhead comparisons

In this section, we discuss brie�y the overheads related to the three algorithms and HPA.

Overall, we do not see any big differences in any one of the three types of overhead.

CPU overhead: this is the time it takes to execute the autoscaling algorithm. HPA (with or

without cooldown) runs its Equation 2.1, page 15, using a single measurement. Algorithm 1

has similar runtime, since it utilizes one measurement and only one previous decision.

Algorithm 2 needs to perform 2M more additions (see lines 4 and 5), where M is the window

size. And so does Algorithm 3. Compared to the overall time it takes to run the rest of the

algorithms, the extra times are negligible.

Memory overhead: Algorithm 1 needs to store one previous decision; this is the extra

memory needed when compared to HPA. Algorithms 2 and 3 need some extra memory for

59

(a) One-step history Algorithm Under-
Provisioning Accuracy

(b) Rolling Average Algorithm Under-
Provisioning Accuracy

(c) Moving Window Average Algorithm
Under-Provisioning Accuracy

(d) HPA with cooling down Algorithm Under-
Provisioning Accuracy

(e) HPA without cooling down Algorithm
Under-Provisioning Accuracy

Figure 4.8: Comparison of The Under-Provisioning Accuracy Percentage for All Algorithms
(E1: FIFA Dataset

60

(a) One-step history Algorithm Over-
Provisioning Accuracy

(b) Rolling Average Algorithm Over-
Provisioning Accuracy

(c) Window Algorithm Over-Provisioning Ac-
curacy

(d) HPA with cooling down Algorithm Over-
Provisioning Accuracy

(e) HPA without cooling down Algorithm
Over-Provisioning Accuracy

Figure 4.9: Comparison of The Over-Provisioning Accuracy Percentage for All Algorithms
(E1: FIFA Dataset

61

(a) One-step history Algorithm Under-
Provisioning Timeshare

(b) Rolling Average Algorithm Under-
Provisioning Timeshare

(c) Moving Window Average Algorithm
Under-Provisioning Timeshare

(d) HPA with cooling down Algorithm Under-
Provisioning Timeshare

(e) HPA without cooling down Algorithm
Under-Provisioning Timeshare

Figure 4.10: Comparison of The Under-Provisioning Timeshare Percentage for All Algo-
rithms (E1: FIFA Dataset

62

(a) One-step history Algorithm Over-
Provisioning Timeshare

(b) Rolling Average Algorithm Over-
Provisioning Timeshare

(c) Moving Window Average Algorithm Over-
Provisioning Timeshare

(d) HPA with cooling down Algorithm Over-
Provisioning Timeshare

(e) HPA withoout cooling down Algorithm
Over-Provisioning Timeshare

Figure 4.11: Comparison of The Over-Provisioning Timeshare Percentage for All Algo-
rithms (E1: FIFA Dataset

63

(a) One-step history Algorithm Exact Provi-
sioning

(b) Rolling Average Algorithm Exact Provi-
sioning

(c) Moving Window Average Algorithm Exact
Provisioning

(d) HPA with cooling down Algorithm Exact
Provisioning

(e) HPA without cooling down Algorithm Ex-
act Provisioning

Figure 4.12: Comparison of The Exact Provisioning Accuracy for All Algorithms (E1: FIFA
Dataset

64

(a) One-step history Algorithm Current Met-
rics

(b) Rolling Average Algorithm Current Met-
rics

(c) Moving Window Average Algorithm Cur-
rent Metrics

(d) HPA with cooling down Algorithm Current
Metrics

(e) HPA without cooling down Algorithm Cur-
rent Metrics

Figure 4.13: Comparison of The CPU Utilization Percentage for All Algorithms (E1: FIFA
Dataset

65

(a) One-step history Algorithm Desired
Replica (b) Rolling Average Algorithm Desired Replica

(c) Moving Window Average Algorithm De-
sired Replica

(d) HPA with cooling down Algorithm Desired
Replica

(e) HPA without cooling down Algorithm De-
sired Replica

Figure 4.14: Comparison of The Desired Replica e for All Algorithms (E1: FIFA Dataset

66

the M measurements. We also consider this overhead negligible.

Communication overhead: The overhead it takes to pull the measurements from the

metrics server is the same for all algorithms. Algorithm 1 pulls the previous decision as well,

but this overhead is negligible.

4.3.2 Overall Evaluation

CPU Utilization: Figures C.20 show two lines, the blue line represents the variation in

CPU utilization and the orange line illustrates the target CPU threshold when we test our

�ve algorithms using four different real dataset.

Since the initial pod count is 1 replica, the minimum number of pods speci�ed in the

con�guration �le, the system will notice a sudden jump in the CPU utilization percentage

when the load starts running. Once the autoscaling algorithm respond to the incoming

load by scaling the pod count, we can see that the system is able to handle the load and the

CPU usage is less than the target CPU threshold (50%).

By comparing the �ve autoscaling algorithms together, we found that all of them not

providing the same CPU utilization. For example, the �rst utilization detects were 132%,

54%, 165%, 130%, and 171% for One-step history, rolling average, window average, HPA

with cooling down, and HPA without cooling down while running the same workload (FIFA

Day May/ 1). This is due to two reasons as follow:

• Detection and scaling Period: This period is when the autoscaling algorithm detect

that the CPU utilization is beyond the target threshold. As shown in table 4.1, each

algorithm has its own scaling time that can be 1 minute, 2 minutes, or 5 minutes.

• Delay Period: Depending on when the autoscaling algorithm pools for metrics from

the metrics server, there could be a delay period of 50-65seconds for HPA algorithm,

or 50-60 seconds for others three algorithms.

1. Pooling Period: One-step history, Rolling Average, and Moving Window Average

pool for metrics every 10 seconds while HPA, whether with or without cooling

down, pools for metrics every 15 seconds.

2. Metrics Server Period:It is the time that metrics server polls for aggregate metrics

every 50 seconds.

67

This means that there is a time between when the autoscaling detecting that the target CPU

threshold was breached and when additional replica(s) was up and running.

The Number of Requested Pods: The replicas recommended by the �ve autoscaling algo-

rithms with target CPU utilization set at 50% are illustrated in Figure C.21. In these �gures,

we evaluate the cost ef�ciency as the cloud's clients are charges based on usage (pay-as-you-

go). As the load increases, the replica count increases between 1 to 10 replicas, to maintain

the CPU utilization below 50%.

Table 4.5 shows the peak number of replicas for each autoscaling algorithm in the four

different experiments. We found that Moving Window Average algorithm provides less num-

ber of replicas compared to other four algorithms. This means that Moving Window Average

algorithm is not wasted resources and increase the cost ef�ciency while the ef�ciency of

rolling average algorithm declines due to increase the number of replicas.

Table 4.5: The Number of Requested Replica for Each Autoscaling Algorithms using dif�-
dent Workload.

Experiments
One-step history

Algorithm

Rolling
Average

Algorithm

Window
Average

Algorithm

HPA with
Cooling Down

HPA without
Cooling Down

E1 6 replicas 10 replicas 5 replicas 6 replicas 6 replicas
E2 10 replicas 10 replicas 6 replicas 10 replicas 9 replicas
E3 10 replicas 10 replicas 10 replicas 10 replicas 10 replicas
E4 10 replicas 10 replicas 8 replicas 9 replicas 10 replicas

Moving Window Average algorithm minimizes wrong provisioning accuracy and time-

share metrics. In contrast to other proposed algorithms, Moving Window Average allows

us to proactively respond to future CPU usage as it calculates the required number of pods

every �ve minutes. This offers more time to collect the utilization to eliminates unneces-

sary scaling decision as the scaling decision happen less frequently compared to other

algorithms. One-step history and Moving Window Average algorithms manage to lower

their percentage in all the four provisioning metrics below the percentage of rolling average

algorithm.

68

Rolling average algorithm performs poorly. While comparing the three Proposed algo-

rithms, we notice that most of the time rolling average has the worst values of (� U), (� O), (� U),

and (� O) due to highly inaccurate scaling decision. This means that the scaling decision

calculates the number of pods required wrongly. Therefore, the provisioning accuracy and

timeshare of rolling average algorithm perform the worst.

Autoscaling algorithm with longer provisioning times have better performance. While

implementing One-step history algorithm , we set the scaling decision for 1 minute, 2 min-

utes, 3 minutes, 4 minutes, and 5 minutes. We notice that provisioning for long time is better

as shown in table 4.6. Detecting and scaling every 1 minute performs worst, and while

increasing the scaling period, the better percentage of (� U), (� O), (� U), and (� O). However,

if we set the scaling period too long, the autoscaling algorithm will not be responsive to

workload changes. This is the reason why the value of (� U), (� O), (� U), and (� O) for 5 minutes

were going back to almost the same percentage for 1 minute.

Table 4.6: The performance of One-step history algorithm with different scaling Time.

One-step history Algorithm with
Different Scaling Time

(� U) (� O) (� U) (� O)

1min 10% 15% 36% 36%
2min 5% 6% 20% 20%
3min 7% 9% 29% 28%
4min 7% 8% 28% 25%
5min 9% 11% 35% 33%

Moreover, rolling average algorithm is more easily affected by new incoming load. For

example, at time = 54, the current CPU utilization, current replica, and desired replica were

78%, 1, and 2, respectively. Then in the next interval (time =55), the utilization exceeded

108%.

Autoscaling algorithm behave different while running different workload. As illustrate

in table 4.4, the Moving Window Average algorithm performs the best in E1, E2, and E4.

However, Moving Window Average algorithm performs worst in E3as the (� U) = 10%, (� O)

= 12%, and (� U) = 35%.

69

Moving Window Average algorithm has the smoother scaling pattern and the smallest

number of replicas. Moving Window Average algorithm successfully decreased the waste

of unused or unnecessary resources by providing less replica counts. In addition, it was able

to not frequently scale, which produces less �uctuation. However, the maximum number

of replicas in the rolling average algorithm was 10 replicas. This means that using rolling

average algorithm will cost more money and more �uctuation, as the scaling time every 1

minute.

Proposed Autoscaling Algorithms Comparison with HPA: A comparison of all �ve al-

gorithms is illustrated in table 4.4. We found that HPA algorithm with cooling down = 5

minutes achieves better performance on all metrics except (� O) and (� O) in E1. This means

that HPA algorithm with cooling down tend to not under- and over-provisioning most of

the time as they occur for a fraction of time as compared to other algorithms. The reason

for this result is the cooling time period. The cooling down in HPA is set to �ve minutes

while the other four algorithms were set to zero cooling down. Thus, the scale of requested

replicas keep thrashing more in the four autoscaling algorithms compared to HPA.

70

CHAPTER

5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

In cloud computing environments, reducing costs is one of the main business objectives and

a key component of the “pay-as-you-go” �nancial model. In this thesis, we have investigated

service autoscaling, one of the technical tools that technical designers use to control costs.

More speci�cally, we have de�ned three scaling algorithms that utilize, in different ways,

“history” in their scaling up or down decision making. We have evaluated such algorithms

with actual traf�c traces. In our evaluation, we have used four industry-de�ned metrics.

In summary, we have found that, overall and for most metrics, the moving window

average algorithm performed better than the other two algorithms. When compared to

HPA with cooling feature, the algorithms “underperformed”.

We faced two main challenges in this work. The �rst was the need to code the algorithms

in the go language. We had no prior experience in this language; learning it on our own was

rewarding but took considerable time. The second challenge was related to the process of

obtaining the utilization metrics from the kubernetes metric server. There was an inherent

mismatch between the (lower) frequency of containers reporting such metrics and the

71

(higher) frequency of our algorithms pulling such metrics. The imbalance created duplicate

measurements that we had to ensure were used only once; this required some code tweaking

that also took considerable time.

5.2 Future Work

The work in this dissertation can be extended in three main directions, namely business,

technical and academic.

(Business) New SLAs.The SLA we analyzed in this work had considered CPU-related

metrics. The work can be extended to other business SLAs; for example, average response

times, percentile utilizations or percentile response times. It would be interesting to develop

pay as you go models based on such SLAs.

(Technical) Different scale up / down policies. We have considered three different ways

to utilize history of past decisions. The technical work can be extended by considering: (a)

similar algorithms but feedback on different metrics, (b) different algorithms altogether,

and, (c) reduce “noisy neighbor” problems. An example of the �rst approach would be

utilizing response times. An example of the second would be algorithms based on AI / ML

ideas. Finally, the third problem deals with how to allocate a limited number of containers

among competing users (neighbors).

(Technical) Develop rules of thumb. A deeper study around environment, con�guration,

and traf�c parameters is needed for establishing rules of thumb that could be used in

suggesting “best practices”.

(Academic) Theoretical proofs. All three algorithms utilize “limited history”; appropriate

Markovian models can be formulated based on assumptions regarding the traf�c and

service models. It is interesting then to attempt theoretical proofs that such algorithms (as

well as kubernetes' HPA) can indeed satisfy the desired (CPU, memory, etc.) objectives.

72

REFERENCES

[1] Production-grade container orchestration. URL: https://kubernetes.io/ .

[2] Containerd - an industry-standard container runtime with an emphasis on simplicity,
robustness and portability, 2021. URL: https://containerd.io/ .

[3] cri-o, Dec 2021. URL: https://cri-o.io/ .

[4] Deployments, Sep 2021. URL: https://kubernetes.io/docs/concepts/
workloads/controllers/deployment/ .

[5] Jobs, Nov 2021. URL: https://kubernetes.io/docs/concepts/workloads/
controllers/jobs-run-to-completion/.

[6] Kubernetes components, Oct 2021. URL: https://kubernetes.io/docs/
concepts/overview/components/ .

[7] Replication controller, Oct 2021. URL: https://kubernetes.io/docs/concepts/
workloads/controllers/replicationcontroller/ .

[8] Services, Nov 2021. URL: https://kubernetes.io/docs/concepts/
services-networking/service/.

[9] Cloud infrastructure management: Cloud management ser-
vices, Jan 2022. URL: https://www.appdynamics.com/learn/
cloud-infrastructure-management#~how-cloud-infrastructure-works .

[10] Horizontal pod autoscaling, Mar 2022. URL: https://kubernetes.io/docs/
tasks/run-application/horizontal-pod-autoscale/ .

[11] Resource metrics pipeline, Feb 2022. URL: https://kubernetes.io/docs/
tasks/debug-application-cluster/resource-metrics-pipeline/
#metrics-server .

[12] Empowering app development for developers, n.d. URL: https://www.docker.
com/.

[13] Martin Adane. Cloud computing adoption: Strategies for sub-saharan africa smes for
enhancing competitiveness. African Journal of Science, Technology, Innovation and
Development, 10(2):197–207, 2018.

[14] Yahya Al-Dhuraibi, Fawaz Paraiso, Nabil Djarallah, and Philippe Merle. Elasticity
in cloud computing: State of the art and research challenges. IEEE Transactions on
Services Computing, 11(2):430–447, 2018.doi:10.1109/TSC.2017.2711009 .

73

[15] Michael Armbrust, Armando Fox, Rean Grif�th, Anthony Joseph, Randy Katz, Andy
Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and Matei Zaharia. A
view of cloud computing. Commun. ACM , 53:50–58, 04 2010.doi:10.1145/1721654.
1721672.

[16] Eric A. Brewer. Kubernetes and the path to cloud native. In Proceedings of the Sixth
ACM Symposium on Cloud Computing , SoCC '15, page 167, New York, NY, USA, 2015.
Association for Computing Machinery. URL: https://doi.org/10.1145/2806777.
2809955, doi:10.1145/2806777.2809955 .

[17] Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and John Wilkes. Borg,
omega, and kubernetes: Lessons learned from three container-management systems
over a decade. Queue, 14(1):70â�AŞ93, jan 2016. URL:https://doi-org.prox.lib.
ncsu.edu/10.1145/2898442.2898444 , doi:10.1145/2898442.2898444 .

[18] J. P. Buzen and U. O. Gagliardi. The evolution of virtual machine architecture. In
Proceedings of the June 4-8, 1973, National Computer Conference and Exposition,
AFIPS '73, page 291â�AŞ299, New York, NY, USA, 1973. Association for Computing
Machinery. URL: https://doi.org/10.1145/1499586.1499667 , doi:10.1145/
1499586.1499667.

[19] Emiliano Casalicchio. A study on performance measures for auto-scaling cpu-
intensive containerized applications. Cluster Computing , 22, 09 2019.doi:10.1007/
s10586-018-02890-1.

[20] Emiliano Casalicchio and Vanessa Perciballi. Auto-scaling of containers: The impact
of relative and absolute metrics. 09 2017. doi:10.1109/FAS-W.2017.149 .

[21] Chia-Chen Chang, Shun-Ren Yang, En-Hau Yeh, Phone Lin, and Jeu-Yih Jeng. A
kubernetes-based monitoring platform for dynamic cloud resource provisioning. In
GLOBECOM 2017 - 2017 IEEE Global Communications Conference, pages 1–6, 2017.
doi:10.1109/GLOCOM.2017.8254046.

[22] Alfredo Cuzzocrea, Ladjel Bellatreche, and Il-Yeol Song. Data warehousing and olap
over big data: Current challenges and future research directions. In Proceedings of the
Sixteenth International Workshop on Data Warehousing and OLAP , DOLAP '13, page
67â�AŞ70, New York, NY, USA, 2013. Association for Computing Machinery. URL: https:
//doi.org/10.1145/2513190.2517828 , doi:10.1145/2513190.2517828 .

[23] Datadog. Datadog, Oct 2021. URL: https://www.datadoghq.com/
container-report/ .

[24] Tharam Dillon, Chen Wu, and Elizabeth Chang. Cloud computing: Issues and chal-
lenges. In 2010 24th IEEE International Conference on Advanced Information Network-
ing and Applications , pages 27–33, 2010.doi:10.1109/AINA.2010.187 .

74

[25] Flexera. Rightscale 2019 state of the cloud report, Jan 2019.
URL: https://resources.flexera.com/web/media/documents/
rightscale-2019-state-of-the-cloud-report-from-flexera.pdf .

[26] Chunye Gong, Jie Liu, Qiang Zhang, Haitao Chen, and Zhenghu Gong. The character-
istics of cloud computing. 2010 39th International Conference on Parallel Processing
Workshops, pages 275–279, 2010.

[27] Nikolas Herbst, Rouven Krebs, Giorgos Oikonomou, George Kousiouris,
Athanasia Evangelinou, Alexandru Iosup, and Samuel Kounev. Ready for
rain? a view from spec research on the future of cloud metrics. Tech-
nical Report SPEC-RG-2016-01, SPEC Research Group — Cloud Working
Group, Standard Performance Evaluation Corporation (SPEC), 2016. URL:
https://research.spec.org/fileadmin/user_upload/documents/rg_
cloud/endorsed_publications/SPEC-RG-2016-01_CloudMetrics.pdf .

[28] Nikolas Roman Herbst, Samuel Kounev, and Ralf Reussner. Elasticity in cloud com-
puting: What it is, and what it is not. In 10th International Conference on Autonomic
Computing (ICAC 13) , pages 23–27, San Jose, CA, June 2013. USENIX Association.
URL: https://www.usenix.org/conference/icac13/technical-sessions/
presentation/herbst .

[29] Djilali Idoughi, Karima Ait Abdelouhab, and Christophe Kolski. Towards a microser-
vices development approach for the crisis management �eld in developing countries.
2017 4th International Conference on Information and Communication Technologies
for Disaster Management (ICT-DM) , pages 1–6, 2017.

[30] A. Anasuya Innocent. Cloud infrastructure service management - a review. IJCSI
International Journal of Computer Science Issues 1694-0814, 9:287–292, 05 2012.

[31] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori. Kvm: the linux
virtual machine monitor. In In Proceedings of the 2007 Ottawa Linux Symposium
(OLSâ�AŹ-07, 2007.

[32] Kubernetes. Autoscaler / cluster-autoscaler at master Â �u kubernetes / au-
toscaler. URL: https://github.com/kubernetes/autoscaler/tree/master/
cluster-autoscaler .

[33] Sean Marston, Zhi Li, Subhajyoti Bandyopadhyay, Julie Zhang, and Anand Ghalsasi.
Cloud computing â �A�T the business perspective. Decision Support Systems, 51:176–189,
04 2011. doi:10.2139/ssrn.1413545 .

[34] Peter Mell and Timothy Grance. The nist de�nition of cloud comput-
ing, Sep 2011. URL: https://nvlpubs.nist.gov/nistpubs/Legacy/SP/
nistspecialpublication800-145.pdf .

75

[35] Shripad Nadgowda, Sahil Suneja, and Ali Kanso. Comparing scaling methods for linux
containers. pages 266–272. IEEE, 2017.

[36] Athanasios Naskos, Anastasios Gounaris, and Spyros Sioutas. Cloud Elasticity: A Survey,
pages 151–167. Algorithmic Aspects of Cloud Computing. Springer International
Publishing, Cham, 2016.

[37] Thanh-Tung Nguyen, Yu-Jin Yeom, Taehong Kim, Dae-Heon Park, and Sehan Kim.
Horizontal pod autoscaling in kubernetes for elastic container orchestration. Sen-
sors, 20(16), 2020. URL:https://www.mdpi.com/1424-8220/20/16/4621 , doi:
10.3390/s20164621.

[38] Trung Nguyen Tri, Eui-nam Huh, Jae Park, Md Hossain, Md. Delowar Hossain, Seung-
Jin Lee, Jin Jang, Seo Jo, Luan Huynh, and Khanh Tran. Performance analysis of data
parallelism technique in machine learning for human activity recognition using lstm.
pages 387–391, 12 2019.doi:10.1109/CloudCom.2019.00066 .

[39] Claus Pahl. Containerisation and the paas cloud. IEEE Cloud Computing , 2:24–31, 06
2015. doi:10.1109/MCC.2015.51 .

[40] Claus Pahl, Antonio Brogi, Jacopo Soldani, and Pooyan Jamshidi. Cloud container tech-
nologies: A state-of-the-art review. IEEE Transactions on Cloud Computing , 7(3):677–
692, 2019.doi:10.1109/TCC.2017.2702586 .

[41] Dana Petcu. Multi-cloud: expectations and current approaches. In Proceedings of the
2013 international workshop on Multi-cloud applications and federated clouds , pages
1–6, 2013.

[42] Chenhao Qu, Rodrigo Calheiros, and Rajkumar Buyya. Auto-scaling web applications
in clouds: A taxonomy and survey. ACM Computing Surveys, 51, 09 2016. doi:10.
1145/3148149.

[43] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin, I. M. Llorente, R. Montero,
Y. Wolfsthal, E. Elmroth, J. Caceres, M. Ben-Yehuda, W. Emmerich, and F. Galan. The
reservoir model and architecture for open federated cloud computing. IBM Journal of
Research and Development, 53(4):4:1–4:11, 2009.doi:10.1147/JRD.2009.5429058 .

[44] Yaman Roumani and Joseph K Nwankpa. An empirical study on predicting cloud
incidents. International journal of information management , 47:131–139, 2019.

[45] Andrew Silver. Software simpli�ed. Nature (London) , 546(7656):173–174, 2017.

[46] J.E. Smith and Ravi Nair. The architecture of virtual machines. Computer , 38(5):32–38,
2005. doi:10.1109/MC.2005.173 .

[47] Barrie Sosinsky. Cloud Computing Bible . Wiley Publishing, 1st edition, 2011.

76

[48] Thomas Wang, Simone Ferlin, and Marco Chiesa. Predicting cpu usage for proactive
autoscaling. In Proceedings of the 1st Workshop on Machine Learning and Systems,
EuroMLSys '21, page 31â�AŞ38, New York, NY, USA, 2021. Association for Computing
Machinery. URL: https://doi.org/10.1145/3437984.3458831 , doi:10.1145/
3437984.3458831.

[49] Zhuoqun Yang, Zhi Li, Zhi Jin, and Yunchuan Chen. A systematic literature review of
requirements modeling and analysis for self-adaptive systems. In Camille Salinesi
and Inge van de Weerd, editors, Requirements Engineering: Foundation for Software
Quality , pages 55–71, Cham, 2014. Springer International Publishing.

[50] Guangba Yu, Pengfei Chen, and Zibin Zheng. Microscaler: Cost-effective scaling for
microservice applications in the cloud with an online learning approach. IEEE Trans-
actions on Cloud Computing , pages 1–1, 2020.doi:10.1109/TCC.2020.2985352 .

[sort, numbers]natbib

77

APPENDICES

78

APPENDIX

A

PHP-APACHE SERVER AND LOAD

GENERATOR SETUP

A.1 Docker Image

1 FROM 1234 nag / loadgenerator : latest
2 ADD ./ NASA_DAY .csv /
3 ADD ./ FIFA_DAY .csv /
4 ADD ./ NASA_DAY .sh /
5 ADD ./ FIFA_DAY .sh /
6 ADD ./ NASA_Repeat . csv /
7 ADD ./ RandomFIFA .csv /
8 ADD ./ NASA_Repeat .sh /
9 ADD ./ RandomFIFA .sh /

10 RUN chmod + r / NASA_DAY .csv
11 RUN chmod + r / NASA_DAY .sh
12 RUN chmod + r / FIFA_DAY .csv
13 RUN chmod + r / FIFA_DAY .sh
14 RUN chmod + r / NASA_Repeat . csv
15 RUN chmod + r / NASA_Repeat .sh

79

16 RUN chmod + r / RandomFIFA .csv
17 RUN chmod + r / RandomFIFA .sh

Listing A.1: Docker�le

A.2 Load Generator

1 #! /bin /sh
2 while IFS=, read -r reply ; do
3 #echo " $reply "
4 reply =$(echo $reply | sed ' s/ , , ,// ')
5 echo " $reply "
6 wget -q -O- http : // php - apache / index .php? bytes = $reply
7 sleep 6
8 done < \ textbf { FIFA_DAY }. csv

Listing A.2: FIFA Dataset Script

1 <?php
2 // Expand the maximum execut ion time to 600 , so it can take more

load .
3 // Defualt was 300.
4 in i_set (' max_execut ion_t ime ' , 600) ;
5 $x = 0.0001;
6 // define a variable that can take integer value (number of

bytes) .
7 $arg = $_GET [' bytes '];
8 $bytes = (int) $arg ;
9 //a loop to calculate the squre root of x. The loop ' s lenght

wil l equal to number of bytes .
10 for ($i = 0; $i <= $bytes ; $i ++) {
11 $x += sqrt ($x) ;
12 }
13 // print bytes number everyt ime you access this code .
14 echo $bytes ;
15 ?>

Listing A.3: One bytes index.php

Run the load

1 # Run this in a separate terminal
2 # so that the load generat ion cont inues and you can carry on with

the rest of the steps

80

3 kubectl run -i -- tty load - generator -- rm -- image = busybox -- restart =
Never -- / bin /sh -c " while sleep 0.01; do wget -q -O- http :// php
- apache ; done "

A.3 Deployment

1 apiVersion : apps /v1
2 kind : Deployment
3 metadata :
4 name : php - apache
5 spec :
6 selector :
7 matchLabels :
8 run : php - apache
9 repl icas : 4

10 template :
11 metadata :
12 labels :
13 run : php - apache
14 spec :
15 containers :
16 - name : php - apache
17 image : saramashat /php - apache : latest
18 imagePul lPol icy : Always
19 ports :
20 - containerPort : 80
21 resources :
22 l imits :
23 cpu : 500m
24 requests :
25 cpu : 200m
26 ---
27 apiVersion : v1
28 kind : Service
29 metadata :
30 name : php - apache
31 labels :
32 run : php - apache
33 spec :
34 ports :
35 - port : 80

81

36 selector :
37 run : php - apache

Listing A.4: php-apache.yaml

A.4 Metrics Server

1 apiVersion : v1
2 kind : ServiceAccount
3 metadata :
4 labels :
5 k8s -app : metrics - server
6 name : metrics - server
7 namespace : kube - system
8 ---
9 apiVersion : rbac . author izat ion .k8s . io /v1

10 kind : ClusterRole
11 metadata :
12 labels :
13 k8s -app : metrics - server
14 rbac . author izat ion .k8s . io / aggregate - to - admin : " true "
15 rbac . author izat ion .k8s . io / aggregate - to -edit : " true "
16 rbac . author izat ion .k8s . io / aggregate - to - view : " true "
17 name : system : aggregated -metrics - reader
18 rules :
19 - apiGroups :
20 - metr ics . k8s . io
21 resources :
22 - pods
23 - nodes
24 verbs :
25 - get
26 - l ist
27 - watch
28 ---
29 apiVersion : rbac . author izat ion .k8s . io /v1
30 kind : ClusterRole
31 metadata :
32 labels :
33 k8s -app : metrics - server
34 name : system :metrics - server
35 rules :

82

36 - apiGroups :
37 - " "
38 resources :
39 - nodes / metr ics
40 verbs :
41 - get
42 - apiGroups :
43 - " "
44 resources :
45 - pods
46 - nodes
47 verbs :
48 - get
49 - l ist
50 - watch
51 ---
52 apiVersion : rbac . author izat ion .k8s . io /v1
53 kind : RoleBinding
54 metadata :
55 labels :
56 k8s -app : metrics - server
57 name : metrics -server -auth - reader
58 namespace : kube - system
59 roleRef :
60 apiGroup : rbac . author izat ion .k8s . io
61 kind : Role
62 name : extension -apiserver - authenticat ion - reader
63 subjects :
64 - kind : ServiceAccount
65 name : metrics - server
66 namespace : kube - system
67 ---
68 apiVersion : rbac . author izat ion .k8s . io /v1
69 kind : ClusterRoleBinding
70 metadata :
71 labels :
72 k8s -app : metrics - server
73 name : metrics - server : system :auth - delegator
74 roleRef :
75 apiGroup : rbac . author izat ion .k8s . io
76 kind : ClusterRole
77 name : system :auth - delegator

83

78 subjects :
79 - kind : ServiceAccount
80 name : metrics - server
81 namespace : kube - system
82 ---
83 apiVersion : rbac . author izat ion .k8s . io /v1
84 kind : ClusterRoleBinding
85 metadata :
86 labels :
87 k8s -app : metrics - server
88 name : system :metrics - server
89 roleRef :
90 apiGroup : rbac . author izat ion .k8s . io
91 kind : ClusterRole
92 name : system :metrics - server
93 subjects :
94 - kind : ServiceAccount
95 name : metrics - server
96 namespace : kube - system
97 ---
98 apiVersion : v1
99 kind : Service

100 metadata :
101 labels :
102 k8s -app : metrics - server
103 name : metrics - server
104 namespace : kube - system
105 spec :
106 ports :
107 - name : https
108 port : 443
109 protocol : TCP
110 targetPort : https
111 selector :
112 k8s -app : metrics - server
113 ---
114 apiVersion : apps /v1
115 kind : Deployment
116 metadata :
117 labels :
118 k8s -app : metrics - server
119 name : metrics - server

84

120 namespace : kube - system
121 spec :
122 selector :
123 matchLabels :
124 k8s -app : metrics - server
125 strategy :
126 rol l ingUpdate :
127 maxUnavai lable : 0
128 template :
129 metadata :
130 labels :
131 k8s -app : metrics - server
132 spec :
133 containers :
134 - args :
135 - --cert -dir =/ tmp
136 - --secure -port =4443
137 - --kubelet - preferred -address - types = InternalIP , ExternalIP ,

Hostname
138 - --kubelet -use -node -status -port
139 - --metric - resolut ion =50s
140 image : k8s .gcr . io /metrics - server /metrics - server :v0 .6.1
141 command :
142 - /metrics - server
143 - --kubelet - insecure - tls
144 imagePul lPol icy : Always
145 l ivenessProbe :
146 fa i lureThreshold : 3
147 httpGet :
148 path : / l ivez
149 port : https
150 scheme : HTTPS
151 periodSeconds : 10
152 name : metrics - server
153 ports :
154 - containerPort : 4443
155 name : https
156 protocol : TCP
157 readinessProbe :
158 fa i lureThreshold : 3
159 httpGet :
160 path : / readyz

85

161 port : https
162 scheme : HTTPS
163 in i t ia lDelaySeconds : 20
164 periodSeconds : 10
165 resources :
166 requests :
167 cpu : 100m
168 memory : 200 Mi
169 securi tyContext :
170 al lowPriv i legeEscalat ion : false
171 readOnlyRootFi lesystem : true
172 runAsNonRoot : true
173 runAsUser : 1000
174 volumeMounts :
175 - mountPath : / tmp
176 name : tmp -dir
177 nodeSelector :
178 kubernetes . io /os : l inux
179 prior i tyClassName : system -cluster - cr i t ical
180 serviceAccountName : metrics - server
181 volumes :
182 - emptyDir : {}
183 name : tmp -dir
184 ---
185 apiVersion : apiregistrat ion .k8s . io /v1
186 kind : APIService
187 metadata :
188 labels :
189 k8s -app : metrics - server
190 name : v1beta1 . metr ics . k8s . io
191 spec :
192 group : metr ics . k8s . io
193 groupPrior i tyMinimum : 100
194 insecureSkipTLSVeri fy : true
195 service :
196 name : metrics - server
197 namespace : kube - system
198 version : v1beta1
199 versionPrior i ty : 100

Listing A.5: metricsServer.yaml

86

APPENDIX

B

PODMETRICS GOLANG

IMPLEMENTATION

B.1 Current Metrics Function

B.1.1 Algorithm 1: One-Step History

1 // currentMetr ics funct ion calculates current metr ics by taking :
2 // Inputs : CPU Utl izat ion in Nanocore , Number of Running Pods , and

Request Value .
3 // Output : Current Metr ics in precentage .
4 func currentMetr ics (m [][10] measurementPod , measurementIndex int32 ,

pMeasurement index int32) f loat64 {
5 var totalCpu float64 = 0
6 var currMetr ics f loat64 = 0
7 var numPods int32 = 0
8

9 // Verify if the last measurement is accounted for in scal ing
algori thm .

10 // If not , take that into account as well .

87

11 // The loop start with the last measuremt is accounted and ends at
current measurements ,

12 // so it wil l take six measurements for 1 min .
13 // prvious measurement index initaly is 0
14 // measurement index is the current measurement .
15 for j := pMeasurement index ; j < measurementIndex +1; j++ {
16 // Another loop to check inside each measurements for the number

of running containers
17 for i := 0; i < int (maxRepl ica) ; i++ {
18 // before we calculate the total CPU and number of containers .
19 // Check the Pod Name if is not dummy (this means we have a

CPU value).
20 // Also check if the measurement is accounted (false) .
21 // True --> we take it into account .
22 // False --> we didn ' t take , so we have to consider it .
23 mustTakeMeasurementIntoAccount := m[j][i]. PodName != " dummy "

&& !m[j][i]. isAccountedFor
24 if mustTakeMeasurementIntoAccount {
25 // Calculat ing the total CPU in cores and containers number .
26 // Then , we set the measurement to True to not retake into

account .
27 totalCpu += m[j][i]. CPU
28 m[j][i]. isAccountedFor = true
29 numPods = numPods + 1
30 }
31 }
32 }
33

34 // Current Metr ics in Precentage = (Average CPU Utl izat ion in
Mil icore) / Request Value * 100 = Total CPU (core) / (Number of
pods * request Value)

35 // fmt . Print ln (" Total CPU: " , totalCpu , "\ nTotal number of pods :
" , numPods)

36 currMetr ics = totalCpu * baseMil icore * 100.0 / (requestValue *
f loat64 (numPods))

37 // Pr int ing and returning the current metr ics in precentage .
38 fmt . Print ln (" Current Metr ics = " , currMetr ics)
39 return currMetr ics
40 }

Listing B.1: Current Metrics

88

B.1.2 Algorithm 2: Rolling Average

1 // currentMetr ics funct ion calculates current metr ics by taking :
2 // Inputs : CPU Utl izat ion in Nanocore , Number of Running Pods , and

Request Value .
3 // Output : Current Metr ics in precentage .
4 func currentMetr ics (m [][10] measurementPod , measurementIndex int32 ,

pMeasurement index int32) f loat64 {
5 var totalCpu float64 = 0
6 var currMetr ics f loat64 = 0
7 var numPods int32 = 0
8 var overal lCPU float64 = 0 // total CPU value considered for the

current metr ics calculat ion
9 var totalPods int32 = 0 // total number of pods considered for

the current metr ics calculat ion
10

11 // Verify if the last measurement is accounted for in scal ing
algori thm .

12 // If not , take that into account as well .
13 // The loop start with the last measuremt is accounted and ends at

current measurements
14 // so it wil l take six measurements for 1 min .
15 // previous measurement index ini t ia l ly is 0
16 // measurement index is the current measurement
17 for j := pMeasurement index ; j < measurementIndex +1; j++ {
18 // Another loop to check inside each measurements for the number

of running containers
19 for i := 0; i < int (maxRepl ica) ; i++ {
20 // before we calculate the total CPU and number of containers .
21 // Check the Pod Name if is not dummy (this means we have a

CPU value).
22 // Also check if the measurement is accounted (false) .
23 // True --> we take it into account .
24 // False --> we didn ' t take , so we have to consider it .
25 mustTakeMeasurementIntoAccount := m[j][i]. PodName != " dummy "

&& !m[j][i]. isAccountedFor
26 if mustTakeMeasurementIntoAccount {
27 // Calculat ing the total CPU in cores and containers number .
28 // Then , we set the measurement to True to not retake into

account .
29 totalCpu += m[j][i]. CPU
30 m[j][i]. isAccountedFor = true

89

31 numPods = numPods + 1
32 }
33 }
34 }
35

36 // The totalCPU value and the numPods from the above calculat ion
is stored in the totalCPUIndex array

37 // We wil l get the totalCPU and numPods for every 1 min
38 totalCPUIndex [index]. CPU = totalCpu
39 totalCPUIndex [index]. nPods = numPods
40 // fmt . Print ln (" totalCPUIndex : " , totalCPUIndex)
41

42 //k -> indexValue to 0 //k indicates the current decision
43 // if k= 2, it is decremented to 1 and 0 to consider all three

decision values
44 // counter -> 5 to 1 // we are considering latest 5 minutes scal ing

decision
45 for k , counter := index , 5; k >= 0 && counter > 0; k , counter = k

-1 , counter -1 {
46 // fmt . Print ln (" counter : " , counter)
47 // fmt . Print ln (" gett ingAddedCPu ", totalCPUIndex [k]. CPU)
48 overal lCPU += totalCPUIndex [k]. CPU
49 // fmt . Print ln (" overal lCPU : " , overal lCPU)
50 // fmt . Print ln (" gett ingAddedPods ", totalCPUIndex [k]. nPods)
51 totalPods += totalCPUIndex [k]. nPods
52 // fmt . Print ln (" totalPods : " , totalPods)
53 }
54 // fmt . Print ln (" overal lCPU : " , overal lCPU)
55 // fmt . Print ln (" totalPods : " , totalPods)
56 index += 1 // incrementing index to store next scal ing decision

values
57

58 // overal lCPU is the summation of CPU values of latest 5 minute
scal ing decisions

59 // Current Metr ics in Precentage = (Average CPU Utl izat ion in
Mil icore) / Request Value * 100 = Total CPU (core) / (request
Value * Number of pods)

60 currMetr ics = overal lCPU * baseMil icore * 100.0 / (requestValue *
f loat64 (totalPods))

61 // Pr int ing and returning the current metr ics in precentage
62 return currMetr ics

90

63 }

Listing B.2: Current Metrics Function that used for Rolling Average

B.1.3 Algorithm 3: Moving Window Average

1 // currentMetr ics funct ion calculates current metr ics by taking :
2 // Inputs : CPU Utl izat ion in Nanocore , Number of Running Pods ,

Average Uti l izat ion Array
3 // Output : Average Utl izat ion Array for Every 1 min
4 func currentMetr ics (m [][10] measurementPod , measurementIndex int32 ,

pMeasurement index int32 , totalUt i l izat ionArray [] f loat64 ,
totalNumPodsArray [] int32 , index int32) {

5 var totalCpu float64 = 0
6 // var currMetr ics f loat64 = 0
7 var numPods int32 = 0
8

9 // Verify if the last measurement is accounted for in scal ing
algori thm .

10 // If not , take that into account as well .
11 // The loop start with the last measuremt is accounted and ends at

current measurements ,
12 // so it wil l take six measurements for 1 min .
13 // prvious measurement index initaly is 0
14 // measurement index is the current measurement .
15 for j := pMeasurement index ; j < measurementIndex +1; j++ {
16 // Another loop to check inside each measurements for the number

of running containers
17 for i := 0; i < int (maxRepl ica) ; i++ {
18 // before we calculate the total CPU and number of containers .
19 // Check the Pod Name if is not dummy (this means we have a

CPU value).
20 // Also check if the measurement is accounted (false) .
21 // True --> we take it into account .
22 // False --> we didn ' t take , so we have to consider it .
23 mustTakeMeasurementIntoAccount := m[j][i]. PodName != " dummy "

&& !m[j][i]. isAccountedFor
24 if mustTakeMeasurementIntoAccount {
25 // Calculat ing the total CPU in cores and containers number .
26 // Then , we set the measurement to True to not retake into

account .
27 totalCpu += m[j][i]. CPU
28 m[j][i]. isAccountedFor = true

91

29 numPods = numPods + 1
30 }
31 }
32 }
33 // fmt . Print ln (" Total CPU [CurrentMetr ics Function] " , totalCpu)
34 // fmt . Print ln (" Total number of pods [CurrentMetrucs Funct ion] " ,

numPods)
35 // Calculate the average ut l izat ion every 1 min
36 totalUt i l izat ionArray [index] = totalCpu
37 // Store the average utl izat ion in an array to be used to

calculate the current metr ics in precentage .
38 totalNumPodsArray [index] = numPods
39 // fmt . Print ln (" totalUt i l izat ionArray [CurrentMetr ics Function] " ,

totalUt i l izat ionArray [index] , " totalCpu ", totalCpu)
40 // fmt . Print ln (" totalNumPodsArray [CurrentMetrucs Function] " ,

totalNumPodsArray [index] , " numPods ", numPods)
41 }

Listing B.3: Current Metrics Function that used for Moving Window Average

B.2 Scaling Function

B.2.1 Algorithm 1: One-Step History

1 // scal ingAlgor i thm funct ion calculates the Desired Repl icas based
on Algori thm 1.

2 // Input : Current Metrics , Desired Metrics , Current Relicas , and
Previous Decision .

3 // Output : Desired Repl icas and updated Previous Decision .
4 func scal ingAlgor i thm (repl icaCount int32 , m [][10] measurementPod ,

measurementIndex int32 , pMeasurement index int32 , preDecision
str ing) (int32 , str ing) {

5 var desiredRepl icas int32 = 0
6

7 // recal current metr ics funct ion to provide current metr ics for
the current scal ing period

8 var currMetr ics = currentMetr ics (m [:][:] , measurementIndex ,
pMeasurement index)

9

10 // If the Current Metr ics is greater than Desired Metrics ,
11 // this means that we have to scale up to meet our target metr ics .
12 mustScaleUP := currMetr ics > desiredMetr ics

92

13 mustScaleDown := currMetr ics <= desiredMetr ics
14

15 if mustScaleUP {
16 // if previous decision was UP and Current Metr ics is greater

than Desired Metrics , calculate the HPA equation
17 if preDecision == "UP" {
18 // HPA equation : Ceil ing (Current Repl icas * Current Metr ics /

Desired Metr ics) .
19 desiredRepl icas = int32 (math .Ceil (f loat64 (repl icaCount) *

currMetr ics / desiredMetr ics))
20 // Check policy (minRepl ica and maxRepl ica)
21 // After we calculate the desired replicas , we should check

the autoscal ing policy .
22 // also we should store the prvious decision whether is up or

down .
23 // recal l decision check funct ion .
24 desiredRepl icas = getDesiredNumRepl ica (desiredRepl icas ,

repl icaCount)
25 preDecision = "UP"
26 return desiredRepl icas , preDecision
27

28 // if previous decision was Down and current metr ics is
greater than desired metrics , increase by 1

29 } else if preDecision == "DOWN" {
30 desiredRepl icas = repl icaCount + 1
31 // Check policy and get the previous decsion
32 desiredRepl icas = getDesiredNumRepl ica (desiredRepl icas ,

repl icaCount)
33 preDecision = "UP"
34 return desiredRepl icas , preDecision
35 }
36 // If the Current Metr ics is less than Desired Metrics , this

means that we have to scale down .
37 } else if mustScaleDown {
38 // if previous decision was UP and current metr ics is less than

desired metrics , decrease the current repl ica by 1
39 if preDecision == "UP" {
40 desiredRepl icas = repl icaCount - 1
41 // Check policy and get the previous decsion
42 desiredRepl icas = getDesiredNumRepl ica (desiredRepl icas ,

repl icaCount)
43 preDecision = "DOWN"

93

44 return desiredRepl icas , preDecision
45

46 // if previous decision was DOWN and current metr ics is less
than desired metrics , Calculate the HPA

47 } else if preDecision == "DOWN" {
48 // HPA equation : Ceil ing (Current Repl icas * Current Metr ics /

Desired Metr ics) .
49 desiredRepl icas = int32 (math .Ceil (f loat64 (repl icaCount) *

currMetr ics / desiredMetr ics))
50 // Check policy and get the previous decsion
51 desiredRepl icas = getDesiredNumRepl ica (desiredRepl icas ,

repl icaCount)
52 preDecision = "DOWN"
53 return desiredRepl icas , preDecision
54 }
55 }
56 // Everyt ime we returing the desired Replica and the new decision
57 return desiredRepl icas , preDecision
58 }

Listing B.4: Scaling Algorithm 1

B.2.2 Scaling Using HPA Formula

Rolling average and moving window average are using the HPA formula.

1 // scal ingAlgor i thm funct ion calculates the Desired Repl icas based
on Algori thm 1.

2 // Input : Current Metrics , Desired Metrics , Current Relicas , and
Previous Decision .

3 // Output : Desired Repl icas and updated Previous Decision .
4 func scal ingAlgor i thm (repl icaCount int32 , m [][10] measurementPod ,

measurementIndex int32 , pMeasurement index int32) int32 {
5 var desiredRepl icas int32 = 0
6

7 // recal current metr ics funct ion to provide current metr ics for
the current scal ing period

8 var currMetr ics = currentMetr ics (m [:][:] , measurementIndex ,
pMeasurement index)

9

10 // HPA equation : Ceil ing (Current Repl icas * Current Metr ics /
Desired Metr ics) .

94

11 desiredRepl icas = int32 (math .Ceil (f loat64 (repl icaCount) *
currMetr ics / desiredMetr ics))

12 // Check policy (minRepl ica and maxRepl ica)
13 // After we calculate the desired replicas , we should check the

autoscal ing policy .
14 // also we should store the prvious decision whether is up or down

.
15 // recal l decision check funct ion
16 desiredRepl icas = getDesiredNumRepl ica (desiredRepl icas ,

repl icaCount)
17 fmt . Print ln (" Desired Replica = " , desiredReplicas , " Current

Metr ics = " , currMetrics , " Current Repl ica = " , repl icaCount)
18 return desiredRepl icas
19 }

Listing B.5: Scaling Algorithm 1

B.3 Scaling Policy Function

1 // Check policy and get the previous decsion
2 // After we calculate the desired replicas , we should check the

autoscal ing policy .
3 // Desired Replica cannot be greater than the Max Replica .
4 // Desired Replica cannot be less than the Min Replica .
5 func getDesiredNumRepl ica (desiredRepl ica int32 , repl icaCount int32)

int32 {
6 if desiredRepl ica > maxRepl ica {
7 desiredRepl ica = maxRepl ica
8 } else if desiredRepl ica < minRepl ica {
9 desiredRepl ica = minRepl ica

10 }
11 return desiredRepl ica
12 }

Listing B.6: Check Scaling Policy

B.4 Poll Replica Function

1 // This funct ion is cal led to check for the dif ference between
desired and current repl ica count

2 // The current repl ica should be updated in the next time interval .

95

3 // The number of containers should be instal led and running .
4 // if the current repl ica is not updated , we should wait unti l the

deployment updated by scale up or down based on the desired
repl ica .

5 func Pol lRepl icas (desiredRepl icaCount int32 , currRepl icaCount int32
, kube_cs * kubernetes . Cl ientset) {

6 fmt . Print ln ("THIS WILL SHIFT THE TIME LINE ... ")
7 for {
8 fmt . Print ln (" Current Replica = " , currRepl icaCount , " Desired

Replica " , desiredRepl icaCount)
9 t ime . Sleep (1 * time . Second)

10 // Updating the current repl ica in the deployment .
11 phpDeployment , err := kube_cs . AppsV1 () . Deployments (" default ") .

GetScale (context .TODO () , "php - apache " , metav1 . GetOptions {})
12 if err != nil {
13 fmt . Print ln (" Error : " , err)
14 return
15 }
16 // current repl ica count is updated by cal l ing the phpdeployment

and checked for the synchronacy
17 currRepl icaCount = phpDeployment . Status . Repl icas
18 if desiredRepl icaCount == currRepl icaCount {
19 fmt . Print ln (" System in Sync ")
20 return
21 }
22 }
23 }

Listing B.7: Poll Replica

B.5 Find Duplicate Measurement Function

1 // This funct ion is used to indicate if there is any dupl icate value
2 // Input : measurement index , current pod name , current metr ics time

stamp , previous measurement .
3 // Output : the container number in the current measurement that has

the same pod name and same timestamp .
4 func FindPreviousIndexDupl icateContainer (m [][10] measurementPod ,

index int32 , name string , t imestamp int64) int32 {
5 // check each container in a measurement
6 for i := 0; i < int (maxRepl ica) ; i++ {
7 // if the pod name is equal to prvious name AND if the t imestamp

96

is equal to the previous measurement
8 // return the number of container for the next measurement int32

(i) .
9 mustCheckDupl icateMeasurement := name == m[index -1][i]. PodName

&& int64 (m[index -1][i]. TimeStamp) == timestamp
10 if mustCheckDupl icateMeasurement {
11 return int32 (i)
12 }
13 }
14 // if the values does not match with the previous measurement ,

return -1
15 return -1
16 }

Listing B.8: Duplicate Measurement

B.6 Updating Measurement Function

1 // This funct ion is used to indicate if there is any dupl icate value
2 // Input : measurement index , current pod name , current metr ics time

stamp , previous measurement .
3 // Output : the container number in the current measurement that has

the same pod name and same timestamp .
4 // This funct ion is to get the pods ' information form kubelet

through the metr ics server
5 func updateMetr icsInArray (m [][10] measurementPod , measurementIndex

int32 , containerIndex int32 ,
6 podMetr ic v1beta1 . PodMetrics , container v1beta1 . ContainerMetr ics ,

isAccountedFor bool) {
7 // These value we don ' t have any control
8 // metr icTimestamp is t imestamp of kubelet (we consider metr ics

t imestamp to be 50 sec .)
9 // Creat ionTimestamp is the pol l ing time (here is set to be 10

second)
10 m[measurementIndex][containerIndex]. PodName = podMetr ic .

ObjectMeta .Name
11 m[measurementIndex][containerIndex]. WindowSize = podMetr ic . Window

. Durat ion . Seconds ()
12 m[measurementIndex][containerIndex]. TimeStamp = podMetr ic .

Timestamp .Time .Unix ()
13 m[measurementIndex][containerIndex]. Creat ionTimestamp = podMetr ic

. Creat ionTimestamp .Time .Unix ()

97

14 m[measurementIndex][containerIndex]. CPU = container . Usage .Cpu () .
ToDec () . AsApproximateFloat64 ()

15 // We are control l ing this value by checking if the provided
measurment has been taken into account or not

16 // True : we already take it into account
17 // False : we didn ' t take it yet . (considering it is not accounted

for calculat ion of CPU)
18 m[measurementIndex][containerIndex]. isAccountedFor =

isAccountedFor
19 }

Listing B.9: Updating Measurement

98

APPENDIX

C

EXPERIMENTS RESULTS

This appendix includes all the other three experiments �gures that are similar to E1 in

section 4.3.

99

(a) One-step history Algorithm Under-
Provisioning Accuracy

(b) Rolling Average Algorithm Under-
Provisioning Accuracy

(c) Moving Window Average Algorithm
Under-Provisioning Accuracy

(d) HPA with cooling down Algorithm Under-
Provisioning Accuracy

(e) HPA without cooling down Algorithm
Under-Provisioning Accuracy

Figure C.1: Comparison of The Under-Provisioning Accuracy Percentage for All Algorithms
(E2: NASA Dataset)

100

(a) One-step history Algorithm Over-
Provisioning Accuracy

(b) Rolling Average Algorithm Over-
Provisioning Accuracy

(c) Window Algorithm Over-Provisioning Ac-
curacy

(d) HPA with cooling down Algorithm Over-
Provisioning Accuracy

(e) HPA without cooling down Algorithm
Over-Provisioning Accuracy

Figure C.2: Comparison of The Over-Provisioning Accuracy Percentage for All Algorithms
(E2: NASA Dataset)

101

(a) One-step history Algorithm Under-
Provisioning Timeshare

(b) Rolling Average Algorithm Under-
Provisioning Timeshare

(c) Moving Window Average Algorithm
Under-Provisioning Timeshare

(d) HPA with cooling down Algorithm Under-
Provisioning Timeshare

(e) HPA without cooling down Algorithm
Under-Provisioning Timeshare

Figure C.3: Comparison of The Under-Provisioning Timeshare Percentage for All Algo-
rithms (E2: NASA Dataset)

102

	List of Tables
	List of Figures
	Introduction
	Problem Statement and Our Objectives
	Thesis Organization

	Background and Literature Review
	Cloud Computing
	Containers
	Infrastructure Management
	Kubernetes
	Kubernetes Cluster Architecture
	Kubernetes Objects
	Autoscaling Types
	Autoscaling Built-in Kubernetes

	Feedback-based Algorithms
	Related Work
	Platform for Dynamic Cloud Resource Provisioning
	KHPA-A
	Microscaler

	Problem Statement and Proposed Solution
	Problem Statement
	Research Questions
	Research Approach

	System Model
	System Design Components
	MAPE Loop
	System Model Flow

	Metrics Selection
	Proposed Algorithms
	Algorithm 1: One-step history
	Algorithm 2: Rolling Averages
	Algorithm 3: Moving Window Averages

	Evaluation and Results
	Workload
	FIFA World Cup 98 Web Servers
	Load Generator Setup

	Experiment Setup
	Calculating Average CPU Utilization
	Calculating the number of Desired Replicas

	Results
	The Top-Level Evaluation Questions
	Overall Evaluation

	Conclusion and Future Work
	Conclusion
	Future Work

	References
	APPENDICES
	Php-Apache Server and Load Generator Setup
	Docker Image
	Load Generator
	Deployment
	Metrics Server

	Podmetrics Golang Implementation
	Current Metrics Function
	Algorithm 1: One-Step History
	Algorithm 2: Rolling Average
	Algorithm 3: Moving Window Average

	Scaling Function
	Algorithm 1: One-Step History
	Scaling Using HPA Formula

	Scaling Policy Function
	Poll Replica Function
	Find Duplicate Measurement Function
	Updating Measurement Function

	Experiments Results

