
ABSTRACT

YAVUZ, ATTILA ALTAY. Efficient, Compromise Resilient and Compact Cryptographic Constructions
for Digital Forensics. (Under the direction of Dr. Peng Ning.)

Audit logs are a fundamental digital forensic mechanism for providing security in computer sys-
tems; they are used to keep track of important events regarding the system activities. In current large

distributed systems, protecting audit logs is a challenging task, especially in the presence of active at-
tackers. It is critical for such a system to be compromise-resilient (i.e., having forward security and

append-only integrity properties) such that when an attacker compromises a logging machine, she can-
not forge or selectively delete the log entries accumulated before the compromise. Unfortunately, exist-

ing secure audit logging schemes have limitations that make them impractical for real-life applications:
On the one hand, the symmetric schemes are not publicly verifiable, demand high storage, require on-

line Trusted Third Party (TTP) support, and are also vulnerable to certain attacks. On the other hand,
Public Key Cryptography (PKC)-based schemes require several Expensive Operations (ExpOps) (e.g.,

pairing), and thus are impractical for task-intensive and/or resource-constrained systems.
In this dissertation, we address the above problems by developing a series of novel cryptographic

constructions that achieve the most desirable properties of both symmetric and PKC-based schemes
simultaneously.

First, we propose a new class of signature schemes for Unattended Wireless Sensor Networks

(UWSN) called Hash-Based Sequential Aggregate and Forward-Secure Signature (HaSAFSS). Using
existing verification delays as an opportunity to introduce asymmetry, HaSAFSS schemes achieve high

efficiency, while still preserving public verifiability, forward security and compactness. The HaSAFSS
schemes are the only schemes in which both signers and verifiers get equal benefits of computational

efficiency. Symmetric HaSAFSS (Sym-HaSAFSS) and Elliptic Curve Cryptography-based HaSAFSS
(ECC-HaSAFSS) achieve the optimal (constant) signer and optimal verifier storage efficiency, respec-

tively. Self-SUstaining HaSAFSS (SU-HaSAFSS) achieves an optimal storage at both the signer and
the verifier sides by introducing a little more computation overhead.

Second, we develop a novel forward-secure and aggregate signature scheme called Blind-Aggregate-
Forward (BAF) to address the secure audit logging needs of resource-constrained devices. BAF can

address both real-time and non-real-time applications by achieving the public verifiability without re-
quiring any online TTP support or time factor. BAF is the only scheme that can produce a publicly

verifiable signature with very low computational, storage, and communication costs for the loggers.
Moreover, a variant of BAF (i.e., Fast-Immutable BAF) enables fine-grained log verification by preserv-

ing the optimal logger efficiency and security.
Third, we propose a new signature scheme called Log Forward-secure and Append-only Signature

(LogFAS) to address the secure logging needs of task-intensive applications with a large number of



loggers. LogFAS is the only secure audit logging scheme that can verify L log entries with always a
small and constant number of ExpOps regardless of the value of L. It is also the only alternative in

which each verifier stores only a small and constant size public key independent from the number of
loggers and the number of log entries to be verified. In addition, a variation of LogFAS can identify the

corrupted log entries with a sub-linear number of ExpOps when most entries are intact.
We prove that all of our schemes are secure under appropriate computational assumptions (in the

random oracle model). We also show that they are significantly more efficient and practical than all the
previous cryptographic secure audit logging schemes.
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Chapter 1

Introduction

Audit logs are used to track important events such as user activities and program executions in modern
computer systems, providing invaluable information about the state of the systems (e.g., intrusions,

crashes). Due to their forensic value, audit logs are an attractive target for attackers. For instance, an
experienced attacker may erase traces of her malicious activities from the logs, or modify the log entries

to implicate other users after compromising the system. Therefore, ensuring the integrity, authenticity
and accountability of audit logs is critical for any modern computer system [38, 57, 79, 104].

In current large and ubiquitous computer systems (e.g., Wireless Sensor Networks (WSN) [121]),
protecting audit logs is a difficult task, especially in the presence of active adversaries. In particular,

secure audit logging in task-intensive [79] and/or resource-constrained applications (e.g., WSNs [76],
RFID tags [9]) is even more challenging. Unfortunately, existing secure audit logging solutions have

significant limitations, and therefore cannot meet the requirements of such applications.

In this chapter, we first identify the limitations of naive (non-cryptographic) secure audit logging
approaches and then enumerate the desirable properties of an ideal cryptographic secure audit logging

scheme. We then identify the limitations of existing cryptographic secure audit logging schemes. Last,
we present our solutions that address all these limitations.

1.1 Motivation

The central role of audit logs in computer forensics lead to the proposal of numerous log protection tech-

niques. However, none of the previous solutions can address the requirements of secure audit logging
in task-intensive and/or resource-constrained applications.

1.1.1 The Limitations of Naive (Non-Cryptographic) Approaches

Early naive secure audit logging approaches protect audit logs by preventing the adversary from ac-

cessing and/or modifying log entries. These approaches and their limitations have been identified
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in [18, 43, 78, 79, 94, 103, 120] as follows:

• One approach is to rely on an omni-reliable and secure end-to-end real-time communication chan-
nel between each logging machine and a remote Trusted Third Party (TTP) to transmit log entries

before the adversary compromises the logging machine. However, in modern IT systems, it is
impractical to assume an omni-reliable and secure end-to-end real-time connection between each

logging machine and a TTP [79, 104]. For instance, many real-life application driven by the
Internet based services are considered Delay Tolerant Networks (DTNs) [50, 51, 53], which are

characterized by the lack of such a continuous end-to-end communication channel. Similarly,
various ubiquitous systems such as Unattended WSN (UWSN) [46,76,121] cannot guarantee the

presence of such a communication channel.

• A straightforward approach is to back up log entries to a write-only medium (e.g., CD/DVD)
assuming that the backup occurs before the logging machine is compromised. However, even for

a moderate volume of logging activity, relying on a write-only medium such as CD/DVD for log
protection is impractical.

• Another approach is to assume both the presence and “bug-freeness” of a tamper resistant hard-
ware in each logging machine that prevents the adversary from reaching audit logs. However, in

heterogeneous systems (e.g., compute clouds), it is impractical to assume both the presence and
“bug-freeness” of a tamper resistant hardware on all types of platforms (e.g., wireless sensors [76],

commercial off-the-shelf systems [18]). For instance, the recently introduced Write-Once-Read-
Many (WORM) drives [34] were rapidly adopted for secure audit purposes [115]. However, sev-

eral vulnerabilities of WORM drives were later identified (e.g., [58, 94]). This further confirms
the danger in simply relying on a tamper-resistant hardware.

1.1.2 Desirable Properties of an Ideal Cryptographic Secure Audit Logging Scheme

The above limitations highlight the need for developing cryptographic mechanisms that can protect audit

logs on physically unprotected machines without assuming continuous end-to-end real-time communi-
cation. There has been extensive research invested in this direction (e.g., [18, 43, 47, 57, 75, 78, 79, 103,

104, 120]). It is desirable for such schemes to have the following properties:

• Forward Security and Append-only (aggregate) Properties: Since the log verifiers are not neces-
sarily available to verify the log entries once they are generated, a logger may have to accumulate

log entries over a period of time. If the adversary takes full control of the logging machine in
this duration, no cryptographic mechanism can prevent her from modifying the post-attack log

entries (due to her control over the system)1. However, the integrity of log entries accumulated
1Post-compromise data can only be recovered/controlled if a remote online TTP or a locally trusted intrusion resilient

hardware periodically checks the untrusted machine (e.g., key insulated schemes [49]) [79].
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before the attack should be protected [18, 43, 57, 75, 78, 79, 120] (i.e., forward security [2]). Note
that this protection should not only guarantee the integrity of individual log entries but also the

integrity of log stream as a whole. That is, no selective deletion or truncation of log entries should
be possible. This is achieved with signature aggregation (i.e., append-only property) [75, 76, 79]

in addition to forward security.

• Efficiency: Computational overhead introduced by the secure audit logging scheme must be low
at both the logger and the log verifier sides.

• Public Verifiability: Unlike schemes that enable only a few privileged entities who share secrets

with loggers to verify the integrity of log entries, a scheme supporting public verifiability permits
any entity to do so. Public verifiability is a desirable property for some critical applications, such

as electronic voting, where logs need to be audited and verified by the public [20], and financial
applications, where financial books of publicly held companies need to be verified by current and

potential future share holders [57, 79].

• Provable Security: It is necessary for a scheme to have formal security assessments for its security
properties, including attacks specific to audit logging systems such as truncation and delayed

detection attacks.2 (The details of these attacks are given in Chapter 4.)

• Independence of Continuous Trusted Server Support: Ideally, a secure audit logging scheme

should not rely on a continuous online trusted server, though an offline server or a passive server
may be used from time to time. This is desirable since any dependence on the continuous com-

munication with a trusted server could be exploited by an adversary to defeat the scheme (e.g.,

delayed detection attacks [78, 79, 120]).

1.1.3 The Limitations of Symmetric Cryptography based Secure Audit Logging Schemes

The first cryptographic schemes (e.g., [17,18,103,104]) addressing the forward-secure audit logging rely
on the symmetric cryptography to achieve the computational efficiency. These schemes adopted various

symmetric primitives such as forward-secure Message Authentication Code (MAC) [69], forward-
secure Pseudo Random Number Generators (PRNGs) and cryptographic hash chains [19, 70]. Despite

their computational efficiency, these symmetric schemes have critical drawbacks:

• The symmetric nature of these schemes does not allow public verifiability, and therefore they

cannot address applications requiring public auditing [57, 75, 76, 120] (e.g., financial auditing for
cooperations [4] and secure auditing for electronic voting [20]).

2Delayed detection attack occurs if the log protection mechanism cannot the achieve immediate verification property.
For instance, some secure audit logging schemes (e.g., [104]) require an online TTP support to verify the log entries. In
such schemes, log verifiers cannot detect whether the log entries are manipulated until their TTP provides necessary keying
information to them.
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• They either need full symmetric key distribution (e.g., FssAgg-MAC in [76]), which incurs high
storage overhead, or they require continuous remote trusted server support [103], which entails

costly maintenance and attracts potential single-point of failures.

• They are vulnerable to certain attacks such as truncation and delayed detection attacks [75, 79].

1.1.4 The Limitations of PKC-based Secure Audit Logging Schemes

To address the limitations of symmetric cryptography based secure audit logging solutions, several PKC-

based secure audit logging schemes have been proposed. Logcrypt extends the forward-secure MAC
strategy to the PKC domain; it is publicly verifiable and secure against the delayed detection attack

without requiring online TTP support [57]. However, Logcrypt incurs high storage/communication
overheads and it is also still vulnerable to the truncation attack. Ma and Tsudik proposed FssAgg

schemes ( [75,76,78,79]), which use forward-secure signatures and aggregate signatures in an integrated
way. These schemes require only a single-final aggregate signature for all the accumulated log entries

(due to the ability to aggregate individual signatures into a single compact signature), and therefore
are signature storage/transmission efficient. This approach also provides security against the truncation

attack (i.e., “all-or-nothing” property) [75].
However, despite their advantages, all existing PKC-based secure audit logging schemes share draw-

backs that make them impractical for certain applications:

• These schemes require several Expensive Operations (ExpOps)3 to compute and verify the sig-

natures of accumulated log entries. Therefore, they are impractical for secure audit logging in
task-intensive and/or resource-constrained applications.

• To verify a particular log entry, all these schemes (e.g., [75, 76, 78]) force log verifiers to verify

the entire set of log entries, which entails a linear number of ExpOps. A failure in this verification
does not give any information about which log entry(ies) is (are) responsible for the failure. The

iFssAgg schemes [79] mitigated these problems by allowing a more fine-grained verification.
However, iFssAgg schemes double the signature computation and verification costs of their base

FssAgg schemes to prevent the truncation attack. Moreover, the verification of a subset of given
log entries still requires linear ExpOps in terms of the size of the given subset. Also, even if a

small fraction of log entries are damaged, detecting damaged entry(ies) requires a linear number
of ExpOps.

• All these schemes rely on only heuristic security arguments to justify their security against the

truncation attack. However, security-critic applications demand provable security.
3For brevity, in this dissertation, we refer to an expensive cryptographic operation such as modular exponentiation [109]

and pairing [82] as an ExpOp.
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1.2 Our Contributions

The above discussion indicates that existing secure audit logging schemes cannot meet the requirements

of task-intensive and/or resource-constrained applications.

In this dissertation, we developed a series of efficient, compromise resilient and compact cryp-
tographic constructions to meet these requirements. We summarize our proposed schemes and their

properties as follows:

1. Hash-Based Sequential Aggregate and Forward-Secure Signature (HaSAFSS) for Unattended

Wireless Sensor Networks (UWSNs) [121, 122]: Resource-constraints [84] and the lack of real-

time communication [50] make secure audit logging a challenging task in UWNSs, especially
in the presence of active adversaries [76]. To address this problem, we propose a new class of

signature schemes, which we refer to as Hash-Based Sequential Aggregate and Forward-Secure

Signature (HaSAFSS).

HaSAFSS schemes utilize existing verification delays in UWSNs to introduce asymmetry be-
tween signers and verifiers. In this way, they integrate the efficiency of MAC-based aggregate

signatures and the public verifiability of bilinear map based signatures by preserving the forward

security via Timed-Release Encryption (TRE) [36].

We develop three specific HaSAFSS schemes, Symmetric HaSAFSS (Sym-HaSAFSS), Elliptic

Curve Cryptography (ECC) based HaSAFSS (ECC-HaSAFSS) and self-SUstaining HaSAFSS
(SU-HaSAFSS).

The desirable properties of HaSAFSS schemes are summarized below:

(a) HaSAFSS schemes achieve public verifiability and computational efficiency simultaneously.

(b) HaSAFSS schemes are the only schemes that allow both signers and verifiers to get equal

benefits of the optimal (i.e., ExpOp-free) computational efficiency.

(c) HaSAFSS schemes allow a signer to sequentially generate a compact and fixed-size signa-
ture.

(d) Sym-HaSAFSS and ECC-HaSAFSS complement each other in terms of their storage re-

quirements by offering different alternatives for different applications. SU-HaSAFSS achieves
the optimal (i.e., constant key/signature sizes) storage efficiency for both signers and veri-

fiers by introducing a little more computation. However, it still remains more efficient than
all the previous publicly verifiable alternatives.

HaSAFSS schemes are ideal solutions for UWSNs and other applications having similar Non-
Real-Time (NRT) communication characteristics.
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2. BAF and FI-BAF: Efficient, Compact and Compromise Resilient Cryptographic Schemes for Se-

cure Audit Logging in Resource-Constrained Devices [120, 123]: Publicly verifiable secure log-

ging in resource-constrained devices is a hard task due to the computation and storage limitations
of such devices. Unfortunately, all previous forward-secure and/or compact (aggregate) crypto-

graphic tools are computationally costly (e.g., BM [12], BLS [26], FssAgg [75, 79]).

Despite being computationally efficient, the HaSAFSS schemes cannot achieve immediate verifi-

cation, which restricts their use for real-time applications. Moreover, the HaSAFSS schemes need
a passive TTP support, which might not be available in certain applications.

To fulfill the need of an optimal signer efficient secure logging scheme with the immediate ver-
ification property, we developed a new forward-secure and aggregate cryptographic construction

called Blind Aggregate Forward (BAF) along with its extension Fast-Immutable BAF (FI-BAF).
The main idea is to use simple but efficient algebraic blinding operations to compute individual

signatures of log entries, which can be aggregated with just a modular addition operation. The
blinding and aggregation operations preserve forward security, verifiability and indistinguisha-

bility without requiring any ExpOp at the logging device. This approach offers the following
desirable properties:

(a) BAF does not require a time factor to be publicly verifiable. Therefore, it can address real-
time applications by achieving the immediate verification property.

(b) BAF does not need online TTP support to enable the signature verification. This eliminates

the potential single point of failure risks stemming from TTP dependence, and also makes
BAF more scalable than the symmetric schemes (e.g., [18, 76, 103, 104]) and the HaSAFSS

schemes.

(c) In BAF, signing a single log entry requires only a few cryptographic hash operations. Hence,
it is significantly more computationally efficient than all PKC-based schemes at the signer

side.

(d) BAF can produce publicly verifiable forward-secure and aggregate signatures with near-zero
storage and communication costs for the loggers, even if the signing procedure is ExpOp-

free.

(e) BAF is proven to be ForWard-secure Aggregate Existentially Unforgeable against Chosen
Message Attack (FAEU-CMA) in the Random Oracle Model (ROM) [13] based on the in-

tractability of Discrete Logarithm Problem (DLP) [109]. Moreover, BAF provides a formal
proof against the truncation attack without the help of an external signature scheme (the

details are given in Chapter 4).

(f) An extension of BAF, Fast-Immutable BAF (FI-BAF), allows the verification of a particular

log entry without compromising the security of the original BAF as well as preserving its
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computational efficiency. FI-BAF is also more efficient than its immutable counterparts (i.e.,
iFssAgg schemes [75]) at the signer side.

All the above properties make BAF an ideal alternative for secure logging on resource-constrained
devices.

3. LogFAS: Efficient, Compromise Resilient and Append-only Cryptographic Schemes with Verifier

Efficiency: In various applications, system auditors (i.e., verifiers) are required to monitor a large

numbers of logging machines in real time. This requirement forces verifiers to process a large
numbers of audit logs simultaneously, and also incurs heavy public key/certificate storage over-

head. All previous publicly verifiable secure audit logging schemes are costly at the verifier side.
Despite being signer efficient, BAF also requires an ExpOp per-item at the verifier side, which

might be costly for some applications. As discussed before, HaSAFSS schemes are not suitable
for real-time log verification.

To address these problems, we propose a new forward-secure and append-only signature scheme
called Log Forward-secure and Append-only Signature (LogFAS). LogFAS utilizes various cryp-

tographic primitives including incremental hashing [11], DSA tokens [92] and Schnorr signa-
ture [105] in novel ways, which offers the following unique properties:

(a) LogFAS is the only PKC-based forward-secure and append-only construction that can verify

L items with a small and constant number of ExpOp(s) regardless of the value of L. All the
previous PKC-based alternatives require a linear number of ExpOps with respect to the

number of log entries L. Hence, LogFAS is significantly more computational-efficient than
all previous PKC-based schemes at the verifier side.

(b) LogFAS requires each verifier to store only a small and constant size public key. This
makes LogFAS the most verifier-storage-efficient among the publicly verifiable secure audit

logging schemes.

(c) Similar to BAF, LogFAS achieves the public verifiability without requiring any online TTP

support or a time factor.

(d) LogFAS is proven to be secure in ROM [13] based on the existential unforgeability [16] of

the Schnorr signature [105] and the Target Collision Resistance (TCR) property of incre-
mental hashing IH [11].

(e) A variant of LogFAS can identify the corrupted log entries with a sub-linear number of
ExpOps when most log entries are intact. In contrast, the other schemes always require a

linear number of ExpOps.

All the above properties make LogFAS an ideal choice for task-intensive log verification in real-
time applications.
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1.3 Organization of Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 gives background information

and related work. Chapter 3 presents the HaSAFSS schemes in detail. Chapter 4 provides the details

of BAF and FI-BAF. Chapter 5 presents LogFAS and its extension in detail. Chapter 6 concludes this
dissertation and discusses future work.
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Chapter 2

Background and Related Work

In this chapter, we provide background information and related works. We first give a review of forward-
secure and/or aggregate signatures, which constitute the basis of our schemes. We then discuss works

related to the HaSAFSS schemes [121, 122] including time-related cryptographic primitives and self-
healing techniques in UWSNs. We review the previous cryptographic secure audit logging schemes,

which are then compared with our schemes in detail in their own chapters. Lastly, we briefly dis-
cuss Elliptic Curve Cryptography (ECC), on which ECC-HaSAFSS in [121] and the implementation of

BAF [120] are constructed.

2.1 Forward Secure and/or Aggregate Signature Schemes

We briefly investigate the previous forward-secure and/or aggregate signature schemes below.

2.1.1 Forward-Secure Signature Schemes

A forward-secure signature aims to minimize the effect of key compromises. This goal is achieved via

the sign-evolve-delete strategy, which can be exemplified by the first forward-secure signature scheme
proposed by Anderson in [8]. Anderson’s scheme can be constructed from any standard signature

scheme SGN (e.g, [93]) generically. The intuition is as follows:
The signer first generates L private/public key pairs as sk ← (sk0, . . . , skL) and PK ← (PK 0, . . . ,

PKL), respectively, where L denotes the maximum number of time periods that a signer can use. Each
{sk j ,PK j}Lj=0 is associated with a time period tj .

For each time period tj , 0 ≤ j ≤ L, the signer computes the signature on data items Dj received
in the duration of tj as σj ← SGN .Sigskj

(Dj). The signer then updates the private key by simply

deleting sk j . Assume that the signer computed (σ0, . . . , σl) on data items (D0, . . . , Dl) until she is
compromised by the adversary in tl+1. After the compromise, the adversary cannot forge (σ0, . . . , σl),
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since their associated private keys were deleted. That is, forging data items accumulated before the
compromise is as difficult as breaking SGN .

The limitation of this construction is that all performance characteristics grow linearly with the value
of L. That is, the storage overhead is linear with respect to the value of L at both the signer and the

verifier sides. Moreover, the signature generation and signature verification require a SGN .Sig and
a SGN .Ver operation for per-item, respectively (i.e., O(L)ExpOp at both the signer and the verifier

sides).
Several new schemes were later proposed to address these limitations. We can classify these schemes

in two categories: Schemes based on a specific number theoretic assumption, and generic schemes that

can be constructed from any standard signature scheme. We give a brief overview of these approaches
below.

Non-generic Forward-Secure Signature Schemes

Bellare and Miner (BM) proposed the first formalized forward-secure signature scheme in [12] by fol-
lowing Anderson’s scheme [8]. The BM scheme relies on the intractability of factoring a Blum-Williams

integer. Most notably, in this scheme, the number of private and public keys as well as the length of
signature do not grow linearly with L. However, the sizes of these individual private and public keys are

large. Abdalla and Reyzin (AR) improved the performance of BM [12] in [2] by shortening the lengths
of private and public keys. However, the signature generation and signature verification of AR are more

costly than that of BM.
Kozlov and Reyzin (KR) developed a forward-secure signature in [67] that achieves a computation-

efficient key update (i.e., one modular exponentiation for each key update). This property is useful
for the scenarios, in which time intervals are evolved frequently. Itkis and Reyzin (IR) developed a

forward-secure signature scheme in [63], which is based on Guillou-Quisquater signature [54]. In AR,

the computational cost of the signature generation and verification is only two modular exponentiations
with short exponents. However, the key update operation of IR is computationally expensive.

Boyen et al. proposed a forward-secure signature scheme in [28], where key update can be per-
formed on encrypted keys as a second layer of security. Later, other schemes with similar properties

were also proposed (e.g., [71]).
The main advantage of these non-generic signature schemes is that, they show a better performance

for certain scenarios than a generic scheme (e.g., frequent key evolve [67] and constructions specifically
designed for secure audit logging [76, 121] and WNSs [84]).

Generic Forward-Secure Signature Schemes

The first generic forward-secure signature is Anderson’s scheme [8], which was described in subsection
2.1.1. Bellare and Miner (BM) developed a generic construction in [12] (in addition to their non-generic
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construction), which utilizes a binary tree approach to achieve constant public key and signature sizes.
However, its private key size and signing/verifying operations are all logarithmic with respect to the

value of L (instead of a single ExpOp per-item). Later, Malkin et al. developed a highly efficient
generic construction referred to as the MMM scheme [80]. The MMM scheme utilizes Merkle tree [88]

based certification chains combined with the binary tree scheme of BM [12]. This enables the MMM
scheme to achieve a practically unbounded number of time periods. We briefly discuss MMM scheme

later in Section 3.1.
Krawczyk proposed another generic construction in [68], which utilizes Forward-secure Pseudo

Random Number Generators (FWPRNGs) and a standard signature scheme SGN . In this scheme, the

signer generates an initial private key sk0, and then generates L public keys and their corresponding
certificates. These public keys and certificates are given to the verifiers before the deployment. In

signature generation, for each time period tj , 0 ≤ j ≤ L, the signer computes σj ← SGN .Sigskj
(Dj)

on Dj , and then updates the private key sk j as sk j+1 ← F (sk j), where F is a FWPRNG function

(such a function can be obtained from a standard cryptographic hash function such as SHA-1 [109]).
The signer then deletes sk j from the memory permanently. The verification is done as in Anderson’s

scheme [8]. Our schemes the HaSAFSS [121, 122] and the BAF [120] also follow a similar key update
strategy.

The generic forward-secure signature schemes have two main advantages. First, they achieve prov-
able security just by assuming a secure standard signature scheme exists [5]. In contrast, non-generic

schemes can be proven to be secure in the Random Oracle Model (ROM) [13]. Second, they can be
constructed from any standard signature scheme. Hence, they can trade-off computational and storage

efficiencies by using different base standard signature schemes with different performance characteris-
tics [5].

Key Update Strategies for Forward-secure Signatures

A forward-secure signature scheme may operate in one of the following two key update models:

1. Per-item model: Sign each individual entry Dj as soon as it is received.

2. Per-period model: Sign a group of entry D′
j for each time period tj , where D′

j denotes all indi-

vidual data items received in tj .

In terms of the key evolving strategy, per-item and per-period key update models are identical. How-

ever, they offer a storage-security trade-off [75] that can be decided according to the requirements of
audit logging applications. That is, the per-item model provides the forward security of each individual

data item, but it demands more storage overhead. In contrast, the per-period model provides the forward
security only across time periods, but it demands less storage overhead.
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2.1.2 Aggregate Signature Schemes

Another important digital signature primitive is the aggregate signature, which aggregates n individual
signatures associated with n different data items into a single, compact signature. That is, assume

that each user j, 0 ≤ j ≤ L possesses a private/public key pair (sk j ,PK j), and wants to attest to a
message Dj . Each user first signs Dj by obtaining σj , and these signatures can be combined into a

single aggregate signature σ0,L by any party. The aggregate signature verification algorithm verifies
σ0,L on all messages (D0, . . . , DL) for all public keys (PK 0, . . . ,PKL). Therefore, σ0,L provides the

non-repudiation of all messages (D0, . . . , DL) simultaneously [73].
Aggregate digital signatures are useful primitives for various real-life applications including certifi-

cate chains and secure routing. For instance, consider a Public Key Infrastructure (PKI) of depth L.
Here, the certificate CertIDi on PK i associated with user IDi is comprised of a certificate chain, which

is issued by a hierarchy of Certification Authorities (CAs). This certificate chain is long in complex CA
hierarchies, and the user ID i is required to include CertIDi in his all (new) signature/public key trans-

missions. It is therefore desirable to keep the length of authentication tags in CertIDi constant-size [73].
The first aggregate signature scheme was proposed in [26], which utilizes the BLS (Boneh-Lynn-

Shacham) signatures [27]. This scheme is proven to be secure in ROM under the Bilinear Diffie-Hellman
(BDH) problem [66]. It uses a full domain hash function and a single modular exponentiation under

large prime p to compute an individual signature for a given data item. The aggregation of two such
individual signatures is just a modular multiplication operation under mod p. Moreover, the sizes of pri-

vate key and aggregate signature are small, especially when the scheme is implemented in elliptic curves

(see Section 2.4). However, the signature verification requires a pairing operation (see Section 3.1) for
each item to be verified, which makes it computationally costly.

Various new aggregate signature schemes have been developed to offer different properties. Lysyan-
skaya et al. [73] proposed a sequential aggregate signature, in which the order of signers are preserved by

the signature scheme. This scheme is based on a family of certified trapdoor permutations (TPDs) [10].
Lysyanskaya et al. gave a formal definition of sequential aggregate signatures, and then provided tight

security reductions in ROM for homomorphic and claw-free TDPs. Zhu et al. gave applications of
aggregate signatures to the secure routing discovery [126] and reliable broadcast communication [127]

problems. Lu et al. proposed a sequential aggregate signature and a multi-signature scheme in [72] that
are proven to be secure in standard security model [31] instead of ROM [13]. Mu et al. [90] proposed

a compact sequential aggregate signature scheme based on RSA [102] with formal security definitions.
Boldyreva et al. developed multisignatures and identity-based sequential aggregate signatures in [21]

for secure routing applications. Their ordered multi-signature (OMS) allows signers to attest a common
message sequentially with a higher computational and storage efficiency than traditional sequential ag-

gregate signatures. The security of OMS relies on the intractability of the Computational Diffie-Hellman
(CDH) problem [64]. The identity-based sequential signature (IBSAS) aims to address bandwidth ef-
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ficient secure routing, since identity-based primitives do not require to transmit large public keys and
certificates. Boldyreva et al. claimed that IBSAS is secure based on an assumption called as M-LRWS

(the modified version of LRWS introduced in [74]). However, Hwang et al. [59] showed that IBSAS is
universally forgeable due to the fact that the intractability assumption of M-LRWS does not hold.

2.1.3 Forward-Secure and Aggregate Signature Schemes

Ma et al. proposed two forward-secure and aggregate signature schemes in [76]: FssAgg-BLS and
FssAgg-MAC. These schemes are integrated signature schemes, which achieve signature aggregation

and forward security simultaneously. FssAgg-BLS uses forward-secure hash chains and BLS signa-
tures [26] to compute and verify aggregate signatures. However, similar to the traditional BLS-based

aggregate signature schemes, FssAgg-BLS is also computationally costly.
In FssAgg-MAC, a TTP distributes a secret chain root sk0 to the signer and the verifier before the

system deployment. In the signature generation phase, assume that the signer has accumulated i data
items (D0, D1, ..., Di−1) and computed their aggregate signature σ0,i−1 at a time period tw. When the

signer collects data item Di, she first computes the individual signature of Di as σi ← MACsk i
(Di)

and aggregates σi into σ0,i−1 by simply computing σ0,i ← H(σ0,i−1||σi). The signer then updates the

chain key as sk i+1 ← H(sk i) and deletes sk i when she advances to the next time period tw+1, where
H denotes a cryptographic hash function (e.g., SHA-1 [109]). Since the verifier knows the secret chain

root, she can verify σ0,i by following the same procedure as in the signature generation. Despite its
effectiveness and simplicity, FssAgg-MAC does not allow signatures to be publicly verifiable.

To reduce storage/computational overhead of the pioneering FssAgg primitives, Ma proposed two
additional FssAgg schemes [75] called FssAgg-Bellare-Miner (FssAgg-BM) and FssAgg-Abdalla-Reyzin

(FssAgg-AR), which were derived from the forward-secure signature schemes in [12] and in [2], re-
spectively. FssAgg-BM utilizes a technique that allows individual BM [12] signature pairs to be ag-

gregated sequentially without destroying their verifiability and forward security. The FssAgg-AR fol-
lows a closely related strategy to sequentially aggregate the forward-secure signature pairs of the AR

scheme [2]. The security of FssAgg-BM and FssAgg-AR relies on the assumption that a squaring
operation is a one-way function, and the factorization of a Blum-Williams integer into two primes is

intractable for appropriate parameter sizes. FssAgg-AR is more storage efficient than FssAgg-BM,
but FssAgg-BM requires fewer squaring operations, and therefore it is more computationally efficient

than FssAgg-AR. Despite both FssAgg-BM and FssAgg-AR are more computationally efficient than
FssAgg-BLS in [76] at the verifier side, they are still computationally expensive for secure audit log-

ging in task-intensive and/or resource-constrained applications.
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2.2 Time-Related Cryptographic Primitives and Self-Healing Techniques

Our proposed HaSAFSS schemes [121,122] rely on a time factor to achieve their intended goals. Specif-

ically, HaSAFSS schemes utilize the Timed-Release Encryption (TRE) concept to introduce the desired

asymmetry between the signers and verifiers to achieve public verifiability and forward security simul-
taneously. Therefore, we first briefly discuss the TRE concept. We then summarize TESLA, which also

uses a time factor to introduce an asymmetry between the signers and verifiers.
We finally discuss the self-healing techniques in UWSNs that are distantly related to HaSAFSS

schemes.

2.2.1 Timed-Release Encryption (TRE)

The purpose of TRE [85] is to encrypt a message in such a way that no entity including the intended
receivers can decrypt it until a pre-defined future time. TRE has several applications in real-life [41]:

• Confidential Commitments: In various applications such as sealed-bid auctions, electronic lot-

teries and legal wills, the ciphertext can be considered as a commitment of the sender. This
commitment should be available to its intended recipients no earlier than a designed future time.

The properties of TRE satisfies these requirements. That is, after the sender provides the cipher-
text (i.e., the commitment) to the recipients, she cannot change the original message anymore. At

the same time, receivers cannot obtain any information about the message content before its in-
tended time. Once the time trapdoor information is released, the receivers can recover the original

message from the ciphertext.

• Bulk Information Pre-distribution: TRE enables a sender to send a bulk ciphertext beforehand

without the risk of an information leakage. Since the trapdoor information is significantly smaller
than the ciphertext (and even than the original message), this allows a rapid dissemination (i.e., the

recovery) of the encrypted content at its desired availability time. In this way, the sender can avoid
several problems that may stem from the burst transmission of bulk data (e.g., network/server

bottlenecks). Such applications include the distribution of entertainment media, software license
and scheduled payments.

One approach to obtain a TRE scheme is to force recipients to perform intensive computations on

a given challenge (i.e., the ciphertext). For instance, the sender can encrypt the message with a short
symmetric key. However, this approach imposes an intolerable computational overhead to the recipients,

and also the release-time cannot be controlled precisely, since the computation power may change from
one recipient to another.

The majority of modern TRE schemes are based on a Trusted Agent (TA), in which a time server
provides universally accepted time reference and trapdoor information to the users [101]. Hence, users
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can decrypt the ciphertext when its related trapdoor information is released by the TA. Some preliminary
TA-based schemes require a multi-round interaction with the TA (e.g., [45]). Blake et al. developed the

first TRE scheme in [36] that does not require an interaction with the TA. However, they did not provide
a formal security analysis of their construction. Later, non-interactive TRE schemes with formal security

assessments were proposed (e.g., [33, 37]).
In some applications, recipients might need to decrypt the ciphertext before its intended time (with

the permission of the sender). To address this need, TRE schemes with a pre-open capability were
developed [41, 60]. That is, the sender helps recipients to decrypt the ciphertext by publishing a pre-

open key that enables the decryption without interacting with the TA. In these schemes, it is important to

prevent the sender from manipulating the ciphertext in a predictable way via this auxiliary key, and the
security model should capture this threat as well. Later, generic TRE schemes, which can be constructed

from any traditional public key encryption scheme or an IBE scheme [25], were proposed (e.g., [83]).
Our schemes Sym-HaSAFSS and ECC-HaSAFSS only use the basic TRE concept [85] to fulfill the

optimal computational efficiency goal. Our other scheme SU-HaSAFSS inspires from the time trapdoor
mechanism used in [113] to achieve the self-sustainability and optimal storage efficiency, but it is more

computationally costly than Sym-HaSAFSS and ECC-HaSAFSS.

2.2.2 TESLA

Another cryptographic scheme that utilizes the time factor is TESLA [96]. TESLA is an efficient broad-
cast authentication protocol that also uses delayed disclosure of the keying material, assuming that

senders and receivers are loosely synchronized. However, TESLA cannot address the cryptographic
secure logging problem properly due to the following limitations:

• TESLA cannot achieve forward security, since an active adversary compromising a sender can

forge MACs valid for the given time interval.

• TESLA does not use a signature aggregation strategy, and therefore its communication overhead

is linear with respect to the number of data items to be signed.

• TESLA cannot be used for some UWSN applications, in which a loose time synchronization
cannot be guaranteed for the network entities.

2.2.3 Self-Healing Techniques

Recently, a series of studies [77,98,99] based on self-healing techniques have been proposed to achieve

data survival in UWSNs. These studies proposed mobile adversary models, in which the adversary
compromises the sensors and deletes the data accumulated in them. To confront such an adversary, they

propose collaborative techniques, in which non-compromised sensors collectively attempt to recover a
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compromised sensor [77, 99] by introducing local randomness (with a PRNG) to their neighborhood.
DISH [77] assumes a read-only adversary and targets data secrecy. POSH [99] allows for constrained

write-only adversaries and targets data survival. Pietro et. al. [98] elaborated the adversary models given
in [77, 99] and provided experimental/analytical results for them.

Note that the adversary models and security goals in [77, 98, 99] are different from our schemes. In
HaSAFSS schemes (similar to FssAgg [76]), the goal of the adversary is to forge the data. However,

the goal of the adversary in [77, 98, 99] is to prevent the data from reaching the sink (not modifying or
forging it).

2.3 Secure Audit Logging Schemes

We first survey the schemes that are based on forward-secure stream integrity and digital signatures. We
then briefly discuss secure auditing approaches with different properties than those of our own schemes.

2.3.1 Forward-secure Stream Integrity and Digital Signature based Solutions

The pioneering studies addressing the forward-secure stream integrity for audit logging were presented

in [17, 18]. The main focus of these schemes is to formally define and analyze forward-secure MACs
and PRNGs. Based on their forward-secure MAC construction, they also presented a secure logging

scheme, in which log entries are tagged and indexed according to evolving time periods.
Schneier et al. [103, 104] proposed secure logging schemes that use one-way hash chains together

with forward-secure MACs to avoid using tags and indexes. In these schemes, a trusted server provides
auxiliary keying materials to the verifiers to enable log verification. While reducing the need for trust

in the verifiers, this approach introduces a trusted server that has to be online for each verification. This
brings architectural difficulties as well as making the system open to a single point of failure.

Logcrypt [57] extended the idea given in [18, 103] to the PKC domain by replacing MACs with
digital signatures and ID-based cryptography. Logcrypt can also be considered as an extension of An-

derson’s scheme [8] with the addition of a confidentiality service. In this scheme, each signer generates
a private/public key pair for a digital signature and/or PKC-based encryption scheme (traditional or

Identity-Based Encryption (IBE)). For each log entry, the signer computes a signature and also (option-
ally) encrypts this log entry. The private keys are evolved as in Anderson’s scheme.

Finally, Ma et al. proposed a set of comprehensive secure audit logging schemes in [78,79] based on
their forward-secure and aggregate signature schemes given in [75, 76], whose properties were outlined

in 2.1.3. The detailed analysis and comparison of all these schemes with ours will be given in their
corresponding chapters.
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2.3.2 Audit Logging Schemes Aiming with Different Properties to Our Own

Itkis proposed cryptographic tamper resistance techniques in [62] that can detect tampering even if
all the keying material is compromised. Our schemes can be combined with the Itkis model as any

forward-secure signature [62].
Davis et al. proposed time-scoped search techniques on encrypted audit logs [47]. Waters et al.

proposed an audit logging scheme [116] relying on IBE, which enables an encrypted search on logs
without relying on a time factor. There are several other encrypted search schemes (e.g., [24, 44, 107])

that can be used for the same purpose. All these schemes can be coupled with our schemes to provide
confidentiality and effective log utilization.

There is a line of work that relies on authenticated data structures to protect audit logs in distributed
systems [7, 81, 95]. While being computationally efficient, these approaches do not provide forward

security. Furthermore, any authenticated data structure can be strengthened with a forward-secure sig-
nature [43]. Therefore, our schemes can serve these authenticated data structures as a forward-secure

and aggregate digital signature primitive.
Apart from the above schemes, there is another line of work that utilizes a trusted hardware to

enhance the security of audit logs. Chong et al. proposed an extension to the scheme in [103] by using
tamper-resistant hardware [39]. Xu et al. proposed SAWS [118], which relies on a Trusted Computing

Base (TCB) to protect private keys used for PKC operations.
Accorsi gave surveys on existing secure audit logging schemes in [3, 4].

2.4 Elliptic Curve Cryptography (ECC)

Elliptic curve cryptography (ECC) is an approach to public-key cryptography based on the algebraic
structure of elliptic curves over finite fields [56, 109, 117]. Elliptic curves used in cryptography are

typically defined over two types of finite fields: prime fields Fp, where p is a large prime number, and
binary extension fields F2m . In our schemes, we only use elliptic curves over Fp.

An elliptic curve over Fp is defined by a cubic equation y2 = x3 + ax + b, where a, b ∈ Fp are
constants such that 4a3 + 27b3 ̸= 0 [56]. The points on the elliptic curve y2 = x3 + ax + b consist of

all pairs of affine coordinates (x, y) for x, y ∈ Fp that satisfy the equation y2 = x3+ ax+ b and a point
O(x,∞) at infinity. These points form an abelian group with respect to a special addition operation,

whereO is the additive identity of this group. The formulas defining point addition, point doubling, and
other details can be found in [56, 109].

For a generator point G on an elliptic curve, the set {O, G, 2G, 3G, ...} is a cyclic group [56]. The
calculation of k · G, where k is an integer, is called a scalar multiplication. The problem of finding

k given points (k · G) and G is called the Elliptic Curve Discrete Logarithm Problem (ECDLP). It is
computationally infeasible to solve ECDLP for appropriate parameters (e.g., for G with a large prime
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order) [56]. The hardness of ECDLP allows several cryptographic schemes based on elliptic curves,
such as ECDH and ECDSA [87].

2.5 Conclusion

In summary, forward-secure and aggregate signatures are ideal cryptographic tools to achieve compact

and compromise-resilient authentication and integrity for audit logs. However, all previous PKC-based
forward-secure and aggregate secure logging schemes are highly costly, and their symmetric counter-

parts are not publicly verifiable as well as being open to certain attacks.
In the following chapters, we present our forward-secure and aggregate (append-only) cryptographic

mechanisms that overcome these limitations.
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Chapter 3

Efficient, Compromise Resilient and
Compact Cryptographic Constructions
for UWSNs

An Unattended Wireless Sensor Network (UWSN) [76, 77, 86, 98, 99] is a Wireless Sensor Network
(WSN) in which continuous end-to-end real-time communication is not possible for sensors (senders)

and their receivers (e.g., mobile collectors, static sinks). In other words, receivers might not be available
for sensors from time to time, sometimes for long time periods. Sensors accumulate the sensed data

in these time periods, and transmit it to the receivers whenever they become available (e.g., visits of
mobile collectors [76, 77]).

Examples of UWSNs can be found in military WSN applications (e.g., [98,111]), where sensors are
deployed to an adversarial and unattended environment to gather information about enemy activities.

One illustrative example is LANdroids [46], a recent U.S. Defense Advanced Research Projects Agency
(DARPA) research project, which designs smart robotic radio relay nodes for the battlefield deployment.

These nodes are expected to be deployed in hostile environments to gather military information and
upload to ally vehicles (e.g., UAV, soldier) upon their arrivals.

The lack of real-time communication and the resource constraints of UWSNs bring several secu-
rity and performance challenges, especially when an UWSN is deployed in a hostile environment as

described above. In particular, inability to off-load the sensed data forces sensors to accumulate a large
amount of data along with their authentication information. More importantly, unattended settings make

the UWSN highly vulnerable to active [76] and/or mobile adversaries [77, 98]. Such an adversary can
physically compromise sensors and gain access to the accumulated data as well as the existing cryp-

tographic keys. When a sensor is compromised, the adversary can always use the cryptographic keys
learned from the sender to generate forged messages after the attack. However, it is critical to prevent the

adversary from modifying the data accumulated before the adversary takes control of the sender [76].
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Forward-secure and aggregate signatures are ideal cryptographic tools for achieving data integrity
and authentication for UWSN applications in the presence of active adversaries [76] (motivations and

properties of forward-secure and aggregate signatures were discussed in Chapter 1 and Chapter 2, re-
spectively). However, all existing PKC-based forward-secure and aggregate signature schemes (e.g.,

[26,75,76]) impose extreme computational overheads on the network entities, which are intolerable for
resource-constrained UWSN applications. Another alternative is to rely on symmetric key cryptography

via hash chains and Message Authentication Codes (MAC) as in FssAgg-MAC [76]. However, such an
approach requires full symmetric key distribution and does not allow signatures to be publicly verifiable.

This makes it unscalable and impractical for large distributed UWSN applications. Thus, it is necessary

to seek highly efficient and flexible forward secure and aggregate signatures for UWSN applications.
To address this problem, we propose a new class of cryptographic schemes for UWSN applica-

tions, which we call Hash-Based Sequential Aggregate and Forward Secure Signatures (HaSAFSS, pro-

nounced as “Hasafass”). We develop three specific HaSAFSS schemes, a Symmetric HaSAFSS scheme

(called Sym-HaSAFSS), ECC-based HaSAFSS scheme (called ECC-HaSAFSS), and a self-SUstaining

HaSAFSS scheme (called SU-HaSAFSS).

A nice property of these schemes is that they achieve several seemingly conflicting goals, computa-
tional efficiency, public verifiability, forward security, flexibility and sustainability at the same time. To

achieve this, HaSAFSS schemes introduce asymmetry between the senders and receivers using the time
factor via Timed-Release Encryption (TRE) [101]. Using this asymmetry, our schemes achieve high

efficiency by minimizing costly Expensive Operations (ExpOps), while still remaining publicly verifi-
able and forward-secure. In addition to these common properties, each HaSAFSS scheme also achieves

unique properties specific to it.
We summarize the properties of HaSAFSS schemes as follows:

1. Our schemes achieve near-optimal computational efficiency and public verifiability at the same
time. They achieve the computational efficiency by adopting cryptographic hash functions to

compute aggregate and forward-secure signatures, and thus are much more efficient than all the
existing schemes (e.g., [26], FssAgg-BLS in [76], FssAgg-AR/BM [75]), with the exception of

FssAgg-MAC in [76]. When compared with FssAgg-MAC [76], our schemes further achieve
public verifiability by eliminating symmetric key distribution.

2. In our schemes, both signers (senders) and verifiers (receivers) get equal benefits of computational

efficiency, while most existing schemes incur heavy computational overhead on either the signer
or verifier side. This property is especially useful for UWSN applications in which both the

signers and verifiers need to process large amounts of data efficiently.

3. Since our schemes achieve signature aggregation, a signer always stores and transmits only a

single compact signature, regardless of the number of time periods or data items to be signed.

This offers bandwidth efficiency.
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4. Sym-HaSAFSS relies on an omni-symmetric design even if it is public verifiable. Hence, it is the
most computationally efficient scheme among of all its counterparts. It is also the most verifier

storage friendly scheme by requiring only a small and constant storage for the verifiers. However,
it requires a linear storage at the signer side.

5. ECC-HaSAFSS requires storing one key for each signer by offering a signer storage friendly

scheme. However, it requires an ExpOp to initialize each time interval (but still requires only
three hash operations to sign/verify per-item), and also demands quadratic storage overhead at the

verifier side.

6. Despite their simplicity and efficiency, Sym-HaSAFSS and ECC-HaSAFSS put a linear bound
on the maximum number of time periods that a signer can use. Moreover, they require a pre-

determined and fixed data delivery schedule that all signers have to agree upon before deployment.

SU-HaSAFSS addresses these limitations by offering following properties:

- SU-HaSAFSS enables a signer to use (practically) unbounded number of time periods (this

implies the ability of generating unbounded number of signatures) without requiring any re-

keying after the deployment. This allows a signer to operate in a hostile environment for a long
time without requiring re-deployment/re-keying support. This also offers only a constant key

storage at the signer side and a linear key storage at the verifier side.

- SU-HaSAFSS enables each sender to decide her own data delivery schedule dynamically (after

the deployment) without requiring any (online) communication with other signers or a trusted
third party. Therefore, SU-HaSAFSS can support applications in which a pre-determined data

delivery schedule cannot be determined.

To achieve these properties, SU-HaSAFSS requires a few ExpOps for per interval (for the ini-
tialization purpose), and therefore is more computationally costly than Sym-HaSAFSS and ECC-

HaSAFSS. However, SU-HaSAFSS is significantly more efficient than all other PKC-based schemes
(e.g., FssAgg) that require an ExpOp per data item (SU-HasAFSS requires only three hash oper-

ations per data item to sign or verify in given time interval).

HaSAFSS schemes utilize already existing verification delays in the envisioned UWSN applications

as an opportunity to achieve the aforementioned properties. Thus, they are ideal solutions for UWSN
applications in which high computational, storage, or bandwidth efficiency is more important than im-

mediate verification.
The remainder of this chapter is organized as follows. Section 3.1 provides the preliminaries. Sec-

tion 3.2 presents our assumptions as well as the security and data models. Section 3.3 describes the
proposed schemes in detail. Section 3.4 provides the security analysis of the proposed schemes. Section

3.5 gives performance analysis and compares the proposed schemes with previous approaches. Section

3.6 gives a summary of this chapter.
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3.1 Preliminaries

G1 is a cyclic additive group generated by generator G on an Elliptic Curve (EC) over a prime field Fp,

where p is a large prime number and q is the order of G and G1. kG, where k is an integer, denotes a

scalar multiplication. G2 is a cyclic multiplicative group with the same order q.
E , D, ||, and |x| denote symmetric encryption function, symmetric decryption function, concatena-

tion operation, and the bit length of variable x, respectively.
H1 and H2 are two distinct cryptographic hash functions, which are both defined as H1/H2 :

{0, 1}n → {0, 1}|H|, where n denotes the bit length of randomly generated input key and |H| denotes
the output bit length of the selected hash function. H3 is used to compute aggregate signatures and

is defined as H3 : {0, 1}∗ → {0, 1}|H|. H4 is used to map an input key to a point on the EC, i.e.,
H4 : {0, 1}n → αG. H5 : {0, 1}|t| → Z∗

q is used to hash a t-bit time instance T ∈ {0, 1}|t| (e.g.,

T=“22:43, June 21 2011”). H6 is defined as H6 : G2 → Z∗
q . We also use a secure MAC to compute

individual signatures of data items, defined as MACsk : {0, 1}n × {0, 1}∗ → {0, 1}|H|.

tw denotes a single time interval, which is formed from two consecutive pre-determined time points
Tw−1 and Tw > Tw−1. tw,w′ denotes a unified time interval, which starts at the beginning of tw and

ends at the end of tw′ , w′ ≥ w.
SGN denotes a standard digital signature scheme (e.g., Schnorr [105], DSA [87]) and MMM de-

notes a Malkin Micciancio Miner (MMM ) generic forward-secure signature construction [80] instanti-
ated from an appropriate base scheme (e.g, [6,63]). (sk, pk) = SGN .Kg(1κ), σ = SGN.Sigsk(m) and

{success, failure} = SGN.V erpk(σ,m) denote the key generation for security parameter κ, signature
generation on message m with private sk and verification of σ on m with public key pk, respectively.

MMM signature scheme, in addition to the above standard algorithms, also has a key update algo-
rithm, denoted MMM .Upd(skw ,w). That is, given the current private key skw, the update algorithm

generates one or several new key instances to be used in the future. This is done by using a sum compo-
sition and a product composition iteratively based on a special tree structure. The details of this update

procedure can be found in [80].

Definition 3.1 ê is a bilinear pairing ê : G1 × G1 → G2, i.e., an admissible map with the following

properties:

1. Bilinearity: ê(aP, bQ) = ê(bP, aQ) = ê(abP,Q) = ê(P, abQ) = ê(P,Q)ab, ∀P,Q ∈ G1 and

∀a, b ∈ Z∗
q .

2. Non-degeneracy: ∃P,Q ∈ G1 such that ê(P,Q) ̸= 1. In our settings, we select prime order groups

in which ∀P,Q ∈ G1, ê(P,Q) ̸= 1, and therefore ê(G,G) (G is the generator of G1) is a generator

of G2.

3. Efficiency: There exists an efficient algorithm to compute ê(P,Q), ∀P,Q ∈ G1.
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Definition 3.2 Elliptic Curve Discrete Logarithm Problem (ECDLP) [56] is defined as follows: Given

a prime p, a generator G ∈ G, and a random point Q ∈ E(Fp), find the integer k, 0 ≤ k ≤ p− 2, such

that Q ≡ kG. ECDLP is (τ, ϵ)-hard, if no algorithm running in time less than τ can solve the ECDLP

with a probability more than ϵ. where ϵ is computed over the random choices of (G, k).

Definition 3.3 q-Bilinear Diffie-Hellman Inversion (q-BDHI) problem [35] is defined as follows: Given

(q + 1)-tuple (G, aG, a2G, . . . , aqG) ∈ Gq+1
1 for some a, q ∈ Z∗

p , compute ê(G,G)a
−1 ∈ G2. q-BDHI

is (τ, ϵ)-hard, if no algorithm running in time less than τ can solve the q-BDHI with a probability more

than ϵ, where ϵ is computed over the random choices of G.

3.2 Models

We first give our threat model and security model including the HaSAFSS security definition and com-

plexity/system assumptions. We then present our data model.

3.2.1 Threat Model and Security Model

Our treat model is based on a resourceful but Probabilistic Polynomial Time (PPT) bounded adversary
A with the following abilities: (i) passive attacks against output of cryptographic operations, (ii) active

attacks including packet interception/modification, and (iii) physically compromising senders/receivers
(called as ”break-in”) and extracting the cryptographic keys from the compromised nodes.

A aims to produce an existential forgery against the forward-secure and aggregate signature of the
accumulated data that he obtained after the break-in. A may use any cryptographic key and data that

she extracted from the compromised signers and verifiers.
Before giving the HaSAFSS security model, we review the Quality of Forward Security (QoF)

concept [75]:

Definition 3.4 QoF is a performance-forward security quality trade-off, which is decided according to

the following two key update methods:

• Per-item QoF: Each individual data item Dj is signed as soon as it is collected.

• Per-interval QoF: A group of data item D′
j is signed as a single data item for each time period tj ,

where D′
j denotes all individual data items collected in tj .

In terms of the key evolving strategy, these two methods are the same. However, they enable users to

establish a performance-security trade-off that can be decided according to the requirements of appli-
cation. That is, per-item QoF provides the highest quality of forward security (i.e., forward-security of

each data item individually), but it incurs high computational and storage overhead to the signers and
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verifiers. In contrast, per-interval QoF provides a low quality of forward security (i.e., only for across
time periods), but it also incurs less computational and storage overhead to the the signers and verifiers.

HaSAFSS Security Objectives: The goal of HaSAFSS schemes is to achieve secure signature ag-
gregation and forward security simultaneously. We follow the example of previous forward-secure and

aggregate signature schemes (i.e., [75, 76]), which focus on forward-security, existential unforgeability
and authentication properties, to analyze our schemes in Section 3.4.

Remark that HaSAFSS schemes exploit the already existing delays (i.e., time factor) in UWSNs to
achieve its desirable properties. Thus, the forward-security objective of HaSAFSS schemes is slightly

different than that of previous forward-secure and aggregate schemes (i.e., [75,76,79]). That is, HaSAFSS

aims to achieve a time-valid forward-security instead of a permanent forward-security.
Based on our threat model and security goals, the security of HaSAFSS schemes is defined as

follows:

Definition 3.5 The security of a HaSAFSS scheme is defined as the non-existence of a PPT bounded

adversary A who produces an existential forgery against HaSAFSS even under the exposure of current

keying material in the duration of a designated time interval tw,w′ . This is called as Time-valid Forward-

secure Existential Unforgeability (TFEU) property.

Note that HaSAFSS schemes mainly rely on symmetric cryptography to achieve the above goal1.

Indeed, in Section 5.5, we show that they achieve the highest QoF (i.e., per-item QoF) in a given time
interval, and still remain much more computationally efficient than previous PKC-based schemes.

Remark: The time validity requirement in Definition 3.5 implies that a signer should transmit the

forward-secure and aggregate signature computed in tw,w′ to the verifiers, before the TTP releases the
time trapdoor key associated with tw′ . Such a requirement is compatible with the periodic data collection

characteristic of the envisioned UWSN applications [46, 76, 111]. Details of how our schemes handle
data/time trapdoor information are given in data models and Section 3.3.

HaSAFSS schemes integrate various cryptographic primitives in a novel and efficient way to achieve
their security and efficiency goals. In Section 3.4, we prove that breaking a HaSAFSS scheme is as

difficult as breaking its underling primitive(s). Therefore, HaSAFSS schemes achieve TFEU as long as
the below assumptions hold:

Assumption 3.1 We assume that cryptographic primitives used in our schemes have all the semantic

security properties [52] as follows:

(i) H1, H2, ..., H6 are secure and collision-free hash functions producing indistinguishable outputs

from the random uniform distribution [13]. (ii) MAC is Existential Unforgeable Under Chosen Mes-

sage Attacks (EU-CMA) [112]. (iii) Symmetric encryption function E is Indistinguishable under Chosen
1Sym-HaSAFSS relies on an omni-symmetric construction, but ECC-HaSAFSS and SU-HaSAFSS consult a few ExpOp

once to initialize a desired time interval. However, SU-HaSAFSS still uses only symmetric primitives to sign/verify each data
item in this time interval, and therefore it preserves the computational efficiency of HaSAFSS constructions.
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Ciphertext Attacks (IND-CCA secure) [65]. (iv) ECDLP [56] and q-BDHI problem [22] are (τ, ϵ)-hard

with appropriate parameters.

Assumption 3.2 We assume a Trusted Third Party (TTP), which is trusted by all network entities. (i)

The adversary A cannot compromise the TTP; (ii) A may jam the TTP, but if an entity continuously

tries, its messages can eventually reach the TTP; (iii) The TTP releases time trapdoor keys (secret cryp-

tographic keys) with which the receivers verify the forward-secure and aggregate signatures generated

by the senders (the TTP acts as a Trusted Agent (TA) as in TRE schemes [41]). We assume that time

trapdoor keys released by the TTP reach the receivers eventually. Details of the time trapdoor key

delivery are given in the data models.

3.2.2 Data Model

We consider three data delivery models for the envisioned UWSN applications:
(a) Pre-determined Data Delivery Model: This model addresses applications in which signers/verifiers

and the TTP can agree on a prospective data delivery schedule so that data/trapdoor delivery can be per-
formed based on this schedule. In this model, the TTP passively broadcasts time trapdoor keys based on

a pre-determined schedule. The verifiers are assumed to be (e.g., mobile collectors) available for their
signers based on this schedule.

(b) On-demand Data Delivery Model: This model addresses applications where the nature of appli-
cation does not allow a prospective delivery schedule. In this case, the TTP provides the time trapdoor

information to the verifiers on demand. A representative scenario would be a military UWSN applica-
tion, in which soldiers gather information from sensors from time to time and then request time trapdoor

keys from the TTP (e.g., UAV/satellite). Note that in the worst case, verifiers can obtain time trapdoor
keys from a mobile TTP directly (e.g., MTC (Mobile Tactical Center) [119]). Thus, Assumption 3.2-(iii)

is realistic.
(c) Self-Decisive Data Delivery Model: This model offers a flexible data delivery schedule for the

signers. It requires neither a prospective data delivery schedule nor a collaborative request mechanism
for the time trapdoor release (no interaction with the TTP). Instead, the TTP passively broadcasts time

trapdoor keys periodically with a unit time µ (e.g., per-minute). Each signer herself decides how long
(e.g., a time duration µ · x for any desired x ∈ N) she needs to accumulate, sign and seal the data

(independent from the TTP and other signers). Verifiers decrypt and verify the data when its associated
time trapdoor key is released.

This model enables HaSAFSS to address applications that require users to operate long times in
hostile environments autonomously. One example would be mobile reconnaissance vehicles (e.g., au-

tonomous LANdroids [46]) that gather information from a target area. Such a vehicle autonomously

decides sense, sleep and broadcast time durations, and signs and seals the data according to the situa-

tion. No entity can modify or recover the data that the vehicle accumulated until the end of designated
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time duration, even if it is captured by the enemy.
Remark: (i) Signers do not need to communicate with the TTP. Verifiers communicate with the

TTP only in on-demand data delivery model, only once for each time period (the TTP can be offline
most of the time). (ii) In HaSAFSS, similar to the previous forward-secure and aggregate schemes

(e.g., [75,76,79,120]), the signer computes aggregate signatures of distinct data items accumulated-so-
far (i.e., similar to the condensed signatures notion in [91]). Cross-signer signature aggregation (e.g.,

[21, 26, 90]) is out of our scope.

3.3 Proposed Schemes

We now present the proposed Sym-HaSAFSS, ECC-HaSAFSS and SU-HaSAFSS schemes. Before

giving the detailed description, we first present an overview of these schemes, providing instruments
and strategies that are common to all HaSAFSS schemes.

3.3.1 Overview

The main goal of the HaSAFSS schemes is to create a forward-secure and aggregate signature scheme,

which is as efficient as a MAC-based signature scheme and is publicly verifiable at the same time. Our
schemes achieve this goal based on the following observations:

Delay is already intrinsic to the envisioned UWNS applications; such delays can be used to introduce
asymmetry naturally between the signer (sender) and the verifiers (receivers) in order to bring both

public verifiability and efficiency to the envisioned UWSN applications. HaSAFSS introduces this
asymmetry with the aid of TRE concept, instead of offloading this task simply to the signers. Hence,

even when the signers are compromised, such asymmetry can still guarantee the forward security and
signature aggregation in a publicly verifiable way during the desired time interval.

The HaSAFSS schemes consist of four algorithms: Key generation, forward-secure and aggregate
signature generation, time trapdoor release, and forward-secure aggregate signature verification.

HaSAFSS Instruments and Strategies: The HaSAFSS schemes rely on four main types of crypto-
graphic keys; they use these keys in different ways to achieve different properties. There are also other

types of cryptographic keys that are specific to a particular HaSAFSS scheme (e.g., public tokens in
SU-HaSAFSS), whose details will be given in corresponding schemes.

• Per-data item key: Per-data item key is used with a MAC to generate or verify forward-secure
and aggregate signatures during a given time interval (a single interval tw in Sym-HaSAFSS/ECC-

HaSAFSS and a unified interval tw,w′ in SU-HaSAFSS). We take the unified interval as a basis in this
overview. The first per-data item key of a given tw,w′ , called the chain root of the per-data item keys

(i.e., k0) in tw,w′ , is either derived from an auxiliary key (Sym-HaSAFSS) or randomly generated (ECC-
HaSAFSS/SU-HaSAFSS) at the beginning of tw,w′ .
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The signer signs each accumulated data item individually by computing its MAC using the corre-
sponding per-data item key (derived from k0) and updates her per-data item key with a hash operation

(and deletes the previous one). The signer then folds individual signature of the newly collected data
item into the existing aggregate signature by concatenating and hashing them together. This strategy

provides the forward security of these data items in tw,w′ . To enable verifiers to publicly verify this sig-
nature at the end of tw,w′ by following the same procedure as in the signature generation, an asymmetry

should be introduced between the signer and verifiers (by preserving the forward security) . This is done
via encrypted chain roots.

• Encrypted chain root: Such asymmetry can be introduced by two conditions. First, k0 should

remain confidential in tw,w′ . In this way, if the signer is compromised in tw,w′ , the adversary cannot
obtain k0 before the end of tw,w′ , and therefore she cannot forge signatures computed via k0 (k0 is also

updated for each signed data item). At the same time, k0 should be publicly available to all verifiers at
the end of tw,w′ so that any entity should be able to verify signatures computed via k0.

The signer seals k0 until the end of tw,w′ by encrypting it with a session key Kw,w′ as cw,w′ =

EKw,w′ (k0), and then deleting (k0,Kw,w′).

• Session keys and time trapdoor keys: To enable the recovery of k0 from cw,w′ at the end of tw,w′ ,
each session key Kw,w′ is transformed by a time trapdoor key tkw′ . HaSAFSS schemes achieve their

distinctive properties by following different session key and time trapdoor mechanisms:
In Sym-HaSAFSS and ECC-HaSAFSS, each time trapdoor key is constructed as an element of a

hash chain to enable its ExpOp-free verification and session key recovery. These time trapdoor keys are
released by following either the synchronous or asynchronous data delivery model (See Section 3.2).

Sym-HaSAFSS pre-computes each encrypted chain root with its corresponding session key and
time trapdoor key, and gives them to the signers before the deployment. This omni-symmetric approach

allows ExpOp-free session key computation and recovery, but it sacrifices the signer storage efficiency.
In contrast, ECC-HaSAFSS allows each signer to randomly generate his own session key and therefore

it achieves the signer storage efficiency. However, it requires an ExpOp per-time interval to compute
this key, and also incurs a linear public key storage per-signer to the verifiers (i.e., quadratic storage

overhead). Despite their computational efficiency, the above mechanisms limit the sustainability and
flexibility of Sym-HaSAFSS and ECC-HaSAFSS.

SU-HaSAFSS uses a pairing based time trapdoor key structure, which is inspired by AnTRE [35].
Such a structure allows signers to compute their own session keys and encrypted chain roots without

relying on pre-computed public keys. Hence, despite being slightly more costly than Sym-HaSAFSS
and ECC-HaSAFSS, SU-HaSAFSS addresses their limitations and also preserves the per-data item ef-

ficiency of HaSAFSS constructions over the traditional PKC-based schemes.
After the release of the time trapdoor key, the verifiers never accept any obsolete signature associated

with this time trapdoor key from any signer.
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3.3.2 Sym-HaSAFSS

The four algorithms of Sym-HaSAFSS is given below:
I Key Generation: The TTP performs key generation as follows:

1) Choose the maximum clock synchronization error as δt and the trapdoor release times as 0 <

T0 < T1 < . . . < TL−1. Every two consecutive time points Ti−1 and Ti form the i-th time interval ti.

2) Randomly generate a hash chain vw ← H1(vw−1) for w = 1, ..., L − 1, whose elements will be
used as the secret time trapdoor keys in the reversed order as tkw ← vL−1−w for w = 0, ..., L−1. Each

tkw is associated with time interval tw for w = 0, ..., L−1. Compute the encrypted chain roots for each
signer IDi as follows:

a) Generate the initial per-interval key z0
R← {0, 1}n for each IDi. The objective of the per-interval

key is to provide a fresh initialization key for each time period, from which the signer IDi will derive

the chain root (i.e., per-item key) of that time interval. That is, the chain root of IDi for each tw is
derived as k0 ← H2(zw) and zw+1 ← H1(zw) for w = 0, ..., L− 1.

b) Compute the session key as tkw ← H3(tkw||IDi) and the encrypted chain root of IDi for tw as
cw ← Etkw(k0) for w = 0, ..., L− 1.

3) Distribute required keys and the data delivery schedule to each IDi and verifiers as IDi :

{z0, cw, Tw, δt} and Verifiers : {H1(tk0), Tw, δt} for w = 0, . . . , L− 1, respectively.

I Time Trapdoor Release: Time trapdoor release can be executed in two different modes:
(1) Synchronous Mode: According to the pre-determined delivery time schedule, at the end of each

tw, the TTP releases the secret time trapdoor key tkw.

(2) Asynchronous Mode: Each verifier sends a request to the TTP for the release of tkw, when she
is done with the data accumulation (or, a mobile TTP visits and requests the data from the verifiers).

When the TTP receives more than a threshold number of (authenticated) requests (e.g., τ = 90%), the
TTP releases tkw.

I Forward-secure and Aggregate Signature Generation:
1) At the beginning of tw, derive the per-data item key as k0 ← H2(zw), update the per-interval key

as zw+1 ← H1(zw) and delete zw from the memory.
2) Assume that the signer IDi computed σ0,l−1 on D0, . . . , Dl−1 in tw. Compute σ0,l on new Dl as

(σl ←MACkl(Dl), σ0,l ← H3(σ0,l−1||σl)), where kl ← H1(kl−1).
In the synchronous mode, all keys and signatures associated with tw expire at the end of tw. Thus,

signer IDi must transmit pkt = {IDi : D0, . . . , Dl, σ0,l, cw, tw} before tw ends. In the asynchronous
mode, signer IDi can transmit pkt at any time before the TTP releases tkw. However, if the signer

transmits it too late, she may miss the opportunity to have verifiers accept it if the transmission is after
the trapdoor release.

I Forward-secure and Aggregate Signature Verification:
1) Assume that the verifier has received pkt at time t. In the synchronous mode, the verifier checks
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whether the time condition (t + δt) ≤ tw holds for σ0,l. If yes, the verifier buffers pkt and waits for
the end of tw to obtain tkw from the TTP. In the asynchronous mode, the verifier sends a request to the

TTP to obtain tkw. Note that due to the nature of UWSN applications, there may be a delay before this
request is delivered to the TTP (or, the TTP might not be able to visit the verifiers for a long time). In

this mode, the verifier can buffer pkt as long as it is received before the release of tkw.
2) When the TTP releases tkw, each verifier verifies tkw by checking whether tkw = H1(tkw−1)

holds. If tkw is verified, then the verifier verifies σ0,l as follows:
The verifier decrypts cw by computing tkw ← H3(tkw||IDi) and k0 ← Dtkw(cw). Using the per-

data item key, the verifier computes individual signatures of Dj as σ′
j ← MACkj (Dj) and kj+1 ←

H1(kj) for j = 0, . . . , l. Finally, the verifier computes σ′
0,j ← H3(σ

′
0,j−1||σ′

j) for j = 1, . . . , l, where
σ′
0,0 = σ′

0, and checks if σ′
0,l = σ0,l holds. If they match, the verifier accepts σ0,l; otherwise, reject.

As a result, only using the cryptographic hash and symmetric encryption functions, Sym-HaSAFSS
generates publicly verifiable, forward-secure and aggregate signatures. Signature generation/verification

cost of a single data item in Sym-HaSAFSS is only three hash operations, which are extremely effi-
cient when compared with all PKC-based alternatives. This optimal computational efficiency of Sym-

HaSAFSS makes it an ideal choice for resource-constrained UWSN applications.

3.3.3 ECC-HaSAFSS

In contrast to Sym-HaSAFSS, ECC-HaSAFSS addresses the applications where the signers are storage
limited while the receivers can afford certain storage [76]. To achieve this, ECC-HaSAFSS uses pre-

computed public keys instead of pre-computed encrypted chain roots, and it enables each signer to
compute her own session keys after the deployment.

In ECC-HaSAFSS, the TTP generates the initial per-interval key r0 for each signer i before the
system deployment. Each signer i then updates the per-interval key at the beginning of each time interval

tw and computes the session key Kw using the per-interval key rw with an ECC scalar multiplication.
Signer i then randomly generates a per-data item key k0 (i.e., the first per-data item key in tw). To

protect k0 in tw, signer i encrypts it with Kw to obtain the encrypted chain root cw. After this stage,
signer i computes the signature using the per-data item k0 following the signature generation step 2 in

Sym-HaSAFSS.
To verify the signature, a verifier first recovers Kw from the public key of signer i (i.e., Vw) using

tkw with an ECC scalar multiplication. Note that (V0, . . . , VL−1) of signer i are pre-computed by the
TTP before the deployment to enable such a recovery via tkw. The verifier then decrypts the per-data

item key of signer i and verifies the signature following the same steps of the signature generation.
I Key Generation: The TTP generates tkw of each tw for w = 0, . . . , L − 1 by following the

Sym-HaSAFSS initialization steps. The TTP then generates the public key of each IDi for each tw as
follows:
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Generate the initial per-interval key as r0
R← Z∗

q , and compute the public key of each tw as Vw ←
tkw(rwG− tkw(αwG)), where (αwG← H4(tkw), rw+1 ← H1(rw)) for w = 0, . . . , L− 1. Give each
signer IDi her own r0, and give Vw of each IDi for w = 0, . . . , L− 1 to all verifiers.

I Time Trapdoor Release: Same as in Sym-HaSAFSS.
I Forward-secure Aggregate Signature Generation:

1) At the beginning of tw, signer IDi randomly generates a per-data item key k0, and computes the
session key as Kw ← H1(rwG) and then the encrypted chain root as cw ← EKw(k0). She updates the

per-interval key as rw+1 ← H1(rw) and deletes (Kw, rw) from the memory.
2) Signer IDi computes σ0,l on (D0, . . . , Dl) for tw using k0 by following step 2 in Sym-HaSAFSS

signature generation, and then broadcasts pkt = (D0, D1, . . . , Dl, σ0,l, cw, tw, IDi) before the end of
tw.

I Forward-secure and Aggregate Signature Verification: When a verifier receives pkt, she first
checks timing/request conditions for the received packet and verifies tkw upon its receipt as in step 2

Sym-HaSAFSS signature verification. The verifier then recovers the session key as Kw ← H1(tk
−1
w Vw+

H4(tkw)) and decrypts the per-data item key as k0 ← DKw(cw). The verifier verifies σ0,l using k0 by

following step 2 in Sym-HaSAFSS signature verification.

3.3.4 SU-HaSAFSS

To explain the intuition behind SU-HaSAFSS, we first discuss the limitations of Sym-HaSAFSS and

ECC-HaSAFSS.
I Key pre-distribution and limited usage: In Sym-HaSAFSS, encrypted chain roots are directly

computed from the time trapdoor keys. Similarly, in ECC-HaSAFSS, public keys are a function of time
trapdoor keys. Hence, in both schemes, these keys have to be pre-computed and distributed before the

deployment.
The above requirement incurs a linear storage overhead to the signers in Sym-HaSAFSS, and a

quadratic storage overhead to the verifiers in ECC-HaSAFSS. In both cases, the storage overhead grows

linearly with the maximum number of time period (i.e., L). Furthermore, this puts a linear bound on

the maximum number of time periods that a signer can use. Once the pre-computed values are depleted,
the TTP needs to replenish them via an authenticated channel. The nature of some applications might

not allow such a re-initialization, and even if possible, it incurs O(L) communication overhead for each
signer.

I Inflexible data delivery schedule: In Sym-HaSAFSS and ECC-HaSAFSS, time trapdoor keys
cannot be derived from a desired time instance, and therefore have to be either released based on a pre-

determined data delivery schedule, or requested collaboratively by the verifiers. In either case, signers
cannot decide their own data delivery schedule independent from the TTP or the verifiers.
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SU-HaSAFSS Strategy

SU-HaSAFSS enables each signer to compute her own key set without requiring any online coordination

with the TTP or verifiers. This self-sustaining approach does not put any upper bound on the maximum

number time period to be used, and therefore achieves high storage efficiency (i.e., O(1) storage for
the signer, and O(S′) storage for the verifiers). It also allows a signer to decide her own data delivery

schedule independently. That is, a signer can sign the data items not in a pre-determined time interval
tw, but in a time interval tw,w′ for any w′ ≥ w.

SU-HaSAFSS achieves these goals as follows:
I Key Generation: The TTP provides each signer a master public key S and a master token V ,

with which the signer can initialize an interval tw,w′ , w′ ≥ w. To do this, the signer first randomly
generates a chain root k0, which will be used to sign and encrypt data items accumulated in tw,w′ . The

signer then generates a session key Kw,w′ using a random number rw and token V , and then seals k0 as
cw,w′ ← EKw,w′ (k0).

To enable the recovery of k0 at the end of tw,w′ (with Kw,w′), the signer also computes an auxiliary
token Zw,w′ with (rw, Tw′ , S) via two scalar multiplications. Zw,w′ serves as the masked version of

Kw,w′ , and its computation does not require the knowledge of trapdoor keys. Once the signer erases
(rw,Kw,w′) from the memory, no entity including the signer herself can recover k0 before the end of

tw,w′ . In this way, SU-HaSAFSS introduces the desired asymmetry between signer and verifiers.
I Forward-secure Aggregated Signature Generation (and Encryption): Assume that the adversary

A breaks-in at time t during tw,w′ . In contrast to Sym-HaSAFSS and ECC-HaSAFSS, the above self-

sustaining strategy allows A to initialize a new key set independent from the current one (chain roots
are no longer generated by the TTP). Therefore, A can compute a different signature on the data items

accumulated in [Tw−1, t] apart from the existing signature (note that A still cannot forge the existing
aggregate signature computed in [Tw−1, t]).

SU-HaSAFSS prevents this by using a symmetric cipher along with the forward-secure MAC strat-
egy (i.e., Step 2 in Sym-HaSAFSS signature generation). That is, each Dj is both signed and then

encrypted with kj , and (Dj , kj) are deleted from the memory. Since k0 is sealed until the end of tw′ ,
A cannot decrypt (D0, . . . , Dj) accumulated in [Tw−1, t], and therefore cannot compute a different

signature on them.
Another advantage of this approach is that it offers forward-secure encryption and signature simul-

taneously via symmetric cryptography. Therefore, it is significantly more efficient than all existing
forward-secure signcryption2 schemes (e.g., [40]) with the limitation that it cannot achieve immediate

verification.
I Time Trapdoor Release and Signature Verification: To recover Kw,w′ at the end of tw,w′ , we use

a pairing-based time trapdoor key structure, which was inspired by AnTRE [35]. Such a time trapdoor
2Signcryption is a PKC primitive that simultaneously performs the functions of both digital signature and encryption [125].
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key structure allows the derivation of all time trapdoor keys from a single master secret key s without
revealing it. When tkw′ is released at the end of tw,w′ , the verifier first removes the mask of Zw,w′ using

tkw′ via a pairing operation (i.e., Step 2 in SU-HaSAFSS signature verification). The verifier obtains k0
as k0 ← DKw,w′ (cw,w′), and then both decrypt and verify data items using k0.

I Efficiency: SU-HaSAFSS preserves the computational efficiency of HaSAFSS construction over
the traditional PKC-based schemes, since the per-item cost is still only three hash operations as in Sym-

HaSAFSS3.

Detailed Description

I Key Generation: Executed by the TTP as follows:
1) Choose δt and the time trapdoor release period as µ (i.e, a unit time such as one hour). Every two

consecutive time points Ti−1 ← (i − 1)µ and Ti ← i · µ form the i-th time interval ti for i > 0, and
tw,w′ denotes a unified time interval beginning from tw to the end of tw′ .

2) Generate a master private/public key pair and a token as (s R← Z∗
q , S = sG) and V = ê(G,G) ∈

G2, respectively. Also generate a private/public key pair as (sk, pk)← SGN.Kg(1κ) that will be used

to sign or verify time trapdoor keys.
3) Generate a MMM private/public key pair for each IDi as (sk0, pk)←MMM.Kg(1κ), and then

distribute the required keys as IDi : {S, V, sk0, pk,G, ê, q, δt, µ} and Verifiers : {pk, ∀i, IDi : pk, δt, µ}.
I Forward-secure Aggregated Signature Generation:

1) The signer IDi initializes an interval tw,w′ , w′ ≥ w:

a) Compute the session key of tw,w′ as Kw,w′ ← H6(V
rw), where rw

R← Z∗
q . Also compute the

auxiliary token for tw,w′ as Zw,w′ ← rwS + rwH5(Tw′)G, where Tw′ ← µ · w′ (i.e., the end of

tw,w′).

b) Generate k0
R← {0, 1}n and compute cw,w′ ← EKw,w′ (k0) for tw,w′ , and securely erase (rw,Kw,w′)

from the memory.

c) Compute cw,w′ ←MMM.Sigskw(cw,w′ ||Zw,w′ ||tw||tw′ ||w||IDi). Update skw following the MMM

key update procedure.

2) Given the current (D̂0, . . . , D̂l−1, σ0,l−1), compute D̂l and σ0,l on newly collected data item Dl

as follows:

a) Compute σ0,l on (Dl, σ0,l−1) with kl by following step 2 in Sym-HaSAFSS signature generation.

b) Compute D̂l ← Ekl(Dl), update kl+1 ← H1(kl), and securely erase (Dl, kl) from the memory.
Broadcast pkt = {IDi : D̂0, . . . , D̂l, σ0,l, cw,w′ , Zw,w′ , tw, tw′ , w, cw,w′} before the end of tw,w′ .

3The costs of ExpOps required to initialize tw,w′ are amortized even in a short term, since the overall cost is dominated by
the per-item cost.
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I Trapdoor Release: The TTP computes the time trapdoor key corresponding to tw as tkw ←
(s + H5(Tw))

−1G, where Tw = µ · w. The TTP then signs it as tkw ← SGN.Sigsk(tkw||w), and

broadcasts (tkw, tkw, w) at the end of each time period tw periodically4.
I Signature Verification and Decryption: Assume that the verifier received pkt at time t:

1) If (t+δt) > tw′ then abort. Otherwise, if {failure} = MMM.V erpk(cw,w′ , ⟨cw,w′ ||Zw,w′ ||tw||t′w||
w||IDi||⟩) holds then abort. Otherwise, buffer pkt and wait the release of tkw′ .

After tkw′ is received from the TTP, if {failure} = SGN.V erpk(tkw′ , tkw′ ||w) holds then abort,
else continue to the next step.

2) Recover the session key as Kw,w′ ← H6(ê(Zw,w′ , tkw′)), and decrypt k0 ← DKw,w′ (cw,w′).

3) Decrypt data items as Dj ← Dkj (D̂j) for j = 0, . . . , l, and verify (D0, . . . , Dl, σ0,l) with k0 by
following step 2 in Sym-HaSAFSS signature verification.

3.4 Security Analysis

We prove the security of HaSAFSS schemes in three stages:

Lemma 3.1 proves that no entity, including the signer and the adversary A even after the break-
in in tw,w′ , can decrypt cw,w′ without knowing its corresponding time trapdoor key tkw′ . That is, no

entity can obtain the chain root k0 before the release of tkw′ . This guarantees that HaSAFSS schemes
introduce the desired asymmetry between the signer and verifiers amd preserves forward security.

Based on Lemma 3.1, Lemma 3.2 proves that HaSAFSS schemes remain forward-secure and ex-
istential unforgeable during interval tw,w′ by regularly updating per-item keys evolved from chain root

k0.
Finally, Theorem 3.1 proves that the successful verification of σ0,l via k0 guarantees TFEU property

(i.e., Definition 3.5) based on Lemma 3.2.

Lemma 3.1 HaSAFSS schemes guarantee the confidentiality of k0 in the time duration between the

releases of tkw−1 and tkw′ as long as Assumptions 3.1 and 3.2 hold.

Proof: Assume that A breaks-in during the interval tw,w′ . Obtaining k0 from cw,w′ without knowing
its corresponding session key Kw,w′ is as difficult as breaking E . It is therefore sufficient to show that

Kw,w′ remains confidential until the end of tw,w′ (i.e., until its corresponding time trapdoor key tkw′ is
released):

Sym-HaSAFSS: In Sym-HaSAFSS, w = w′. Thus, Kw,w′ = Kw and cw,w′ = cw. For a given
tkw−1, computing Kw = H3(tkw||IDi) without knowing tkw is as difficult as inverting H1 since

tkw = H1(tkw−1). This contradicts with Assumption 1-(i).

4In SU-HaSAFSS, each signer can seal its own data independent from each other for different time periods, and untimely
release of a time trapdoor key might expose several signers’ data before their intended time. Therefore, the asynchronous
mode is not used in SU-HaSAFSS.
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SU-HaSAFSS: For given (S, V, tw′), obtaining Kw,w′ without knowing tkw′ is as difficult as solving
q-BDHI problem:

Assume that A outputs a session key K∗ before the release of tkw′ in a polynomial time τ with a
non-neglible probability ϵ such that it correctly decrypts its corresponding per-data item key as k0 ←
DK∗(cw,w′). This implies K∗ = Kw,w′ and Kw,w′ = H6(ê(Zw,w′ , tk∗w′)) holds for tk∗w′ . This meansA
also non-trivially computed a valid time trapdoor key tk∗w′ .

We then verify that ê(tk∗w′ , (S +H5(Tw′)G)) = 1, and therefore tk∗w′ = (s+H5(Tw′))−1G. This
implies that A solved q-BDHI problem, and this contradicts with Assumption 3.1-(iii).

ECC-HaSAFSS: For given Vw, obtaining Kw without knowing tkw is as difficult as solving ECDLP

problem:
Assume that A outputs a session key K∗ before the release of tkw in τ with ϵ such that k0 =

DK∗(cw) holds. This implies K∗ = Kw, and therefore A non-trivially computed a valid time trapdoor
key tk∗w such that Kw = H1((tk

∗
w)

−1Vw+H4(tk
∗
w)). Hence, tk∗w = tkw andA extracted tkw from Vw.

This contradicts with Assumption 3.1-(iii). �

Lemma 3.2 Assume that A breaks-in at time t during interval tw,w′ , after σ0,l on (D0, . . . , Dl) was

computed. Producing an existential forgery against HaSAFSS in the time duration between the releases

of tkw−1 and tkw′ is as difficult as breaking either one of the cryptographic hash functions (H1, H2,

H3) or MAC.

Proof: Lemma 3.1 guarantees that k0 remains confidential until the end of tw,w′ . At the same time, the
signer regularly updated k0 for each accumulated data item until A breaks-in at time t:

Sym-HaSAFSS and ECC-HaSAFSS: Step 2 in Sym-HaSAFSS signature generation updated per-
interval and per-item keys as (zl+1 ← H2(zl), kl+1 ← H1(kl)), respectively, and then deleted (zl, kl)

from the memory. Obtaining any previous per-interval key from zl+1 is as difficult as breaking H2.
Similarly, obtaining any previous per-item key from kl+1 is as difficult as breaking H1. Without knowing

(k0, . . . , kl), forging σ0,l on (D0, . . . , Dl) is as difficult as breaking MAC function or H3 (selectively
deleting or truncating a data item from (D0, . . . , Dl) is subsumed in this forgery). Therefore, Sym-

HaSAFSS remains forward-secure and existential unforgeable in tw=w′ . The signature generation in
ECC-HaSAFSS is identical to that of Sym-HaSAFSS, and therefore this analysis also applies to it.

SU-HaSAFSS: Step 2 in SU-HaSAFSS is identical to that of Sym-HaSAFSS except that it addition-
ally encrypts the data items as D̂j ← Ekj (Dj). Thus, producing a forgery against SU-HaSAFSS is as

difficult as breaking either E or one of (MAC,H1,H2,H3). Similarly, computing an independent valid
signature on (D0, . . . , Dl) apart from σ0,l is as difficult as breaking E . Hence, SU-HaSAFSS remains

forward-secure and existential unforgeable in tw,w′ . �

Theorem 3.1 The verifier receives packet pkt in time t. The successful verification of σ0,l on (D0, . . . , Dl)

guarantees TFEU property (Definition 3.5) in the time duration between the releases of tkw−1 and tkw′ .
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Proof: The verifier should ensure the freshness and authenticity of k0 before proceeding to the verifica-
tion:

- Freshness: The timing condition (t+δt) < tw′ (and also the request condition of the asynchronous
mode in Sym-HaSAFSS and ECC-HaSAFSS) prevents the verifier from accepting any obsolete signa-

ture associated with tkw′ . That is, if A breaks-in after the release of tkw′ , she cannot compute a “valid”
signature on (D0, . . . , Dl) using any key associated with t′ ≤ tw′ .

- Authenticity: k0 is obtained from cw,w′ via tkw′ .

• Sym-HaSAFSS and ECC-HaSAFSS: ∀(w = w′), tkw can easily be verified, since they are ele-

ments of a hash chain and are released in the reverse order. Since tkw is authenticated, only an
authenticated k0 can be recovered correctly from cw via this time trapdoor key. Therefore, the

successful verification of σ0,l with k0 also implies that only the claimed IDi could compute such
σ0,l before the release of tkw.

• SU-HaSAFSS: ∀w′, tkw′ is verified with pk via SGN to ensure its origin and integrity. Simi-

larly, cw,w′ is verified with pk via MMM to ensure the forward-secure integrity and origin of
(cw,w′ , Zw,w′ , tw, tw′). That is, the verifier ensures that the claimed interval tw,w′ is correct and

(cw,w′ , Zw,w′) are intact.

Based on Lemma 3.2 and the fact that k0 is fresh and authenticated, we prove that HaSAFSS

schemes achieve the TFEU property. �

3.4.1 Discussion

Truncation Attack: Another security property related to forward-secure and aggregate signatures is the
defense against truncation attack identified in [78, 79]. Truncation attack is a special type of deletion

attack, in which A deletes a continuous subset of accumulated data items. This attack can be prevented
via “all-or-nothing” property [76]: A should either retain all previously accumulated data items, or not

use them at all (i.e., A cannot selectively delete/modify any subset of the data [79]). Lemma 3.2 proves
that HaSAFSS schemes are secure against any type of deletion attack including the truncation attack.

Lack of Immediate Verification: Despite all the advantages, introducing asymmetry between the
signer and verifiers using the time factor brings a natural complication: HaSAFSS schemes cannot

provide immediate verification on the verifier side. In order to verify a received signature, a verifier
needs to wait for the release of the time trapdoor key corresponding to this signature. However, such

a property is compatible with the non-real-time nature of the envisioned UWSN applications. Thus,
HaSAFSS schemes are ideal solutions for the envisioned UWSN applications. Note, however, that

while delayed detection is intrinsic for UWSNs, it might pose a treat for certain real-life applications
such as secure logging [79].
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Table 3.1: Notation used in the performance analysis and comparison of HaSAFSS and FssAgg schemes
Exp: Modular exponentiation mod p Enc/Dec: Symmetric enc./dec. L: # of time periods
EMul: ECC scalar multiplication over Fp S′/V ′: # of senders/verifiers w: Current time period
Muln: Modular multiplication mod n ℓ: # of data items PR: ECC pairing operation
Sqr: Squaring mod n H: Hash operation x: FssAgg security parameter
|σ|, |sk|, |pk|: Bit lengths of signature, private key and public key of the given scheme, respectively.

Suggested bit lengths to achieve 80-bit security for the above parameters are as follows for each compared scheme: Large primes
(|p| = 512, |q| = 160) for ECC-HaSAFSS, SU-HaSAFSS and FssAgg-BLS. Integers (|n| = 1024, x = 160) for FssAgg-AR and
FssAgg-BM, where n is Blum-Williams integer [75].

Table 3.2: Analytical comparison of HaSAFSS and FssAgg schemes in terms of dominant cryptographic
operations

HaSAFSS FssAgg
Sym SU ECC BLS AR BM MAC

Signer (3H)l 5EMul +
(4H + Enc)l

EMul + (3H)l (Exp+H)l (3x · Sqr +
x
2
Muln)l

(x · Sqr +
x
2
Muln)l

(3H)l

Verifier(3H)l 4EMul+PR+
(4H +Dec)l

EMul + (3H)l (PR+H)l x(L + l)Sqr +
(l+ x

2
)Muln

L · Sqr + (2l + l ·
x)Muln

(3H)l

HaSAFSS schemes require only three hash operations per-item while FssAgg schemes require at least one ExpOp per-item (initial ExpOps to
start given time interval in SU-HaSAFSS and ECC-HaSAFSS become insignificant even for small l values (e.g., l = 10)). Also, in
HaSAFSS, both signers and verifiers equally enjoy this computational efficiency (extra PR+ EMul in SU-HaSAFSS in the initialization
also becomes negligible asymptotically).

In HaSAFSS schemes, the TTP is assumed to be trusted (i.e., it does not act maliciously against

legitimate users). Therefore, the adversary models that include “curious time server” (e.g., [35]) do not
apply to HaSAFSS. This allows us to simplify the time trapdoor mechanism used in [35].

3.5 Performance Analysis

In this section, we present the performance analysis of HaSAFSS schemes and compare them with

FssAgg schemes (best known alternatives) in terms of their quantitative and qualitative properties. We
use the notation in Table 3.1 for our analysis and comparison. In our experimental evaluation, we use

ECDSA [6] as SGN and the base signature scheme for MMM in SU-HaSAFSS.

3.5.1 Computational Overhead

In all HaSAFSS schemes, the cost of signing a single data item is only three hash operations (i.e., overall
cost for l data items accumulated in tw,w′ is (3H)l). While Sym-HaSAFSS does not require any ExpOp,

ECC-HaSAFSS and SU-HaSAFSS need to perform EMul and 5EMul operations, respectively, but
only once at the beginning of tw,w′ for the initialization purpose (the rest of the signature generation is
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Table 3.3: Execution time (in ms) comparison of HaSAFSS and FssAgg schemes
HaSAFSS FssAgg

Sym SU ECC BLS AR BM MAC

Signer

l = 10 0.06 7.83 0.63 10.2 264 128 0.06
l = 102 0.6 8.55 1.35 140 25.8× 102 12.7× 102 0.6
l = 103 6.1 17.11 8.55 11.8× 102 26.6× 103 12.5× 103 6
l = 104 61.2 106.21 80.9 11.9× 103 26.3× 104 12.4× 104 60

Verifier

l = 10 0.06 17.88 0.63 156 77.1× 103 524 0.06
l = 102 0.6 18.6 1.35 15.4× 102 78.4× 103 920 0.6
l = 103 6.1 27.69 8.55 14.9× 103 88.2× 103 51.6× 102 6
l = 104 61.2 118.01 80.9 15.2× 104 18.1× 104 46.6× 103 60

(i) The execution times were measured on a computer with an Intel(R) Core(TM) i7 Q720 at 1.60 GHz CPU and 2GB RAM running Ubuntu
10.10. We tested HaSAFSS schemes, FssAgg-BLS/MAC [76] using the MIRACL library [106], and FssAgg-AR/BM [75] using the NTL
library [108]. Parameter sizes determining the execution times of each scheme were selected to achieve 80-bit security, whose suggested bit
lengths were discussed in Table 3.1. (ii) Execution times are based on the cost of signing/verifying data items accumulated in a given interval
tw,w′ including the initialization costs.
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Figure 3.1: Signing time comparison of HaSAFSS
schemes and their counterparts (in ms)
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Figure 3.2: Verification time comparison of HaSAFSS
schemes and their counterparts (in ms)

only hash-based). The analysis of signature verification cost is similar to the signature generation except

that SU-HaSAFSS requires an additional PR+ Emul operation for the initialization.
Comparison: All publicly verifiable (PKC-based) FssAgg schemes require ExpOp(s) to sign or ver-

ify a data item. For example, FssAgg-BLS requires O(l)(Exp+H) and O(l)(PR+H) for the signature
generation and verification, respectively. Similarly, FssAgg-AR and FssAgg-BM require O(l)ExpOp

for the signature generation and verification.
Table 3.2 and Table 3.3 compare the computational costs of HaSAFSS schemes with FssAgg schemes

analytically and numerically, respectively.
In HaSAFSS schemes, the cost of signature generation and verification for a single data item is the
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Table 3.4: Asymptotic comparison of HaSAFSS and FssAgg schemes in terms of their storage overheads

- HaSAFSS FssAgg
Sym SU ECC BLS AR BM MAC

Signer O(L− w)|H|O(1)(|sk|+ c|H|)O(1)(|H|+ |q|)O(1)(|sk|+ |σ|) O(1)(z|sk|+ |σ|) O(V ′)|H|
Verifier O(1)|H| O(S′)(pk′) O(L · S′)|p| O(L · S′)|p| O(S′)|n| O(S′)|H|

Table 3.5: Comparison of HaSAFSS and FssAgg schemes in terms of some important qualitative prop-
erties

- HaSAFSS FssAgg
Sym SU ECC BLS AR BM MAC

Public Verifiability X X X X X X X
Unbounded Time Periods X X X X X X X

Forward-secure Confidentiality X X X X X X X
Flexible Delivery Schedule X X X X X X X

Signer Storage Efficient X X X X X X X
Verifier Storage Efficient X X X X X X X
Immediate Verification X X X X X X X

same (i.e., only three hash operations). This is much more efficient than PKC-based FssAgg schemes
requiring at least one ExpOp per-item and also equally efficient to the FssAgg-MAC. For instance,

the signature generation for l = 104 data items with SU-HaSAFSS is 112, 2,476, and 1,167 times
more efficient than FssAgg-BLS, FssAgg-AR and FssAgg-BM, respectively. Similarly, the signature

verification for l = 104 data items with SU-HaSAFSS is 1,288, 1,533, and 394 times more efficient than
FssAgg-BLS, FssAgg-AR and FssAgg-BM, respectively.

Note that HaSAFSS schemes are always more computationally efficient than any PKC-based scheme
that requires an ExpOp per-item. Thus, by specifically comparing HaSAFSS schemes with FssAgg

schemes, we can see their difference from this general class of schemes.
Sym-HaSAFSS and FssAgg-MAC are equally efficient, while ECC-HaSAFSS and SU-HaSAFSS

are more costly than FssAgg-MAC due to their initialization costs. However, HaSAFSS schemes and
PKC-based FssAgg schemes have the advantage of being publicly verifiable against FssAgg-MAC,

which is a critical requirement for large and ubiquitous systems.
While being more costly at initialization, SU-HaSAFSS is comparable with Sym-HaSAFSS and

ECC-HaSAFSS asymptotically, and it also possesses several qualitative advantages over them as we
will discuss in Section 3.5.3.

Figure 3.1 and Figure 3.2 further show the comparison of HaSAFSS and FssAgg schemes in terms
of signature generation and verification times as the number of data items (log entries) increases. These

figures also confirm that HaSAFSS schemes are the most computationally efficient schemes among all
these choices.
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3.5.2 Storage and Communication Overheads

Besides their computational efficiency, HaSAFSS schemes are also storage/ bandwidth efficient and
complement each other in terms of their storage overhead.

In Sym-HaSAFSS, each signer initially stores L encrypted chain roots. As the time goes from one
period into the next, the signer deletes the encrypted chain root associated with the previous time period

from her memory. Thus, each signer stores (L − w) keys in tw. However, each verifier always stores

only a single key (negligible |H| overhead, e.g., 160 bit). In ECC-HaSAFSS, each signer stores only one

key, however, in order to recover session keys, each verifier stores L public keys for each signer (i.e.,
quadratic storage overhead as O(L · S′)|p|).

In SU-HaSAFSS, each signer is capable of computing her own key set after the deployment (in-
dependent from the TTP). Therefore, the key/signature storage of a signer is constant including the

overhead due to generic signature and MMM signatures (i.e., O(1)(|sk| + c|H|)). Each verifier stores
only one MMM public key (i.e., |pk′|) for each signer (and one extra public key to verify time trapdoor

keys). Thus, in contrast to ECC-HaSAFSS, the storage overhead of a verifier is linear as O(S′)|pk′|.
Comparison: Table 3.4 asymptotically compares HaSAFSS and FssAgg schemes in terms of stor-

age overhead.
From a verifier’s perspective, Sym-HaSAFSS, which requires only single key storage, is the most

storage efficient scheme among all the compared schemes. SU-HaSAFSS and FssAgg schemes both
require linear storage. ECC-HaSAFSS and FssAgg-BLS require quadratic storage and obey the tra-

ditional resourceful verifier assumption to address such UWSN applications (e.g., high-end mobile

receivers [76]). From a signer’s perspective, all compared schemes except for Sym-HaSAFSS and
FssAgg-MAC require constant storage.

All compared schemes incur only a constant signature transmission overhead due to their signature
aggregation property. Thus, when compared with traditional signature schemes (e.g., [6,102,105]), they

are much more communication efficient (data items has to be transmitted in any case and therefore their
overhead is not the part of comparison). Note that the signature aggregation also offers “all-or-nothing”

property that provides the resilience against the truncation attacks as discussed in Section 3.4.1.

3.5.3 Sustainability, Applicability and Flexibility

In addition to the above quantitative criteria, we also analyze our schemes in terms of some important
qualitative properties. Table 3.5 compares HaSAFSS schemes and FssAgg schemes in terms of the

following properties:
Public Verifiability: This property is especially important for the scalability and applicability of a

scheme to the large and distributed UWSNs. All compared schemes achieve public verifiability with the
exception of FssAgg-MAC.
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Unbounded Time Period and Flexible Data Delivery Schedule: All compared schemes with the ex-
ception of SU-HaSAFSS puts a linear bound on the number of time periods (and implicitly number of

data items to be signed) that a signer can use after the system initialization. Eliminating this limita-
tion, SU-HaSAFSS offers a unique sustainability that can be highly useful in many applications such

as military UWSNs. That is, SU-HaSAFSS minimizes any risk that may stem from the requirement of
replenishing cryptographic keys and re-initializing the entire system (e.g., costly and sometimes impos-

sible re-deployment/re-programming, long-term network disconnections).
Another related property is the flexible data delivery schedule, which is only offered by SU-HaSAFSS

among our schemes. This property allows a signer to decide its own data delivery schedule herself after

the deployment, and therefore SU-HaSAFSS can address applications in which a pre-determined data
delivery schedule cannot be decided. Note that FssAgg schemes directly achieve this property, since

they do not rely on the time factor.
The above properties depend on the ability that signers can compute their own key sets after the de-

ployment. Therefore, they are also related to the storage overhead introduced by the compared schemes,
which was discussed in the previous section.

Forward-secure Confidentiality: SU-HaSAFSS can integrate forward-secure encryption and forward-
secure integrity in a seamless way, since it relies on symmetric cryptography to achieve these goals. Note

that to achieve the same property, FssAgg schemes have to resort to costly PKC-based forward-secure
encryption schemes (e.g., [32]), which will make these schemes even more expensive.

Immediate Verification: The main drawback of HaSAFSS schemes is that they cannot achieve im-
mediate verification. A more detailed discussion about this issue was given in Section 3.4.1. FssAgg

schemes achieve immediate verification, since they do not rely on the time factor.
Overall, being equally storage efficient to FssAgg schemes but much more computationally effi-

cient than them, and at the same same time being more sustainable and flexible than Sym-HaSAFSS
and ECC-HaSAFSS, SU-HaSAFSS is an ideal choice for large scale UWSN applications with mildly

resource-constrained signers. In contrast, Sym-HaSAFSS is an ideal alternative for highly computation-
ally resource-constrained applications with mildly storage-constrained signers.

3.6 Conclusion

In this chapter, we proposed a new class of cryptographic schemes, Hash-Based Sequential Aggregate

and Forward Secure Signature (HaSAFSS), which is suitable for UWSN applications. HaSAFSS schemes
achieve the most desirable properties of both symmetric and PKC-based forward-secure and aggregate

signature schemes at the same time. They achieve this by using already existing verification delays in
the envisioned UWSN applications via three realistic data/time trapdoor delivery models.

We developed three HaSAFSS schemes, Sym-HaSAFSS, ECC-HaSAFSS and SU-HaSAFSS. All
these schemes achieve high computational efficiency, public verifiability, signature aggregation and
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forward-secure integrity simultaneously. They are significantly more efficient than all of their PKC-
based counterparts and still remain publicly verifiable in contrast to other symmetric schemes. Sym-

HaSAFSS and ECC-HaSAFSS complement each other by being a signer storage friendly and a verifier
storage friendly scheme, respectively.

Preserving all other desirable properties of HaSAFSS schemes, SU-HaSAFSS is much more com-
putationally efficient than all of the previous PKC-based counterparts, and additionally achieves unique

properties such as unlimited number of time periods, forward-secure confidentiality, and flexible data
delivery schedule.

While HaSAFSS schemes are ideal solutions for UWSNs, they cannot address real-time applications

due to their reliance on a time factor. Furthermore, HaSAFSS schemes need a broadcast environment
and a passive TTP support, which might not be available in some applications. In following chapters,

we present our schemes BAF/FI-BAF [120, 123] and LogFAS [124] that address these limitations.
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Chapter 4

Efficient, Compact and Compromise
Resilient Cryptographic Constructions for
Resource-Constrained Devices

Compromise resilient, compact and publicly verifiable logging in resource-constrained devices is a chal-
lenging task, since such devices cannot tolerate any ExpOp or heavy storage overhead. All previous

publicly verifiable cryptographic secure logging schemes (e.g., FssAgg [75, 79]) require ExpOps at the
signer side, and also produce large cryptographic tags (the details of these previous schemes were given

in Chapter 2).
In previous chapter, we presented HaSAFSS schemes as an ideal secure logging solution for UWSNs.

However, HaSAFSS schemes cannot address some important applications:

• There are applications that require real-time secure audit logging with the immediate verifica-
tion property. Despite being computational efficient, HaSAFSS schemes rely on a time factor to

introduce an asymmetry, and therefore they cannot achieve the immediate verification.

• HaSAFSS schemes require a passive TTP support and assume a broadcast environment to operate.

However, the nature of some applications might not allow even a passive TTP support. Also, the
availability of a broadcast environment cannot be guaranteed for all types of applications.

Therefore, a publicly verifiable secure logging scheme that achieves the immediate verification with-

out requiring an online TTP support and/or a time factor is needed. Moreover, such a scheme should
also achieve the signer efficiency to be practical for resource-constrained devices.

To fulfill this need, we propose a new class of forward-secure and aggregate signature schemes called
Blind-Aggregate-Forward (BAF) and its extension Fast-Immutable BAF (FI-BAF). We summarize the

properties of BAF and FI-BAF as follows:
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1. Public Verification: Unlike the symmetric schemes (e.g., [18, 76, 103, 104]), BAF can produce pub-
licly verifiable signatures, and therefore it can protect applications requiring public auditing (e.g.,

e-voting, financial books) [57,79]. Different from HaSAFSS schemes [121,122], BAF does not rely
on a time factor to be publicly verifiable, and therefore it can achieve the immediate verification.

2. Independence of Online Trusted Server: BAF does not require an online trusted server support to

enable the log verification. Therefore, it is more reliable than the previous schemes that require such
a support (e.g., [18, 103, 104, 121, 122]).

3. Optimal Logger (signer) Efficiency: BAF is the only scheme that achieves the signer computational,
storage and communication efficiency at the same time:

- ExpOp-free signing and key update: In BAF, the computational cost of logging a single data item

is only a few cryptographic hash operations including the key update cost. This is as efficient as
existing symmetric schemes (e.g., [18,76]) and is much more efficient than all existing PKC-based

schemes.

- Constant Key/Signature Sizes: In BAF, independent from the number of time periods and data

items to be signed, a logger only needs to store a single key pair, and also needs to store/transmit a
single and compact aggregate signature as the authentication tag. Hence, it is more storage/bandwidth

efficient than some previous schemes that require linear key and signature storage/transmission on
the logger (e.g., [17, 57, 103, 104]).

4. Computationally Efficient Log Verification: In BAF, the computational cost of verifying a single log
entry is only a single exponentiation operation, which is more efficient than previous PKC-based

schemes with the exceptions of our proposed schemes HaSAFSS and LogFAS.

5. Provable Security: Unlike some previous schemes [18, 57, 103, 104], BAF is also secure against
both the truncation and delayed detection attacks. Moreover, instead of relying on heuristic security

arguments against the truncation attacks as in previous schemes, we formally prove that BAF is
secure against the truncation attacks in Random Oracle Model (ROM) [13].

6. Fast and Immutable Logging: Our extended scheme FI-BAF addresses the need of a BAF variant
that allows the verification of a particular log entry without compromising the security of BAF as

well as preserving its computational efficiency.

Table 4.1 outlines the above properties and compares the proposed schemes with their counterparts.
A detailed performance analysis and comparison can be found in Section 4.5.

The remainder of this chapter is organized as follows. Section 4.1 gives the preliminary definitions.
Section 4.2 provides the BAF syntax and security model. Section 4.3 describes the proposed schemes in

detail. Section 4.4 gives the security analysis of BAF. Section 4.5 presents performance analysis of the

proposed schemes and compares them with previous approaches. Section 4.6 concludes this chapter.
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Table 4.1: Comparison of BAF schemes with their counterparts in terms of asymptotic computa-
tional/storage/communication overheads and some qualitative properties

Criteria PKC-based Sym.

BAF/FI-BAF
FssAgg/iFssAgg

Logcrypt
Computational BLS BM AR

Sig O(L)H O(L)(ExpOp+H) O(L)(ExpOp+H) O(L)H
Upd H ExpOp+H - H
Ver O(L)(ExpOp+H) O(L)H
Kg O(L)(ExpOp+H) O(L)H

Communication O(1)|σ| O(1)|σ| O(L)|σ| O(L)|H|

Storage
Signer O(1)(|K|+ |σ|) O(1)(|K|+ |σ|) O(L)(|K|+ |σ|) O(L)(|H|)
Verifier O(L · S)|K| O(L · S)|K|O(S)|K| O(L · S)|K| O(S)|K|

Public Ver. Y Y N
Online TTP Y Y N

Immediate Ver. Y Y N
Delayed Detection A. Y Y N

Truncation A. Y Y N N
Security Argument Provable Heuristic N N

∗Table 4.1 demonstrates the asymptotic costs of processing L data items for each compared scheme. H and S
denote the cost of single hash operation and number signers in the system, respectively. |H|, |K| and |σ| denote
the bit length of hash output, the bit length of private/public key and the bit length of signature, respectively (|K|
and |σ| slightly vary for each scheme). Storage and communication costs are based on the cryptographic
overhead introduced by the schemes (data overheads are the same for all compared schemes).
† BAF schemes are the only alternative that achieve the signer efficiency (i.e., ExpOp-free signing and constant
storage/communication overhead), while retaining the verifier computational efficiency. At the same time, they
possess all the desirable properties of PKC schemes when compared with the symmetric schemes.

4.1 Preliminaries

Notation. We use ||, |a| and {0, 1}∗ to denote the concatenation operation, bit length of variable a, and

the set of binary strings of any finite length, respectively. a
$← S denotes that the value of variable

a is randomly and uniformly selected from set S . For any integer l, (a0, . . . , al)
$← S means (a0

$←
S, . . . , al

$← S). AO0,...,Oi(.) denotes algorithm A is provided with oracles O0, . . . ,Oi. For example,
ASch.Sigsk(.) denotes algorithm A is provided with a signing oracle of Sig of signature scheme Sch

under private key sk.

BAF schemes rely on the intractability of Discrete Logarithm Problem (DLP) [16], which is defined
below.

Definition 4.1 Given a cyclic group G of prime order q and a generator α of G, let A be an algorithm

that returns an element of Z∗
q . Consider the following experiment:
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Experiment ExptDL
G,α(A)

y
$← Z∗

q ,

Y ← αy,

y′ ← A(Y ),

If αy′ = Y , return 1, else, return 0.

The DL-advantage of A in this experiment is defined as

AdvDL
G,α(A) = Pr[ExptDL

G,α(A) = 1]

DL-advantage of (G,α) in this experiment is defined as

AdvDL
G,α(t) = max

A
{AdvDL

G,α(A)}

where the maximum is over all A having time complexity t.

4.2 Models

In this section, we first briefly describe our system model that is based on the Forward-secure Stream

Integrity (FSI) model. We then provide the generic model of Forward-secure and Aggregate Signature
(FAS) schemes, which is suitable for our system model. Last, we introduce our security model, in

which a FAS scheme is proven to be Forward-secure Aggregate Existential Unforgeable against Chosen

Message Attack (FAEU-CMA) and secure against the truncation attack.

The actual BAF schemes and their security analysis are presented in Section 4.3 and Section 4.4,
respectively.

4.2.1 System Model

Before presenting our system model, we first discuss the Forward-secure Stream Integrity (FSI) model,
which is the basis of all existing FAS constructions.

FSI Model

FSI model is the classic tamper-evident audit logging model initially introduced by Bellare and Yee [17]

in the context of symmetric key cryptography, and they later formalized it in [18]. The basic FSI model
includes two entities: (i) Storage-limited loggers who are honest until they are compromised. These

loggers compute an authentication tag (e.g., a MAC) for each log entry in a forward-secure way and then
upload these logs and MACs to the verifiers when they are available. (ii) A limited number of verifiers
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who are fully trusted (e.g., they do not disclose the keying material) but not always readily available
for the loggers. The basic FSI model assumes a full symmetric key distribution via an authenticated

channel.
Schneier and Kelsey [104] follows a similar model in the presence of a TTP(s). That is, a TTP

provides the required symmetric keying material to the verifiers accordingly (based on a request or
periodically).

Logcrypt extends the basic FSI model into the PKC domain. Later, Ma and Tsudik [76] follows this
PKC-based FSI model by adding the sequential signature aggregation. This provides “all-or-nothing”

property and compactness. These models assume that verifiers are more resourceful than signers.

Our System Model

Our system model is based on PKC-based FSI model. There are two new entities in the system: (i) Stor-
age/computational/bandwidth limited loggers who are honest until they are compromised. (ii) Storage

resourceful verifiers who can be any (untrusted) entity and do not need an online TTP support for the
verification.

We assume that the key generation/distribution is performed offline before deployment as in all FSI
models. According to the application requirement, each signer can generate its own private/public keys

and provide them to the verifiers (via a certification procedure), or optionally, a Key Generation Center
(KGC) generates these keys offline before the deployment and then distributes them to the system entities

(e.g., suitable for WSNs and RFID tags). If the latter approach is preferred, the KGC is assumed to be
trusted and it cannot be compromised by the adversary. For each signer, there is a different private/public

key set, and therefore the key generation algorithm is implemented for each signer in the system once.
Our constructions behave according to the same-signer-distinct-message model similar to the ex-

isting PKC-based FAS constructions (e.g., [75, 76, 78, 79]). In this model, the same logger com-

putes aggregate signatures of distinct audit logs accumulated-so-far (i.e., similar to the condensed
signatures notion in [91]). This model is an ideal option for secure audit logging applications (e.g.,

[75, 78, 79, 103, 104, 116]), since each logger is responsible for only her own audit logs.

4.2.2 Model of Forward-Secure and Aggregate Signature (FAS) Schemes

A FAS scheme is an integrated signature scheme that achieves both the forward-security and the sequen-
tial signature aggregation properties simultaneously. Hence, it has a Key Update algorithm that follows

the “evolve-and-delete strategy” to achieve the forward security similar to the forward-secure signatures
(e.g., [68]). Moreover, it has Key Generation, Forward-secure and Aggregate Signature Generation and

Forward-secure and Aggregate Signature Verification algorithms. The signature generation algorithm
performs the signature aggregation as in the aggregate signatures (e.g., [21, 26]) and then uses the key

update algorithm to update the private key.
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Definition 4.2 A FAS scheme is a tuple of four algorithms (Kg ,Upd ,Sig ,Ver) that behave as follows:

1. (sk ,PK )← FAS .Kg(1κ, L): The key generation algorithm takes the security parameter 1κ and

the maximum number of key updates L as the input. It returns a private/public key pair (sk ,PK )

as the output.

2. sk j+1 ← FAS .Upd(sk j , L): The key update algorithm takes the private key sk j , 0 ≤ j < L−1,

and L as the input. It returns the private key sk j+1 as the output.

3. σ0,l ← FAS .Sig(sk j ,
−→
D): The forward-secure and aggregate signing algorithm takes the pri-

vate key sk j , a message
−→
D = (Dj , . . . , Dl), l ≥ j, to be signed and an internal state Ψ =

(σ0,j−1, ⟨D0, . . . , Dj−1⟩) as the input, where Ψ is an empty vector initially. It returns a forward-

secure and aggregate signature σ0,l as the output, and then updates the internal state and the

private key as Ψ ← (σ0,l, ⟨D0, . . . , Dl⟩) and skm+1 ← FAS .Upd(skm, L),m = j, . . . , l, re-

spectively.

4. b ← FAS .Ver(PK ,
−→
D,σ0,l): The forward-secure and aggregate verification algorithm takes

PK , a message
−→
D = (D0, . . . , Dl), l ≤ L, and σ0,l as the input. It returns a bit b, with b = 1

meaning valid, and b = 0 meaning invalid.

In BAF, the private key sk is provided to the signer as an initial key, and it is evolved via the key
update algorithm in the logging process. Therefore, the private key size is constant at the signer side.

PK is a vector with 4L components (i.e., individual public keys), which are stored by the verifiers.

4.2.3 Threat and Security Model

Our treat model reflects how a generic FAS scheme works in our envisioned system model. That is,
in a real FAS implementation, A can obtain a large number of forward-secure and aggregate signa-

tures σ0, . . . , σi of distinct audit log files
−→
D0, . . . ,

−→
D i computed under a PK . Each vector

−→
Dk =

{Dj′ , . . . , Dj}, j ≥ j′ for k = 0, . . . , i represents a separate log file that includes a set of individ-

ual logs. A can observe these values even before the compromise (e.g., a user can read system logs
or logs/signatures are transmitted to the verifiers via an insecure channel). Once A compromises the

signer, she also obtains private key(s) that have not been erased from the memory in the duration of
logging. A may attempt to modify, re-order and selectively delete any of previously signed audit logs.

A FAS scheme is proven to be ForWard-secure Aggregate Existentially Unforgeable against Chosen

Message Attack (FAEU-CMA) based on the experiment defined in Definition 4.3. Moreover, we provide

a formal treatment for the truncation attacks via the truncation experiment (TRUNC) defined in Defini-
tion 4.4 based on the signature extraction argument [26, 42]. In both experiments, A is provided with

three oracles that behave as follows:
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(i) Random Oracle: A is given to access a random oracle RO(.) that she can request hash of any
message D of her choice up to L′ messages.

(ii) Signing Oracle: A is provided with a signing oracle FAS .Sigsk (.). For each batch query i,
A can query FAS .Sigsk (.) oracle on a set of message

−→
D i = {Dj′ , . . . , Dj}, j ≥ j′, of her choice.

FAS .Sigsk (.) returns a forward-secure and aggregate signature σ0,i under sk on (⟨
−→
D0, . . . ,

−→
D i−1⟩,

−→
D i)

(i.e., σ0,i is on all previous messages that A queried up to now). A can query FAS .Sigsk (.) up to L

individual messages in total (i.e., i batch queries in total) as described, until she decides to “break-in”.
(iii) Break -in oracle: A is then provided with a Break -in oracle, which returns the current private

key to A. That is, if A queried l ≤ L individual messages to FAS .Sigsk (.), then Break -in oracle

returns (l+1)-th private key toA (if l = L then Break -in oracle rejects the query, since all private keys
were used).

Definition 4.3 FAEU -CMA experiment is defined as follows:

Experiment ExptFAEU -CMA
FAS (A)

(sk ,PK )← FAS .Kg(1κ, L),

(
−→
D∗, σ∗)← ARO(.),FAS .Sigsk (.),Break -in(PK ),

If FAS .Ver(PK ,
−→
D∗, σ∗) = 1 and ∃n ∈ {0, . . . , l} :

−→
D∗[n] /∈

−→
D holds, then return 1, else return

0. Here,
−→
D = {−→D0|| . . . ||

−→
D i} denotes i batch queries (including l ≤ L individual messages in total)

asked to the FAS .Sigsk (.) oracle, each
−→
Dm, 0 ≤ m ≤ i, denotes m-th batch query (a vector), and

−→
D∗[n] denotes n-th individual data item in the forgery data item vector

−→
D∗.

FAEU-CMA-advantage of A is defined as

AdvFAEU -CMA
FAS (A) = Pr[ExptFAEU -CMA

FAS (A) = 1]

FAEU-CMA-advantage of FAS is defined as

AdvFAEU -CMA
FAS (t, L′, L, µ′, µ) = max

A
{AdvFAEU -CMA

FAS (A)}

where the maximum is over allA having time complexity t, making at most L′ queries to RO(.), at most

L queries to FAS .Sigsk (.), and the sum of lengths of these queries being at most µ and µ′, respectively.

Definition 4.4 TRUNC experiment is defined as follows:

Experiment ExptTRUNC
FAS (A)

(sk ,PK )← FAS .Kg(1κ, L),

(
−→
D∗, σ∗)← ARO(.),FAS .Sigsk (.),Break -in(PK ),
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If (FAS .Ver(PK ,
−→
D∗, σ∗) = 1) ∧ (

−→
D∗ ⊂

−→
D) ∧ (∀I ⊆ {0, . . . , i},

−→
D∗ ̸= ||m∈I

−→
Dm) holds, then

return 1, else, return 0, where
−→
Dm denotes m-th batch query (a vector) in

−→
D = {−→D0|| . . . ||

−→
D i}.

TRUNC -advantage of A is defined as

AdvTRUNC
FAS (A) = Pr[ExptTRUNC

FAS (A) = 1]

TRUNC -advantage of FAS is defined as

AdvTRUNC
FAS (t, L′, L, µ′, µ) = max

A
{AdvTRUNC

FAS (A)}

where the maximum is over allA having time complexity t, making at most L′ queries to RO(.), at most

L queries to FAS .Sigsk (.), and the sum of lengths of these queries being at most µ and µ′, respectively.

4.2.4 Discussion on Our Security Model

To justify our security model, we give a discussion on the batch queries, modeling of truncation attacks

and some approaches that are alternative to ours.
• Batch queries vs. individual queries: The previous FAS constructions (i.e., [75,76,78,79,120]) im-

plement the signing oracle based on individual signature queries. Such an implementation still captures
a forgery on an individual data modification. However, we prefer batch queries for two reasons:

(i) Batch queries reflect the FAS mechanism better than individual queries. In all FAS construction,
the aggregation function is public and easily invertible on a given aggregate signature σ0,j , if its individ-

ual components are known. For example, for given σ0,j and σ0,j′ , j
′ ≤ j, it is easy to compute σj′+1,j .

Hence, for a given set of messages, if “all-or-nothing” property is needed, a FAS scheme is required to

delete all intermediate aggregate signatures (e.g., individual signatures) during the signing process, and
only keep the final aggregate signature as the authentication tag [75, 76, 79]. Note that our batch query

approach reflects this behavior while the individual query approach cannot capture it.
(ii) None of the previous FAS constructions provide a formal reduction in the case of a tail-truncation

attack. Recall that the tail-truncation attack is a special type of deletion attack, in which A deletes a
continuous subset of entries at the end of the log. Since this type of deletion does not cause an order

change, plain individual query model is not sufficient to capture this case. In contrast, our batch query
approach captures this attack based on the aggregate signature extraction argument.

• Aggregate Signature Extraction and Truncation Attack: The truncation attack can be modeled
based on the aggregate signature extraction argument [26, 42]). The difficulty of aggregate signature

extraction implies that for a given aggregate signature σ0,k computed from k individual signatures, it
is difficult to extract these individual signatures σ0, . . . , σk (provided that only σ0,k is known to the

extractor). In fact, it should be difficult to separate any proper aggregate signature subset σ′ from the

given aggregate signature of σ0,k.
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Note that a truncation attack implies a signature extraction [76, 79]. For instance, the extraction of
an individual signature σk from the given aggregate signature σ0,k without knowing its complementary

aggregate signature σ0,k−1 is equivalent to a tail-truncation attack (i.e., A can trivially truncate the
corresponding data item Dk (i.e., the tail log entry) of σk without being detected, since the aggregation

function is public and invertible).
In our security analysis, we prove the resilience of BAF against the truncation attacks based on the

difficult of the aggregate signature extraction. In particular, we make a reduction to DLP for a single
signature extraction case. That is, for a given random valid aggregate signature σ′ on two individual

public keys, if A can split it into two valid individual signatures on their corresponding public keys,

then it is possible to break the DLP.
• Alternative Approaches: An alternative approach to avoid a truncation attack is to use auxiliary

signatures on aggregate signatures or indexes. For instance, in addition to the aggregate signature, one
can compute a forward-secure signature on a counter that is increased by once for each accumulated log

entry. This prevents A to modify the number of data items in the log. However, this approach increases
the computational and storage costs of FAS construction due to the use of a secondary forward-secure

signature.

4.3 Blind-Aggregate-Forward (BAF) Schemes

In this section, we first present our main BAF scheme, and then its extension FI-BAF.

4.3.1 Overview

All previous PKC-based FAS constructions are directly derived from existing aggregate or forward-
secure signature schemes. For instance, FssAgg-BLS [76] is derived from the aggregate signature

scheme given in [26]. Similarly, FssAgg-BM and FssAgg-AR in [75, 78, 79] are derived from the
forward secure signatures given in [12] and [2], respectively. Hence, they inherit the high computa-

tional/storage costs of these signature primitives as well as incurring extra overheads to achieve the
additional aggregation or forward security property.

One possible way to avoid ExpOps for logging is to introduce an asymmetry between the signer and
the verifiers via the time factor (e.g., TESLA [96]). However, such a scheme cannot achieve the imme-

diate verification at the verifier side. Moreover, it requires online TTP support to achieve the forward
security. (If the signer herself introduces the required asymmetry, then an active attacker compromising

the signer can eventually forge the computed signatures [121]). To achieve the immediate verification
and scalability, BAF uses neither the time factor nor an online TTP support.

• BAF Strategy: BAF uses a new strategy called “Blind-Aggregate-Forward”. Such a strategy en-
ables signers to log a large number of log entries with little computational, storage, and communication

50



costs in a publicly verifiable way:

1. Individual Signature Generation: BAF computes the individual signature of each accumulated
data item with a simple and efficient blinding operation. Blinding is applied to the hash of a data

item via first a multiplication and then an addition operation modular a large prime q by using a
pair of secret blinding keys (referred as the blinding key pair). The result of this blinding operation

is a unique and random looking output (i.e., the one-time individual signature), which cannot be
forged without knowing its associated private keys.

2. Key Update: BAF updates the blinding key pair via two hash operations after each individual

signature generation, and then deletes the previous key pair from memory.

3. Signature Aggregation: BAF aggregates the individual signature of each accumulated data item
into the existing aggregate signature with a single addition operation modular q.

In the above construction, the individual signature computation binds the hash of a signed data item
to its index, a random number and the corresponding blinding key pair in a specific algebraic form. The

signature aggregation maintains this form incrementally and also preserves the indistinguishability of
each individual signature. Hence, the resulting aggregate signature can be verified by a set of public

key securely. BAF enables this verification by embedding each blinding private key pair into a public
key pair via an modular exponentiation in the key generation phase in an offline manner. Using the

corresponding public keys, the verifiers follow the BAF signature verification equation by performing
an modular exponentiation for each received data item.

4.3.2 Description of BAF

The proposed BAF scheme is given below.

1. (sk ,PK )← BAF .Kg(1κ, L): Given the security parameter 1κ, generate large primes (p, q) such
that p > q and q|(p− 1), where |p| and |q| are selected to achieve κ bit security. Also generate a

generator α of the subgroup G of order q in Z∗
p . H is a cryptographic hash function [14], which

is defined as H : {0, 1}∗ → Z∗
q .

(a) Generate the initial key pair as (a0, b0)
$← Z∗

q , and then generate two hash chains from

(a0, b0) as aj+1 ← H(aj) and bj+1 ← H(bj) for j = 0, . . . , L− 1 1.

(b) Generate two master seeds (x, x′) $← Z∗
q . Also generate rj ← H(x||j) and kj ← H(x′||j),

respectively, for j = 0, . . . , L − 1. Compute the corresponding tokens as uj ← kj +

rj mod q for j ← 0, . . . , L− 1 and u′j ← kj−1 +H(kj) mod q for j = 1, . . . , L− 1.

1Key evolve function can also be a Forward-secure Pseudo Random Number Generator (FWPRNG) as suggested in [68].
However, we prefer an ideal hash function here to provide a more succinct proof in our security analysis.
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(c) Compute {Aj ← αaj mod p, Bj ← αbj mod p}L−1
j=0 .

(d) Private/public key of IDi is as follows:

sk ← (⟨a0, b0⟩, x, x′) and PK ← ({Aj , Bj , uj}L−1
j=0 , {u′j}

L−1
j=1 , p, q, α, L).

2. sk j+1 ← BAF .Upd(sk j , L): Given sk j = (⟨aj , bj⟩, x, x′), if j ≥ L − 1 then return ⊥ (i.e., in-
valid input). Otherwise, update the private key as sk j+1 ← (⟨aj+1, bj+1⟩, x, x′), where (aj+1 ←
H(aj), bj+1 ← H(bj)), and then securely erase (aj , bj) from the memory2.

3. σ0,l ← BAF .Sig(sk j ,
−→
D): Given the private key sk j = (⟨aj , bj⟩, x, x′), data to be signed

−→
D =

⟨Dj , . . . , Dl⟩ and the internal state Ψ = (σ0,j−1, ⟨D0, . . . , Dj−1⟩) (initially Ψ is an empty vec-

tor), compute the forward-secure and aggregate signature σ0,l as follows:

(a) Compute sj,l ←
∑l

m=j(amH(Dm||rm||m) + bm) mod q, where rm = H(x||m) and
(⟨am+1, bm+1⟩, x, x′)← BAF .Upd((⟨am, bm⟩, x, x′), L) for m = j, . . . , l.

(b) Fold sj,l into s0,j−1 as s0,l ← s0,j−1 + sj,l mod q, where l > 0 and s0,0 = s0.

(c) Erase (σ0,j−1, sj,l, rj , . . . , rl) from memory. Update the state as Ψ ← (σ0,l, ⟨D0, . . . , Dl⟩)
and return the signature σ0,l ← ⟨s0,l, kl⟩, where kl = H(x′||l).

4. b← BAF .Ver(PK ,
−→
D,σ0,l): Recall that PK = ({Aj , Bj , uj}L−1

j=0 , {u′j}
L−1
j=1 , p, q, α, L). Given

−→
D = (D0, . . . , Dl), if the below equality holds, BAF .Ver returns 1, else, returns 0.

αs0,l mod p ≡
l∏

j=0

(A
H(Dj ||rj ||j)
j ·Bj) mod p,

where kj−1 ← u′j −H(kj) mod q for j = l, . . . , 1 and rj ← uj − kj mod q for j = l, . . . , 0.

Correctness: Recall that the signature is σ0,l = ⟨s0,l, kl⟩, where s0,l ≡
∑l

j=0(aj H(Dj ||rj ||j) +
bj) mod q and kl = H(x′||l), which are computed via the BAF .Sig algorithm. In the BAF verification

equation, the verifier computes the left-side of the equation as αs0,l mod p ≡ α
∑l

j=0(ajH(Dj ||rj ||j)+bj) mod

p. At the right-side of the equation, the verifier checks whether the data items D0, . . . , Dl (along with

random numbers r0, . . . , rl and indexes), when exponentiated over the public keys {Aj ≡ αaj mod

p,Bj ≡ αbj mod p}lj=0 , correctly constructs s0,l on the exponent. The correctness of the BAF follows

2Note that, in contrast to the private keys (aj , bj), the master seeds (x, x′) do not need to be forward-secure, and therefore
they are not evolved (they are given as the input to BAF .Upd for the completeness of the interface).
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as:

αs0,l mod p ≡ α
∑l

j=0(ajH(Dj ||rj ||j)+bj) mod p

≡ ((αa0)H(D0||r0||0)αb0)((αa1)H(D1||r1||1)αb1) · · · ((αal)H(Dl||rl||l)αbl) mod p

≡
l∏

j=0

(A
H(Dj ||rj ||j)
j ·Bj) mod p

If the above equality holds; this guarantees that the data items are intact and only the claimed signer,

who possessed the correct private key pairs before their deletion, could compute such a signature (which
is unforgeable after the keys were deleted as proven in Section 4.4).

Remark: Different from our preliminary version [120], the current BAF algorithm uses a random
number rj for each signature sj computed on Dj . We introduce these random numbers to achieve

a correct behavior for the simulators constructed in FAEU -CMA and TRUNC experiments. That is,
they enable the simulator F (i.e., the DLP attacker) to simulateA ’s (i.e., the BAF attacker’s) RO(.) and

FAS .Sigsk (.) queries without causing A to abort with a non-negligible probability (in terms of κ). The
details are given in Section 4.4.

We use master seeds (x, x′), tokens (u, u′) and masking keys k as the auxiliary components to
integrate these random numbers to the BAF without degrading its optimal signer efficiency. In the key

generation, each random number rj and the previous key kj−1 are masked via the key kj as uj ←
kj + rj mod q for j = 0, . . . , L− 1 and u′j ← kj−1+H(kj) mod q for j = 1, . . . , L− 1, respectively.

These tokens are given to the verifiers as a part of the public key.
Once the signer releases the signature σ0,l = ⟨s0,l, kl⟩, the verifiers can recover all the previous

random numbers r0, . . . , rl−1 from (ul, u
′
l) via kl in a computationally efficient way. Similarly, the

signer can derive all random numbers and masking keys from the master seeds (x, x′) with only two

hash operations (these seeds and random numbers do not need to be forward-secure).

Notice that, instead of using the above strategies, the signer could simply generate a new random
number for each data item. However, such an approach requires storing and then transmitting these

random numbers to the verifiers, which destroy the constant-size key/signature storage and transmission
properties (i.e., the aggregation property) at the signer side. Based on the above strategies, the signer

avoids storing/transmitting a random number for each data item (i.e., linear storage/communication
overhead), and she also does not perform any ExpOp as required. The verifier computational efficiency

is also preserved, but the verifier storage overhead is doubled.

4.3.3 Fast-Immutable BAF (FI-BAF)

All existing FAS constructions including the BAF keep only the single-final aggregate signature for

the entire signing process. There are two reasons behind this strategy: (i) The aggregation function

of all PKC-based FAS constructions is public and easy to invert if its individual signature compo-
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nents are known. Therefore, all individual signatures are securely erased immediately after they are
aggregated in the signing process to prevent the truncation attacks. (ii) This also offers the signature

storage/transmission efficiency (i.e., the constant signature size).
However, this strategy also has certain drawbacks [79]: (i) The verification of a particular log entry

requires the verification of all log entries, which forces verifiers to perform a large number of ExpOps.
(ii) If the verification of the aggregate signature fails, it is not possible to detect which log entry(ies) is

(are) responsible for the failure.
It is therefore desirable to enable a fine-grained verification of individual data items, while still being

secure against the truncation attack.

The problem of deriving “valid” aggregate signatures from existing aggregate and/or individual sig-
natures (either via truncation or partial aggregation) was first addressed by Mykletun et al. [91] with

immutable aggregate signatures. Immutable aggregate signatures prevent such derivations by introduc-
ing additional protection mechanisms for individual signatures according to the underlying aggregate

signature scheme. Mykletun et al. [91] suggest two main types of immutable signature mechanisms:
(i) Zero-knowledge proof techniques (one is interactive and the other is non-interactive) for condensed-

RSA schemes; (ii) Umbrella signature technique for the BLS-based aggregate signature schemes. These
constructions are designed for the generic distinct-signer-distinct-message model.

To prevent the truncation attacks against FssAgg signatures [75,76], when individual signatures are
kept, [79] adopts umbrella signature technique in [91] to their schemes as the immutable signature

mechanism. Unfortunately, the direct adaptation of this technique, which is particularly useful for
distinct-signer-distinct-messages model, increases the computational overhead of already costly FssAgg

schemes.
Fast-Immutable BAF (FI-BAF): To address the above problem, we give a simple variant of the

BAF called Fast-Immutable BAF (FI-BAF). FI-BAF leverages the fact that all existing FAS construc-
tions behave according the same-signer-distinct-message model (see Section 4.2.1), and therefore the

signer can easily compute two independent signature sets to achieve both the “all-or-nothing” and the
individual signature verification properties. This simple strategy is more efficient than the direct use of

immutable signatures [91], which are designed for the different-signer-distinct-message model.
In FI-BAF, “all-or-nothing” property is achieved by using BAF as a sub-routine. To enable the

fine-grained verification, FI-BAF computes a second set of forward-secure signatures along with the
execution of BAF. These signatures are computed as in BAF with the exception that they are kept in

individual form instead of being aggregated. Furthermore, these individual signatures are bind to a
random number n, which is used along with an index incrementally, and is specific to each signer.

Remark that the individual signatures and the aggregate signature are computed with distinct private
key sets. Hence, these individual signatures cannot be used to launch a truncation attack (any such

attempt is equivalent to produce a forgery on the aggregate signature). Similarly, individual signatures
are identified with the use of a distinguishing index n, which prevents them to be used in an aggregated
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form. That is, any signature computed with n is considered as an individual signature, and if it is used
in an aggregate form, the verifiers will reject the associated signature. Therefore,A either has to remove

n from the individual signature (i.e., explicitly forge it), or keep it intact in individual form.
Note that since the computation of individual signature set does not require any ExpOp as in BAF,

FI-BAF is practically as computation-efficient as the original BAF at the signer side. At the same time,
different from iFssAgg schemes [79], FI-BAF does not combine individual and aggregate signatures to

form the single-final aggregate signature. (Such combination is redundant in the same-signer-distinct-
message model.). Hence, FI-BAF is also as computation-efficient as the original BAF at the verifier

side.

The storage overhead of FI-BAF is linear with the number of individual signatures as in all im-
mutable aggregate signature schemes. Similarly, FI-BAF doubles the storage overhead of its base

scheme at the verifier side. However, FI-BAF is more computation-efficient than iFssAgg schemes,
which also doubles the computational overhead of their base schemes both at the signer and verifier

sides.

4.4 Security Analysis

We prove that BAF is a FAEU-CMA signature scheme in Theorem 4.1 below.

Theorem 4.1

AdvFAEU -CMA
BAF (p,q,α) (t, L

′, L, µ′, µ) ≤ L ·AdvDL
G,α(t

′),

where O(t′) = O(t+ Lκ2 + L′κ).

Proof: Let A be a BAF attacker and (y ← Z∗
q , Y ← αy mod p). We construct a DL attacker F that

uses A as a sub-routine on Y as follows:

Algorithm F (Y )

Set the target forgery/signature extraction index w
$← [0, L− 1],

(sk ,PK )← BAF .Kg(1κ, L), where sk = (⟨a0, b0⟩, x, x′), PK ← ({Aj , Bj}0≤j≤L−1,j ̸=w, {uj}L−1
j=0 ,

{u′j}
L−1
j=1 , p, q, α, L).

(⟨aj , bj⟩, x, x′)← BAF .Upd((⟨aj−1, bj−1⟩, x, x′), L) for j = 1, . . . , L− 1,

Simulation: Simulate public keys (Aw, Bw), an individual signature γ, and its corresponding random

oracle answer z on (Aw, Bw) as follows:

- Aw ← Y ,

- (z, γ)
$← Z∗

q ,

- Bw ← (Y z)−1αγ mod p,
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Initialize the counters as l← 0, j′ ← 0, i← 0, l′ ← 0,

Execute ARO(.),FAS .Sigsk (.),Break -in(PK ): F maintains three lists HL, LD, and LS to keep track the
query results in the duration of the experiment. HL is a hash list in a form of tuples (Dj , hj), where

Dj and hj denote a data item queried to RO(.) and its corresponding RO(.) answer, respectively.
LD is a data list, in which each of its element LD[i] is also a data vector

−→
D (i.e., a batch query). LS is

a signature list that is used to record answers given by FAS .Sigsk (.).

- Queries: A queries the FAS .Sigsk (.) oracle on up to L messages of her choice, and then queries
the Break -in oracle once. A also queries the RO(.) oracle on up to L′ messages of her choice.

These queries are handled as follows:

• How to respond queries to RO(.) oracle: F executes the function H -Sim(δ) that works as

follows: If δ ∈ HL then return the same result from HL. Otherwise, return h
$← Z∗

q as the
answer, insert the new tuple (δ, h) toHL, and update l′ ← l′ + 1.

• How to respond i-th FAS .Sigsk (.) query:

- For each batch query i, A queries FAS .Sigsk (.) on
−→
D i = {Dj′ , . . . , Dj}, j ≥ j′ of her

choice.

- If ((j < w) ∨ (j′ > w)) then compute sj′,j ←
∑j

m=j′(amhm + bm) mod q as in the
real system, where hm ← H -Sim(Dm||rm||m) and rm ← H -Sim(x||m) (if j′ = j then

sj′,j = sj) 3.

Otherwise, if (Dw||rw||w) ∈ HL then abort and return 0 (an abort probability analysis is
given in the following parts). Otherwise, compute sj′,j ← [

∑
j′≤m≤j,m ̸=w(amhm+ bm)]+

γ mod q, where hm ← H -Sim(Dm|| rm||m) (if j′ = j then sj′,j = sj). Insert the tuple
(Dw||rw||w, z) intoHL.

- s0,j ← s0,j′−1 + sj′,j mod q (for initial j′ = 0, s0,j′−1 = 0), and σ0,j ← ⟨s0,j , kj⟩, where

kj = H -Sim(x′||j).

- Respond i-th batch query as σ0,j , and then insert
−→
D i and σ0,j into LD and LS, respectively.

- Update j′ ← j + 1, l← j′, i← i+ 1 and continue to respond A ’s queries.

• How to respond queries to the Break -in oracle: Assume that FAS .Sigsk (.) oracle was queried
l individual messages up to now. If l = L then reject the query (all private keys were used) and

proceed to the Forgery phase. Otherwise, if l ≤ w then abort and return 0. Otherwise, give
ξ ← ⟨{am, bm}L−1

m=l+1, x, x
′⟩) to A .

- Forgery: Finally, A outputs a forgery as (
−→
D∗, σ∗ = ⟨s∗0,t, k∗⟩) on PK .

3Remind that BAF .Kg algorithm already computed {rm, km}L−1
m=0 from seeds (x, x′), respectively, during the key gener-

ation and inserted these results into HL.
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By Definition 4.3, A wins if BAF .Ver(PK ,
−→
D∗, σ∗) = 1 and ∃n ∈ {0, . . . , l} :

−→
D∗[n] /∈

{LD[0]|| . . . ||LD[i]} holds (recall that each LD[m], 0 ≤ m ≤ i, is a batch query (a data vector),

and
−→
D∗[n] is the n-th individual data item in the forgery data vector

−→
D∗).

If A loses in the FAEU-CMA experiment, then F also loses in the DL experiment, and therefore

F aborts and returns 0. Otherwise, F proceeds as follows:
Extraction: If ((e < w) ∨ (

−→
D∗[w] = Dw)) then F aborts and return 0, where e = |−→D∗| (i.e.,

A ’s forgery is valid but it is not on the values (Aw, Bw)). Otherwise, F proceeds for the discrete log
extraction as follows:

The forged aggregate signature s∗0,e is valid on PK , and F knows all the corresponding private keys
of PK except (aw = y′, bw), which are included in the forged individual signature γ∗. Hence, F first

isolates γ∗ from s∗0,e as follows:

γ∗ ← s∗0,e −
∑

0≤v≤e,v ̸=w

(avH -Sim(
−→
D∗[v]||rv||v) + bv) mod q

Recall that Bw ≡ (Az
w)

−1αγ mod p holds due to the simulation. Moreover, since BAF .Ver(PK ,
−→
D∗, σ∗) =

1 holds, αγ∗ ≡ (Aw)
h∗
wBw mod p also holds, where (Aw, Bw) ∈ PK and h∗w ← H -Sim(

−→
D∗[w]||rw||w).

Therefore, we write the following equations:

αγ ≡ (αy′)zαbw mod p,

αγ∗ ≡ (αy′)h
∗
wαbw mod p,

F then extracts y′ by solving the below modular linear equations (note that only unknowns are y′

and bw):

γ ≡ y′z + bw mod q,

γ∗ ≡ y′h∗w + bw mod q,

Note that Y ≡ αy′ mod p holds, since A ’s forgery is valid and non-trivial on Y . Therefore, by

Definition 4.1, F wins the DL experiment.
The success probability and execution time analysis of the above experiment, and the indistinguisha-

bility argument are as follows:

I Success Probability Analysis: We analyze the events that are needed for F to win the DL experi-

ment as follows:

- Abort1 : F does not abort as a result of A ’s queries.

- Forge: A wins the FAEU-CMA experiment.

- Abort2 : F does not abort in the extraction.
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- Win: F wins the DL experiment

F succeeds if all of these events happen, and hence the probability AdvDL
G,α(t

′) decomposes as,

Pr[Win] = Pr[Abort1 ] · Pr[Forge|Abort1 ] · Pr[Abort2 |Abort1 ∧ Forge]

• The probability of event Abort1 occurs: F may abort in the duration of FAS .Sigsk (.)
queries, if one the below events occurs:

i. Before obtaining kw from FAS .Sigsk (.), if A queries the data item Dw||rw||w to the RO(.) or-
acle and then requests its signature from the FAS .Sigsk (.) oracle, then F aborts. This occurs if

A randomly guesses rw or the master seeds (x, x′), from which rw and its masking key kw are
derived. The probability that this occurs is 3/(q − 1), which is negligible in terms of κ.

ii. A queries the FAS .Sigsk (.) oracle on 0 ≤ l ≤ L−1 data items and then queries the Break -in or-

acle. If l ≤ w then F aborts (i.e., F does not know the corresponding private key of Aw = Y ,
and therefore cannot answer this query). The probability that F does not abort (i.e., the index w

falls into the safe range [0, l]) is l/L.

Omitting the negligible terms, the probability is Pr[Abort1 ] = (1− 3/(q − 1))(l/L) ∼= l
L .

• The probability of event Forge occurs: If event Abort1 occurs, then A also does not abort, since
A ’s view is statistically indistinguishable from her view in a real-system (see the indistinguishability

argument below). Hence, this occurs with Pr[Forge|Abort1 ] = AdvFAEU -CMA
BAF (p,q,α) (t, L

′, L, µ′, µ).

• The probability of event Abort2 occurs: If A ’s forgery is on (Aw, Bw) then F does not abort in the
extraction. Since w ≤ |−→D∗| = e ≤ l, this occurs with a probability at least Pr[Abort2 |Abort1 ∧
Forge] ≥ 1/l. Note that the probability that A wins on a data item D∗

w without querying it to the
RO(.) oracle is negligible in terms of κ, and therefore H -Sim always returns an existing answer

from HL in the extraction. Hence, after the extraction, the probability that Y ̸≡ αy′ mod p is also
negligible.

Therefore, the upper bound on FAEU-CMA-advantage of BAF is as follows:

AdvFAEU -CMA
BAF (p,q,α) (t, L

′, L, µ′, µ) ≤ L ·AdvDL
G,α(t

′)

I Execution Time Analysis: The running time of F is that of A plus the time it takes to respond up
to L′ RO(.) queries and L FAS .Sigsk (.) queries. Each new RO(.) query requires drawing a random

number from Z∗
q , whose cost is denoted as O(κ). Each FAS .Sigsk (.) query requires at least two modular

additions and one modular multiplication, whose costs are denoted as O(κ2). Hence, the approximate

running time of F is O(t′) = O(t+ Lκ2 + L′κ).

58



I Indistinguishability Argument: The real-view ofA is comprised of the public key PK = ({Aj , Bj ,

uj}L−1
j=0 , {u′j}

L−1
j=1 , p, q, α, L) and the answers of FAS .Sigsk (.), RO(.) and Break -in oracles given as

LS ,HL = {hm}l
′
m=0, and ξ = ⟨{am, bm}L−1

m=l+1, x, x
′⟩, respectively. That is,

−→
A real = ⟨PK ,LS,HL, ξ⟩,

where all values are generated/computed by BAF algorithms as in the real system.

In
−→
A real , all variables in PK are computed from those values denoted as Υ = ({aj , bj}L−1

j=0 , x, x
′).

Similarly, all variables in LS are computed from the variables in HL and Υ. That is, the joint proba-

bility distribution of all other variables in
−→
A real are binary probabilities, which are decided by the joint

probability distribution of (Υ,HL). Note that all variables in (Υ,HL) are random values in Z∗
q , where

|HL| = l′ and |Υ| = 2L+ 2. Hence, the joint probability distribution of
−→
A real is,

Pr[
−→
A real =

−→a ] = Pr[Υ = Υ|HL = HL]

Pr[
−→
A real =

−→a ] = Pr[x′ = x′|x = x ∧ a0 = a0∧, . . . ,∧b0 = b0∧, . . . ,∧HL = HL]

Pr[
−→
A real =

−→a ] = Pr[x′ = x′|x = x ∧ a0 = a0∧, . . . ,∧h0 = h0∧, . . . ,∧hl′ = hl′ ]

=
1

(q − 1)2(L+1)+l′

The simulated-view ofA is
−→
A sim , and it is equivalent to

−→
A real except that in the simulation, the orig-

inal decider variables (aw, hw, bw) are replaced with the decider variables (y, z, c), where (y, z, γ)
$←

Z∗
q and c = γ− y · z mod q. That is, all 2(L+1)+ l′ deciders are random variables in Z∗

q as in the real
system. Therefore, the joint probability distributions Pr[

−→
A real =

−→a ] = Pr[
−→
A sim = −→a ] (i.e., perfectly

indistinguishable). �
We now prove that BAF is secure against the truncation attacks in Theorem 4.2 below.

Theorem 4.2

AdvTRUNC
BAF (p,q,α)(t, L

′, L, µ′, µ) ≤ L2

L− 1
·AdvDL

G,α(t
′),

where O(t′) = O(t+ Lκ2 + L′κ).

Proof: Let A be a BAF attacker and (y ← Z∗
q , Y ← αy mod p). We construct a DL attacker F that

uses A as a sub-routine on Y as follows:

Algorithm F (Y )

Set the target forgery/signature extraction index w
$← [0, L− 1],

(sk ,PK )← BAF .Kg(1κ, L), where sk = (⟨a0, b0⟩, x, x′) and PK ← ({Aj}0≤j≤L−1,j ̸=w,

{Bj}0≤j≤L−1,j ̸=w+1, {uj}L−1
j=0 , {u′j}

L−1
j=1 , p, q, α, L).

(⟨aj , bj⟩, x, x′)← BAF .Upd((⟨aj−1, bj−1⟩, x, x′), L) for j = 1, . . . , L− 1,

Simulation: Simulate public keys (Aw, Bw+1), a batch signature s′, and its corresponding random

oracle answers (z0, z1) on (⟨Aw, Bw⟩, ⟨Aw+1, Bw+1⟩) as follows:
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- Aw ← Y ,

- s′
$← Z∗

q ,

- (z0, z1)
$← Z∗

q ,

- Bw+1 ← αs′(Az0
w BwA

z1
w+1)

−1 mod p,

Initialize the counters as l← 0, j′ ← 0, i← 0, l′ ← 0,

Execute ARO(.),FAS .Sigsk (.),Break -in(PK ): F maintains HL, LD, and LS to keep track the query

results in the duration of the experiment as in Theorem 5.1.

- Queries: F handles A ’s queries as follows,

• How to respond queries to RO(.) oracle: F executes the function H -Sim(.) that is defined in

Theorem 4.1.

• How to respond i-th FAS .Sigsk (.) query:

- For each batch query i, A queries FAS .Sigsk (.) on
−→
D i = {Dj′ , . . . , Dj}, j ≥ j′ of her

choice.

- If ((j < w) ∨ (w + 1 < j′)) then compute sj′,j ←
∑j

m=j′(amhm + bm) mod q as in the

real-system, where hm ← H -Sim(Dm||rm||m) and rm ← H -Sim(x||m) (if j′ = j then
sj′,j = sj).

Otherwise, if ((j = w) ∨ (Dw||rw||w ∈ HL) ∨ (Dw+1||rw+1||(w + 1)) ∈ HL) then

abort and return 0 (an abort probability analysis is given in the following parts). Other-
wise, compute sj′,j ← [

∑
j′≤m≤j,m̸=w,m ̸=w+1(amhm +bm)] + s′ mod q, where hm ←

H -Sim(Dm||rm||m). Insert tuples {(Dw||rw ||w, z0), (Dw+1||rw+1||(w + 1), z1)} into
HL.

- s0,j ← s0,j′−1 + sj′,j mod q (for initial j′ = 0, s0,j′−1 = 0), and σ0,j ← ⟨s0,j , kj⟩, where

kj ← H -Sim(x′||j).

- Respond i-th batch query as σ0,j , and then insert
−→
D i and σ0,j into LD and LS, respectively.

- Update j′ ← j + 1, l← j′, i← i+ 1 and continue to respond her queries.

•How to respond queries to the Break -in oracle: A queried FAS .Sigsk (.) oracle on l individual

messages up to now. If l = L then reject the query (all private keys were used) and proceed to the
Forgery phase. Otherwise, if l ≤ w+1 then abort. Otherwise, give ξ ← ⟨{am, bm}L−1

m=l+1, x, x
′⟩

to A .

- Forgery: Finally, A outputs a forgery as (
−→
D∗, σ∗ = ⟨s∗0,t, k∗⟩) on PK .

By Definition 4.4,Awins if BAF .Ver(PK ,
−→
D∗, σ∗) = 1 and

−→
D∗ ⊂ LD and ∀I ⊆ {0, . . . , i},−→D∗ ̸=

||m∈ILD[m] holds. Recall that i denotes the total number of batch queries A made to FAS .Sigsk (.) or-

acle, and LD[m], 0 ≤ m ≤ i, denotes k-th batch query.
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If A loses in the TRUNC experiment, then F also loses in the DL experiment, and therefore
F aborts and returns 0. Otherwise, F proceeds as follows:

Extraction: This occurs ifA performs a tail-truncation attack on the simulated values (i.e., individual
public keys) (Aw, Bw+1). Note that, due to the indexing mechanism, any non-tail-truncation attack (see

Section 4.2.4 for a discussion on aggregate signature extraction and truncation attacks) results in a
traditional forgery (i.e., A has to modify index and/or random seeds), which was analyzed in Theorem

4.1. Therefore, we only analyze the tail-truncation case as below:
A queried the FAS .Sigsk (.) oracle on l ≤ L − 1 data items and then queried the Break -in oracle.

Hence, the final signature that A obtained from FAS .Sigsk (.) is σ0,l = ⟨s0,l, kl⟩. A tail-truncation

attack occurs if A extracts a valid aggregate signature s∗0,e = s0,e from s0,l without querying s0,e or
se+1,l to FAS .Sigsk (.), where e = |D∗| and s0,l ≡ s0,t + st+1,l mod q (0 < e < l and for e + 1 = l,

sl,l = sl). Notice that, different from the traditional forgery case (analyzed in Theorem 5.1), in a tail-
truncation attack, A does not modify the data items corresponding to the truncated signature s∗0,e. That

is, s∗0,e = s0,e is valid on
−→
D∗ = (D0, . . . , De) ⊂ LD as denoted in the winning condition.

Recall thatF embedded Y into Aw and then setup the simulation as Bw+1 ← αs′(Az0
w BwA

z1
w+1)

−1 mod

p, which implies the below equality holds,

s′ ≡ y · z0 + bw + aw+1 · z1 + bw+1 mod q

, where (y, bw+1) are the unknowns.

Due to the above simulation, if A extracts the individual signature s′0 from the batch signature s′

(that is valid on the tokens (⟨Aw, Bw⟩, ⟨Aw+1, Bw+1⟩), then F achieves the discrete log extraction.

That is, since s′0 is valid on (Aw, Bw), the equation αs′0 ≡ Az0
w Bw mod p also holds. Therefore, F can

extract y by solving the modular equation s′0 ≡ y · z0 + bw mod q.

Based on the above argument,F checks if e = w and
−→
D∗[w] = Dw (i.e.,A splits the batch signature

s′ that F embedded into A ’s FAS .Sigsk (.) query on the values ⟨Aw, Bw⟩, ⟨Aw+1, Bw+1⟩). If this is

not the case, F aborts and return 0. Otherwise, F proceeds for the discrete log extraction as follows:
The forged (extracted) aggregate signature s∗0,e is valid on PK , and F knows all the corresponding

private keys of PK except aw = y′, which is included in the individual signature s′∗0 . Hence, F first
isolates s′∗0 from s∗0,e as follows (note that e = w):

s′∗0 ← s∗0,w −
w−1∑
v=0

(avH -Sim(
−→
D∗[v]||rv||v) + bv) mod q

Remind that since BAF .Ver(PK ,
−→
D∗, σ∗) = 1 holds, the equality αs′∗0 ≡ Y z0Bw mod p holds.

Hence, F extracts y′ as,

y′ ≡ (s′∗0 − bw) · z−1
0 mod q

61



If F does not abort then Y ≡ αy′ mod p holds, since A ’s forgery is valid and non-trivial on Y .
Therefore, by Definition 4.1, F wins the DL experiment.

The success probability and the execution time analysis of the above experiment, and the indistin-
guishability argument are as follows:

I Success Probability Analysis: The probability AdvDL
G,α(t

′) is as follows:

Pr[Win] = Pr[Abort1 ] · Pr[Forge|Abort1 ] · Pr[Abort2 |Abort1 ∧ Forge]

• The probability of event Abort1 occurs: F may abort in the duration of FAS .Sigsk (.)

queries, if one the below events occurs:

i. A queries the FAS .Sigsk (.) oracle on l ≤ L−1 data items and then queries the Break -in oracle.

If l ≤ w + 1 then F aborts (i.e., F does not know the corresponding private key of (Aw =

Y,Bw+1), and therefore cannot answer this query). The probability that F does not abort (i.e.,

the index w falls into the safe range [0, l]) is l/L.

ii. A makes a batch query
−→
D i = {Dj′ , . . . , Dj}, j ≥ j′ for j = w. F cannot answer this query,

since F does not know the individual signature corresponding (Aw, Bw) that he simulated on Y .

Since the target forgery index is chosen as w $← [0, L− 1], this occurs with a probability 1/L.

iii. Before obtaining (kw−1, kw) from the FAS .Sigsk (.),A first queries data items (Dw||rw||w,Dw+1||
rw+1||w + 1) to the RO(.) oracle, and then request their corresponding signature from the

FAS .Sigsk (.) oracle. This happens if A randomly guesses one of these values (rw, rw+1, x, x
′),

whose probability is 4/(q − 1).

Omitting the negligible terms, the probability is Pr[Abort1 ] = (1 − 1/L)(1 − 4/(q − 1))(l/L) ≃
(L−1)l
L2 .

• The probability of event Forge occurs: If event Abort1 occurs, then A also does not abort, since
A ’s view is statistically indistinguishable from her view in a real system (see the indistinguishability

argument below). Hence, this occurs with Pr[Forge|Abort1 ] = AdvTRUNC
BAF (p,q,α)(t, L

′, L, µ′, µ).

• The probability of event Abort2 occurs: If A ’s forgery is on (Aw, Bw) then F does not abort in the
extraction. Given that w ≤ |−→D∗| = t ≤ l, this occurs with a probability at least Pr[Abort2 |Abort1 ∧
Forge] ≥ 1/l.

Therefore, the upper bound on TRUNC -advantage of BAF is as follows:

AdvTRUNC
BAF (p,q,α)(t, L

′, L, µ′, µ) ≤ L2

L− 1
·AdvDL

G,α(t
′).

I Execution Time Analysis: It is as in the Theorem 4.1.
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I Indistinguishability Argument: Recall that
−→
A real = ⟨PK ,LS,HL, ξ⟩ and Pr[

−→
A real = −→a ] =

1
(q−1)2(L+1)+l′ as given in Theorem 4.1.

The simulated-view of A is
−→
A sim , and it is equivalent to

−→
A real except that in the simulation, the

original decider variables (aw, hw, hw+1, bw+1) are replaced with the decider variables (y, z0, z1, c),
where (y, z0, z1, s

′)
$← Z∗

q and c ← s′ − y · z0 − bw − aw+1 · z1 mod q (note that (bw, aw+1)
$← Z∗

q

as in the real system). That is, all 2(L + 1) + l′ deciders are random variables in Z∗
q as in the real

system. Therefore, the joint probability distributions Pr[
−→
A real =

−→a ] = Pr[
−→
A sim = −→a ] (i.e., perfectly

indistinguishable) as in Theorem 4.1. �
Another security concern in audit logging is the delayed detection attack identified in [78, 79]. De-

layed detection attack targets the audit logging mechanisms requiring online TTP support to enable
the log verification. In these mechanisms, the verifiers cannot detect whether the log entries are mod-

ified before a TTP provides required keying information. Due to the lack of immediate verification,

these mechanisms cannot fulfill the requirement of applications in which the log entries should be pro-
cessed in real-time. Ma et al. [79] shows that many existing schemes are vulnerable to these attacks

(e.g., [18], [17], [104], [103]).
Remark that BAF schemes are also secure against the delayed detection attack: In BAF schemes, the

verifiers are provided with all the required public keys before deployment. Hence, both schemes achieve
the immediate verification property, and therefore are secure against the delayed detection attack.

4.5 Performance Analysis and Comparison

In this section, we present the performance analysis of our schemes. We also compare BAF and FI-BAF

with the previous schemes using the following criteria: (i) The computational overhead of signature
generation/verification operations (including the key update cost); (ii) signature/key storage and com-

munication overheads depending on the size of signing key and the size of signature; (iii) desirable
properties such as public verifiability, offline TTP and immediate verification, and (iv) security proper-

ties such being resilient to the truncation and delayed detection attacks and the provable security.
We list the notation used in our performance analysis and comparison in Table 4.2. Based on this

notation, for each of the above category, we first provide the analysis of BAF and FI-BAF, and then
present their comparison with the previous schemes both analytically and numerically.

4.5.1 Computational Overhead

We implement our schemes on an Elliptic Curve (EC) [87], which offers small key/signature sizes and

high computational efficiency [56]. Let G be a generator of group G defined on an elliptic curve E(Fp)

over a prime field Fp, where p is a large prime number and q is the order of G such that p > q and

q|(p− 1). kG, where k ∈ Fq is an integer, denotes a scalar multiplication.
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Table 4.2: Notation for performance analysis and comparison
Muln′: Mul. mod n′ = p′q′, where (p′, q′) are large primes R: # of verifiers
Mulp/Mulq: Mul. mod p and mod q, respectively Addq: Addition mod q
EMul/EAdd: ECC scalar mul. and addition over Fp, respectively MtP : ECC map-to-point
Exp: Exponentiation mod p Sqr: Squaring mod n′ PR: ECC pairing
GSig/GV er: Generic signing and verification, respectively H: FDH operation
x: FssAgg-BM/AR security parameter L: max. # of key updates l: # of data items

Suggested bit lengths to achieve κ = 80 for the above parameters are as follows for each compared scheme: Large primes
(|p| = 512, |q| = 160) for BAF/FI-BAF, Logcrypt and FssAgg-BLS. (|n′| = 1024, x = 160) for FssAgg-AR and FssAgg-BM, where n′

is Blum-Williams integer [75]. Note that BAF/FI-BAF, Logcrypt and FssAgg-BLS were implemented in EC.

In BAF, signature computation and key update require (Mulq+2(Addq+H)) and 2H , respectively.
Hence, BAF requires (Mulq + 4H + 2Addq) in total to sign a single log entry. In FI-BAF, the cost of

signing a single log entry is the twice of that of BAF. Note that since the overhead of modular addition is
negligible, the total cost of signing a single log entry is dominated by hash and modular multiplication

operations.
By following the BAF signature verification equation, verifying a single log entry requires EMul+

EAdd+2(H+Addq). Note that it is possible to avoid performing one EAdd for per log entry by using
an optimization: In the key generation phase, we can compute and release B′

j = (
∑j

i=0 bj)G instead

of Bj = bjG for j = 0, . . . , L − 1 to speed up the signature verification. In this way, verifiers can

perform the signature verification with only one EAdd regardless of the value of l. Hence, the signature
verification cost of BAF for l received log entries is (l+ 1) · (EMul+ 2H). The signature verification

cost of FI-BAF is the same with that of BAF.
Comparison: The closest counter parts of our schemes are FssAgg schemes [75, 76, 78, 79]. The

signature generation of FssAgg-BLS [76] is expensive due to Exp and MtP , while its signature verifi-
cation is highly expensive due to PR. Different from FssAgg-BLS, FssAgg-BM and FssAgg-AR [75]

rely on more efficient operations such as Sqr and Muln′. However, these schemes are also com-
putationally costly, since they require heavy use of such operations. For instance, FssAgg-BM re-

quires x · Sqr + (1 + x/2)Muln′ (i.e., x=̃160 [75]) for the signature generation (key update plus
the signing cost), and it requires L · Sqr + (l + x · l/2)Muln′ for the signature verification. Sim-

ilarly, FssAgg-AR requires (3x)Sqr + (2 + x/2)Muln′ for the signature generation, and it requires
x(L+ l)Sqr+(2l+ l ·x)Muln′ for the signature verification. iFssAgg schemes [79] double the signing

(FssAgg.Sig) and verifying (FssAgg.Ver) costs of their base FssAgg schemes to completely eliminate
the truncation attack.

Logcrypt uses a digital signature scheme to sign and verify each log entry separately without sig-
nature aggregation [57], and thus has standard signature costs (e.g., we use ECDSA [6] for Logcrypt in

our comparison). The symmetric schemes [18,76,103,104] are in general efficient, since they only need
symmetric cryptographic operations.

Table 4.3 summarizes the analytical comparison of all these schemes for their computational costs
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Table 4.3: Computation involved in BAF, FI-BAF and previous schemes
Sig Upd Ver

BAF Mulq + 2H 2H (l + 1)(EMul + 2H)
FI-BAF 2 · BAF .Sig 2 · BAF .Upd BAF .Ver

PKC- FssAgg-BLS MtP + Exp+Mulp H l(Mulp+H + PR)
based FssAgg-BM (1 + x

2 )Muln′ x · Sqr L · Sqr + (l + l·x
2 )Muln′

FssAgg-AR x · Sqr + (2 + x
2 )Muln′ (2x)Sqr x(L+ l)Sqr + (2l + l · x)Muln′

iFssAgg 2 · FssAgg .Sig 2 · FssAgg .Upd 2 · FssAgg .Ver
Logcrypt GSig - l ·GVer

Symmetric 2H H l ·H

Table 4.4: Execution times (in ms) of BAF, FI-BAF and previous schemes for a single log entry
PKC-based

BAF FI-BAF FssAgg Schemes Logcrypt Symmetric
BLS/iBLS BM/iBM AR/iAR

Sig 0.01 0.02 1.83/3.66 3.6/7.2 7.71/15.42 1.02 0.006
Ver 0.74 0.76 24.5/49 1.7/3.4 5.3/10.6 1.23 0.006

using the notation given in Table 4.2.
In addition to the analytical comparison, we also measure the execution times of all the compared

schemes on a computer with an Intel(R) Xeon(R)-E5450 3GHz CPU and 2GB RAM running Ubuntu
9.04. The execution times of BAF, FI-BAF, FssAgg-BLS, Logcrypt, and the symmetric schemes [18,

76, 103, 104] were measured using implementations based on the MIRACL library [106]. The execu-
tion times of FssAgg-AR/BM were computed using implementations based on the NTL library [108].

Table 4.4 shows the signing/verifying costs of a single log entry in each scheme.
When compared with PKC-based FssAgg-BLS, FssAgg-BM, FssAgg-AR and Logcrypt, BAF is

183, 360, 771, and 102 times faster for loggers, respectively. Similarly, when compared with its im-
mutable counterparts (iFssAgg schemes), FI-BAF is also 183, 360 and 102 times faster for loggers,

respectively. Note that both BAF and FI-BAF signature verifications are also more efficient than the
previous schemes. When compared with FssAgg-BLS, FssAgg-BM, FssAgg-AR and Logcrypt, BAF is

33, 2.3, 7.1, and 1.6 times faster, respectively. Similarly, when compared with its immutable counter-
parts, FI-BAF is again 64, 4.47, and 13.9 times faster, respectively.

This computational efficiency makes BAF/FI-BAF the best alternative among existing schemes for

secure logging with public verifiability in resource-constrained devices.
Figure 4.1 and Figure 4.2 further show the comparison of BAF and the previous schemes that allow

public verification in terms of signature generation and verification time as the number of log entries
increases. Similarly, Figure 4.3 and Figure 4.4 demonstrate the comparison of FI-BAF and iFssAgg

schemes in terms of signature generation and verification time as the number of log entries increases.
These figures clearly show that BAF and FI-BAF are the most computationally efficient schemes among
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Figure 4.1: Signing time comparison of BAF and its
counterparts (in ms)
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Figure 4.2: Verification time comparison BAF and its
counterparts (in ms)

all these choices.
Remark that the key generation phase of all compared PKC-based schemes require O(L)ExpOp,

where L denotes the maximum number of key updates (i.e., the maximum number data items to be
signed). In BAF and FI-BAF, the key generation cost is O(L)(Add+EMul+2H) and O(2L)(Add+

EMul+2H), respectively. The key generation cost is O(L)(H+Emul), O(L)(x·Sqr+x/2·Muln′),
O(2L)(x ·Sqr+x/2 ·Muln′) and O(L)(H +Emul) for FssAgg-BLS, FssAgg-BM, FssAgg-AR and

Logcrypt (with ECDSA), respectively. Therefore, the key generation of BAF is more efficient than that
of FssAgg-AR and FssAgg-BM, but slightly less efficient than that of FssAgg-BLS and Logcrypt. The

key generation of FI-BAF is also more efficient than that of iFssAgg schemes with FssAgg-AR and
FssAgg-BM, but slightly less efficient than that of FssAgg-BLS.

When compared with the signature generation of previous symmetric logging schemes (e.g., [17,18,
76,103,104]), BAF and FI-BAF signature generation is comparable efficient even though they are PKC-

based schemes. However, signature verification of the symmetric logging schemes is more efficient than
all the existing PKC-based schemes, including BAF and FI-BAF. Note that these symmetric schemes

sacrifice the public verifiability and certain security properties (e.g., truncation and delayed detection
attacks) to achieve this verifier efficiency.

4.5.2 Storage and Communication Overheads

In BAF, the size of signing key is 4|q| (e.g., |q|=160), and the size of authentication tag is 2|q|. Since
BAF allows the signature aggregation, independent of the number of data items to be signed, the size of

resulting authentication tag is always constant (i.e., 2|q|). Furthermore, BAF derives the current signing
key from the previous one, and then deletes the previous signing key from the memory (i.e., evolve-
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Figure 4.3: Signing time comparison of FI-BAF and
iFssAgg schemes (in ms)
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Figure 4.4: Verification time comparison FI-BAF and
iFssAgg schemes (in ms)

Table 4.5: Signature/key storage and communication overheads of BAF, FI-BAF and previous schemes

Criteria BAF FI-BAF FssAgg Schemes Logcrypt Sym.BLS BM AR MAC iFssAgg
Key Size 4|q| 2 · BAF |q| x|n| 2|n| |H| 2 · FssAgg |q| |H|
Sig. Size 2|q| 2 · BAF |p| |n| 2|n| |H| 2 · FssAgg 2|q| |H|
Storage 6|q| O(2l)|q||p|+ |q| x|n| 4|n| O(R)|H|O(2l)·FssAgg O(l)|q| O(l)|H|
Comm. 2|q| O(2l)|q| |p| |n| |n| |H| O(2l)·FssAgg O(2l)|q| O(l)|H|

delete strategy [121]). That is, the size of signing key is also constant (i.e., 4|q|). Therefore, both the
signature storage and communication overheads of BAF are constant (i.e., 6|q| and 2|q|, respectively).

In FI-BAF, the size of signing key is two times of that of BAF. Since it uses BAF as a sub-routine,
its aggregate signature is small-constant as 2|q|. However, to enable a fine-grained verification of log

entries, FI-BAF keeps their corresponding individual signatures, and therefore its signature storage and
communication overheads are both O(2l)|q| for l log entries.

Comparison: The storage and communication overheads are measured according to the size of a
single signing key, the size of a single authentication tag, and the growth rate of these two parameters

with respect to the number of data items to be processed, that is, whether they grow linearly, or remain
constant for an increasing number of data items to be processed. Table 4.5 summarizes the comparison.

The symmetric schemes (e.g., [17, 18, 103, 104], and FssAgg-MAC in [76]) all use a MAC function
to compute an authentication tag for each log entry with a different key, where the sizes of the key and

the resulting tag are both |H| (e.g., 160 bit for SHA-1). Instead of using MACs, Logcrypt uses a digital
signature such as ECDSA, where the size of signing key is |q| (e.g., 160 bit) and the size of signature is

2|q|, respectively.
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Table 4.6: Scalability and security properties of BAF, FI-BAF, and previous schemes

Criteria BAF FssAgg/iFssAgg Logcrypt SymmetricFI-BAF BLS BM AR MAC
Public Verifiability Y Y Y Y N Y N

Offline TTP Y Y Y Y Y Y N
Immediate Verification Y Y Y Y Y Y N
Resilient to Delayed Y Y Y Y Y Y N

Detection Attack
Resilient to Truncation Y Y Y Y Y N N

(Deletion) Attack
Security Argument P H H H H N N

(the Truncation Attacks)
Y/N denotes “yes/no”, and P/H denotes “provable/heuristic”

These schemes cannot achieve the signature aggregation, and therefore they require storing/transmitting
an authentication tag for each log entry. That is, the signature storage and communication overheads

of these symmetric schemes and Logcrypt are all linear as O(l)|H| and O(l)|q|, respectively. Different
from these schemes, FssAgg-MAC achieves the signature aggregation, and its signature communication

overhead is only |H|. However, since FssAgg-MAC requires symmetric key distribution, its key storage
overhead is also linear (i.e., O(R)|H|).

The PKC-based FssAgg-BLS [76], FssAgg-BM and FssAgg-AR [75] achieve the signature aggre-
gation in a publicly verifiable way, and therefore their signature storage/communication overheads are

constant. Table 4.5 shows that they are efficient in terms of both the storage and communication over-
heads. iFssAgg schemes [79] demand linear signature storage and communication when compared

with their base schemes due to the need of storing and transmitting individual signatures (denoted as
O(2l) · FssAgg in Table 4.5).

BAF has constant signature storage and communication overheads, and is significantly more effi-
cient than all the schemes that incur linear signature (or key) storage and communication overheads

(e.g., [17, 18, 57, 76, 103, 104]). BAF is also more efficient than FssAgg-AR/BM [75], but less effi-
cient than FssAgg-BLS [76], as shown in Table 4.5. Similar to its immutable counterpart iFssAgg [79]

schemes, FI-BAF also demands linear signature storage and communication overheads.

4.5.3 Scalability and Security

BAF and FI-BAF are publicly verifiable, and they do not need an online TTP support for the signature
verification. Furthermore, BAF and FI-BAF do not rely on a time factor to be publicly verifiable, and

therefore they achieve the immediate verification property (in contrast to HaSAFSS schemes [121]).

Finally, they are proven to be resilient against the truncation attacks in ROM, whereas all the previous
cryptographic secure audit logging schemes only rely on heuristic security arguments about the trun-

cation attacks. Note that our schemes are also resilient against the delayed detection attacks as in all
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PKC-based schemes.
Table 4.6 shows the comparison of BAF and FI-BAF with the previous schemes in terms of their

scalability and security properties. The symmetric schemes (e.g., [17, 18, 103, 104]) cannot achieve the
public verifiability and require online TTP support to enable the log verification. The lack of public

verifiability and the requirement for an online TTP limit their applicability to large distributed systems.
Furthermore, they are vulnerable to both truncation and delayed detection attacks [78, 79]. FssAgg-

MAC [76] does not need an online TTP and is secure against the aforementioned attacks. However, it is
not publicly verifiable.

PKC-based FssAgg schemes, iFssAgg schemes and Logcrypt are publicly verifiable. They do not

need online TTP support, and can achieve the immediate verification.
BAF and FI-BAF, achieving all the required scalability and security properties, are also much more

computational efficient than all these PKC-based schemes.

4.5.4 Limitation

In BAF schemes, the size of public key is linear with respect to the number time periods. This may
incur high storage overhead to the verifiers. However, for our envisioned applications, the signer

computational/storage/communication efficiency is more important than the verifier storage efficiency
alone (as assumed in all PKC-based FSI models (see Section 4.2)). For example, the signer computa-

tional/storage efficiency is critically important for secure logging in resource-constrained devices such
as RFID tags [9] and wireless sensors [76], where the verifiers (e.g., laptops) can tolerate the storage

overhead.
Remark that some generic forward-secure signature constructions (e.g., the storage efficient con-

struction in [80]) offer sub-linear public key sizes. However, such constructions also require several

online ExpOps at the signer side, and therefore they are not practical for resource-constrained applica-

tions. They also do not provide the “all-or-nothing” property.

4.6 Conclusion

In this paper, we developed a new class of forward-secure and aggregate audit logging schemes, which
we refer to as Blind-Aggregate-Forward (BAF) and Fast-Immutable BAF (FI-BAF) logging schemes.

BAF simultaneously achieves several desirable properties for secure audit logging, including near-zero
logger computational overhead, small-constant signature storage/communication overheads, public ver-

ifiability (without online TTP support), immediate log verification and provable security. Our extended
scheme FI-BAF enables the selective verification of individual log entries via their corresponding indi-

vidual signatures while preserving the security and performance advantages of the BAF. Our compari-
son with the previous alternatives show that our schemes are ideal choices for secure audit logging in
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resource-constrained devices.
While BAF schemes are optimally efficient at the signer side, they still require an ExpOp per-data

item for the signature verification. Moveover, their public key size grows linearly with respect to the
number of time periods. In the next chapter, we present LogFAS [124] that achieves the verifier effi-

ciency while preserving the immediate verification, public verifiability and provable security properties.
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Chapter 5

Efficient, Compromise Resilient and
Append-Only Cryptographic
Constructions with Verifier Efficiency

In previous chapter, we presented BAF schemes that are ideal for real-time secure audit logging in
resource-constrained devices by achieving the optimal signer efficiency. However, BAF signature veri-

fication requires a modular exponentiation for each data item to be verified. Despite being more efficient
than all previous publicly verifiable schemes (with the exception of our HaSAFSS schemes that are ideal

only for non-real-time applications), this still may be computationally expensive for some verification-
intensive applications. Moreover, each verifier is required to store L tokens (i.e., individual public keys)

for each signer (i.e., L · S keys in total where S denotes the number of signers in the system).
In this chapter, we present a new class of secure audit logging schemes called Log Forward-secure

and Aggregate Signature (LogFAS) to address these limitations. LogFAS is designed to address ap-
plications, in which system auditors (i.e., verifiers) are required to verify large number of log entries

in real-time simultaneously. We first develop a main LogFAS scheme, and then extend it to provide
additional capabilities.

The desirable properties of LogFAS are outlined below. The first three properties show the efficiency
of LogFAS compared with its PKC-based counterparts, while the other two properties demonstrate the

applicability, availability and security advantages over their symmetric counterparts. Table 5.1 summa-
rizes these properties and compares LogFAS with its counterparts.

1. Efficient Log Verification with O(1) ExpOp: All existing PKC-based secure audit logging schemes

(e.g., [57, 75, 76, 78, 79, 120, 121]) require O(L) ExpOps to verify L log entries, which make them
costly. LogFAS is the first PKC-based secure audit logging scheme that achieves signature verifica-

tion with only a small number of ExpOps (and O(L) hash operations denoted as H). Specifically,
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Table 5.1: Comparison of LogFAS schemes and their counterparts for performance, applicability, avail-
ability and security parameters

Criteria PKC-based SYM
LogFAS FssAgg/iFssAgg BAF Logcrypt [18, 104]

Computational AR BM BLS
Sig&Upd (per item) O(1)ExpOp O(1)ExpOp O(1)H O(1)ExpOp O(1)H

On- Ver, (L items) O(1)ExpOp+O(L)H O(L)ExpOp+O(L)H O(L)H
line Subset ver (l′) O(1)ExpOp+O(l′)H O(2l′)(ExpOp+H) O(l′)(ExpOp+H) Not immutable O(l′)H

Efficient Search Available Not Available -
Key Generation (Offline) O(L)ExpOp O(L)H

Storage Verifier O(1)|K| O(S)|K| O(L · S)|K| O(S)|K|
Signer O(L)(|D|+ |K|) O(L)|D|+O(1)|K| O(L)|K| O(L)|K|

Communication O(L)|D|
Public Verifiability Y Y N

Offline Server Y Y N
Immediate Verification Y Y N
Immediate Detection Y Y N
Truncation Resilience Y Y N N

Security Argument (truncation) Provable Heuristic Provable N N

LogFAS is the only PKC-based forward-secure and append-only scheme that can verify O(L) items with O(1) ExpOp; all other similar
schemes require O(L)ExpOp. Similarly, LogFAS is the only one achieving O(1) key storage on the verifier side, while all other schemes
incur either linear or quadratic storage overhead (S, |D|, |K| denote number of signers in the system, the approximate bit lengths of a log
entry and unit keying material, respectively). At the same time, LogFAS is the only scheme that enables truncation-free subset verification
and sub-linear search simultaneously.

LogFAS can verify L log entries with only O(1) ExpOps regardless of the value of L. Therefore,
it is much more efficient than all its PKC-based counterparts, and is also comparably efficient with

symmetric schemes (e.g., [17, 18, 76, 103, 104]) at the verifier side.

2. Efficient Fine-grained Verification and Change Detection: LogFAS allows fine-grained verification
with advantages over iFssAgg, the only previous solution for fine-grained verification:

i. Unlike iFssAgg schemes [79], LogFAS prevents the truncation attack in the presence of individ-
ual signatures without doubling the verification cost.

ii. LogFAS can verify any selected subset with l′ < L log entries with O(1) ExpOps, while iFssAgg

and BAF schemes require O(2l′)ExpOps and O(l′)ExpOps , respectively. Note that HaSAFSS
schemes do not provide this fine-grained verification property.

iii. LogFAS can identify the corrupted log entries with a sub-linear number of ExpOps when most

log entries are intact. In contrast, iFssAgg and BAF schemes always require a linear number of
ExpOps.

3. Verifier Storage Efficiency with O(1) Overhead: Each verifier in LogFAS only stores one public key

independent of the number of loggers or the number of log entries to be verified. Therefore, it is
the most verifier-storage-efficient scheme among all existing PKC-based alternatives. This enables

verifiers to handle a large number of log entries and/or loggers simultaneously without facing any

storage problem.
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4. Provable Security: We prove LogFAS to be ForWard-secure Existentially Unforgeable against Cho-

sen Message Attack (FWEU-CMA) in ROM [13]. Furthermore, unlike some previous symmetric

schemes [18, 103, 104], LogFAS schemes are also secure against both truncation and delayed detec-
tion attacks.

5. Public Verifiability, Offline TTP and Immediate Verification: While achieving all the above proper-
ties, LogFAS preserves the immediate verification, public verifiability and independence from online

TTP properties. Therefore, LogFAS preserves all the advantages of BAF schemes over HaSAFSS
and some other previous schemes (e.g., [18, 103, 104, 121]).

The remainder of this chapter is organized as follows. Section 5.1 provides preliminary notation and

definitions. Section 5.2 describes the syntax and models. Section 5.3 presents the proposed LogFAS
schemes. Section 5.4 and Section 5.5 provide the security and the performance analysis of the LogFAS

schemes, respectively. Section 5.6 concludes this chapter.

5.1 Preliminaries

Notation. || denotes the concatenation operation. |x| denotes the bit length of variable x. x $← S denotes

that variable x is randomly and uniformly selected from set S. For any integer l, (x0, . . . , xl)
$← S

means (x0
$← S, . . . , xl

$← S). We denote by {0, 1}∗ the set of binary strings of any finite length.

H is an ideal cryptographic hash function, which is defined as H : {0, 1}∗ → {0, 1}|H|; |H| denotes
the output bit length of H . AO0,...,Oi(·) denotes algorithm A is provided with oracles O0, . . . ,Oi.

For example, AScheme.Sigsk (·) denotes that algorithm A is provided with a signing oracle of signature
scheme Scheme under private key sk .

Definition 5.1 A signature scheme SGN is a tuple of three algorithms (Kg ,Sig ,Ver) defined as fol-

lows:

- (sk ,PK ) ← SGN .Kg(1κ): Key generation algorithm takes the security parameter 1κ as the input.

It returns a private/public key pair (sk ,PK ) as the output.

- σ ← SGN .Sig(sk , D): The signature generation algorithm takes sk and a data item D as the input.

It returns a signature σ as the output (also denoted as σ ← SGN .Sigsk (D)).

- c← SGN .Ver(PK , D, σ): The signature verification algorithm takes PK , D and σ as the input. It

outputs a bit c, with c = 1 meaning valid and c = 0 meaning invalid.

Definition 5.2 Existential Unforgeability under Chosen Message Attack (EU-CMA) experiment for SGN is

as follows:

Experiment ExptEU -CMA
SGN (A)
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(sk ,PK )← SGN .Kg(1κ),

(D∗, σ∗)← ASGN .Sigsk (·)(PK ),

If SGN .Ver(PK , D∗, σ∗) = 1 and D∗ was not queried, return 1, else, return 0.

EU-CMA-advantage of A is AdvEU -CMA
SGN (A) = Pr[ExptEU -CMA

SGN (A) = 1].

EU-CMA-advantage of SGN is AdvEU -CMA
SGN (t, L, µ) = maxA{AdvEU -CMA

SGN (A)}, where the maximum

is over allA having time complexity t, making at most L oracle queries, and the sum of lengths of these

queries being at most µ bits.

LogFAS is built on the Schnorr signature scheme [105]. It also uses an Incremental Hash function
IH [11] and a generic signature scheme SGN (e.g., Schnorr) as building blocks. Both Schnorr and IH
require that H : {0, 1}∗ → Z∗

q is a random oracle.

Definition 5.3 The Schnorr signature scheme is a tuple of three algorithms (Kg ,Sig ,Ver) behaving as

follows:

- (y, ⟨p, q, α, Y ⟩) ← Sch.Kg(1κ): Key generation algorithm takes 1κ as the input. It generates large

primes q and p > q such that q|(p−1), and then generates a generator α of the subgroup G of order q

in Z∗
p. It also generates (y $← Z∗

q , Y ← αy mod p), and returns private/public keys (y, ⟨p, q, α, Y ⟩)
as the output.

- (s,R, e)← Sch.Sig(y,D): Signature generation algorithm takes private key y and a data item D as

the input. It returns a signature triplet (s,R, e) as follows:

• R←αr mod p,

• e←H(D||R),

• s←(r − e · y) mod q, where r
$← Z∗

q .

- c← Sch.Ver(⟨p, q, α, Y ⟩, D, ⟨s,R, e⟩): Signature verification algorithm takes public key ⟨p, q, α, Y ⟩,
data item D and signature ⟨s,R, e⟩ as the input. It returns a bit c, with c = 1 meaning valid if

R ≡ Y eαs mod p, and with c = 0 otherwise.

Definition 5.4 Given a large random integer q and integer L, incremental hash function family IH is

defined as follows: Given a random key z = (z0, . . . , zL−1), where (z0, . . . , zL−1)
$← Z∗

q and hash func-

tion H , the associated incremental hash function IHq,L
z takes an arbitrary data item set D0, . . . , DL−1

as the input. It returns an integer T ∈ Zq as the output,

Algorithm IHq,L
z (D0, . . . , DL−1)

T ←
∑L−1

j=0 H(Dj)zj mod q, return T .

Target Collision Resistance (TCR) [15] of IH relies on the intractability of Weighted Sum of Subset

(WSS) problem [11, 61] assuming that H is a random oracle.
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Definition 5.5 Given IHq,L
z , let A0 be an algorithm that returns a set of target messages, and A1 be

an algorithm that returns a bit. Consider the following experiment:

Experiment ExptTCR
IHq,L

z
(A = (A0,A1))

(D0, . . . , DL−1)← A0(L),

z = (z0, . . . , zL−1)
$← Z∗

q ,

T ← IHq,L
z (D0, . . . , DL−1),

(D∗
0, . . . , D

∗
L−1)← A1(D0, . . . , DL−1, T, IHq,L

z ),

If T = IHq,L
z (D∗

0, . . . , D
∗
L−1) ∧ ∃j ∈ {0, . . . , L− 1} : D∗

j ̸= Dj , return 1, else, return 0.

TCR-advantage of A is AdvTCR
IHq,L

z
(A) = Pr[ExptTCR

IHq,L
z

(A) = 1].

TCR-advantage of IHq,L
z is AdvTCR

IHq,L
z

(t) = maxA{AdvTCR
IHq,L

z
(A)}, where the maximum is over all A

having time complexity t.

5.2 Syntax and Models

LogFAS is a Forward-secure and Append-only Signature (FSA) scheme, which combines key-evolve

(e.g., [8, 68]) and signature aggregation (e.g., [26, 90]) techniques. Specifically, LogFAS is built on

the Schnorr signature scheme [100, 105], and it integrates forward-security and signature aggregation
strategies in a novel and efficient way. That is, different from previous approaches (e.g., [75, 76, 78,

79, 104, 120, 121]), LogFAS introduces verification with a constant number of ExpOps, selective subset
verification and sub-linear search properties via incremental hashing [11] and masked tokens (inspired

from [92]) in addition to the above strategies.
Before giving more details, we briefly discuss the append-only signatures. A forward-secure and

aggregate signature scheme is an append-only signature scheme if no message can be re-ordered or
selectively deleted from a given stream of messages, while new messages can be appended to the

stream [76, 79]. In Section 5.4, we prove that LogFAS is an append-only signature scheme. Note

that, for the envisioned applications, the goal of signature aggregation is to achieve verification with a
constant number of ExpOps and append-only property rather than storage efficiency.

Definition 5.6 A FSA is comprised of a tuple of three algorithms (Kg ,FASig ,FAVer) behaving as

follows:

- (sk ,PK )← FSA.Kg(1κ, L): The key generation algorithm takes the security parameter 1κ and the

maximum number of key updates L as the input. It returns a private/public key pair (sk ,PK ) as the

output.

- (sk j+1, σ0,j) ← FSA.FASig(sk j , Dj , σ0,j−1): The forward-secure and append-only signing algo-

rithm takes the current private key sk j , a new message Dj to be signed and the append-only signature

σ0,j−1 on the previously signed messages (D0, . . . , Dj−1) as the input. It computes an append-only
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signature σ0,j on (D0, . . . , Dj), evolves (updates) sk j to sk j+1, and returns (sk j+1, σ0,j) as the out-

put.

- c ← FSA.FAVer(PK , ⟨D0, . . . , Dj⟩, σ0,j): The forward-secure and append-only verification algo-

rithm takes PK , ⟨D0, . . . , Dj⟩ and their corresponding σ0,j as the input. It returns a bit c, with c = 1

meaning valid, and c = 0 otherwise.

In LogFAS, private key sk is a vector, whose elements are comprised of specially constructed
Schnorr private keys and a set of tokens. These tokens later become the part of append-only signa-

ture σ accordingly. The public key PK is a system-wide public key that is shared by all verifiers, and is
comprised of two long-term public keys. Details are given in Section 5.3.

5.2.1 System Model

LogFAS system model is comprised of a Key Generation Center (KGC) and multiple signers (i.e.,

logging machines that could be compromised) and verifiers. As in forward-secure stream integrity
model (e.g., [18,75,76]), signers honestly execute the scheme until they are compromised by the adver-

sary. Verifiers may be untrusted.

The KGC executes LogFAS .Kg once offline before the deployment, and distributes a distinct private
key/token set (auxiliary signature) to each signer, and two long-term public keys to all verifiers. After

the deployment, a signer computes the forward-secure and append-only signature of log entries with
LogFAS .FASig , and verifiers can verify the signature of any signer with LogFAS .FAVer via two public

keys without communicating with KGC (constant storage overhead at the verifier side).
In LogFAS, the same logger computes the append-only signature of her own log entries. Note that

this form of signature computation is ideal for the envisioned secure audit logging applications, since
each logger is only responsible for her own log entries [78, 79, 120, 121]. Signature schemes where the

signatures of different signers are aggregated (e.g., [26, 90]) is out of the scope of this dissertation.

5.2.2 Security Model

A FSA scheme is proven to be ForWard-secure Existentially Unforgeable against Chosen Message At-

tack (FWEU-CMA) based on the experiment defined in Definition 5.7. In this experiment,A is provided

with two types of oracles that she can query up to L messages in total as follows:
A is first provided with a batch signing oracle FAS .Sigsk (.). For each batch query j, A queries

FAS .Sigsk (.) on a set of message
−→
D j of her choice once. FAS .Sigsk (.) returns a forward-secure and

append-only signature σ0,j under sk by aggregating σj (i.e., the current append-only signature) on
−→
D j

with the previous signature σ0,j−1 on
−→
D0, . . . ,

−→
D j−1 that A queried. Assume that A makes i batch

queries (with 0 ≤ l ≤ L individual messages) as described the above until she decides to “break-in”.
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A then queries the Break -in oracle, which returns the remaining L − l private keys to A (if l = L

Break -in rejects the query).

Definition 5.7 FWEU-CMA experiment is defined as follows:

Experiment ExptFWEU -CMA
FSA (A)

(sk, PK)← FSA.Kg(1κ, L),

(
−→
D∗, σ∗)← AFAS .Sigsk (.),Break -in(PK),

If FSA.FAVer(PK,
−→
D∗, σ∗) = 1 ∧ ∀I ⊆ {0, . . . , l},−→D∗ ̸= ||k∈I

−→
Dk, return 1, else, return 0.

FWEU-CMA-advantage of A is AdvFWEU -CMA
FSA (A) = Pr[ExptFWEU -CMA

FSA (A) = 1].

FWEU-CMA-advantage of FSA is AdvFWEU -CMA
FSA (t, L, µ) = maxA{AdvFWEU -CMA

FSA (A)}, where the

maximum is over all A having time complexity t, making at most L oracle queries, and the sum of

lengths of these queries being at most µ bits.

Note that the winning condition of A also subsumes the truncation attack in addition to data modi-

fication. That is, A wins the experiment when she either modifies a data item or keeps data items intact
but outputs a valid signature on a subset of a given batch query (i.e., she splits an append-only signature

without knowing its individual signatures).
The above experiment does not implement a random oracle for A explicitly. However, we still

assume the ROM [13], since Schnorr signature scheme [105] on which LogFAS is built requires the
ROM.

Remark 5.1 LogFAS uses SGN to prevent truncation attacks by computing signatures of counter val-

ues. Resilience against the traditional data forgery (without truncation) relies on EU-CMA property of

Sch and target collision-freeness of IH. In Theorem 5.1, we prove that a successful truncation attack
against LogFAS is equivalent to break SGN , and a successful data modification (including re-ordering)

against LogFAS is equivalent to break Sch and/or IH.

5.3 LogFAS Schemes
In this section, we first present the intuition and detailed description of LogFAS, and then describe a
LogFAS variation that has additional capabilities.

5.3.1 LogFAS Scheme

All the previous forward-secure and aggregate (append-only) constructions [75, 76, 78, 79, 120] rely on

a direct combination of an aggregate signature (e.g., [26]) and a forward-secure signature (e.g., [2, 68])
(with the exception of our proposed schemes HaSAFSS and BAF presented in Chapter 3 and Chapter 4).

Therefore, the resulting constructions simultaneously inherit all overheads of their base primitives:

(i) Forward-secure signatures on individual data items, which are done separately from the append-only
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design, force verifiers to perform O(l) ExpOps. (ii) These schemes either eliminate ExpOps from the
logging phase with pre-computation but incur quadratic storage overhead to the verifiers (e.g., [120]), or

require ExpOps in the logging phase for each log entry and incur linear storage overhead to the verifiers
(e.g., [57, 75, 79]).

The above observations inspired us to design cryptographic mechanisms that can verify the integrity

of entire log entry set once directly (preserving forward-security), instead of checking the integrity of

each data item individually, though the signing operations have to be performed on individual data items.
That is, instead of verifying each item one-by-one with the corresponding public key(s), verify all of

them via a single set of aggregated cryptographic components (e.g., tokens as auxiliary signatures).

These mechanisms also achieve constant storage overhead at the verifier side.
We achieve these goals with a provable security by using Schnorr signature and incremental hash

IH as follows:
a) To compute a forward-secure and append-only Schnorr signature, we aggregate each individual

signature sl on Dl with the previous aggregate signature as s0,l ← s0,l−1 + sl mod q, (0 < l ≤
L− 1, s0,0 = s0). This is done by using a distinct private key pair (rj , yj) for j = 0, . . . , L− 1 on each

data item.
b) Despite being forward-secure, the above construction still requires an ExpOp for each data item.

To verify the signature on D0, . . . , Dl with only O(1) ExpOp, we introduce the notion of token.
In LogFAS, each Schnorr private yj is comprised of a random key pair (aj , dj) for j = 0, . . . , L−1.

Random key aj is mutually blinded with another random factor xj and also a long-term private key b

for j = 0, . . . , L − 1. The result of these blinding operations is called auxiliary signature (token) zj ,

which can be kept publicly without revealing information about (aj , xj) and also can be authenticated
with the long-term public key B by all verifiers. Furthermore, these masked tokens z = z0, . . . , zl also

serve as a one-time initialization key for the incremental hash as IHq,l
z (Definition 5.4), which enable

verifiers to reduce the integrity of each Dj into the integrity of a final tag z0,l. This operation preserves

the integrity of each Dj and verifiability of each zj (via public key B) without ExpOps.
c) To verify (s0,l, z0,l) via B in an aggregate form, verifiers also aggregate tokens Rj as R0,l ←∏l

j=0Rj mod p, where p a large prime on which the group was constructed. However, initially,
(s0,l, R0,l, z0,l) cannot be verified directly via B, since the reduction operations introduce some ex-

tra verification information. LogFAS handles this via auxiliary signature (token) M ′
0,l that bridges

(s0,l, R0,l, z0,l) to B. That is, the signer computes an aggregate token M ′
0,l ← M ′

0,l−1M
ej
l mod p,

where 0 < l ≤ L− 1 and M0,0 = M0), along with s0,l in the signing process. During verification, this
aggregate token eliminates the extra terms and bridges (s0,l, R0,l, z0,l) with B.

This approach allows LogFAS to compute publicly verifiable signatures with only one ExpOp per-
item, and this signature can be verified with only O(1) ExpOps by storing only two public keys at the

verifier side (regardless of the number of signers). This is much more efficient than all of its PKC-based
counterparts, and also is as efficient as the symmetric schemes at the verifier side.
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The detailed description of LogFAS algorithms is given below:

1) LogFAS .Kg(1κ, L): Given 1κ, generate primes q and p > q such that q|(p− 1), and then generate a
generator α of the subgroup G of order q in Z∗

p.

a) Generate (b
$← Z∗

q , B ← αb−1
mod p) and (ŝk , P̂K ) ← SGN .Kg(1κ). System-wide private key of

KGC is sk ← (b, ŝk). System-wide public key of all verifiers is PK ← {p, q, α,B, P̂K , L}.
b) Generate (rj , aj , dj , xj)

$← Z∗
q for j = 0, . . . , L − 1. The private key of signer IDi is sk ←

{rj , yj , zj ,Mj , Rj , βj}L−1
j=0 , where

- yj ← aj − dj mod q, zj ← (aj − xj)b mod q,

- Rj ← αrj mod p, Mj ← αxj−dj mod p,

- βj ← SGN .Sig(ŝk , H(IDi||j)). Remark that each βj is initially used kept secret initially, and

then then released as a part of signature publicly when they are needed.

2) LogFAS .FASig(⟨rl, yl, zl,Ml, Rl, βl⟩, Dl, σ0,l−1): Given σ0,l−1 on D0, . . . , Dl−1, compute σ0,l on
D0, . . . , Dl as follows,

a) el ← H(Dl||l||zl||Rl), M ′
l ←M el

l mod p, sl ← rl − elyl mod q,

b) s0,l ← s0,l−1 + sl mod q, (0 < l ≤ L− 1, s0,0 = s0),

c) M ′
0,l ←M ′

0,l−1M
′
l mod p, (0 < l ≤ L− 1, M ′

0,0 = M0),

d) σ0,l ← {s0,l,M ′
0,l, βl, Rj , ej , zj}lj=0 and erase (rl, yl, s0,l−1, sl, βl−1).

3) LogFAS .FAVer(PK , ⟨D0, . . . , Dl⟩, σ0,l):

a) If SGN .Ver(P̂K,H(IDi||l), βl) = 0 then return 0, else continue,

b) If
∏l

j=0Rj mod p ≡M ′
0,l·Bz0,l ·αs0,l mod p holds return 1, else return 0, where z0,l = IHq,l

z0,...,zl
(D0

||w||z0||R0, . . . , Dl||w||zl||Rl).

5.3.2 Selective Verification with LogFAS

All the previous forward-secure and aggregate constructions (e.g., [75, 76, 78, 121]) verify the set of

log entries via only the final aggregate signature to prevent the truncation attack and save the storage.
However, this approach causes performance drawbacks: (i) The verification of any subset of log entries

requires the verification of the entire set of log entries (i.e., always O(L) ExpOps for the subset verifi-
cation). (ii) The failure of signature verification does not give any information about which log entries

were corrupted.
Ma et al. proposed immutable-FssAgg (iFssAgg) schemes in [79] to allow fine-grained verification

without being vulnerable to truncation attacks. However, iFssAgg schemes double the signing/verifying
costs of their base schemes. In addition, even if the signature verification fails due to only a few cor-

rupted log entries (i.e., accidentally damaged entry(ies)), detecting which log entry(ies) is (are) respon-

sible for the failure requires verifying each individual signature.
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LogFAS can address the above problems via a simple variation without incurring any additional
costs: The signer keeps all signatures and tokens in their individual forms (including sj for j = 0, . . . , l)

without aggregation. The verifiers can aggregate them according to their needs by preserving the secu-
rity and verifiability. This offers performance advantages over iFssAgg schemes [79]:

(i) LogFAS protects the number of log entries via pre-computed tokens β0, . . . , βl, and therefore
individual signatures can be kept without a truncation risk. This eliminates the necessity of costly

immutability strategies used in iFssAgg schemes [79]. Furthermore, a verifier can selectively aggregate
any subset of l′ < l log entries and verify them by performing only O(1) ExpOps as in the original

LogFAS. This is much more efficient than the iFssAgg schemes, which require O(2l′) ExpOps.

(ii) LogFAS can use a recursive subset search strategy to identify corrupted log entries causing the
verification failure faster than linear search1. That is, the log entry set is divided into subsets along with

their corresponding individual signatures. Each subset is then independently verified by LogFAS .AVer

via its corresponding aggregate signature, which is efficiently computed from individual signatures.

Subsets returning 1 are eliminated from the search, while each subset returning 0 is again divided into
subsets and verified by LogFAS .AVer as described. This subset search continues recursively until all

the corrupted log entries are identified.
The above strategy can quickly identify the corrupted entries when most log entries are intact. For

instance, if only one entry is corrupted, it can identify the corrupted entry by performing (2 log2 l)

ExpOps + O(l) hash operations. This is much faster than linear search used in the previous PKC-based

schemes, which always requires O(l) ExpOps + O(l) hash operations.
Recursive subset strategy remains more efficient than linear search as long as the number of cor-

rupted entries c satisfies c ≤ l
2 log2 l

. When c > l
2 log2 l

, depending on c and the distribution of corrupted
entries, recursive subset search might be more costly than linear search. To minimize the performance

loss in such an inefficient case, the verifier can switch from recursive subset search to the linear search
if the recursive division and search step continuously returns 0 for each verified subset. The verifier

can ensure that the performance loss due to an inefficient case does not exceed the average gain of an
efficient case by setting the maximum number of recursive steps to be executed to l′/2− log2 l

′ for each

subset with l′ entries.

5.4 Security Analysis
We prove that LogFAS is a FWEU-CMA signature scheme in Theorem 5.1 below.

Theorem 5.1 AdvFWEU -CMA
LogFAS (t, L, µ) is bounded as follows,

AdvFWEU -CMA
LogFAS (t, L, µ) ≤ L · AdvEU -CMA

Sch (t, L, µ) + AdvEU -CMA
SGN (t′′, L, µ′′) + AdvTCR

IHq,L
z

(t′′′),

1Note that the previous PKC-based audit logging schemes cannot use such a recursive subset search strategy to identify corrupted log
entries with a sub-linear number ExpOps, since they always require linear number of ExpOps to verify a given subset from the entire log entry
set (in contrast to LogFAS that requires O(1)ExpOp to verify a given subset).
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where t′ = O(t) + L ·O(κ3) and µ′ = µ/L.

Proof: Let A be a LogFAS attacker. We construct a Schnorr attacker F that uses A as a sub-routine as

follows:

Algorithm F Sch.Sigy(·)(Y )

Set the target forgery index w
$← [0, L− 1],

(sk ,PK )← LogFAS .Kg(1κ, L), where sk = {⟨b, sk⟩, ⟨IDi : rj , yj , zj ,Mj , Rj , βj⟩}L−1
j=0 and PK =

(p, q, α,B, P̂K , L),

To embed Schnorr public key Y into token Mw, simulate tokens (Mw, zw) as follows:
-(γ, γ′) $← Z∗

q , Mw ← Y · α(−γ+γ′b−1) mod p, zw ← γ · b− γ′ mod q,

Execute AFAS .Sigsk (.),Break -in(PK ) as follows:

- l← 0, j′ ← 0, i← 0,

- Queries: A first queries FAS .Sigsk (.) and then Break -in oracles up to L messages of her choice
in total:

• How to respond i-th FAS .Sigsk (.) query:

- For each query i, A queries FAS .Sigsk (.) on
−→
D i = {Dj′ , . . . , Dj}, j > j′ of her choice.

If j + 1 > L then reject the query and proceed to the Forgery phase (A exceeds her query
limit). Otherwise, continue to the next step,

- If j′ ≤ w ≤ j then FAS .Sigsk (.) goes to the Schnorr oracle on Dw as (sw, Rw, ew) ←
Sch.Sigy(Dw||w||zw). FAS .Sigsk (.) then computes sj′,j ←

∑
j′≤k≤j,k ̸=w (rk − ekyk) +

sw mod q, where ek ← H(Dk||k||zk||Rk) for k = j′, . . . , j. Also set variable D′ ← Dw.
Otherwise, compute sj′,j ←

∑j
k=j′ (rk−ekyk) mod q, where ek ← H(Dk||k||zk||Rk) for

k = j′, . . . , j,

- M ′
j′,j ←

∏j
k=j′ M

ek
k mod p,

- s0,j ← s0,j′−1 + sj′,j mod q and M ′
0,j ← M ′

0,j′−1M
′
j′,j mod p, where (s0,j′−1,M

′
0,j′−1)

were computed on A’s previous queries D0, . . . , Dj′−1, (for initial j′ = 0, s0,j′−1 =

0,M0,j′−1 = 1),

- Response i-th query of A as σ0,j ← {s0,j ,M ′
0,j , βj , Rk, ek, zk}jk=j′ ,

- F maintains four lists and a variable z′ in addition to D′ for bookkeeping purposes. Insert

i-th query
−→
D i into data list LD[i]. Insert signature results (s0,j ,M0,j , βj) into the lists

(LS1,LS2,LS3), respectively. Also update variable z′ as z′ ← IHq,j
z (e0, . . . , ej) for

z = z0, . . . , zj ,

- IfA decides to the “break-in”, proceed to the next step. Otherwise, update j′ ← j+1, l←
j′, i← i+ 1 and continue to respond her queries,
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•How to respond queries to the Break -in oracle: A queried l individual messages to FAS .Sigsk (.) or-
acle up to now. If l = L then reject the query (all private keys were used and erased) and proceed

to the next step. Otherwise, if l < w then abort and return 0 (F does not know the Schnorr pri-
vate key corresponding index w). Otherwise, supply A with {rj , yj , zj ,Mj , Rj , βj}L−1

j=l+1.

- Forgery: Finally,A outputs a forgery as (⟨D∗
0, . . . , D

∗
k⟩, σ∗), where σ∗ = {s∗0,k,M∗

0,k, β
∗, R∗

j , e
∗
j ,

z∗j }kj=0.

By Definition 5.7, A wins if the below condition holds:

1. LogFAS .FAVer(PK, ⟨D∗
0, . . . , D

∗
k⟩, σ∗) = 1

2. ∀I ⊆ {0, . . . , i}, {D∗
0, . . . , D

∗
k} ̸= ||m∈ILD[m],

If one of the above conditions fails, A loses in FWEU-CMA experiment, and therefore F aborts and
returns 0. Otherwise, F proceeds according to one of the below cases, which are implied by condition

2 as follows:

a) ∃j ∈ {0, . . . , k} : (D∗
j /∈ {LD[0], . . . ,LD[i]} ∧ k = L− 1)

b) ∃j ∈ {0, . . . , i} : ({D∗
0, . . . , D

∗
k} ⊂ LD[j] ∧ β∗ /∈ LS3)

c) ∃j ∈ {0, . . . , k} : (D∗
j /∈ {LD[0], . . . ,LD[i]} ∧ z′ = IHq,k

z (D∗
0, . . . , D

∗
k))

Case a): This case implies A modifies at least one data item (without truncation). F checks if

D∗
w ̸= D′ (i.e., whether one of A’s forgery is on D′, whose corresponding token includes Schnorr

public key Y that F embedded). If it fails, F aborts and return 0. Otherwise, by Definition 5.2, F wins

the EU-CMA experiment and returns 1, since the below conditions hold:
Sch.Ver(⟨p, q, α, Y ⟩, D∗

w, ⟨s∗w, R∗
w, e

∗
w⟩) = 1 and F did not ask D∗

w to the Schnorr oracle, where

s∗w ← s∗0,L−1 −
∑L−1

0≤m≤L−1,m̸=w (rm − e∗mym) mod q and e∗m ← H(D∗
m||m||z∗m||R∗

m) for m =

0, . . . , L− 1.

Since the target forgery index is randomly chosen as w
$← [0, L − 1], if A wins the experiment

based on this case with the probability AdvFWEU -CMA
LogFAS (t, L, µ), then F wins with the probability

AdvFWEU -CMA
LogFAS (t, L, µ)/L.
The running time of F is that ofA plus the overhead due to handlingA’s queries as t′ = O(t)+L ·

O(κ3), where O(κ3) denotes the execution time of modular exponentiation operation in Z∗
p for given κ.

Case b): This case implies a successful tail-truncation attack. If it holds, then by Definition 5.2, A
breaks SGN since β∗ is valid and it was not queried. This happens with probability AdvEU -CMA

SGN (t′′, L, µ′′).
Case c): If this case holds, then by Definition 5.5, A breaks IH by finding a target collision. This

happens with probability AdvTCR
IHq,L

z
(t′′′).

Remark that in the above experiment, the simulated view of A is perfectly indistinguishable from

the real view of A: The real view of A after L queries (0 ≤ l ≤ L queries to the FAS .Sigsk (.) or-

acle and L − l queries to the Break -in oracle) is
−→
AReal = {PK ,LS1,LS2,LS3, ei, Rj , zj ,Ml+1,
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. . . ,ML−1}l,L−1
i=0,j=0, where all keys/tokens/signatures are computed/generated via original LogFAS al-

gorithms. The simulated view of A after L queries is equivalent to
−→
AReal except that (Mw, zw) are

simulated as described. One may verify that the joint probability distribution of these views are identi-
cal as Pr[

−→
AReal =

−→a ] = Pr[
−→
ASim = −→a ]. �

Remark 5.2 Another security concern in audit logging is delayed detection identified in [78]. In de-

layed detection, log verifiers cannot detect whether the log entries are modified until an online TTP pro-
vides auxiliary keying information to them (the details of this attack were also discussed in Chapter 4).

LogFAS does not rely on an online TTP support or time factor to achieve the signature verification, and

therefore it is not prone to delayed detection.

5.5 Performance Analysis and Comparison

In this section, we present the performance analysis of LogFAS and compare it with previous schemes.

We follow the notation in Table 5.2 in our analysis and comparison.
Computational Overhead: In LogFAS, the costs of signing a single item is Exp + Mul + H

including the key update cost. The cost of verifying l items is 2Exp + O(l)(3Mul + H). The key
generation cost for L items is O(L)(2Exp+Mul).

Table 5.3 and Table 5.4 compare the computational cost of LogFAS with its counterparts analytically
and numerically, respectively.

From a verifier’s perspective, LogFAS requires only a small and constant number of Exp operations
regardless of the number of log entries to be verified. Therefore, it is much more efficient than all PKC-

based schemes, which require one ExpOp per log entry. Besides, it does not double the verification
cost to prevent the truncation attacks, providing further efficiency over iFssAgg schemes [79]. For in-

stance, the verification of 10,000 log entries with LogFAS is 2650, 479, 1937, 1427 and 208 times faster
than that of FssAgg-BLS, FssAgg-BM, FssAgg-AR, Logcrypt, and BAF, respectively. The verification

of subsets from these entries with LogFAS is also much more efficient than all of its counterparts as
shown in Table 5.4. The execution time differences with LogFAS and its PKC-based counterparts grow

linearly with respect to the number of log entries to be verified. Initially, the symmetric schemes are
more efficient than all PKC-based schemes, including ours. However, since the verification operations

of LogFAS are dominated by H , their efficiency become comparable with symmetric schemes as the
number of log entries increases (e.g., l = 104). From a logger’s perspective, LogFAS is also more

efficient than its PKC-based counterparts with the exception of BAF.
Figure 5.1 and Figure 5.2 further show the comparison of LogFAS and the previous schemes that al-

low public verification in terms of signature generation and verification time as the number of log entries
increases. Similarly, Figure 5.3 and Figure 5.4 demonstrate the comparison of LogFAS with selective

verification and iFssAgg schemes in terms of signature generation and verification time as the number
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Table 5.2: Notation used in performance analysis and comparison of LogFAS and its counterparts
GKg/GSig/GV er: Generic key gen/sig/verifying ops. Sqr: Squaring mod n′ H: Hashing
Mul/Mulq′/Mulp′/Muln′: Mul. mod p, q′, p′, n′ Exp/Expp′: Exp. mod p and p′ L: Max. # of key upd.
w and l:# of data items processed and will be processed l′: # data items to be processed in a subset S: # of signers
Add/Addq′: Add. mod q and q′, resp. PR/Mtp: ECC map-to-point/pairing z: FssAgg sec. param.

Suggested bit lengths to achieve 80-bit security for the above parameters are as follows for each compared scheme: Large primes
(|p| = 2048, |q| = 1600) for LogFAS and Logcrypt, primes (|p′| = 512, |q′| = 160) for BAF and FssAgg-BLS, (|n′| = 1024, z = 160)
for FssAgg-AR and FssAgg-BM, where n′ is Blum-Williams integer [75].

Table 5.3: Computation involved in LogFAS and its counterparts
Online Offline

ASig & Upd (per item) AVer (l or l′ entries) KG (max. L)
LogFAS Exp+Mul +H 2Exp+O(l)(3Mul +H) O(L)(2Exp+Mul)

PKC- FssAgg-BLS MtP + Expp′ +Mulp′ l(Mulp′ +H + PR) O(L)(H + Expp′)
based FssAgg-BM z

2Muln′ + z · Sqr O(L) · Sqr + l·z
2 Muln′ O(L)(z · Sqr + z

2Muln′)
FssAgg-AR 3z · Sqr + z

2Muln′ z(L+ l)Sqr + (2l + l · z)Muln′ O(2L)(z · Sqr + z
2Muln′)

iFssAgg 2 ·ASig + Upd 2 ·AV er(L, l′) Kg
Logcrypt GSig O(l)GV er O(L)GKg

BAF 3H +Mulq′ + 2Addq′ O(2l)(EMul +H) O(2L)(H + EMul)
Symmetric O(1)H O(l)H O(L)H

LogFAS is the only scheme achieving verification with O(1)ExpOp regardless of the value of (l, l′), while their
counterparts require either O(l)ExpOp (FssAgg, Logcrpyt and BAF) or O(l′)ExpOp (iFssAgg schemes). At
the same time, LogFAS is as efficient as their counterparts at the signer side except the BAF.

of log entries increases. These figures demonstrate that LogFAS is the most verifier computationally

efficient scheme among all these choices.
All PKC-based schemes require O(L) ExpOps in the key generation phase.

Signature/Key/Data Storage and Transmission Overheads: LogFAS is a verifier storage friendly
scheme; it requires each verifier to store only two public keys and an index along with system-wide

parameters (e.g., |q| + |4p|), regardless of the number of signers or the number of log entries to be
verified.

In LogFAS, the append-only signature size is |q|. The key/token and data storage overheads on the
logger side are linear as (i.e., O(L)(5|q|+2|p|)+O(l)|D|) (assuming SGN is chosen as Schnorr [105]).

LogFAS transmits a token set along with each data item requiring O(l)(|q| + |p| + |D|) transmission
in total. The fine-grain verification introduces O(l′) extra storage/communication overhead due to the

individual signatures.
From a verifier’s perspective, LogFAS is much more storage efficient than all existing schemes,

which require either O(L ·S) (e.g., FssAgg-BLS [76] and BAF [120]), or O(S) (e.g., [17,18,57,75,79,
103,104]) storage. From a logger’s perspective, all the compared schemes both accumulate (stores) and

transmit linear number of data items (i.e., O(l)D) until their verifiers become available to them. This

dominates the main storage and communication overhead for these schemes. In addition to this, LogFAS
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Table 5.4: Execution time (in ms) comparison of LogFAS and its counterparts

Criteria
PKC-based

Sym.LogFAS FssAgg (l) / iFssAgg (l′) Logcrypt BAF
(l = 104, l′ < l) BLS / i BM / i AR / i

Off. Kg, L = 104 5.06× 104 3.3× 103 8.8× 104 1.7× 105 2.6× 104 4× 104 2̃0

Onl.

Sig&Upd (1) 1.2 1.8 / 3.6 13.1 / 26.2 28 / 56 2.05 0.007 0.004

Ver.
l′ = 102 72.87 4.8× 103 1.8× 103 1.6× 105 1.4× 103 0.2× 103 0.2
l′ = 103 75.2 4.8× 104 1× 104 1.8× 105 1.5× 104 2.05× 103 2
l = 104 98.12 2.6× 105 4.7× 104 1.9× 105 1.4× 105 2.04× 104 19.9

(i) The execution times were measured on a computer with an Intel(R) Xeon(R)-E5450 3GHz CPU and 4GB RAM running Ubuntu 9.04. We
tested LogFAS, BAF [120], FssAgg-BLS [76], Logcrypt (with DSA), and the symmetric schemes (e.g., [18, 76, 104]) using the MIRACL
library [106], and FssAgg-AR/BM using the NTL library [108]. Parameter sizes determining the execution times of each scheme were
selected s.t. κ = 80 (parameter sizes were discussed in Table 5.2).
(ii) The execution time of single exponentiation performed in LogFAS verification is more computationally expensive than that of LogFAS
signature generation. This stems from the fact that the size of exponent in signature verification is larger than that of used in signature
computation (e.g., 1600 bits vs. 160 bits). Note that despite the LogFAS uses larger exponents (and also performs a single SGN verification
operation), it is significantly more efficient than all existing schemes at the verifier side (i.e., verification with O(1)ExpOp property).

0 2000 4000 6000 8000 10000
10

−4

10
−2

10
0

10
2

10
4

10
6

Number of log entries to be signed (l)

E
xe

cu
tio

n 
tim

e 
(in

 m
s)

LogFAS
FssAgg−BLS
FssAgg−BM
FssAgg−AR
Logcrypt
BAF

Figure 5.1: Signing time comparison of LogFAS and
its counterparts (in ms)
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Figure 5.2: Verification time comparison of LogFAS
and its counterparts (in ms)

requires linear key storage overhead at the logger side, which is slightly less efficient than [75,76,120].
LogFAS with fine-grained verification and its counterpart iFssAgg schemes [79] both require linear

key/signature/data storage/transmission overhead.
Availability, Applicability and Security: The symmetric schemes [17,18,103,104] are not publicly

verifiable and also require online server support to verify log entries. Furthermore, they are vulnerable
to both truncation and delayed detection attacks [78, 79] with the exception of FssAgg-MAC [76]. In

contrast, PKC-based schemes [57, 75, 76, 78, 79] are publicly verifiable without requiring online server
support, and they are secure against the truncation and delayed detection attacks, with the exception of

Logcrypt [57].

LogFAS achieves all the desirable availability/applicability and security properties as well as being
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Figure 5.3: Signing time comparison of selective veri-
fication with LogFAS and iFssAgg (in ms)
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Figure 5.4: Verification time comparison of selective
verification with LogFAS and iFssAgg (in ms)

significantly more efficient than PKC-based schemes.

5.6 Conclusion

In this chapter, we developed a new forward-secure and append-only audit logging scheme called Log-
FAS. LogFAS achieves the public verifiability without requiring any online trusted server support, and

is secure against truncation and delayed detection attacks. LogFAS is much more computationally effi-

cient than all existing PKC-based alternatives, with a performance comparable to symmetric schemes at
the verifier side. LogFAS is also the most verifier storage efficient scheme among all existing alterna-

tives. Last, a variation of LogFAS enables selective subset verification and efficient search of corrupted
log entries. Overall, our comparison with the existing schemes show that LogFAS is an ideal choice

for secure audit logging in verification intensive systems, where system auditors need to verify large
number of log entries simultaneously produced by several loggers.
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Chapter 6

Conclusion and Future Work

In this chapter, we conclude our dissertation and then briefly discuss our future work.

6.1 Conclusion

In current resource-constrained and/or task-intensive systems, protecting audit logs is a challenging
task, especially in the presence of active adversaries. To protect audit logs effectively, an ideal cryp-

tographic log protection mechanism must satisfy several properties simultaneously: (i) computational
efficiency, (ii) applicability and flexibility (e.g., public verifiability), (iii) forward security (i.e., com-

promise resiliency), (iv) compactness (i.e., storage/communication efficiency), (v) provable security.
Unfortunately, previous cryptographic secure logging solutions fail to meet most of these requirements.

In this dissertation, we developed a series of forward-secure and aggregate (append-only) crypto-
graphic constructions that achieve all of the above desirable properties. We summarize our contributions

as follows:

• Efficient Secure Logging for UWSNs: The lack of real-time communication, resource-constraints

and active adversaries make secure logging a difficult task in UWSNs. We developed a series of
cryptographic protocols called Hash-Based Sequential Aggregate and Forward-Secure Signatures

(HaSAFSS) [121, 122] to address these challenges. HaSAFSS schemes utilize already existing
verification delays in UWSNs to introduce an asymmetry between signers and verifiers via the

TRE concept. HaSAFSS schemes and their properties are outlined below:

– HaSAFSS schemes are the only alternative in which both signers and verifiers get equal
benefits of high computational efficiency, while existing schemes incur heavy overhead on

either the signer or the verifier side.

– Symmetric HaSAFSS (Sym-HaSAFSS) is the most computation-efficient forward-secure and
aggregate signature scheme of all existing alternatives. It is as efficient as symmetric schemes
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both at the signer and the verifier sides and is also publicly verifiable. It also achieves the
high verifier storage efficiency by requiring only small-constant storage at the verifier side.

However, Sym-HaSAFSS requires a linear storage at the signer side.

– Elliptic Curve Cryptography HaSAFSS (ECC-HaSAFSS) requires only a small-constant

storage for signers, while preserving the per-item computational efficiency of Sym-HaSAFSS.
Therefore, ECC-HasAFSS offers a signer storage friendly alternative to Sym-HaSAFSS.

However, ECC-HaSAFSS incurs quadratic storage overhead to the verifiers.

– Sym-HaSAFSS and ECC-HaSAFSS have two main limitations: (i) They do not allow sign-

ers to decide their own data delivery schedule after the deployment. (ii) A signer can only
use a limited (pre-determined) number of time periods. This creates a heavy storage over-

head either the signer side or the verifier side. It also requires the re-keying of sensor nodes
when they deplete their keying material.

Our extended scheme Self-SUstaining HaSAFSS (SU-HaSAFSS) in [122] addresses these
limitations by introducing only a little more computational overhead. Note that SU-HaSAFSS

preserves the per-data item computational efficiency of HaSAFSS schemes over the previ-
ous PKC-based alternatives. SU-HaSAFSS also achieves a flexible data delivery schedule,

and it is also storage efficient both at the signer and at the verifier sides.

HaSAFSS schemes are ideal solutions for UWSNs; however, they cannot achieve the immediate

verification property and also require a passive TTP support.

• Efficient Secure Logging in Resource-Constrained Devices with Immediate Verification: Publicly

verifiable, compact and forward-secure audit logging in resource-constrained devices is a chal-
lenging task, since such devices cannot tolerate any ExpOp or heavy storage overhead. All ex-

isting PKC-based solutions (e.g., FssAgg schemes [75, 76, 79], LogFAS [124]) require ExpOps
at the signer side, and also incur heavy storage overhead (e.g., Logcrypt [57]). This makes them

impractical for secure logging in resource-constrained devices. While HaSAFSS schemes are
computation-efficient, they cannot address real-time applications. Moreover, HaSAFSS schemes

require passive TTP support from time to time, which might not be available for certain applica-
tions.

To address these limitations, we developed a new class of forward-secure and aggregate cryp-
tographic constructions called Blind Aggregate Forward (BAF) and Fast-Immutable BAF. BAF

relies on simple but efficient algebraic blinding operations to compute forward-secure and aggre-
gate signatures, which offer the following desirable properties:

– High Logger Computational Efficiency with Immediate Verification: The BAF scheme is

the only secure logging scheme that is as efficient as a symmetric scheme but yet publicly

verifiable without online TTP support or time factor. This makes BAF a magnitude of times
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more computational-efficient than all existing PKC-based schemes at the signer side with the
exception of HaSAFSS schemes. When compared with HaSAFSS, BAF achieves immediate

verification and it does not rely on online TTP support.

– Small Key/Signature Sizes: BAF has the smallest signature/key size among all of its coun-
terparts.

– Provable Security: Previous secure logging schemes give only heuristic security arguments

against the truncation attacks. However, BAF is proven to be secure against the truncation
attack in ROM.

– Fine-Grained Verification: An extension of BAF, Fast-Immutable BAF (FI-BAF), provides
a finer-grained verification of log entries by preserving the computational efficiency and

security of BAF.

All of the above properties make BAF an ideal alternative for secure logging in resource-constrained
devices.

• Efficient Secure Logging for Verification-Intensive Applications with Immediate Verification: All

existing PKC-based secure logging solutions require an ExpOp per-item at the verifier side, which
make them costly for verification-intensive applications. We address this problem by developing

a new forward-secure and append-only signature scheme called LogFAS [124]. We summarize
the desirable properties of LogFAS below:

– High Verifier Efficiency: LogFAS is the only PKC-based scheme that can verify L items with

only a small-constant number of ExpOps. Hence, it is significantly more efficient than all
previous schemes that require a linear number of ExpOps. Furthermore, each verifier stores

only a small and constant number of public keys independent from the number of loggers or
the number of log entries to be verified. Therefore, it is also more storage efficient than all

previous alternatives.

– Selective Log Verification with a Sub-linear Number of ExpOps: LogFAS can identify cor-

rupted log entries with a sub-linear number of ExpOps when most log entries are intact.
However, all other schemes always require a linear number of ExpOps.

– LogFAS achieves public verifiability and provable security without requiring online TTP

support or time factor.

LogFAS is an ideal alternative for task-intensive applications, in which log verifiers need to verify
a large number of log entries simultaneously.
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6.2 Future Work

In this chapter, we identify some open problems that can be addressed upon further research. We

first discuss some prospective improvements on LogFAS, which aims to increase the computational

efficiency of LogFAS while preserving its security. We then discuss a new research direction that is
complementary to our current research by offering additional security services.

6.2.1 Improvements on LogFAS

We proved that BAF is resilient to the truncation attacks in ROM [13] without requiring any external

signature support. However, LogFAS still relies on a standard signature scheme SGN (e.g., [93]) to
prevent the truncation attacks by computing signatures of counter values. It is desirable to eliminate the

necessity of such external signature support. This reduces the computation cost of LogFAS signature
generation by removing SGN .Sig operation from LogFAS .FASig . Similarly, it reduces the LogFAS

signature verification cost by eliminating the verification of counter signature β.
To address this problem, we envision a cryptographic simulation for LogFAS, which follows a

“batch signature splitting” strategy as in BAF (see Section 4.2 and Section 4.4 for details). However,
different from BAF that directly relies on DLP, LogFAS relies on the EU -CMA property of Schnorr

signature scheme [105]. Therefore, to prove that LogFAS is “truncation-free” without any external sig-
nature support, we first need to ensure that it is computationally infeasible to split an aggregate Schnorr

signature without knowing its individual components (i.e., the signature extraction is computationally
infeasible). That is, let σ0,l ← (s0,l ≡

∑l
j=0 sj mod q, ⟨{Rj , ej}lj=0⟩) be a valid aggregate Schnorr

signature on data items (D0, . . . , Dl) and public keys (Y0, . . . , Yl). Only given the aggregate signa-
ture s0,l, if no PPT adversary can extract an individual signature sj , 0 ≤ j ≤ l valid on public key Yj

from s0,l, then the signature extraction is computationally infeasible for the aggregate Schnorr (see a
detailed discussion on the relationship between the signature extraction argument [26] and truncation

attacks [75] in Section 4.2.4).
If our investigation confirms that the above argument holds, then we plan to construct a crypto-

graphic simulation for LogFAS, in which the simulator F (i.e., the Schnorr attacker) embeds a batch
Schnorr signature s ≡ s0 + s1 mod q into her answers for A’s signature queries. F then expects the

simulatorA splits s into two valid individual Schnorr signatures s0 and s1 on their corresponding public

keys. If this occurs then simulator F can extract a forged Schnorr signature from A’s forgery output.
That is, if A performs a valid signature extraction on LogFAS (i.e., a successful truncation attack), then

simulator F breaks the Schnorr signature scheme with a non-negligible probability.
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6.2.2 Encrypted Searches on Audit Logs

In this dissertation, we focused on authentication and integrity services for secure audit logging. Another
useful security service is searchable encryption [116], which offers the privacy and the usability of audit

logs simultaneously. In our future work, we plan to develop efficient and provable secure searchable
encryption schemes and then integrate them into our integrity and authentication mechanisms.

Waters et al. proposed the first searchable encryption in [116], which relies on the Boneh-Franklin
IBE scheme [25]. Boneh et al. [24] independently proposed a PKC-based searchable encryption scheme

(PEKS) motivated by urgent email classification for routers (without decrypting the emails). This
scheme is also based on Boneh-Franklin IBE and it has some similarities with the scheme in [116].

However, different from [116], Boneh et al.’s PEKS is a generic PKC-based searchable scheme with
formal security models and proofs.

Following Boneh et al.’s PEKS, various PEKS schemes achieving additional properties were pro-
posed. Shi et al. proposed encrypted search schemes for multi-dimensional data in [107]. Bringer et

al. proposed encrypted search schemes for biometric data and fuzzy data in [30] and [29], respectively.
Wang et al. proposed ranked multi-keyword encrypted search schemes for computing clouds in [114].

Abdalla et al. gave new security definitions and refinements on the encrypted search schemes in [1].
All of the above (PKC-based) schemes are computationally costly on the encryption side and highly

computationally costly on the decryption side (i.e., the searcher side). In our future research, we plan to
develop novel PEKS schemes that achieve computational efficiency and provable security at the same

time. We envision two types of PEKS schemes, each addressing different application requirements.

Searchable Encryption on Audit Logs in Resource-Constrained Devices

Efficient searchable encryption is a need for recently emerging technologies such as biometric devices.
For instance, mobile biometric devices [110] are becoming essential tools for extracting and accumu-

lating noisy biometric templates in various scenarios like custom border protection and forensic inves-
tigations. Searchable encryption is an ideal tool to provide the privacy and usability of audit logs for

these devices. However, all existing PEKS schemes incur prohibitive computational/storage costs for
such resource-constrained devices.

We will address this problem by developing PEKS schemes that achieve high computational/storage
efficiency on the encrypter side. To achieve computational efficiency, Offline-Online Identity-Based

Encryption (OOIBE) schemes [55] offer fast encryption solutions. However, OOIBE schemes do not
satisfy the security conditions required for PEKS such as key privacy (i.e., anonymity) [1], and also

incur an intolerable storage overhead due to their one-time nature.
We plan to eliminate the one-time key requirement by designing an IND-CCA secure [16,65] stateful

IBE [97] that also preserves the OOIBE properties. We will then instantiate this new construction with

an anonymous IBE (e.g., Boneh-Boyen [23]) to fulfill the key privacy requirement. Lastly, a security
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model capturing the required properties and formal proofs based on this security model will be provided.

Search Efficient PEKS for Fast Searches on Encrypted Audit Logs

Another limitation of PEKS schemes is their immense computational costs in their search phase. The
inefficiency stems from the decryption algorithms of PEKSs, which require several expensive operations

(e.g., pairing). The mitigation of this inefficiency plays a key role towards making these primitives
available for practical use.

We will investigate the feasibility of anonymous IBE constructions that do not rely on pairings or
quadratic residues (e.g., [48]). This will lead to search efficient PEKS schemes. First, we plan to develop

constructions that leverage the naturally anonymous and decryption efficient primitives such as ElGamal
encryption [87] with a mediated entity support. Second, we will consider recent results (e.g., [89]) that

have a potential to yield an efficient IBE from traditional PKC schemes without requiring a mediated
entity.
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