
ABSTRACT

TIDEMANN-MILLER, BETH A. Statistical Modeling of Multivariate Functional Data
that Exhibit Complex Correlation Structures. (Under the direction of Brian Reich and
Ana-Maria Staicu.)

Due to the large size of modern data sets, there is an ever-increasing need for
computationally efficient inferential methods designed for realistic models of large
observed functional data sets. The first part of this dissertation introduces an inno-
vative modeling framework for the analysis of multivariate functional data, where
each individual functional component exhibits multilevel and spatial structures. The
proposed methodology uses a functional principal components based approach for
multivariate functional data, which has important advantages in the dimensionality
reduction of the data and brings considerable computational savings. Moreover, our
approach quantifies the spatial auto- and cross-correlation between units at the low-
est level of the hierarchy. The proposed procedure is illustrated through simulation
studies and data from a colon carcinogenesis experimental study.

In the second part of the dissertation, we propose a Bayesian modeling frame-
work for jointly analyzing multiple functional responses of different types (e.g. bi-
nary and continuous data). Our approach is based on a multivariate latent Gaussian
process and models the dependence among the functional responses through the
dependence of the latent process. Our framework easily accommodates additional
covariates. We offer a way to estimate the multivariate latent covariance, allowing for
implementation of multivariate functional principal components analysis to specify
basis expansions and simplify computation. We demonstrate our method through
both simulation studies and an application to real data from a periodontal study.
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CHAPTER 1

Introduction

1.1 What is functional data analysis?

The area of Statistics known as functional data analysis (FDA) has undergone
many methodological developments in the past two decades and is still experiencing
intense growth. Many types of electronic devices can now observe functions at very
fine increments and have become ubiquitous in a wide variety of disciplines. Such a
rapid advancement of technology in recent years has elevated the level of interest in
FDA as researchers seek innovative ways of handling large and increasingly complex
data that come in the form of functions.

Unlike other statistical frameworks (e.g. longitudinal, multivariate, or time-series),
FDA views an observed function as a single (functional) datum. For example, con-
sider an electrocardiogram (ECG) machine that monitors the electrical activity of a
patient’s heart every fraction of a second for one hour. For the purposes of FDA,
the entire function of ECG observations for the hour comprise one functional datum,
contrary to more traditional approaches where the value of the ECG at a single time
point would be an individual datum.

Although earlier research in FDA had appeared in the literature, the comprehen-
sive monographs Functional Data Analysis (Ramsay and Silverman 1997) and Applied
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functional data analysis: methods and case studies (Ramsay and Silverman 2002) helped
to unify FDA methods to form a statistical sub-discipline. FDA was justing start-
ing to gain momentum within the statistical community around the time the second
edition of Functional Data Analysis was published (2005) and also the well regarded
FDA monograph of Ferraty and Vieu (2006) appeared. Also around this time, spe-
cial issues of several journals were devoted to exploring FDA in more depth, such
as bridging the gap between longitudinal data analysis and FDA (see Davidian M.
and Wang (2004); Rice (2004)), modeling functional data (see Valderrama (2007)), and
other topics (see Gonzalez-Manteiga and Vieu (2007)).

Although FDA is a relatively new area of statistical analysis, methodology has
developed to such an extent that topics of major interest such as regression, clas-
sification, and prediction, to name a few, have existing analogues within FDA. For
example, functional linear regression incorporates a functional predictor to model ei-
ther a scalar response (Cardot et al. 2007; Crambes et al. 2009; Ferraty and Vieu 2002;
James 2002) or a functional response (James et al. 2009; Liang and Zeger 1986; Wu
et al. 1998; Yao et al. 2005b). Importantly, the goals of FDA align with those of any
other area of Statistics, for instance, describing central tendency and variation, and
forming parsimonious models. Unique to FDA is the ability to use derivatives of the
curves to inform an analysis. Sometimes, trends in the derivative itself are of interest.
A good example of this comes from a growth curve study described in Chapter 1 of
Ramsay and Silverman (2005) in which profiles of girls’ height were collected from
childhood to adolescence. For this study, one might be interested the speed (first
derivative) and acceleration (second derivative) of the height profiles.

Functions on the time-domain, such as the ECG and growth curve examples
above, naturally fit within the FDA framework. However, FDA readily applies to
functions on any continuum. For instance, the data application in Chapter 2 is from a
colon carcinogenesis experiment in which the data are functions of cell depth within
fingerlike structures on the inner lining of the colon. In the periodontal data appli-
cation of Chapter 3, measures of patients’ oral health are observed at each of the
patients’ teeth, and we treat this as functional data due to the natural ordering of
teeth in the mouth. Moreover, functional data applies to functions of two or more di-
mensions, for example, data from three-dimensional functional magnetic resonance
imaging (fMRI) used to measure activity in the brain.
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In FDA a function is considered as having an infinite-dimensional domain, al-
though in reality only a finite number of realizations of the function can be collected.
Many methods in FDA assume that the functional data are observed densely over the
domain, meaning values of the curve are evaluated frequently. When data is observed
sparsely, methods for densely observed functional data may no longer be applicable.
For simplicity we mainly focus our attention to the densely observed case and only
briefly touch upon methods for sparse data.

The goal of this introduction is to provide a primer for the content that follows in
subsequent chapters. It is meant to introduce the reader to the lens through which
FDA approaches data analysis and to familiarize the reader with concepts that are
both common within FDA and also recurrent throughout the methodologies we pro-
pose later on. The information presented in this introduction is largely compiled
from Ramsay and Silverman (2002), Ramsay and Silverman (2005), and the collection
of works found in Ferraty and Romain (2011), and we suggest that the reader consult
these or other texts for a more comprehensive review of FDA.

1.2 Smoothing

The concept of smoothness is an integral part of FDA since it is assumed that
functional data emanate from a smooth underlying process. Saying a function is
smooth usually means that one or more derivatives exist (Ramsay and Silverman
(2005), Ch. 3). More simply, it means the function is devoid of abrupt changes and
smoothly transitions from one value to the next.

To further understand the meaning of smooth functions, consider the functional
datum Y(t) collected at corresponding evaluation points t = t1, . . . , tL within some
interval T . We can view the datum as L realizations (observed with or without error)
of a smooth function s(t), where the underlying function s(t) is also defined for
t ∈ T . When the datum is observed without error, we can use the model Y(t) = s(t),
and recovering the underlying function s(t) is called interpolation. More commonly,
the datum suffers from observational error, making the observed curve rough or
wiggly, and an appropriate model is Y(t) = s(t) + ε(t) where ε(t) is a random error
process. In this case, recovering s(t) is known as smoothing.

Smoothing can remove the observational error, and smoothed data can also be
used in place of the raw data (Zhang and Chen 2007). Smoothing also enables the

3



researcher to evaluate s(t) at any t ∈ T , not just at the evaluation points t`, ` =

1, . . . , L, where Y(t) is observed. How dense the evaluation points t` are within the
domain T along with the curvature of the underlying function determine what is
known as the resolution of the curve.

If the resolution of the curve is low, meaning the observations are too sparsely
observed to adequately capture the features of the underlying process, then smooth-
ing individual curves may not be appropriate. Given a sample of curves Yi(ti`),
i = 1, . . . , N, where each curve is observed at Li evaluation points ti`, one can smooth
each curve by borrowing information across curves. Methods for this sparse case
include mixed effects modeling and local smoothing, among others; we direct the
interested reader to James (2011) for an excellent review of methods for sparse data
related to principal components, clustering, classification, and regression.

Smoothing is primarily achieved using 1) global smoothing methods such as basis
expansions with or without roughness penalties, and 2) local smoothing methods
such as kernel smoothers. The basis expansion method uses a linear combination of
basis functions to represent a smooth function. This method is described in Section
1.2.1 with particular attention given to B-splines (de Boor 1978) which Ullah and
Finch (2013) found to be the most popular smoothing method implemented within
the FDA literature. Basis functions can be used in conjunction with a roughness
penalty approach finds the function that fits the data well but also does not exhibit
too much local variation (Section 1.2.2). Kernel smoothing is described in Section
1.2.3.

1.2.1 Basis Expansions

Expressing a smooth function as an expansion of basis functions is commonplace
within FDA and appears frequently in the methodologies presented in Chapters 2
and 3. The basis expansion approach has several uses such as smoothing the raw
data, representing the data at any location in the domain (regardless of whether a
function value was measured at that point), and unifying a sample of curves that
were observed for different evaluation points in the domain.

A basis system is a set of basis functions in which the functions are independent
of one another and span a particular function space. For example, the polynomial
basis {tk−1 : k ≥ 1} spans the space of polynomial functions. This means that any
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polynomial function f (t) of degree K− 1 can be represented by a linear combination
of these basis functions, that is, f (t) = ∑K

k=1 βkt(K−1). In general, let f (t) be a smooth
function and let {φk(t) : k ≥ 1} be a set of basis functions (considered known) for
t ∈ T . Using a basis expansion, the function f (t) is approximated by

f (t) ≈
K

∑
k=1

βkφk(t), (1.1)

where the parameter K is the number of basis functions included in the expansion
and the parameters βk are unknown but fixed coefficients that can be estimated
through regression methods such as least squares.

Given that an appropriate basis system is chosen, the quality of the approximation
in (1.1) depends on the value of K. For observed function values f (t`), ` = 1, . . . , L, it
is possible for the basis expansion to interpolate the values f (t`) exactly if the number
of basis functions is chosen to be equal to the number of evaluation points, that is, by
setting K = L (Ramsay and Silverman 2005). Even though specifying a large number
of basis functions might offer an excellent fit to the data, overfitting is a pitfall one
should avoid. In practice, the number of basis functions should be much smaller than
the number of evaluation points but still large enough to provide a good fit. Indeed,
the goal of using a basis function expansion is to specify a basis system that fits the
data well for a relatively small value of K.

Since the set of basis functions is considered known in advance (pre-determined),
it is important that the choice of basis system coincides with the features of the data
and the goals of the analysis. For example, a Fourier basis is a good choice for data
of a cyclic nature, and a B-spline basis is a common choice for non-cyclic data. Other
types of bases include wavelets, exponential bases, and power bases. Since we use a
B-spline basis system in Chapter 3, we describe it below. We refer the reader to texts
such as Wood (2006) and Ramsay and Silverman (2005) for a thorough review of this
and many other types of basis systems.

B-splines offer a very flexible way of representing a non-periodic function and
are appealing due to their fast computation. In general, splines (Wahba 1990) involve
smoothly joining segments of polynomial functions together at so-called knots, or
points that break the domain into smaller intervals. The number and location of the
knots are pre-specified. There is always a knot specified at the beginning and the end
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of an interval, but the placement of interior knots depends on the application. For
data observed densely, equally spaced knots may be appropriate, but one can also
use quantiles of the evaluation points t`, especially for functional data that have not
been observed on an equally spaced grid (Ruppert et al. 2003). Also, it can be useful
to place knots more closely where the curvature of the function is more complex.

In addition to knots, one must specify the order of a B-spline basis, which defines
the degree of the polynomial segments. The order of the B-spline is m + 1 for a
polynomial of degree m, so that B-splines of order 2 join straight lines, of order 3 join
quadratic functions, of order 4 join cubic functions, and so on. At each interior knot,
segments are joined in such a way that not only the value of the two segments must
be equal, but their derivatives (up to order m− 2) must also match. Cubic B-splines
(order 4) are common choices as they have continuous second derivatives.

The number of basis functions needed for a B-spline fit is calculated as the order
plus the number of interior knots, that is, K = (m + 1) + (c− 2) = m + c− 1, where c
is the total number of knots. Generally for a basis expansion, increasing the number
of basis functions K will lead to a better fit, but this is not always the case in B-splines
due to the interplay between the knots and the order on determining the number of
basis functions. It is typically better to increase K by specifying more knots instead
of increasing the order m + 1 of the B-splines (Marx and Eilers 1998; Wood 2000).

B-splines have very attractive computational characteristics. A B-spline of order
m + 1 has basis functions that are only positive over at most m + 1 adjacent inter-
vals, making them localized. This feature gives the B-spline system the advantage of
behaving like an orthogonal basis system so that including a very large number of
functions K only increases computation time linearly with K (Ramsay and Silverman
(2005), Ch. 3).

1.2.2 Roughness Penalties

As mentioned previously, roughness penalties are used to control how well a
function fits the data while forcing the fitted function to retain a smooth form. This
is the classic bias-variance trade off, where a function that fits the data too well has
small bias but a lot of local variation (it is rough or wiggly), and a function that is
too smooth fits the data poorly but has small variation. The ideal fit balances the bias
and the variance, which is the goal of smoothing with a roughness penalty.
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In this approach, the fit is achieved through optimizing some criterion that
measures closeness to the observed data (e.g. sum of squared error) while impos-
ing a penalty to control smoothness. The second derivative f ′′(t) of a function
f (t) gives an indication of the curvature of f (t), where both positive or negative
values of the second derivatives indicate some type of curvature, and a second
derivative close to zero indicates small curvature (recall that f (t) is straight line if
f ′′(t) = 0). Thus, a typical penalty involves penalizing the square of the second
derivative of the function, expressed symbolically as θ

∫
{ f ′′(t)}2dt. Then the func-

tion f (t) is that which minimizes, for instance, the penalized least squares criterion∫
{Y(t)− f (t)}2dt + θ

∫
{ f ′′(t)}2dt. The parameter θ ≥ 0 is known as the smoothing

parameter (more commonly denoted as λ, but we change the notation to avoid confu-
sion with the eigenvalues in Section 1.3). As θ increases, f (t) becomes smoother, and
as θ decreases to zero, f (t) becomes rougher, corresponding to the unpenalized case.
The smoothing parameter θ can be estimated using cross-validation among other
techniques, and more information can be found in Chapter 4.5 of Wood (2006).

The roughness penalty approach can be used in conjunction with many other
methods, for example, with the basis expansion approach of Section 1.1. So-called
penalized splines or smoothing splines (Eilers and Marx 1996) use a spline expansion
for the function with the additional smoothness constraint imposed by the roughness
penalty. Let f (t) ≈ ∑K

k=1 βkφk(t) represent a B-spline basis expansion. If the B-splines
(without the penalty) are fit by least squares, the coefficients βk are those that mini-
mize

∫
{Y(t)− f (t)}2dt. In penalized B-spline smoothing, βk are those that minimize∫

{Y(t)− f (t)}2dt + θ
∫
{ f ′′(t)}2dt.

1.2.3 Kernel Smoothing

In kernel smoothing (Fan and Gijbels 1996; Wand and Jones 1996) the function
f (t0) at a target point t0 is estimated by using a weighted combination of observa-
tions Y(t`) with evaluation points t` that are close to t0. As opposed to the global
smoothing approaches in Sections 1.1 and 1.2.2 where a smooth function f (t) is ap-
proximated simultaneously for all values t in the domain, kernel smoothing is local-
ized in that the fit is done separately for each target point t0 and depends only on
information from values in a neighborhood of that point. The influence of a point t`
on the fit at t0 is determined by the kernel function Kh(t0, t`) which weights Y(t`)
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based on the proximity of t` to the target point t0. The parameter h is known as the
bandwidth and determines the width of the neighborhood around t0.

Nearest neighbor estimation is one of the most basic forms of kernel smoothing
where the estimate f̂ (t0) is simply the average of all the observed values within the
neighborhood of t0. (We employ the concept of nearest neighbors in a more compli-
cated setting in Chapter 2.3.1.) Nearest neighbor averages give equal weight to all
values within the neighborhood regardless of their relative proximity to the target
point t0. The Nadaraya-Watson kernel-average (Nadaraya 1964; Watson 1964) im-
proves upon this by using a weighted average and is given by

f̂ (t0) =
∑n

`=1 Kh(t0, t`)Y(t`)
∑n

`=1 Kh(t0, t`)
.

It produces a continuous estimate for a continuous kernel Kh(t0, t`) (see Sarda and
Vieu (2012)). For instance, by choosing the Epanechnikov kernel Kh(t0, t`) = D(|t` −
t0|/h) where D(x) = 3/4(1− x2) if |x| ≤ 1 and D(x) = 0 otherwise, assigns weights
that increase smoothly as t` approaches t0, or equivalently, weights that die off as t`
gets further from t0 (see Hastie et al. (2009)).

In kernel regression, one must specify the bandwidth h which controls the de-
gree of smoothing, akin to the role of the smoothing parameter λ discussed in Sec-
tion 1.2.2. With larger h, more values enter the neighborhood and the fit becomes
smoother (less variability) but more biased. With smaller h, the fit is less smooth
(higher variability) but less biased. The value of h can be chosen through cross vali-
dation, for example.

One downside to kernel smoothing is that the boundary estimates tend to exhibit
more bias than interior estimates since there are fewer available points in the neigh-
borhood around a t0 close to the boundary. Local linear (more generally, polynomial)
regression is an alternative to kernel smoothing that possesses better properties near
the boundary and involves regressing a line (or polynomial) at each t0. For more in-
formation on this method, we refer the reader to Chapter 6 of Hastie et al. (2009), for
example.
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1.3 Functional Principal Components Analysis

Functional principal components analysis (FPCA) is the functional equivalent of
principal components analysis (PCA) from the usual multivariate framework. One of
the main goals of both PCA and FPCA is to reduce the dimension of the data by find-
ing the directions of the observation space that explain the majority of the variation
within the data. FPCA has great utility within FDA; see, for instance, Besse and Ram-
say (1986); Boente and Fraiman (2000); James et al. (2000); Ramsay and Dalzell (1991);
Rice and Silverman (1991); Yao et al. (2005a), among many others. For an excellent
review of FPCA literature, see Shang (2014). FPCA is central to the methodologies we
present in later chapters where we offer extensions of FPCA for multivariate func-
tional responses, a topic that to date has appeared only scarcely (Berrendero et al.
2011; Jacques and Preda 2014; Ramsay and Silverman 2005) within the FDA litera-
ture.

FPCA can be used to specify what Ramsay and Silverman (2005) call designer
bases that account for a large amount of variation in the data (Rice and Silverman
1991). We capitalize on this feature in Chapter 3 where we perform FPCA and use
the resulting principal component functions as a data-driven basis. Since much of the
variation is captured by the basis functions, it alleviates the computational burden
within our Bayesian framework of sampling from the conditional posterior distribu-
tion of an unstructured covariance matrix by allowing for specification of a much
simpler diagonal covariance matrix.

We now offer a brief overview of FPCA for univariate functional data, following
closely to the exposition found in Hall (2011). Let W(t) be a square-integrable random
function, that is,

∫
T E{W(t)}2dt < ∞, where t ∈ T for some compact interval T . Let

K(t, t′) = Cov{W(t), W(t′)} denote the covariance operator of the process. Since the
covariance operator is a symmetric and non-negative kernel, we can use Mercer’s
Theorem to represent K(t, t′) in terms of its spectral decomposition,

K(t, t′) =
∞

∑
k=1

λkek(t)ek(t′), (1.2)

where λk = Var(ξk) for ξk =
∫
T ek(t)W(t)dt and {ek(t) : k ≥ 1} is an orthonormal

basis in T , that is, the basis satisfies
∫
T ej(t)ek(t)dt = δjk and δjk = 1 if j = k, δjk = 0

9



otherwise. The Karhunen-Loève expansion (Karhunen 1947; Loève 1945) allows us to
write the function W(t) in terms of the principal component representation given in
1.2, specifically, W(t) = ∑∞

k=1 ξkek(t).
In the nomenclature of FPCA, ek(t) is called an eigenfunction or principal com-

ponent function, λk is an eigenvalue, and ξk is called an FPC score. Typically, the
eigenvalues and corresponding eigenfunctions are considered to be ordered such
that λ1 ≥ λ2 ≥ . . . ≥ 0, so that the first FPC explains the most variation in the data,
followed by the second, and so on. When in this order, the eigenfunctions can be
defined sequentially, where the first eigenfunction e1(t) maximizes the variance of
ξk =

∫
T e(t)W(t)dt subject to the constraint that

∫
T e(t)2dt = 1. For k > 1, maximiza-

tion with the additional constraint
∫
T e1(t)ek(t)dt = . . . =

∫
T ek−1(t)ek(t)dt = 0 is

needed to ensure orthogonality of the eigenfunction basis. Note the if W(t) has not
been standardized to have zero-mean, then the first FPC will be the mean function.

In order to estimate the eigenfunctions and eigenvalues, one begins by finding
an estimator of the covariance operator K(t, t′). Given independent curves Wi(t),
i = 1, . . . , N, one can use the sample covariance

K̂(t, t′) =
1
N

N

∑
i=1
{Wi(t)−W(t)}{Wi(t′)−W(t′)} (1.3)

where W(t) = 1/N ∑N
i=1 Wi(t). For a positive definite and symmetric estimator K̂,

by Mercer’s Theorem there exist eigenvalues λ̂k, k ≥ 1, and an orthonormal basis of
eigenfunctions {êk(t) : k ≥ 1} such that

K̂(t, t′) =
∞

∑
k=1

λ̂k êk(t)êk(t′). (1.4)

This leads to a very useful result: performing an eigen-analysis of the estimated
covariance (or another positive definite and symmetric estimator) leads to estimates
of the functional principal components. Of course, we desire the functional princi-
pal components to be smooth. This can be achieved by smoothing the data prior to
FPCA (Ramsay and Dalzell 1991) or via roughness penalty as in Section 1.2.2 by in-
corporating penalties into the FPCA constraints above (Pezzulli and Silverman 1993;
Silverman 1996). Alternatively, prior to finding the eigen-decomposition, one can use
a bivariate smoother like tensor products to smooth the estimated covariance (Di

10



et al. 2009; Staicu et al. 2010; Yao et al. 1993, 2005a).
Furthermore, it can be shown that the eigenvalues λ̂k vanish for k ≥ N+ 1, mean-

ing λ̂1 ≥ . . . ≥ λ̂N ≥ λ̂N+1 = λ̂N+2 = . . . = 0 and the expansion in (1.4) can be
truncated at N. If λ̂N is non-zero, then the eigenfunctions {êk(t) : k = 1, . . . , N}
are uniquely determined up to a sign (for more details, see Hall (2011)). Typically,
the values of λ̂k diminish quickly as k increases, and (1.4) can be truncated at some
K ≤ N such that cumulatively the first K eigenvalues explain the majority (e.g. 95%
or 99%) of the variation. This is very useful if dimension reduction is a primary goal
of implementing FPCA.

In both Chapters 2 and 3 we encounter situations where we do not have an in-
dependent sample of curves. Hence, obtaining estimators of the covariance is not as
straightforward as in (1.3), and the process of finding suitable covariance estimators
becomes a key focus of the modeling framework of each chapter.
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CHAPTER 2

Modeling Multivariate Spatial Functional Data

2.1 Background

Functional data analysis is a rapidly maturing area of statistical inquiry, partic-
ularly due to its ability to handle increasingly large datasets which have become
common with the fast pace of technological advancement. In particular, multivari-
ate modeling of functional responses is undergoing intense methodological devel-
opment. We propose a flexible framework for jointly modeling multiple real-valued
functional responses nested within a hierarchy where the functions are observed on
a spatial (or temporal) grid and are assumed to exhibit spatial (serial) auto- and
cross-correlations. Our methods are applied to data from a colon carcinogenesis ex-
periment, though they are applicable to any data with similar structure.

Our proposed methodology uses functional principal components analysis
(FPCA) for multivariate functional data which has important advantages in dimen-
sionality reduction and results in considerable computational savings. FPCA extends
PCA from the usual multivariate framework to functional data (see, for example,
Ramsay and Silverman (2005), Ch. 8), and recent improvements to FPCA have incor-
porated more complicated settings. For instance, Di et al. (2009) introduced FPCA
for data that are observed in a nested design, i.e. multilevel data. Greven et al. (2010)
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presented functional principal components for univariate functions observed longi-
tudinally, and Berrendero et al. (2011) presented FPCA for multivariate functional
data.

To our knowledge, this is the first method that allows for a complex spatial corre-
lation structure among curves in the multivariate setting. Baladandayuthapani et al.
(2008) presented a functional approach for spatially correlated univariate functional
data. Morris and Carroll (2006) developed a wavelets-based approach for functional
mixed models and Zhou et al. (2008) developed multivariate methods involving func-
tional principal components analysis, but neither approach can handle the complex
spatial correlation structure found in our model.

Staicu et al. (2010) presented methods for univariate multilevel functional data
that are spatially correlated, and the methodology we present here shares several
similarities. The differences between our method and theirs stem from the difficulties
introduced by performing joint modeling of a bivariate response. In particular, the
problem of estimating a bivariate spatial covariance is one of continuing research and
requires the development of an entirely new and innovative framework compared to
the univariate spatial estimation presented in Staicu et al. (2010). One reason for this
difficulty is that the entire multivariate spatial covariance matrix must be nonnegative
definite.

Two recent approaches to multivariate spatial modeling using the well known
and widely used Matérn class of parametric covariance models (Guttorp and Gneit-
ing 2006; Handcock and Stein 1993; Matérn 1986) have appeared in the literature.
Gneiting et al. (2010) introduced a valid class of parametric covariances for multi-
variate spatial random fields, where the component covariance matrices and cross-
correlation matrices take the form of a Matérn process. They present constraints on
the parameters which ensure a valid covariance structure (nonnegative definiteness)
for the bivariate case. Apanasovich et al. (2012) extended this class by relaxing some
of the parametric conditions and allowing for more flexible modeling of a multivari-
ate vector with any number of components. The bivariate Matérn model allows for
different smoothness parameters that govern the differentiability of the auto- and
cross-covariograms. Moreover, the parameters of the Matérn function have meaning-
ful interpretations that can be useful for inference.

Jointly modeling multiple functional responses can offer several advantages over
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univariate methods, including improvements in parameter estimates and prediction
as well as a better understanding of the relationship between responses. For example,
consider the motivating application discussed in Section 2.5 involving a rodent ex-
periment designed to investigate how fish and corn oil diets affect colon carcinogen-
esis. The responses on which we focus our attention are apoptosis, or programmed
cell death, and a cell cycle inhibitor protein called p27. These two responses are
closely related in that p27 contributes to the regulation of apoptosis, and novel mul-
tivariate methods are essential to gaining a better understanding of the dynamics of
their cross-dependence. Analyses of similar colon cancer rodent experiments have
appeared in several works, including Morris et al. (2003, 2002, 2001), Morris and Car-
roll (2006), Baladandayuthapani et al. (2008), and Staicu et al. (2010), to name a few.
However, these methods do not offer insight into response dynamics, which is one of
our main objectives.

2.2 Model for multivariate functional response

For simplicity of exposition we now describe the modeling framework for bivari-
ate functional data. Consider hierarchical data (groups-subjects-units) where within
each subject are several units on which two response curves are observed. With-
out loss of generality, assume that the units within a subject are aligned on a one-
dimensional grid and define the relative spatial location sij ∈ R to be the distance
of unit j = 1, . . . , Mi from the first unit within subject i = 1, . . . , N. Let Yij(t, sij) =

[Y1
ij(t, sij), Y2

ij(t, sij)]
T be the continuous bivariate response measured at subunit t ∈ T

within unit j at spatial location sij within subject i of group G(i) = 1, . . . , D. Our
model is

Yij(t, sij) = µG(i)(t) +Zi(t) +Qi(t, sij) + εij(t) (2.1)

where µG(i)(·) is the fixed bivariate population-level group mean function and Zi(·)
is the level 1 random bivariate subject-specific deviation from the mean. For a unit
with spatial location sij, the level 2 random bivariate unit-specific deviation from
the mean is Qi(t, sij), and εij(t) is noise. As in Staicu et al. (2010), we further de-
compose Qi(t, sij) into two parts, one part that only depends on the unit spatial
location sij, and another part that only depends on the subunit location t. We write
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Qi(t, sij) = Wij(t) + Ui(sij) where Wij(t) is a square-integrable, bivariate random
process depending only on the subunit t; Ui(sij) is a bivariate random spatial process
depending only on the unit spatial location, sij, whose correlation structure models
the spatial dependence between units within subject i. This leads to our parsimonious
model:

Yij(t, sij) = µG(i)(t) +Zi(t) +Wij(t) +Ui(sij) + εij(t). (2.2)

We assume that µG(i)(t) are modeled parametrically, and for identifiability we as-
sume that Zi(·),Wij(·), Ui(·) and εij(·) are mean zero, uncorrelated bivariate random
processes.

2.2.1 Model Assumptions

Henceforth, we use superscripts p = 1, 2 to denote the components of bivariate
vectors. For example, the superscript p = 1 identifies the first component, Y1

ij(t, sij), of
the bivariate response Yij(t, sij), and p = 2 identifies the second component Y2

ij(t, sij).
It is assumed that the functions are observed at a dense, balanced design, that is,
tij` = t` for ` = 1, . . . , L and that there is an equal number of curves across subjects,
that is, Mi ≡ M.

In model (2.2), ε
p
ij(t) are assumed to be white noise processes with ε

p
ij(t)

i.i.d.∼
N(0, τ2

p) and ε1
ij(t) uncorrelated with ε2

ij(t). The bivariate random processes Z(t) and

W (t) have covariance operators KZ
pp′(t, t′) = Cov{Zp

i (t), Zp′

i (t′)} and KW
pp′(t, t′) =

Cov{Wp
ij(t), Wp′

ij (t
′)}, respectively, for p, p′ = 1, 2 leading to the 2 × 2 covariance

matrices KZ(t, t′) = {KZ
pp′(t, t′)}p,p′∈{1,2} and KW(t, t′) = {KW

pp′(t, t′)}p,p′∈{1,2}. The
specific form of these covariance matrices is presented in Section 2.2.3.

For modeling the spatial dependence between units, we assume that Ui(·) =

[U1
i (·), U2

i (·)]T is a mean-zero and second-order stationary, isotropic random bivari-
ate process that is measured at locations si1, . . . , siM ∈ [0, H] for sij ∈ R. The as-
sumption of stationarity is important because it means that the spatial covariance
between units within a subject only depend on the distance between the unit loca-
tions and not on the unit locations themselves. Notationally, we represent the spatial
covariance function as Cpp′(∆ijj′) = Cov{Up

i (sij), Up′

i (sij′)} where p, p′ = 1, 2 and
∆ijj′ = |sij − sij′ | is the distance between two units within the same subject. Thus,
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the covariance between Ui(sij) and Ui(sij′) is the 2 × 2 spatial covariance matrix
C(∆ijj′) = {Cpp′(∆ijj′)}p,p′∈{1,2} and its specific form is presented in Section 2.2.2.
Moreover, we assume that the spatial covariance approaches zero as the distance
between units increases, Cpp′(∆) → 0 as ∆ → ∞, an assumption essential to the esti-
mation procedure in Section 2.3.

2.2.2 Bivariate Matérn structure for spatial covariance

Due to its flexibility, we consider the Matérn class to model the spatial covariance.
Specifically, assume that the covariance matrix C(·) has a bivariate Matérn structure.
If Cpp′(∆) is the spatial cross covariance function for Up(s1) and Up′(s2) that are mea-
sured at locations s1, s2 ∈ D ⊂ R where ∆ = s1− s2, then for p, p′ = 1, 2, the bivariate
Matérn class of cross covariance functions defines Cpp′(∆) = σpp′M(∆|νpp′ , app′) with
Matérn correlation function M(∆|ν, a) = {21−ν/Γ(ν)}(a|∆|)νKν(a|∆|), where Kν is
a modified Bessel function of the second kind and ν > 0 and a > 0 are smooth-
ness and scale parameters, respectively (Apanasovich et al. 2012; Gneiting et al. 2010;
Matérn 1986). (For extension to d-dimensional locations, one only needs to replace
the absolute value in the correlation function with the Euclidean norm.)

The smoothness parameter ν of the Matérn correlation function governs the dif-
ferentiability of the process, where larger values of ν indicate a smoother process.
(Special cases of the Matérn correlation function include the exponential (ν = 1/2)
and Whittle (ν = 1) models, as well as the Gaussian when ν = ∞.) With ν fixed, a
governs how fast the correlation decays with distance. Larger values of a indicate a
faster decay, and 1/a is sometimes called the correlation length. The auto-covariance
components C11(∆) and C22(∆) are common Matérn covariance functions. For exam-
ple σ11 represents the spatial variance of the process and is known as the partial sill
in the spatial literature. The spatial cross covariance, represented by σ12, is a func-
tion of the cross-correlation parameter ρ12 and each of the marginal spatial variances:
σ12 = σ21 = ρ12

√
σ11σ22.

2.2.3 Modeling of functional processes

In keeping with the multilevel terminology used in Di et al. (2009) and Staicu
et al. (2010), we call Zi(t) level 1 functions and Wij(t) level 2 functions. Let Zi(t)
and Wij(t) be processes in L2[0, 1] × L2[0, 1], and let {φφφZ

k (t) = [φZ
k1(t), φZ

k2(t)]
T :
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k ≥ 1} and {φφφW
` (t) = [φW

`1(t), φW
`2(t)]

T : ` ≥ 1} be two sets of orthogonal bi-
variate basis functions in L2[0, 1] × L2[0, 1] with respect to the norm induced by
the inner product < ( f1, g1), ( f2, g2) >=

∫
f1 f2 +

∫
g1g2. The functional processes

can be expanded as Zi(t) = ∑∞
k=1 ξi,kφφφ

Z
k (t) and Wij(t) = ∑∞

`=1 ζij,`φφφ
W
` (t) where

ξi,k and ζij,` are random basis coefficients calculated as < Zi(t), φφφZ
k (t) > and

< Wij(t), φφφW
` (t) >, respectively. Using this expansion, we can rewrite model (2.2):

Yij(t, sij) = µG(i)(t) + ∑∞
k=1 ξi,kφφφ

Z
k (t) + ∑∞

`=1 ζij,`φφφ
W
` (t) +Ui(sij) + εijt. In practice, fi-

nite truncations are used instead; let NZ and NW be the truncation values for Zi(·)
and Wij(·), respectively, leading to the simplified model

Yij(t, sij) = µG(i)(t) +
NZ

∑
k=1

ξi,kφφφ
Z
k (t) +

NW

∑
`=1

ζij,`φφφ
W
` (t) +Ui(sij) + εijt. (2.3)

There are several ways to chose the basis functions by either using predetermined
bases such as Fourier or wavelets or using the basis formed by the eigenfunctions
of the covariance operator. We opt for the latter choice; if KZ and KW are the co-
variance operators of Z and W respectively, then by applying Mercer’s Theorem
(Indritz 1963) to multivariate data the eigenfunctions are obtained from the spec-
tral decompositions of the respective covariance functions. In particular, KZ(t, t′) =

∑∞
k=1 λZ

k φφφZ
k (t){φφφZ

k (t
′)}T and KW(t, t′) = ∑∞

`=1 λW
` φφφW

` (t){φφφW
` (t′)}T. In this case, the

function expansions leading to (2.3) are known as Karhunen-Loève expansions
(Karhunen 1947; Loève 1945) and the random coefficients ξik and ζij,` as functional
principal components (FPC) scores. Furthermore the FPC scores ξik and ζij,` are as-
sumed to be uncorrelated over k and ` respectively, are zero-mean, and have variances
λZ

k and λW
` , respectively. Additionally, following the assumption that Zi and Wij are

uncorrelated, it is assumed that {ξi,k : k = 1, 2, . . .} are uncorrelated with {ζij,` : ` =

1, 2, . . .}.

2.2.4 Notation for balanced design

To facilitate exposition of the estimation section, we rewrite in matrix form the co-
variance operators in Section 2.2.1 for a dense, balanced design. Let t = [t1, . . . , tL]

T

be the L × 1 vector of subunits at which each process is measured within a unit.
The 2L× 1 random vector Zi = [Z1,T

i (t), Z2,T
i (t)]T has the block covariance matrix

Var(Zi) = KZ with blocks KZ
pp′ = {K

Z
pp′(th, tk)}h,k∈{1,...,L}. The 2L× 1 random vec-
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tor Wij = [W1,T
ij (t), W2,T

ij (t)]T has covariance matrix Var(Wij) = KW defined analo-
gously.

For the spatial process, let si = [si1, si2, . . . , siM]T be the M× 1 vector of unit lo-
cations for subject i with the convention that si1 = 0, where sij is the relative dis-
tance of unit j from the first unit location. The M ×M matrix ∆i = {∆ijj′}M

j,j′=1 is
that which is formed from every pairwise distance between the M units located
in subject i = 1, . . . , N. The (matrix-valued) block covariance matrix of Ui(si) =

[U1,T
i (si), U2,T

i (si)]
T is C(∆i) which has blocks Cpp′(∆i). Furthermore, assuming the

bivariate Matérn covariance structure in Section (2.2.2) gives the parametric form
Cpp′(∆i) = σpp′M(∆i|νpp′ , app′).

2.3 Estimation

To address our primary objectives of estimating the group means and understand-
ing how the distance between units affects the spatial correlation, we have developed
an estimation procedure that identifies the key components that account for variation
at each hierarchy level. Estimates of the Matérn parameters will identify the spatial
signal across units as well as the strength and direction of the spatial correlation be-
tween the two response curves that we model jointly. Moreover, once estimates of the
covariances KW , KZ, Ci and the error variances τ2

1 and τ2
2 are obtained, one can es-

timate the group mean functions µG(i)(t) using generalized least squares regression
with estimated covariance. The outline of our estimation procedure is:

1. Estimate the bivariate Matérn parameters for the spatial covariance (Section
2.3.1);

2. Estimate KZ and KW using method of moments (Section 2.3.2);

3. Obtain eigenfunctions and eigenvalues for KZ and KW through MFPCA and
also estimate the error variance τ2

p for p = 1, 2 (Section 2.3.3);

4. Estimate group mean functions µG(i)(t) using generalized least squares (GLS)
regression with estimated covariance matrix (Section 2.3.4).
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2.3.1 Spatial covariance estimation

Estimation of the spatial covariance matrix is done in two parts: 1) we define a
raw estimator based on method of moments and 2) fit a parametric bivariate co-
variance structure that leads to a positive semi-definite, smoothed covariance estima-
tor. Essential to part one is the assumption that the spatial correlation approaches
zero as the distance between observations increases. Although the correlation will
never be exactly zero, using this we can assume that there exists some correlation
range ∆∗ (chosen based on scientific or expert knowledge) for which units can be
considered uncorrelated if the distance between them exceeds the correlation range:
Cpp′(∆) ≈ 0 if ∆ ≥ ∆∗.

The preferred moment-based estimation method in the spatial literature is based
on the (cross) semivariogram (Cressie 1993), defined as half of the variance of the
difference in residuals for observations separated by a given distance. Our setting re-
quires a generalization of this standard approach because spatial variation is just one
piece of the complex model given in (2.2). For spatial lag δ < ∆∗, denote by N (δ, ε)

the set (across all subjects and all groups) of unit-pairs within the same subject whose
distance from one another is within a tolerance, ε, of δ. We select ε so that at least
30 distinct unit-pairs are in N (δ, ε) (see Journel and Huijbregts 1978; Cressie 1993,
Ch. 2). Define N (δ, ε) to be the same for all spatial lags δ > ∆∗. In summary, for
∆ijj′ = |sij − sij′ |,

N (δ, ε) =


{
(i, j, j′) : j 6= j′ & ∆ijj′ ∈ [δ− ε, δ + ε]

}
if 0 < δ < ∆∗

{(i, j, j′) : j 6= j′ & ∆ijj′ ≥ ∆∗} if δ ≥ ∆∗.
(2.4)

Define Gpp′

ijj′ (t, t′) = 1
2{Y

p
ij (t, sij) − Yp′

ij′ (t
′, sij′)}2 − 1

2{Y
p
ij (t, sij) − Yp′

ij (t
′, sij)}2, on

which the following method of moments estimators are based. Gpp′

ijj′ (t, t′) is only use-

ful for observations from two different units since Gpp′

ijj′ (t, t′) = 0 if j = j′, and it is
not unbiased for the (cross) semi-variogram γpp′(∆ijj′) = CU

pp′(0)− CU
pp′(∆ijj′), but in-

stead is inflated by the term ηpp′(t, t′) = KW
pp′(t, t′) + τ2

pI(p = p′, t = t′). When p = p′

and t = t′, Gpp′

ijj′ (t, t′) = 1/2{Yp(t, sij)− Yp(t, sij′)}2 and is analogous to the classical
semivariogram estimator. Define the moments-based nearest neighbor estimator of
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the (cross) semivariogram for spatial lag δ > 0 as

γ̃pp′(δ, ε) =
1

L2|N (δ, ε)| ∑
(i,j,j′)∈N (δ,ε)

∑
t,t′

Gpp′

ijj′ (t, t′), (2.5)

where | · | indicates cardinality of a set. For δ = 0, define

γ̃0
pp′,ε =

1
L|N (∆∗, ε)| ∑

(i,j,j′)∈N (∆∗,ε)
∑
t=t′

Gpp′

ijj′ (t, t′). (2.6)

Let η̄a,pp′ = L−1 ∑t=t′ ηpp′(t, t′) and η̄b,pp′ = L−2 ∑t,t′ ηpp′(t, t′). Then (2.5) has ex-
pectation E{γ̃pp′(δ)} = Cpp′(0)−Cpp′(δ) + η̄b,pp′ , and (2.6) has expectation E{γ̃0

pp′} =
Cpp′(0)− Cpp′(∆∗) + η̄a,pp′ which simplifies to E{γ̃0

pp′} ≈ Cpp′(0) + η̄a,pp′ by the as-
sumption that Cpp′(∆) ≈ 0 if ∆ ≥ ∆∗. Here ηpp′(t, t′) differs from the nugget effect in
that it also includes the level 2 functional covariance operator. Our estimation pro-
cedure will account for the nuisance parameters ηpp′(t, t′), but only the parameters
of the bivariate Matérn covariance are of interest. Then raw estimator for the (cross)
covariogram becomes

C̃pp′(δ) =

γ̃0
pp′ if δ = 0;

γ̃pp′(∆∗)− γ̃pp′(δ) if 0 < δ < ∆∗;
(2.7)

we set C̃pp′(δ) = 0 if δ ≥ ∆∗. When 0 < δ < ∆∗, the covariance estimator given in
(2.7) is unbiased. For δ = 0, C̃pp(0) = γ̃0

pp′ is upwardly biased due to the positive
term η̄a,pp′ .

The moments-based raw estimate of the spatial covariance from (2.7) is neither
guaranteed to be smooth nor positive semi-definite. To obtain a smoothed esti-
mate, (2.7) provides the foundation for estimating the Matérn parameters through
a procedure that emulates maximum likelihood but uses the estimated covariance
in place of data. In order to find a suitable function f to maximize, assume there
exists some unobserved, bivariate Gaussian spatial process Q(s) measured at lo-
cations si = [si1, . . . , sim]T, sij ∈ R, for j = 1, . . . , m within subject i = 1, . . . , n.
The pairwise distances ∆ijj′ = |sij − sjj′ | form the distance matrix ∆i = {∆ijj′}m

j,j′=1.
Let Σ(∆i;θ,η) be a parametric covariance matrix with elements Σpp′(∆ijj′ ;θ,η) =

σpp′M(∆ijj′ |νpp′ , app′) + η̄a,pp′I(∆ijj′ = 0) where θ indicates the bivariate Matérn pa-
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rameters we wish to estimate, and η indicates the nuisance parameters. Now, let

Qi
indep∼ N2m

(
0, Σ(∆i;θ,η)

)
where Qi = [Q1,T(si), Q2,T(si)]

T. Furthermore, assume
that all subjects i are observed on the same equally spaced m× 1 grid of points sgrid

with the convention sgrid,1 = 0, and sgrid,m < ∆∗, so that ∆i ≡ ∆grid for all i, and the
largest pairwise distance between locations will be less than ∆∗. Thus, theQi are i.i.d.
multivariate normal random variables with covariance matrix Σ(∆grid;θ,η).

The log-likelihood function, minus arbitrary constants, is `(θ,η; q1, . . . , qn) =

−1/2 ∑n
i=1

[
log|Σ(∆grid;θ,η)|+

{
qT

i Σ−1(∆grid;θ,η)qi

}]
, which can alternatively be

written in terms of the sample covariance Cq = 1/n ∑n
i=1 qiq

T
i by using the trace:

`(θ,η; q1, . . . , qn) = −n/2
[
log|Σ(∆grid;θ,η)|+ Tr

{
Σ−1(∆grid;θ,η)Cq

}]
. Since we

do not observe the data q and, hence, cannot directly use the sample covari-
ance Cq in the likelihood, we must use a covariance estimate based on (2.7) as
a substitute. Evaluating (2.7) for each element in ∆grid gives the estimated co-
variance matrix C̃grid = {C̃pp′(∆grid)}p,p′∈{1,2}, which we use in place of Cq.
Note that E(C̃grid) = {σpp′M(∆grid|νpp′ , app′) + η̄a,pp′I}p,p′∈{1,2}, where I is the
m × m identity matrix. Lastly, we maximize the function f (θ,η;y1, . . . ,yn) =

−n/2
[
log|Σ(∆grid;θ,η)|+ Tr

{
Σ−1(∆grid;θ,η)C̃grid

}]
to find the bivariate Matérn

parameter estimates θ̂, resulting in the smooth estimator Ĉ = C(θ̂).
To ensure the estimated parameters produce a valid bivariate Matérn structure in

which the marginal covariances Ĉ11 and Ĉ22 and the entire bivariate covariance ma-
trix Ĉ are positive semi-definite, we implement the three-step maximum likelihood
algorithm proposed by Apanasovich et al. (2012):

1: Fit the marginal models to get the parameters σpp, νpp and app for p = 1, 2.

2: Define ν12 = (ν11 + ν22)/2+∆A for ∆A ≥ 0, a12 = (a2
11 + a2

22)/2+∆B for ∆B ≥ 0
and σ2

12 = ρ2
12(σ11σ22)∏3

k=1 ψ
(k)
12 .

3: Holding the univariate parameters σpp, νpp and app fixed from Step 1, fit the
bivariate model and estimate ∆A, ∆B, and ρ12.

The ψ
(k)
pp′ in Step 2 are defined for components p, p′ as ψ

(1)
pp′ =

B(νpp′ , d/2)2/B{(νpp + νp′p′)/2, d/2}2, ψ
(2)
pp′ = (appap′p′/a2

pp′)
2∆A , and

ψ
(3)
pp′ = Γ2{(νpp + νp′p′)/2}a2νpp

pp a
2νp′ p′

p′p′ /{a
2(νpp+νp′ p′ )

pp′ Γ(νpp)Γ(νp′p′)}, where B(·, ·)
is the Beta function, and d = 1 since sij ∈ R. Extensions to multivariate responses
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are possible by slight modifications of this algorithm; see Apanasovich et al. (2012).
Initial values of the Matérn parameters for the maximum likelihood procedure can
be found through weighted least squares as shown in Appendix A.3.

2.3.2 Raw functional covariance estimates

In order to implement FPCA, we will need to find asymptotically consistent es-
timates of KZ(t, t′) and KW(t, t′). We do this in a manner similar to that in Staicu
et al. (2010) and Di et al. (2009), utilizing the same notions of total and between co-
variance that are analogous to the variance decomposition found in mixed ANOVA
models. Define the total covariance of unit-level functions measured within the same
unit j as KYTotal,pp′(t, t′) = Cov{Yp

ij (t, sij), Yp′

ij (t
′, sij)} and the between covariance of

the unit-level functions that are distance ∆ijj′ > 0 apart as KYBetween,pp′(t, t′, ∆ijj′) =

Cov{Yp
ij (t, sij), Yp′

ij′ (t
′, sij′)}. In terms of model (2.2), the total and between covari-

ance quantities can be written KYTotal,pp′(t, t′) = KZ
pp′(t, t′) + KW

pp′(t, t′) + Cpp′(∆ =

0) + τ2
pI(t = t′, p = p′) and KYBetween,pp′(t, t′, ∆ijj′) = KZ

pp′(t, t′) + Cpp′(∆ijj′). These
covariance quantities and their decompositions in terms of model (2.2) are key in
our estimation method, particularly because they provide an intuitive method of
moments-based approach with desired consistency properties.

Define the moments-based nearest neighbor estimator

K̂Z
pp′(t, t′) =

1
|N (∆∗)| ∑

(i,j,j′)∈N (∆∗)
{Yp

ij (t, sij)− Ȳp
G(i)(t)}{Y

p′

ij′ (t
′, sij′)− Ȳp′

G(i)(t
′)}, (2.8)

where p, p′ = 1, 2, N (∆∗) is given in (2.4) and Ȳp
G(i)(t) is the group mean at t

over all unit locations and all subjects in the group to which subject i belongs.
This estimator makes use of the property that KYBetween,pp′(t, t′, ∆∗) ≈ KZ

pp′(t, t′) since
Cpp′(∆) ≈ 0 if ∆ ≥ ∆∗.

To estimate KW(t, t′) we diverge from the methods of Staicu et al. (2010) and Di
et al. (2009). Consider the residuals Rp

ij(t, sij) = Yp
ij (t, sij) − L̂p

i (t) for some smooth

estimator L̂p
i (t) = µ̂

p
G(i)(t) + Ẑp

i (t) obtained using penalized regression splines or
similar methods to smooth the pooled data across units for each subject i and each
bivariate response component p = 1, 2. We can model the residuals as Rij(t, sij) =

Wij(t) +Ui(sij) + εijt. Define the total covariance of the residuals as KRTotal,pp′(t, t′) =
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Cov{Rp
ij(t, sij), Rp′

ij (t
′, sij)}, which has the decomposition KRTotal,pp′(t, t′) = KW

pp′(t, t′) +
Cpp′(0) + τ2

pI(t = t′, p = p′). Let KW
pp′,Inflated(t, t′) = KW

pp′(t, t′) + τ2
pI(t = t′, p = p′)

denote the covariance process of Wij(t) that is inflated by the error. Its estimator is
given by

K̂W
pp′,Inflated(t, t′) =

1
NM

N

∑
i=1

M

∑
j=1
{Rp

ij(t, sij)Rp′

ij (t
′, sij)} − Ĉpp′(0), (2.9)

where Ĉpp′(0) is defined in (2.7).

2.3.3 Multivariate multilevel FPCA

Multilevel FPCA (MFPCA) as presented in Di et al. (2009) retrieves the eigenval-
ues and eigenfunctions that comprise the covariance expansion for level 1 and level
2 univariate functional processes observed with error by implementing FPCA on
smoothed covariance matrix estimates. We introduce a novel adaptation of MFPCA
that incorporates the multivariate structure for multilevel spatial functional data.

Since we are assuming the curves are observed with error, we must smooth the
raw level 1 and level 2 covariance estimates given in (2.8) and (2.9) in order to imple-
ment MFPCA. For level 1, we use (2.8) to form the raw matrices K̂Z

pp′ for p, p′ = 1, 2

and smooth each univariate and cross covariance separately to obtain K̃Z
sm,pp′ . These

individually smoothed matrices combine to form the bivariate smoothed covariance
K̃Z

sm. The intuition behind smoothing the submatrices separately and then combining
them into the bivariate matrix versus combining the raw estimates first and smooth-
ing the bivariate matrix is that the delineations between the submatrices need not be
smooth within the bivariate matrix.

For level 2, we use (2.9) to form K̂W
inflated,pp′ for p, p′ = 1, 2. Since the diagonals of

the univariate matrices K̂W
inflated,11 and K̂W

inflated,22 are inflated by the error variances
τ2

1 and τ2
2 , respectively, we ignore the diagonals when smoothing. After smoothing

K̂W
inflated,pp′ separately for p, p′ = 1, 2 to obtain K̃W

sm,pp′ , the smoothed estimates com-

bine to form the bivariate covariance matrix K̃W
sm. In contrast to the raw covariance

estimate K̂W
inflated, the smoothed level 2 bivariate matrix K̃W

sm is no longer inflated by
the error variance, a property which we can use to obtain an estimator of the error
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variances,

τ̂2
p =

1
L

L

∑
t=1

{
K̂W

pp,Inflated(t, t)− K̃W
pp,sm(t, t)

}
. (2.10)

In implementing MFPCA, we find the eigenfunctions e(t) and the eigenvalues
λ̂ of the smoothed bivariate covariance estimates K̃sm for both level 1 and level
2 processes. The truncated spectral decompositions of these covariances as pre-
sented in Section 2.2.3 lead to the estimators K̂Z(t, t′) = ∑NZ

k=1 λ̂Z
k e

Z
k (t){eZ

k (t
′)}T and

K̂W(t, t′) = ∑NW
`=1 λ̂W

` e
W
` (t){eW

` (t′)}T of the cross covariance matrices for the level 1
and 2 processes. The truncation values NZ and NW are chosen based on the propor-
tion of variation explained by the eigenvalues as suggested in Di et al. (2009). Using
level 1 as an example, specify a cumulative explained variance threshold P1 and and
individual explained variance threshold P2. Define NZ = min{k : pZ

1k ≥ P1, pZ
2k < P2}

where pZ
k1 = ∑k

i=1 λ̂Z
i / ∑n

j=1 λ̂Z
j , pZ

k2 = λ̂Z
k / ∑n

j=1 λ̂Z
j and the positive eigenvalues are

the first n ≥ k eigenvalues. NW for level 2 is found analogously.

2.3.4 Estimate group mean functions

Assume that the group means are modeled parametrically as µG(i)(t) = Xiβ.
Once the covariance estimates have been found, we can use generalized least squares
(GLS) regression assuming known (or estimated) covariance to estimate the diet
means. Let Yp,ij = [Yp

ij (t1, sij), . . . , Yp
ij (tL, sij)]

T be the L× 1 vector obtained by stack-
ing the responses over subunits tk, k = 1, . . . , L, for component p in unit j within
subject i. Stacking Yp,ij over units j = 1, . . . , M yields the ML× 1 vector Yp,i, which
is then stacked over p to form the 2ML × 1 overall response vector for subject i,
Yi = [Y T

1,i,Y
T

2,i]
T. Define Vi,pp′ = Cov(Yp,i,Yp′,i). Then the response vector Yi for

subject i = 1, . . . , N has the cross covariance matrix Vi = {Vi,pp′}p,p′∈{1,2}. Combin-
ing the estimates from previous sections gives V̂i,pp′ = JM ⊗ K̂Z

pp′ + IM ⊗ K̂W
pp′ +

ĈU
pp′(∆i)⊗ JL + τ̂2

p δpp′IML, where ⊗ indicates the Kronecker product, JM is a M×M
matrix of ones, JL is a L× L matrix of ones, IM is the M×M identity matrix, IML is
the ML×ML identity matrix, and δpp′ = 1 if p = p′, 0 else. Employing GLS estima-
tion with the estimated cross covariance matrix, we obtain µ̂G(i)(t) = Xiβ̂GLS where
β̂GLS = Cov(β̂GLS)[∑

N
i=1X

T
i V̂
−1

i Yi] and Cov(β̂GLS) = [∑N
i=1X

T
i V̂
−1

i Xi]
−1.
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2.4 Simulations

The purpose of our simulations is two-fold: 1) compare our model with simpli-
fied versions to assess performance gain (Scenarios 1-4), and 2) explore robustness to
model misspecification (Scenarios 5 & 6). For Scenarios 1-4 we consider four estimat-
ing models:

1. Full (FULL): the multivariate spatial model in (2.3);

2. Non-spatial (NS): the model from (2.3) with no spatial process (Ui(s) ≡ 0);

3. Univariate (UNIV): the model from (2.3) applied separately to each response;

4. True-GLS (TRUE): results of GLS estimation when using each subject’s true
cross covariance matrix Vi (Section 2.3.4) that comes from the correct generating
model.

The next sections discuss the simulation specifications and results for Scenarios 1-4
and briefly summarize our findings for Scenarios 5 and 6. The latter scenarios are
discussed in more detail in Appendix A.2.

2.4.1 Data generation

In Scenarios 1-4 we generate data from FULL according to the differing sample
sizes and spatial cross-correlations shown in Table 2.1. All scenarios use 100 Monte
Carlo (MC) replications. There are D=2 groups with mean functions µ1

d(t) = 3t + d
and µ2

d(t) = d − t + t2 for d = 1, 2. Each group has N = 10, 50 subjects, M = 20
units per subject, and L = 30 subunits per unit that are equally spaced in [0, 1]. Unit
locations {sij : j = 1, . . . , M} for subject i are assumed i.i.d. and are obtained by
generating from the uniform distribution on [0, 15] to emulate the colon slices in the
colon carcinogenesis data which can be up to 15 millimeters in length.

Table 2.1: Specifications for Scenarios 1-4

ρ12 = 0.8 ρ12 = 0.2

N = 50 Scenario 1 Scenario 3
N = 10 Scenario 2 Scenario 4
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The bivariate Matérn parameters are ρ12 = 0.2, 0.8, σ11, σ22 = 1, ν11, ν22, ν12 = 1,
and a11, a22, a12 = 4, chosen so the auto- and cross-correlations decay to zero at
distances of approximately 1 unit. For the level 1 process Zi(t) = ∑NZ

k=1 ξi,kφφφ
Z
k (t),

NZ = 2 with orthogonal eigenfunctions φφφZ
1 (t) = [sin(2πt),

√
3/2(2t− 1)]T, φφφZ

2 (t) =
[cos(2πt),

√
5/2(6t2 − 6t + 1)]T and eigenvalues λZ

1 = 1.25, λZ
2 = 0.25. For the

level 2 process Wij(t) = ∑NW
`=1 ζij,`φφφ

W
` (t), NW = 2 with orthogonal eigenfunc-

tions φφφW
1 (t) = [sin(4πt), cos(6πt)]T, φφφW

2 (t) = [cos(4πt), sin(8πt)]T and eigenval-
ues λW

1 = 1.25, λW
2 = 0.375. FPC scores are generated as ξi ∼ N

(
0, diag(λZ

1 , λZ
2 )
)

and ζij ∼ N
(
0, diag(λW

1 , λW
2 )
)
. Finally, the error is generated from εij = [ε1

ij, ε2
ij]

T ∼
N(0, diag(τ2

1 , τ2
2 )) where τ2

1 , τ2
2 = 0.075.

2.4.2 Computational Details

We compare the performance of correctly specifying FULL to the performance
of NS and UNIV, using TRUE as a baseline. There are several tuning parameters in
the estimation method that must be specified. First, ∆∗ (Section 2.3.1) is set to be
2.5, which is conservative based on the spatial correlation decay to zero around 1.
Furthermore, the tolerance ε is set such that each spatial lag has around 100 triplets
entering its nearest neighbor set, corresponding to ε = 0.1 for N = 10 and ε = 0.02
for N = 50. We found that an equally spaced grid sgrid of m = 50 points (Section
2.3.1) works well for spatial estimation for this simulation. In practice, m is a tuning
parameter that should be chosen to be large enough to capture the features of the
covariance matrix but small enough so that the dimensionality of the covariance
matrix remains reasonable and computationally feasible. Estimate NZ and NW using
the cumulative explained variance threshold P1 = 0.95 and an individual explained
variance threshold P2 = 1 (see Section 2.3.3).

Prior to implementing the bivariate estimation methods, we recommend scal-
ing each univariate response so that the variances are on a similar scale, particu-
larly since scalar variances for the scores from MFPCA are estimated from infor-
mation from both responses. For example, one can use Yp

ij (t, sij)/sp where sp =

[(NML)−1∑i,j,t {Y
p
ij (t, sij)− Ȳp}2]1/2 for L subunits, M units and N subjects, and Ȳp

is the overall mean for response p. Also, we place constraints on the smoothness pa-
rameters νpp′ ∈ (0.1, 5) and the range parameters 1/app′ ∈ (min

i,j,j′
{δijj′}, max

i,j,j′
{δijj′}) so

the correlation range will be within the minimum and maximum distances between
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two units.
For estimation of NS, the total and between covariance quantities are

KRTotal,pp′(t, t′) = KW
pp′(t, t′) + τ2

p I(t = t′, p = p′) and KYBetween,pp′(t, t′) =

Cov{Yp
ij (t, sij), Yp′

ij′ (t
′, sij′)} defined for j 6= j′ so that KYBetween,pp′(t, t′) = KZ

pp′(t, t′).
This leads to straightforward modifications to the estimators in (2.8) and
(2.9), while (2.10) remains the same. For the level 1 process, K̂Z

pp′(t, t′) =

{NM(M− 1)}−1 ∑i,j ∑j′ 6=j{Y
p
ij (t, sij) − Ȳp

G(i)(t)}{Y
p′

ij′ (t
′, sij′) − Ȳp′

G(i)(t
′)}. For the level

2 process, K̂W
pp′,Inflated(t, t′) = (NM)−1 ∑i,j{R

p
ij(t, sij)Rp′

ij (t
′, sij)}. The model assump-

tions and estimation procedure for UNIV are straightforward simplifications to the
method previously presented for FULL.

2.4.3 Results

Methods are compared in terms of estimation accuracy of the diet mean func-
tions µ

p
d(t). To assess model fit for response p = 1, 2 we compute MC estimates

(averaged over diet) of the mean integrated squared error: MISE =
∫

t E{µ̂p
d(t) −

µ
p
d(t)}

2dt; the integrated bias: Int Bias =
∫

t E{µ̂p
d(t) − µ

p
d(t)}dt; the integrated

squared bias: Int Sq Bias =
∫

t[E{µ̂
p
d(t) − µ

p
d(t)}]

2dt; and the integrated variance:
Int Var =

∫
t[E{µ̂

p
d(t) − E{µ̂p

d(t)}]
2dt. We construct pointwise confidence intervals

µ̂
p
d,r(t)± lp

d,r(t) with margin of error lp
d,r(t) = 1.645

√
Var{µ̂p

d,r(t)} and length 2lp
d,r(t)

for each MC replication r = 1, . . . , 100 and then average over diet d, subunit t and
replication r. Var{µ̂p

d,r(t)} = x
p
d,r(t)

TCov(β̂GLS)x
p
d,r(t) where the form of Cov(β̂GLS)

is given in Section 2.3.4, and xp
d,r(t) is the vector corresponding to β that indicates

the diet d and response p.
When the data are generated from FULL, it holds for all four scenarios that fitting

FULL outperforms the estimation from both UNIV and NS (Table 2.2). Only Scenarios
1 and 2 are presented since the outcomes for the other two scenarios are very similar
to Scenario 1. Results from Scenarios 3 & 4 can be found in Appendix A.4, along with
figures showing that the spatial correlation functions and level 1 & 2 eigenfunctions
are estimated well. As Table 2.2 shows, NS underestimates the overall variability
in the model by not accounting for the spatial cross covariance, leading to smaller
confidence interval lengths and improper coverage. The coverage of UNIV is nominal,
although the confidence interval lengths required to achieve this are longer than
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those of either FULL or TRUE. Though statistically different, the MISE of FULL is
close to that of TRUE, whereas the MISE of FULL is statistically smaller than that
of either UNIV or NS. All methods have little or no bias, though for response 2 the
variance increases wildly with UNIV, as seen in Figure 2.1. Both the bivariate and
spatial features of the generating model are important enough that FULL is the only
method that adequately accounts for them and is preferred over NS and UNIV in
this setting.
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Figure 2.1: Group mean functions when FULL is the generating model with ρ = 0.8
and N = 50 (Scenario 1). Gray lines indicate estimated mean functions from each of the
100 Monte Carlo replications.

Table 2.2 shows that for Scenario 2, UNIV has statistically smaller MISE than
FULL for response 1, which is the only major difference between this case and the
other three. The difference in MISE is very small and unlikely to be practically im-
portant. We attribute this finding to the small sample size (N = 10). Regardless, the
preferred method overall for Scenario 2 is FULL since it has smaller MISE than NS
for both responses and does a much better job of estimating diet mean functions than
UNIV for response 2.
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Table 2.2: Mean function estimation comparisons for Scenarios 1 & 2
when FULL is generating model

90% Coverage C.I. Length MISE Int Bias Int Sq Bias Int Var

Scenario 1: ρ = 0.8 and N = 50

Response 1
FULL 87.8 13.7 0.179 0.526 0.007 0.172
UNIV 89.3 14.3 0.184 ∗ 0.540 0.008 0.176
NS 82.9 11.9 0.202 ∗ 0.352 0.004 0.198
TRUE 89.2 13.7 0.176 ∗∗ 0.543 0.007 0.168

Response 2
FULL 88.5 13.7 0.190 0.453 0.007 0.184
UNIV 89.3 29.7 0.922 ∗ 0.437 0.011 0.910
NS 79.5 11.9 0.228 ∗ 0.328 0.003 0.225
TRUE 90.9 13.7 0.175 ∗∗ 0.398 0.005 0.170

Scenario 2: ρ = 0.8 and N = 10

Response 1
FULL 82.1 30.8 1.230 -0.160 0.011 1.219
UNIV 85.3 32.5 1.197 ∗∗ -0.041 0.005 1.192
NS 67.5 23.9 1.441 ∗ -0.235 0.012 1.429
TRUE 86.8 30.6 0.981 ∗∗ -0.275 0.007 0.974

Response 2
FULL 85.9 30.4 1.155 0.321 0.008 1.148
UNIV 82.4 60.4 5.587 ∗ -0.472 0.127 5.461
NS 74.8 23.6 1.221 ∗ 0.219 0.005 1.216
TRUE 87.5 30.6 0.865 ∗∗ -0.339 0.005 0.860

Results in hundredths. A ‘∗∗’ (‘∗’) indicates better (worse) MISE compared to FULL by Wilcoxson
rank sum test, α = 0.05.

Scenarios 5 and 6 in Appendix A.2 address the robustness of FULL to model
misspecification. Briefly, our simulation showed that overfitting FULL when the true
model is less complex (NS) still results in very small MISE, small bias, and proper
coverage. In Scenario 6, the generating model is more complex than the proposed
model because it includes interactions between functions and spatial random effects.
In this case FULL has larger MISE than TRUE, but maintains proper coverage.
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2.5 Colon carcinogenesis study; joint analysis of apoptosis and p27

We now consider the colon carcinogenesis experiment that was designed to in-
vestigate how fish and corn oil diets affect colon carcinogenesis. To facilitate further
understanding, Figure 2.2 provides a depiction of the data structure.

Figure 2.2: Depiction of the data structure from the motivating colon carcinogenesis
application.

In this experiment, a total of N = 12 rats were divided into D = 4 diet groups
defined by the combination of two types of oils (fish and corn) with two levels of
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supplementation (the addition of butyrate or not). 24 hours after exposure to a colon
carcinogen, a slice of each rat’s colon was removed that contained approximately 20
fingerlike structures called colonic crypts. Within each crypt, multiple responses were
measured at each of 18-37 cell depths. Here we focus on apoptosis (response 1), or
programmed cell death (0/1 valued), and a (continuous) cell cycle inhibitor protein
called p27 which is log-transformed for stability (response 2).

Since the maturity of a cell depends on its relative depth within a crypt, the data
for a crypt can be modeled using functional data methods (Baladandayuthapani et al.
2008; Morris and Carroll 2006; Morris et al. 2003, 2002, 2001; Staicu et al. 2010). Stem
cells which generate new (daughter) cells are located at the bottom of the crypt,
and the daughter cells mature as they travel upward toward the intestinal lining
where they are released. Furthermore, the spatial alignment of crypts enables us to
investigate what has been called crypt signaling (Baladandayuthapani et al. 2008), that
is, the effect that responses in one crypt have on the responses in neighboring crypts.
Our goals in this analysis are to perform inference on the diet mean functions for
the two responses and to investigate the complex correlation structures that exist
within and between the two responses, including spatial correlation among crypts at
varying distances and correlation between the responses at different depths within a
crypt.

In terms of notation, let Yij(t, sij) = [Y1
ij(t, sij), Y2

ij(t, sij)]
T where Y1

ij(t, sij) is
log(p27)and Y2

ij(t, sij) is apoptosis (jittered to mimic a continuous random variable).
Due to the infrequency of apoptotic events in the second part of the crypt, that is,
from mid-crypt to the lumen, we focus on only the first half of the crypt. The bi-
variate response is measured at cell depth t ∈ T within crypt j = 1, . . . , M = 20
at relative spatial location sij within rat (subject) i = 1, . . . , N = 12 of diet group
d = 1, . . . , D = 4. For a crypt with n total cells, the relative position of cell k is as-
signed the value t = (k− 1)/(n− 1) so that the first cell measured (at the tip) is at
position 0 and the last cell (closest to the intestinal lining) is at position 1.

In order to implement the methods presented for a balanced design, we assign
each observation a new cell depth value t within the set {t1 = 0, . . . , t37 = 1} based
on its proximity to the original relative cell position (k − 1)/(n − 1). Note that a
grid of 37 subunits is chosen because 37 is the maximum number of cells observed
in a crypt. We bin the observations within a crypt so that all crypts have the same
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number of observations, which results in L = 10 subunits per crypt when restricting
to T = [0, 0.54]. The value 0.54 was chosen because it is the largest value such that all
bins have non-zero sample proportions of observed apoptosis when averaging over
subjects and within diet group.

Prior to analysis, we log-transform p27 and jitter the apoptosis so that we can
apply the methodology we have developed for jointly modeling two continuous
functional responses. For simplicity, let Yijt = Y2

ij(t, sij) be the observed apoptotic
response, and let Y∗ijt be the jittered response that acts as a continuous random
variable. We jitter the binary data in the following way that matches the first two
moments for a Bernoulli random variable: Y∗ijt = π̂G(i)(t)/2 + Yijt/2 + εij(t) for

εij(t)
indep∼ N(0, 3

4 [π̂G(i)(t){1− π̂G(i)(t)}]) where π̂G(i)(t) is the sample mean of the
non-missing apoptotic responses at cell position t within diet group G(i). With
this, E{Y∗ijt} = E{π̂G(i)(t)/2}+ E{Yijt/2} = πG(i)(t) and Var{Y∗ijt} ≈ Var{Yijt/2}+
3
4 [π̂G(i)(t){1− π̂G(i)(t)}] = πG(i)(t){1− πG(i)(t)}.

The tuning parameters from the methods in Sections 2.3.1 and 2.3.3 are as fol-
lows: ∆∗ is set to be 1 millimeter (1000 microns), the same correlation range used
in the analysis done by Staicu et al. (2010) based on scientific information that the
spatial correlation is practically zero at distances larger than ∆∗; the tolerance ε = .08
is chosen so that the median number of triplets entering the nearest neighbor sets is
75, with a minimum of 51 and a maximum of 144; as in the simulations we use an
equally spaced grid sgrid of m = 50 points for spatial estimation (see Section 2.3.1);
finally, we set the cumulative explained variance threshold P1 = 0.95 and an individ-
ual explained variance threshold P2 = 1/(2L) for L = 10 (see Section 2.3.3). Staicu
et al. (2010) and Baladandayuthapani et al. (2008) have shown that it is reasonable to
assume that the diet means for log(p27) have a quadratic form. Through examina-
tion of sample proportions, we concluded that a quadratic form, though somewhat
simplified, seems appropriate for the jittered version of this response as well, and we
specify quadratic equations for each response in GLS estimation. For comparisons of
predictive performance to FULL, we also analyze the data using the UNIV and NS
models.

Since the Matérn smoothness and range parameters are difficult to estimate simul-
taneously, in practice one parameter is typically fixed while the other is estimated.
Therefore, in contrast to the simulations in which we optimized the Matérn smooth-
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ness and range parameters together, for the data analysis presented we estimate them
separately in the marginal case by optimizing over a grid for the smoothness pa-
rameter, νpp ∈ {0.5, 1, . . . , 10}. Estimation of spatial cross parameters is still done
simultaneously.

2.5.1 Results from FULL Model

A primary goal of jointly modeling log(p27) and apoptosis is to quantify the de-
pendence between the two responses. The first indication of dependence is in the
spatial cross correlation, estimated to be ρ̂12 = .994, although its inferential value is
questionable because the spatial variance of apoptosis is estimated to be very close
to zero (σ̂22 = 0.0004). The estimated spatial variance for log(p27) is σ̂11 = 0.0047,
which is similar to the estimate obtained via univariate analysis by Staicu et al. (2010).
The estimated Matérn parameters of ν̂11 = 8.43 and â11 = 10 indicate that the auto-
correlation for log(p27) decays to less than 0.05 for crypts more than 1.33 millime-
ters apart. According to our analysis, the spatial correlation is not as important for
apoptosis or for the cross-dependence between responses as it is for log(p27). Er-
ror variance estimates are τ̂2

1 = 0.002 and τ̂2
2 = 0.035. Plots of the level 1 and level

2 eigenfunctions and their corresponding percentages of variation explained can be
found in Appendix A.1.

To examine functional cross-dependence, Figure 2.3 shows the marginal (within a
crypt) auto- and cross-correlation matrices found through the corresponding bivari-
ate covariance matrix that is formed by summing the spatial variation, level 1 and
level 2 covariances, and the error variances on the diagonals. The auto-correlation
for log(p27) is very high and positive, only assuming values above 0.93. The auto-
correlation for apoptosis seems to decrease with the crypt cells distance; the results
seem to show that apoptosis around the quarter-crypt mark is negatively correlated
with apoptosis at the tip of the crypt. Our analysis shows indication of negative
weak cross-correlation between log(p27) and apoptosis in the bottom of the crypt.
Even with this cross-dependence, we found no evidence of predictive performance
gain of our model compared to the UNIV and NS models (for more details, see Ap-
pendix A.1.1). We believe the reason for the similar predictive performance of FULL
to UNIV could be caused by the need to implement a jittering method to treat the
binary response as continuous.
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Figure 2.3: Image of marginal auto- and cross-correlation matrices for a crypt. Lines
have been added to the diagonals.
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Another goal of the data analysis is to make inference on the diet mean func-
tions, and estimates are given in Figure 2.4. (Pairwise diet comparisons with 95%
confidence intervals based on the variances from the GLS parameter estimation are
given in Appendix A.1.) For this data application, Baladandayuthapani et al. (2008)
and Staicu et al. (2010) interpret higher levels of p27 to be associated with poor prog-
noses. Our findings align with previous literature in that rats fed the fish diet with
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butyrate supplement have lower levels of log(p27) than rats who were fed the corn
diet with butyrate supplement. Due to the multivariate nature of our approach we
also examine the diet means for apoptosis. Our analysis shows that rats fed the fish
diet with butyrate supplement have higher levels of apoptosis than rats fed any other
diet. This is particularly important because an increase in apoptosis is known to have
a protective effect against colon cancer in all phases of tumor development (Hong
et al. 2002).
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CHAPTER 3

Modeling Multivariate Mixed-Response Functional Data

3.1 Background

The methodology of Chapter 2 is only applicable to a multivariate functional
response in which each individual functional response is real-valued. In the analysis
of the colon carcinogenesis study of Section 2.5, the binary response required pre-
processing to mimic a continuous response due to the lack of available methods
for handling bivariate functional responses where one response is continuous and
the other is binary. We address that need in this chapter by proposing a model for
multivariate functional responses of mixed type.

Until recently, the primary focus of methods employing functional principal com-
ponents analysis (FPCA) has been on real-valued functional responses. Methods that
can model non-Gaussian functional responses, such as repeatedly observed binary
or count data, are only recently appearing for univariate functional responses (for
example: Hall et al. (2008), van der Linde (2009), Serban et al. (2013)). Additionally,
methods that extend functional modeling from the univariate case (i.e. one response
curve) to the multivariate case (i.e. a vector of multiple response curves) are cur-
rently undergoing development (for example: Zhou et al. (2008), Berrendero et al.
(2011), Jacques and Preda (2014)). These multivariate functional methods are limited
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in that all curves comprising the multivariate response vector must be real-valued.
Here we propose a Bayesian multivariate functional model that utilizes a mul-

tivariate latent Gaussian process and can handle responses of different types, e.g.
binary and continuous data. Our method easily incorporates covariates, a feature
previously unavailable for modeling non-Gaussian functional responses. As an ex-
tension of the methods of Hall et al. (2008), we propose a way to estimate the mul-
tivariate latent covariance, in particular, the cross-covariance of latent functions cor-
responding to different responses. By using a reliable estimate of the multivariate
latent covariance, our proposed method can implement multivariate FPCA to specify
basis expansions and simplify computation.

Several approaches to modeling non-Gaussian univariate functional responses
have appeared in the literature. For binary or count data observed repeatedly, Hall
et al. (2008) proposed a non-parametric functional approach in which the observed
responses are directly related to a latent Gaussian functional process through a link
function. In order to implement FPCA, they used a Taylor series approximation to
derive estimators of the latent process mean function and covariance operator and
used bootstrapping methods for further inference. A similar approach by Serban
et al. (2013) used logistic functional regression to model multilevel cross-dependent
binary-valued functional data. In the case of non-rare events, their approach is an
extension of the linear approximation methods of Hall et al. (2008) to multilevel data.
For rare events, they introduced an approach centered around an exponential ap-
proximation.

In contrast to the aforementioned frequentist methods, van der Linde (2009) of-
fered a Bayesian approach to FPCA for repeatedly observed binary or count data.
They extended the variational algorithm for Gaussian responses given in van der
Linde (2008), and focused on canonical links for one-parameter exponential families.
The methods of Hall et al. (2008), Serban et al. (2013) and van der Linde (2009) offer
ways to model univariate functional responses, whereas the approach we propose in
this paper jointly models multivariate functional responses of mixed type.

To date, the literature concerning multivariate FPCA has been sparse. Ramsay
and Silverman (2005) gave a brief example that uses FPCA for a bivariate functional
response of hip and knee angle measurements for gait data. After assigning the two
functional responses to a fine grid of points, they concatenated the two response func-
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tions and proceeded with PCA in the traditional multivariate framework. Berrendero
et al. (2011) proposed multivariate FPCA in which the principal components are
smooth functions, a result of performing FPCA at each observed location in a do-
main on which curves have been smoothed. In contrast to the approach of Ramsay
and Silverman (2005), Jacques and Preda (2014) presented a method that allowed for
non-orthonormal bases which made it possible for each curve in the multivariate re-
sponse vector to have its own basis expansion. Their approach neatly addresses how
to handle responses with differing magnitudes of variation within the curves.

To our knowledge, our method that models multivariate mixed-type responses
is the first of its kind within the functional data analysis literature. In the spatial
literature, Reich and Bandyopadhyay (2010) developed a spatial latent factor model
for multivariate mixed-response data with informative missingness. Our approach
shares several similarities to that of Reich and Bandyopadhyay (2010), however our
approach is able to examine complex correlation structures that their stationary spa-
tial method is not equipped to handle.

3.2 Model

3.2.1 General Framework

We present the following methodology to jointly model P functional responses.
Denote Ypi(t) as the observed functional response of type p = 1, . . . , P for subject
i = 1, . . . , N at location t ∈ T . In this chapter we make a change in notation for
response type, from superscript (Yp

ij (t, sij)) in Chapter 2 to subscript here. We found
that the superscript made notation a bit cleaner in Chapter 2 where the setting was
that of a multilevel structure with functional and spatial arguments. Here, where the
setting allows for less complicated notation, we revert to more conventional notation
and use a subscript p to denote response type.

The responses Ypi(t) are observed only at a finite set of Lpi locations
tpi1, tpi2, . . . , tpiLpi , which may be different for subject and response type. To com-
bine responses with different supports, e.g., binary and continuous, let Ypi(t) =

hp{Wpi(t)} for link function hp(·) and latent response Wpi(t). Motivated by the pe-
riodontal application in Section 3.5, we restrict our attention to Gaussian and binary
responses. If response p is Gaussian then we use the identity link hp(η) = η; if re-

38



sponse p is binary, then we use the indicator link hp(η) = I(η > 0).
Dependence between responses is modeled via the latent Gaussian processes

Wpi(t) = Zpi(t) + εpi(t) (3.1)

where εpi(t)
iid∼ N(0, τ2

p) is random noise and Zpi(t) is a random process. For iden-
tification purposes, we fix τp = 1 for binary responses. Furthermore, let Zpi(t) =

µpi(t) + fpi(t), the sum of a fixed mean function µpi(t) and a smooth subject-specific
process fpi(t), assumed to be uncorrelated with εpi(t).

The mean can be modeled as µpi(t) = ∑
mp
j=1 xpij(t)β1pj + sp(t) so that it can in-

corporate mp covariates xpij(t) with fixed coefficients β1pj and a population-level
smooth function sp(t). It is possible for a subject-specific covariate to depend on
the functional location t, for example the indicator of jaw in the periodontal data
of Section 3.5, and it is also possible for the same covariates to affect all responses.
The smooth function sp(t) is assumed to be square integrable on L2[0, 1]. We use
a predetermined basis expansion to approximate sp(t). Let {Bpj(t) : 1 ≤ j ≤ np}
be a basis expansion in L2[0, 1] of dimension np. We approximate the smooth part
by sp(t) = ∑

np
j=1 Bpj(t)β2pj where the type of basis expansions are allowed to dif-

fer across response p. To simplify notation, we write µpi(t) = uT
pi(t)βp where

upi(t) = [xpi1(t), . . . , xpimp(t), Bp1(t), . . . , Bpnp(t)]
T is a vector of length Jp = mp + np

that combines the covariates and basis functions and has corresponding coefficient
vector βp = [β1p1, . . . , β1pmp , β2p1, . . . , β2pnp ]

T.
Let fi(t) = [ f1i(t), . . . , fPi(t)]T be the vector of random subject-specific devi-

ation functions and assume fi(t) are i.i.d. mean-zero Gaussian processes where
Cov{fi(t),fi(t′)} = K(t, t′) and Kpp′(t, t′) = Cov{ fpi(t), fp′i(t′)} form the elements
of K(t, t′). The covariance operator Kpp′(t, t′) captures both dependence within a
response over location t and the cross-dependence between two different latent re-
sponses. We assume that fpi(t) is a smooth process in L2[0, 1] and present two ways
of specifying basis expansions for fpi(t): Section 3.2.2 details how to use predeter-
mined bases and Section 3.2.3 gives a data-driven approach that uses multivariate
FPCA.

We can write the multivariate model succinctly in matrix form. Let β =

[βT
1 , . . . ,βT

P ] be the fixed effect vector of length J = ∑P
p=1 Jp with corresponding P× J
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matrix Ui(t) comprised of appropriate evaluations of upi(t). Let εi(t)
iid∼ N(0,D)

where D is diagonal with elements τ2
1 , . . . , τ2

P. Then (3.1) becomes

Wi(t) = Ui(t)β+ fi(t) + εi(t). (3.2)

3.2.2 Predetermined bases

The first way in which we specify basis expansions for fpi(t) is by choosing pre-
determined bases such as B-spline, Fourier, or polynomial bases. Let

fpi(t) =
Mp

∑
k=1

ψpk(t)αpik (3.3)

where {ψpk(t) : 1 ≤ k ≤ Mp} is a basis expansion in L2[0, 1] of dimension
Mp and αpi = [αpi1, . . . , αpiMp ]

T are random coefficients with E(αpik) = 0 and
Cov(αpik, αp′i`) = ξk`pp′ . The multivariate covariance function induced by (3.3) is

Kpp′(t, t′) = Cov{ fpi(t), fp′i(t′)} =
Mp

∑
k=1

Mp′

∑
`=1

ψpk(t)ψp′`(t′)ξk`pp′ , (3.4)

which is a function of both the basis functions and covariance Σ = {ξk`pp′}. Using
predetermined basis expansions is extremely flexible; in Appendix B.1, we discuss
how the covariance model can approximate the covariance matrix of any arbitrary
finite-dimensional distribution. The choice of Mp is important in that one needs to
select a number of basis functions that is sufficient to approximate the covariance
well but is not unnecessarily large. We suggest choosing Mp based on a grid search,
using criteria such as DIC for comparison.

3.2.3 Data-driven bases

As an alternative to using predetermined bases, we introduce a novel approach
in which we use estimated basis functions that are obtained through FPCA of the
multivariate latent covariance. We propose FPCA for multivariate mixed-responses,
inspired by Hall et al. (2008) who introduced FPCA for binary-valued functional
responses. We too require that the probability of observing a binary event is suffi-
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ciently far from zero or one. For simplicity of presentation, we ignore the covariates
and discuss how to account for them later in this section.

Recall from (3.1) that we model the pth response as Ypi(t) = hp{Wpi(t)}
through the latent Gaussian process Wpi(t) = Zpi(t) + εpi(t) and link function
hp(η). Linking the latent response directly to the observed response is equiva-
lent to assuming there is a corresponding monotone link function gp(·) such that
E{Yip(t)|Zpi(t)} = gp{Zpi(t)}; we focus on gp here. Following Hall et al. (2008), as-
sume that gp(·) has bounded fourth derivative and that the latent process satisfies
Zpi(t) = µp(t) + δXpi(t) for fixed mean µp(t), unknown small constant δ > 0, and
mean-zero Gaussian random variable Xpi(t) that is i.i.d. across subjects i and has
both finite variance and finite covariance between Xpi(t) and Xp′i(t′). Our goal is
to approximate the latent covariance matrix of Zpi(t) whose covariance operator is
Kpp′(t, t′) = Cov{Zpi(t), Zp′i(t′)}. Without loss of generality, we restrict our attention
to one continuous Gaussian response (p = 1) and one binary response (p = 2) with
link functions g1(η) = η and g2(η) = Φ(η) where Φ(·) is the standard normal cdf
function. For simplicity, we use g to denote g2 in the following exposition.

The covariance consists of variance components Kpp and cross-covariance compo-
nents Kpp′ . The variance components K11 and K22 are estimated using the common
FPCA for continuous responses Ramsay and Silverman (2002, 2005) as well as binary-
valued responses (Hall et al. 2008), respectively. In particular, when the responses are
binary valued, the variance K22 is estimated using

K̃22(t, t′) = {Ŝ22(t, t′)− η̂2(t)η̂2(t′)}/[g(1){µ̂2(t)}g(1){µ̂2(t′)}]. (3.5)

where g(1) indicates the first derivative of g. The latent mean estimator is µ̂p(t) =

g−1{η̂p(t)} where η̂p(t) estimates E[g{Zpi(t)}] = ηp(t) and is found by smooth-
ing the data

(
t, Ypi(t)

)
for i = 1, . . . , N. Ŝ22(t, t′) is the estimator for S22(t, t′) =

E{Y2i(t)Y2i(t′)} = E
[
g{Z2i(t)}g{Z2i(t′)}

]
and is obtained through bivariate smooth-

ing of the data
(
(t, t′), Y2i(t)Y2i(t′)

)
for i = 1, . . . , N, removing the diagonals before

smoothing.
For the cross covariance operator K12 we remark that

K12(t, t′) = Cov
{

Y1i(t), Y2i(t′)
}

/g(1){µ2(t′)}, (3.6)
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which is obtained by approximating Cov
{

Y1i(t), Y2i(t′)
}

= Cov
[
Z1i(t), g{Z2i(t′)}

]
using a Taylor expansion of g{Z2i(t′)} around µ2(t′). More details are given in Ap-
pendix B.2. This leads to the estimator of the cross component given by

K̃12(t, t′) = {Ŝ12(t, t′)− η̂1(t)η̂2(t′)}/g(1){µ̂2(t′)}. (3.7)

Combining the individually smoothed estimators K̃11(t, t′), K̃22(t, t′) and
K̃12(t, t′) = K̃21(t′, t) forms the smooth 2× 2 estimator K̃(t, t′) of the bivariate latent
covariance operator. Note that for smoothing purposes in this paper, we implement a
global smoother as opposed to the local least squares smoothing of Hall et al. (2008),
though either is appropriate. In the presence of subject-specific covariates, one can
find covariate estimates using least squares or logistic regression, depending on the
type of response, and then use the residuals to estimate the latent covariance.

The final step needed to obtain the basis functions is to implement bivariate
FPCA in which we find the eigenfunctions ê(t) = [ê1(t), . . . , êP(t)]T and the eigen-
values λ̂ of the matrix K̃(t, t′). Note that the matrix K̃(t, t′) is not guaranteed
to be positive definite, but we can ensure the truncated spectral decomposition
K̂(t, t′) = ∑M

k=1 λ̂kêk(t){êk(t′)}T is positive definite by restricting the inclusion of
only positive eigenvalues and their eigenfunction counterparts. The truncation value
M is chosen based on the proportion of variation explained by the eigenvalues as
suggested in Di et al. (2009). In particular, specify a cumulative explained vari-
ance threshold P1 and and individual explained variance threshold P2. Define M =

min{k : p1k ≥ P1, p2k < P2} where pk1 = ∑k
i=1 λ̂i/ ∑n

j=1 λ̂j, pk2 = λ̂k/ ∑n
j=1 λ̂j and the

positive eigenvalues are the first n ≥ k eigenvalues. We specify the basis functions to

be the eigenfunctions scaled by their associated eigenvalues, ψ̂pk(t) =
√

λ̂kêpk(t), and
the subject-specific deviation function is approximated by fpi(t) = ∑M

k=1 ψ̂pk(t)αik.
Using this data-driven basis approach, the correlation across responses is largely

captured by the basis functions from FPCA. Additionally, since each basis function
combines information from all responses, the data-driven approach results in one set
of basis functions, eliminating the need to have a set of basis functions for each re-
sponse. These distinctions offer important advantages over the predetermined basis
approach. First, having only one set of basis functions in turn reduces the dimen-
sionality of the random-effect covariance matrix Σ, making it easier to fit. Second, it
allows for further simplification since one can now assume that Σ is diagonal. This
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will offer computational advantages over the predetermined basis method where the
burden of capturing the correlation across responses falls entirely on estimating a
non-diagonal Σ which can potentially have very large dimension.

One important consideration to make when implementing this data-driven basis
function approach is to ensure that the variance of the latent process for the con-
tinuous component is on a scale similar to that of the latent process for the binary
component. We suggest scaling the continuous process by Y1i(t)/s where s is the
overall sample standard deviation of the continuous response without regard to t.
Since s is a scalar quantity, it is straightforward to scale prior to implementing the
latent covariance, FPCA and MCMC estimation algorithms, rescaling only the final
results back to the original scale.

3.2.4 Prior Specification

To complete the Bayesian model, we specify priors for the hyperparameters. The
fixed effect parameters β are assigned uninformative Gaussian priors. Let the subject
random effect αi have a Gaussian prior with Cov(αi) = Σ and assign Σ an Inverse
Wishart prior. For the error variances of the continuous processes, let τ2

p have an
uninformative gamma prior; for identifiability τ2

p is fixed at 1 for binary processes. In
summary,

β|σ2
β ∼ NJ(0, σ2

βIJ)

αi|Σ ∼ NM(0, Σ)

Σ|q1, q2 ∼ InvWishartM(V = q2IM, ν = q1) (3.8)

τ2
p |l, h ∼ InvGamma(l, h)

for hyperparameters σ2
b , q1, q2, `, and h, selected to result in weak priors.

3.3 Computational Details

To facilitate MCMC sampling, we treat the continuous latent processes Wpi(t) for
binary response as unknown parameters to be updated as part of the sampling as in
Albert and Chib (1993). Using this auxiliary variable approach, all parameters have
conditional conjugacy due to the prior specifications given in Section 3.2.4, allowing
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us to implement Gibbs sampling. The Gibbs sampling algorithm uses full-conditional
posteriors derived in the supplementary material and which use notation that we
now describe.

Denote the observation locations as tpi`, ` = 1, . . . , Lpi, for each subject i and
response p, giving a total of Li = ∑P

p=1 Lpi locations. Let n = ∑N
i=1 Li be the total

number of locations observed across all subjects. Let Wpi be the vector of length
Lpi formed by evaluating Wpi(t) at every tpi`. Furthermore, combine Wpi for all re-
sponses to form one vector Wi of length Li; Ui and Ψi are defined analogously. Then
Wi has mean E(Wi|αi) = Uiβ + Ψiαi and precision matrix Pi is comprised of the
appropriate error variance parameter τ−2

p .
MCMC begins by setting initial values for all parameters and then sequentially

sampling each parameter conditioned on all the others (denoted by ‘‘|·"). Sampling
is performed (using the latest sample to update each parameter) according to the full
conditionals in the following manner:

0. Select initial values for β , αi, Σ, Wpi(t) for binary responses, and τ2
p for contin-

uous responses;

1. For each i = 1, . . . , N and ` = 1, . . . , Lpi, update the latent response cor-
responding to the observed binary response by drawing from Wpi(ti`)|· ∼
N(uT

pi(ti`)β + ψT
p (ti`)αi, 1) restricted to the interval (0, ∞) if Ypi(ti`) = 1 or

(−∞, 0) if Ypi(ti`) = 0;

2. Update the population mean parameter by drawing from β|· ∼ N(µβ,Vβ) for

Vβ =
[(

∑N
i=1U

T
i PiUi

)
+ σ−2

β IJ

]−1
and µβ = Vβ

[
∑N

i=1U
T
i Pi(Wi −Ψiαi)

]
;

3. For each i = 1, . . . , N, update the random effect by sampling from αi|· ∼
N(µα,Vα) for Vα =

(
ΨT

i PiΨi + Σ−1
)−1

and µα = VαΨT
i Pi(Wi −Uiβ);

4. Update the random effect covariance matrix through Σ|· ∼
InvWishartM[{∑N

i=1αiα
T
i + (1/q2)IM}−1, N + q1];

5. Update the error variance for the continuous responses according to τ2
p |· ∼

InvGamma(lω, hω) with lω = n/2 + l and hω = h + 1/2 ∑N
i=1 ∑Li

`=1[Wpi(ti`) −
uT

pi(ti`)β+ψT
p (ti`)αi]

2.

Steps 1-5 are repeated for the desired number of samples.
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3.4 Simulations

3.4.1 Data generation

We consider the case where Y1i(t) is continuous and Y2i(t) is binary. Functions are
observed at a dense, balanced design with Lpi ≡ 30 equally-spaced locations in [0, 1]
for each subject i and response p. We use the model given in (3.2) with predetermined
bases as in Section 3.2.2 for data generation. We specify a separable random effect
covariance matrix Σ = A ⊗ C, where Cov([α1ik, α2ik]

T) = A for A11 = A22 = 1
and A12 = A21 = ρα so that the parameter ρα controls the correlation between the
latent responses, and Cov([αpi1, . . . , αpiM]T) = C for p = 1, 2 controls the covariance
of the random effect basis function coefficients and is the same across responses. The
C used for data generation has the AR(1) structure with variance 1 and correlation
parameter ρ = 1/2.

For the fixed population mean function we assume there are no subject-level co-
variates so that µ(t) = B(t)β, and we specify a quadratic basis {Bpj(t) = t(j−1) :
1 ≤ j ≤ 3} for each response p with coefficients β1 = [−0.64, 4,−4]T and β2 =

[0.97,−6, 6]T. The intercepts are chosen such that the curves are positive for approx-
imately half of the observed locations t. The basis functions for the subject-specific
deviation function fi(t) = Ψ(t)αi are given by ψ1k(t) = sin{(2πk/M)(t + 2πk/M)}
and ψ2k(t) = cos{(2πk/M)(t + 2πk/M)} for k = 1, . . . , M = 7. The error variance for
the continuous process is τ2

1 = 1. We generate data from four scenarios given in Table
3.1 by varying the sample size (N = 50, 250) and the cross-correlation (ρα = 0, 0.8).
All scenarios use 100 Monte Carlo (MC) replications.

3.4.2 Models and metrics for comparison

We fit four models to each dataset.

1. Bivariate B-spline (BBSP): the multivariate model in (3.2) with B-spline bases as
in Section 3.2.2;

2. Univariate B-spline (UBSP): the model from (3.1) applied separately to each
response with B-spline bases as in Section 3.2.2;

3. Bivariate FPCA (BFPCA): the multivariate model in (3.2) with data-driven bases
as in Section 3.2.3;
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4. Univariate FPCA (UFPCA): the model in (3.1) applied separately to each re-
sponse with data-driven bases as in Section 3.2.3;

For estimation using the B-spline methods, we choose B-splines of order 4 and the
number of B-spline breaks for each replication is fixed at 6 based on preliminary
analyses. For the FPCA methods, we specify an unstructured Σ, and the number of
basis functions is chosen to explain at least P1 = 99% of the cumulative variation.
In practice, both the number of basis functions for the B-spline method and the per-
centage of variation explained for the FPCA method are tuning parameters and one
should compare results over a grid parameter values. For the population mean we
fit the true polynomial basis B(t) for estimation. We perform MCMC sampling with
20,000 draws and the first 5,000 are discarded as burn-in. The hyperparameters are
specified as σ2

b = 100 and q1 = q2 = l = h = 0.1.
Methods are compared in terms of their predictive performance and ability to

estimate the marginal mean function for each response. Let ω1i(t) = E{Y1i(t)} =

uT
1i(t)β1 and ω2i(t) = E{Y2i(t)} = Φ{γi(t)}, where γi(t) = uT

2i(t)β2/
√

v2(t) is the
population effect shrunk toward zero by the square root of the marginal variance
v2(t) = Var{Y2(t)} = ψ2(t)Σ22{ψ2(t)}T + 1. Let ω̂pr(t) and ν̂pr(t) be the posterior
mean and variance, respectively, for MC replication r = 1, . . . , 100. Metrics for com-
parison of estimated means found in Table 3.1 for each response are mean integrated
squared error: MISE =

∫
t E{ω̂p(t)−ωp(t)}2dt; coverage of 95% pointwise confidence

intervals ω̂pr(t)± lpr(t) averaged over location t and MC replication r with margin

of error lpr(t) = 1.96
√

ν̂pr(t); and confidence interval length 2lpr(t).
For prediction, we generate additional data Yprj(tl) at equally spaced locations

t` ∈ [0, 1] where ` = 1, . . . , 30 for subjects j = 1, . . . , 20 per response p = 1, 2 for
each MC replication r = 1, . . . , 100. To assess the value of jointly modeling the two
responses, we leave out all of response 1 for 10 subjects and all of response 2 for the
remaining 10 subjects per replication. Models are compared in terms of their predic-
tive performance using mean squared prediction error (MSPE) for each response, de-
fined as MSPE = (nmL)−1 ∑n

r=1 ∑m
j=1 ∑L

`=1{Yprj(t`)− Ŷprj(t`)}2. For binary responses
this is known as the Brier score and Ŷprj(t`) is the posterior probability that Y = 1.
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3.4.3 Results

Table 3.1: Simulation Results

Continuous Response Binary Response

MISE CI length 95 % Cvg MSPE MISE CI length 95 % Cvg MSPE

Scenario 1: n = 50, ρα = 0.8

BFPCA 3.50 65.3 92.9 *** 319 0.174 12.8 86.9 *** 23.0
BBSP 3.26 61.6 ** 90.7 *** 313 0.168 12.9 87.3 *** 22.9
UFPCA 3.20 66.5 * 93.6 350 * 0.182 14.8 * 90.8 *** 24.4 *
UBSP 2.86 64.9 94.0 351 * 0.185 14.5 * 90.9 *** 24.3 *

Scenario 2: n = 250, ρα = 0.8

BFPCA 0.795 31.9 91.4 *** 284 0.039 6.66 90.7 *** 21.0
BBSP 0.798 31.2 ** 91.0 *** 285 0.037 6.67 91.3 *** 21.0
UFPCA 0.790 32.8 * 91.9 *** 351 * 0.040 7.27 * 93.2 24.3 *
UBSP 0.794 32.4 * 92.0 *** 350 * 0.043 7.25 * 91.6 *** 24.3 *

Scenario 3: n = 50, ρα = 0

BFPCA 2.96 65.9 94.2 408 0.172 13.4 89.3 *** 26.3
BBSP 3.16 62.6 ** 92.8 *** 421 * 0.183 13.3 88.4 *** 26.6 *
UFPCA 2.75 65.8 94.6 372 ** 0.166 14.6 * 93.3 24.4 **
UBSP 2.85 63.9 ** 93.5 371 ** 0.162 14.5 * 92.8 *** 24.2 **

Scenario 4: n = 250, ρα = 0

BFPCA 0.802 32.5 94.6 370 0.044 6.96 91.1 *** 24.8
BBSP 0.791 31.9 ** 94.3 374 * 0.042 6.97 90.7 *** 24.9
UFPCA 0.780 32.9 * 94.7 362 ** 0.042 7.35 * 93.5 24.3 **
UBSP 0.765 32.5 94.5 361 ** 0.040 7.35 * 94.1 24.3 **

Results in hundredths. A ‘**’ (‘*’) indicates better (worse) compared to BFPCA by
Wilcoxson rank sum test, α = 0.05. For coverage, a ‘***’ indicates that the coverage is
not within the nominal 95% range.
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Table 3.1 gives the simulation results. There appears to be little difference in mean
function estimation between univariate and bivariate methods for all scenarios. When
strong correlation is present (Scenarios 1 & 2), the bivariate methods show marked
improvement in prediction for both responses over the univariate methods, a dif-
ference that becomes more pronounced with an increase in sample size. Bivariate
methods perform well when the generating model is univariate (Scenarios 3 & 4).
Though prediction is better when fitting the correct univariate model, the differences
between the bivariate and univariate methods become very small with an increase in
sample size. All methods show slight under-coverage.

For Scenarios 1 & 2 there is no clear difference between fitting predetermined
bases (Section 3.2.2) or data-driven bases (Section 3.2.3); however, BFPCA has better
prediction compared to BBSP in Scenarios 3 & 4 when there is no cross-correlation.
The univariate models have very similar performance to one another in all scenarios.

3.5 Periodontal Data Application

We demonstrate our methods using data from a periodontal study (Fernandez
et al. 2009) conducted by the Center for Oral Health Research at the Medical Uni-
versity of South Carolina. In addition to collecting subject-level covariates for over
200 Gullah African Americans, several measures of patients’ periodontal health were
observed at six sites for each of 28 teeth. The two responses we consider are (contin-
uous) clinical attachment loss (CAL) and (binary-valued) bleeding on probing (BOP).
CAL is the distance that a tooth has detached from the bone, rounded to the near-
est mm. We use the average CAL over the six sites on each tooth as the tooth’s
CAL response. BOP is the binary indicator of whether the gums bleed when pressed
with a dental probe at any of the six sites per tooth. A total of N = 197 patients
(subjects) are included for analysis after excluding those with more than 50% miss-
ingness. Any remaining missingness is assumed to be completely at random; Reich
and Bandyopadhyay (2010) and Reich et al. (2013) provide methods for accounting
for non-random missingness.

For our analysis, we assign teeth the numbers 1-14 going from left to right in the
upper jaw when looking at a patient and 15-28 going from right to left in the lower
jaw when looking at a patient; wisdom teeth are excluded. Using this numbering
system, teeth 1 & 28 are adjacent going from upper jaw to lower jaw, and it is the
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same for teeth 14 & 15 on the other side of the mouth. We consider responses at each
tooth to be realizations of a functional process with locations t ∈ [1, 28]. In fitting a
bivariate functional model to this data, we hope to gain a better understanding of the
dynamics between the responses CAL and BOP through close examination of their
cross-covariance. Our extremely flexible approach to modeling the covariance will be
able to capture any spatial correlation of adjacent teeth, of teeth on different sides of
the mouth, and of teeth on different jaws.

The subject-specific covariates that we include in modeling the mean function are
the same covariates used by Reich and Bandyopadhyay (2010) and include age (in
years), gender (female=1, male=0), body mass index or BMI (in kg/m2), smoking
status (1=smoker, 0=never), and glycosylated hemoglobin or HbA1c (1 = high, 0 =
controlled). All covariates have been standardized to be zero-mean with standard
deviation of 1. For each tooth, we include an indicator of jaw (0=upper, 1=lower). For
the smooth part of the mean, we consider a quadratic function sp(t) = βp0 + βp1d(t)+
βp2d(t)2 of tooth distance d from the front of the mouth, where d(t) = t− 7.5 for teeth
in the upper jaw and d(t) = t− 21.5 for the lower jaw.

We present analysis for 8 models given in Table 3.2 that all employ the data-driven
basis method of Section 3.2.3. The 8 models differ by: 1) whether FPCA is univariate
or bivariate; 2) the choice of threshold P1 = 99%, 95% for the cumulative percentage
of variation explained for FPCA; and 3) whether a random bivariate subject-level
intercept α0i = [α01i, α02i]

T is added to model (3.2). Models using B-splines as in
Section 3.2.2 were also considered but are not presented because the best-performing
models required a large number of basis functions.

For the purpose of estimating the latent covariance, we ignore the covariates.
When incorporating a bivariate random subject-level intercept, we use residuals
R1i(t) = Y1i(t) − L−1

1i ∑L1i
i=1 Y1i(t) of the continuous response CAL to estimate the

latent covariance for FPCA; this is not done for the binary responses as the residuals
would no longer be binary. For models that include α0i, we estimate the covariance
term Cov(α01i, α02i) in addition to the variance terms Var(α0pi). We specify a diagonal
covariance matrix Σ for the remaining random effect parameters.

Table 3.2 shows that Models 1-4, which include a subject random effect, outper-
form (based on DIC) Models 5-8 which omit the subject random effect. For this data,
specifying the larger percentage of variation explained for FPCA, and hence includ-
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Table 3.2: Model comparisons for the periodontal data application

Model Subject RE PVE PCA Dbar pD DIC

1 Y 99 B 8114 1257 9371
2 Y 99 U 8228 1231 9459
3 Y 95 B 8849 1001 9850
4 Y 95 U 8536 1114 9650
5 N 99 B 10101 942 11043
6 N 99 U 10586 832 11418
7 N 95 B 10511 788 11299
8 N 95 U 10722 760 11482

“Subject RE" indicates inclusion of a subject-specific random inter-
cept. “PVE" is the threshold for cumulative percentage of variation
explained. “PCA" indicates whether univariate (“U") or bivariate (“B")
FPCA was performed.

ing more basis functions, leads to better model performance. In comparing the two
leading models 1 & 2, implementing FPCA on the full bivariate covariance matrix
as in Model 1, taking into account the cross-dependence between the two responses
CAL and BOP, leads to superior performance. Figure 3.1 shows the subject-level co-
efficient estimates and 95% posterior intervals for Model 1. Models 2-4 had similar
coefficient estimates. For CAL, only the coefficient interval for BMI includes zero.
The other coefficient estimates show an increased level of CAL for older patients,
males, smokers, patients with high HbA1c counts, and for teeth on the upper jaw.
For BOP, the posterior confidence intervals are larger than those for CAL. For inter-
vals that exclude zero, there is an increase of BOP for the upper jaw, yet a slightly
lower incidence of BOP for higher BMI.

Figure 3.2 shows the fitted values (from Model 1) for two individuals in the pe-
riodontal data set. The left panels show the posterior means and 95% posterior in-
tervals of the subject-specific mean function µ1i(t) for the continuous response CAL.
Most of the observed CAL values fall within the 95% interval for both subjects, in-
dicating a reasonable model fit. The right panels show the posterior mean and 95%
posterior intervals of the conditional probability of the event, P(Y2i(t) = 1|α2i). Teeth
with observed BOP (= 1) are indicated by the squares on the bottom of the plot. The
higher predicted probabilities tend to correspond to the incidence of BOP, again in-
dicating a reasonable model fit.
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Figure 3.1: Posterior medians and 95% posterior intervals of the subject-specific covariate coeffi-
cients by response.

The posterior summaries of the auto- and cross-correlations of the subject-specific
process fi(t) from (3.2) are given in Figure 3.3; note that the correlation attributed
to the subject random intercept is not included in this figure. In this periodontal
application, these plots offer important and novel insights into the complex relation-
ships that exist between and within the BOP and CAL responses in different parts
of the mouth. The utility of quantifying and visualizing these complex correlation
relationships is apparent for many other types of applications.

Examination of the diagonal of the auto-correlation plot for CAL in Figure 3.3
shows strong positive spatial correlation between adjacent teeth and between teeth
separated by only one or two teeth on the same jaw. This plot also shows positive
correlation between a tooth in the left and a tooth in the right side of the same jaw,
and the relationship is particularly strong for teeth in the lower jaw. The correlation
for CAL between teeth in opposite sides of the mouth and on different jaws is also
positive, yet not as strong as for teeth on the same jaw; this correlation is very similar
in magnitude as the correlation for teeth on the left or right side of the mouth but on
different jaws. Additionally, there are mild to strong negative correlations between
teeth in the center (front) of the mouth and teeth in the back of the mouth, regardless
of the jaws on which the teeth are located. This is also seen in the plot of the posterior
probability that the auto-correlation is positive.
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Figure 3.2: Fitted values for two individuals from the periodontal study (using Model 1). Left pan-
els: Observed values of CAL are shown as dots. The solid black line indicates the posterior mean
of µ1i(t), the subject-specific mean function, and point-wise 95% posterior intervals are given by
the dotted lines. Right panels: The squares along the x-axis indicate the teeth for which BOP is
observed. The solid black line gives the posterior mean of the conditional probability of the event,
P(Y2i(t) = 1|α2i), and dotted lines show point-wise 95% posterior intervals. The label “UPPER
LEFT" refers to the left side of the the upper jaw when looking at a patient, and it is analogous for the
other labels.
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Figure 3.3: Posterior summaries of the within-response and between-response correlation structures
for any two teeth when fit with Model 1 (excluding correlation from the subject random intercepts).
The label “UPPER LEFT" refers to the left side of the the upper jaw when looking at a patient, and it
is analogous for the other labels.
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In the auto-correlation plot for BOP, again we see strong positive spatial correla-
tion between adjacent teeth and between teeth that are close to one another on the
same jaw. Additionally, the plots of the auto-correlation and of the probability of
being positive show that the correlation is mostly positive with only a few areas of
negative correlation. The correlation is negative between a tooth in the center and a
tooth on the right side of the upper jaw, as well as between a tooth in the left and
a tooth in the center of the lower jaw. There is also a strong negative correlation for
teeth in the lower right and upper right, as well as for teeth in the lower left and
lower right.

The cross-correlation between BOP and CAL ranges from moderately positive to
moderately negative. Unlike the auto correlation plots, the cross correlation is not
symmetric, which makes interpretation slightly more complex. For instance, BOP
in the lower left is positively correlated with CAL in the center and upper right as
indicated by the darkest patch near the top center of the cross correlation figure.
Alternatively, CAL in the lower left shows slightly negative to no correlation with
BOP in the center and upper right of the mouth. Another demonstration of this non-
symmetric property occurs for the negative correlation of BOP in the lower left with
CAL in the lower right, though BOP in the lower right shows slightly positive to no
correlation with CAL in the lower left.
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CHAPTER 4

Conclusion

The methodologies we present in Chapters 2 and 3 allow for joint modeling of bi-
variate (or multivariate) functional responses when the correlation structures within
and between the response curves are very complex. A primary advantage of joint
modeling over univariate methods is the ability to understand the interplay between
responses, a feature which we highlight through applications of our methods to a
colon carcinogenesis experiment and a periodontal disease study.

In Chapter 2 we propose a flexible Frequentist framework for jointly modeling
multiple real-valued functional responses nested within a hierarchy where the func-
tions are observed on a spatial grid and are assumed to exhibit spatial auto- and
cross-correlations. We implement a novel moments-based approach to obtain a raw
estimate of the spatial covariance matrix which we combine with an optimization
procedure to obtain estimates of bivariate Matérn parameters. We utilize FPCA for
level-1 and level-2 functional cross covariances. Accounting for these complex corre-
lations leads to improved estimates of group mean functions.

In Chapter 3 we propose a Bayesian multivariate functional model for responses
of different types, e.g. binary and continuous data, that utilizes a multivariate latent
Gaussian process. We present two basis expansion options for the random subject-
specific deviation, including a novel data-driven approach in which the estimated
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basis functions are obtained through an extension of FPCA that we propose for
mixed-type responses. Our method can account for subject-specific covariates that
can be either linear or time-dependent (such as the jaw indicator used in the analysis
of the periodontal study in Section 3.5).

The settings in Chapters 2 and 3 are complex, but distinct; we reiterate their differ-
ences here for added clarity. In Chapter 2, the setting involves a multilevel structure
in which curves are spatially correlated across units within a subject. In Chapter 3,
there is only one bivariate (or multivariate) functional response per subject. Though
not explicitly shown, the method in Chapter 3 applies to the situation when subjects
are nested in groups. The only modification needed is to estimate the latent covari-
ance separately for each group and then combine the estimates before performing
FPCA. Added complexity in Chapter 3 comes from allowing the response curves to
be of different type, e.g. binary and continuous, whereas Chapter 2 is developed for
real-valued responses.

Furthermore, the proposed method in Chapter 3 is flexible enough for functions
to be observed at varying locations for different subjects and different responses. Our
methodology in Chapter 2 requires responses to be observed at a dense, balanced de-
sign due to the way we estimate the spatial cross-correlation. In the imbalanced case
where there is a different number of subunits measured across units, we recommend
preprocessing the data by binning the observations in a way so that the data mimic
the balanced case and then proceeding as previously described. One should verify
that binning in this way leaves a sufficient number of subunits to warrant a functional
data approach.

In Chapter 2, our proposed methodology for bivariate data is easily implemented
computationally, making inferences using bootstrapping or other such techniques
feasible. Extensions for functional response vectors of dimension greater than two are
straightforward; estimation of the covariance of the spatial component encounters the
same challenges described in Apanasovich et al. (2012). The Bayesian framework of
Chapter 3 is inherently more time-consuming than Frequentist methods such at that
of Chapter 2. However, important computational advantages can be gained by using
the data-driven basis expansion that utilizes FPCA to capture most of the correlation
across responses.

For exposition of Chapter 3 we focus on modeling a bivariate response vector
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where one functional response is continuous and the other is binary, though joint
modeling of more than two responses is a straightforward extension. Furthermore,
the method easily models repeatedly observed categorical responses. This is achieved
in a manner similar to thresholding the latent process at zero for binary data, but
instead one must impose multiple thresholds on the latent process. Modeling other
types of data, such as repeatedly observed count data, is not as straightforward as it
would likely require using copulas (Nelsen 1999).

By estimating the multivariate covariance of the latent process, our methodology
in Chapter 3 can offer novel insights into the cross-dependence of different responses,
which is of interest in a wide variety of applications. Quantifying and exploring this
dependence is an important contribution of our method and is a primary goal of our
analysis of the periodontal data presented in Section 3.5. Reich and Bandyopadhyay
(2010) and Reich et al. (2013) offer ways to incorporate informative missingness and
apply their methods to the same periodontal data. We do not address the informative
missingness for our analysis because it is not central to our goals, and leave it for
future work.
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APPENDIX A

Additional details for Chapter 2

A.1 Colon carcinogenesis study; additional results

Figures A.1 through A.3 show additional results from our analysis. In Figure A.3,
the first eigenfunction of the level 1 process (which represents the average over sub-
unit) explains the majority of the overall variation: if we define the total variation for
response p be the sum of all eigenvalues, σ̂pp, and τ̂2

p , then the first level 1 eigenvalue
explains 88% and 85% of the total variation for log(p27) and apoptosis, respectively.
Cumulatively, the level 2 eigenfunctions explain about 10% of the variation for each
response.
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Figure A.1: Pairwise diet comparisons of mean log(p27) estimates and 95% GLS
confidence intervals for the FULL method. No adjustment for multiple comparisons has
been made.
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Figure A.2: Pairwise diet comparisons of mean apoptosis estimates and 95% GLS
confidence intervals for the FULL method. That the shaded regions do not overlap for the
fish plus butyrate diet versus the others indicates they are significantly different. No
adjustment for multiple comparisons has been made.
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Figure A.3: Estimated eigenfunctions and corresponding percentage of variation explained for
level 1 and level 2 functional processes.

A.1.1 Prediction

To assess the value of jointly modeling log(p27) and apoptosis, we perform
10-fold cross validation (CV) for each response separately, leaving the response of
interest out of 2 crypts per subject in each fold. Let Y p

1,k (hereafter Y1,k for sim-
plicity) be the vector obtained by stacking the nk observations from the testing
set from fold k = 1, . . . , 10 and response p, and similarly obtain Y2,k using the
training set (that includes observations from both responses p and p′). Assuming
[Y1,k,Y2,k]

T ∼ MVN([µ1,k,µ2,k]
T,Vk), the conditional distribution of Y1,k|Y2,k = y2,k

leads to the predicted values Ŷ1,k = µ̂1,k + V̂12,kV̂
−1

22,k(y2,k − µ̂2,k) with prediction
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variance-covariance matrix Sk = V̂11,k − V̂12,kV̂
−1

22,kV̂21,k. Let Yp,test
ij,k (t, sij) be the ob-

served response and Ŷp,test
ij,k (t, sij) be its corresponding predicted response from the

testing set for CV fold k which has nk observations. For apoptosis, Ŷp,test
ij,k (t, sij) is

truncated to be within [0, 1], but the prediction coverage is calculated using non-
truncated responses. All values in Table A.1 have been averaged over the 10 CV folds.
For each k and each response p, we find the mean squared prediction error, MSPE =

n−1
k ∑i,j,t{Y

p,test
ij,k (t, sij) − Ŷp,test

ij,k (t, sij)}2; Bias = n−1
k ∑i,j,t{Y

p,test
ij,k (t, sij) − Ŷp,test

ij,k (t, sij)};
the CV Variance, or sample variance of the testing set; the prediction variance (Pred.
Var), found by averaging the diagonals of Sk; and finally the 95% prediction coverage
from the prediction intervals formed using the diagonals of Sk.

Table A.1 shows the results of performing prediction using the three different
models. When compared to FULL, NS and UNIV have smaller MSPE for apoptosis,
though practically the difference is inconsequential. All methods have very similar
performance. Given the relationship between the two responses shown in Figure
2.3, we suspect that the small prediction differences between models is due to using
binary data as continuous, which may not have preserved the features we expected to
have been well suited for joint modeling. This could also explain why the prediction
intervals have less than nominal coverage, especially for prediction of log(p27). All
models produce very similar mean function estimates, seen in Figure A.4.

Table A.1: Prediction and Cross Validation

MSPE Bias CV Variance 95% Pred. Pred. Var
Coverage

log(p27)
Full 0.0098 -0.00520 0.037 0.74 0.003
No Spatial 0.0110 0.00011 0.033 0.64 ∗ 0.002
Univariate 0.0098 -0.00460 0.037 0.74 0.003

apoptosis
Full 0.13 0.0034 0.015 0.88 0.035
No Spatial 0.13 ∗∗ 0.0030 0.014 0.88 0.035
Univariate 0.13 ∗∗ 0.0028 0.014 0.88 0.035

Results from 10-fold Cross Validation. A ‘∗∗’ (‘∗’) indicates better
(worse) compared to FULL by paired t-test, α = 0.05.
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Figure A.4: Diet mean functions for each response from all models.

A.2 Simulations: Scenarios 5 & 6

In Scenarios 5 and 6 we assess the pitfalls of fitting FULL when it incorrectly
incorporates spatial dependence by generating data with NS (Scenario 5) and when
it incorrectly assumes additivity at the unit level (Scenario 6). For Scenario 6, we use
a generating model (COMPLEX) as given in (2.1) where the quantity Qi(t, sij) cannot
be separated additively into one strictly functional piece and one strictly spatial piece.
We compare the performance of misspecifying FULL to the performance of NS and
UNIV, using TRUE as a baseline. Note that there is no estimation procedure available
to fit COMPLEX in Scenario 6.

For Scenarios 5 and 6, we fix ρ12 = 1 and N = 10, and all other parame-
ters for Scenario 5 remain the same as in Scenarios 1-4. To generate the spatio-
functional process Qi(t, sij) = [Q1

i (t, sij),Q2
i (t, sij)]

T for COMPLEX in Scenario 6,

set Qp
i (t, sij) = ∑2

`=1

√
λW
` φ

W,p
` (t)Up

i,`(sij) where Ui,`(si) = [U1,T
i,` (si), U2,T

i,` (si)]
T i.i.d.∼

N
(
0,CU(∆i)

)
, and CU(∆i) = {σpp′M(∆|app′ , νpp′)}p,p′∈{1,2} is the bivariate Matérn

correlation matrix for p, p′ = 1, 2 with σ11, σ22 = 2.5 to increase the effect
of the spatial process. The covariance is given by Cov{Qp

i (t, sij),Q
p′

i (t′, sij′)} =

σpp′M(∆ijj′ |app′ , νpp′)∑2
`=1 λW

` φ
W,p
` (t)φW,p′

` (t′). All other parameter values are the
same as in Scenarios 1-4.
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Table A.2 shows the main results for scenarios 5 and 6. Note the very poor per-
formance of UNIV in both scenarios. For the simpler case when NS is the generating
model in Scenario 5, it is not surprising that the MISE from fitting NS is smaller than
FULL. However, the coverage of FULL is closer to the nominal level and to TRUE in
all cases since NS underestimates the variance in the model. In summary, overfitting
FULL when the true model is less complex still results in very small MISE, small
bias, and proper coverage. In Scenario 6, the generating model is more complex than
the proposed model because it includes interactions between functions and spatial
random effects. In this case FULL has larger MISE than TRUE, but maintains proper
coverage. Estimated diet means for each scenario are shown in Figures A.5 and A.6.

Table A.2: Model comparisons for Scenarios 5 and 6

90% Coverage C.I. Length MISE Int Bias Int Sq Bias Int Var

Generating model: NS

Response 1
FULL 84.92 3.57 0.0190 0.0186 0.0002 0.02
UNIV 95.78 7.44 0.0425 * 0.0214 0.0001 0.04
NS 82.43 3.38 0.0187 ** 0.0161 0.0001 0.02
TRUE 86.73 3.55 0.0159 ** 0.0251 0.0002 0.02

Response 2
FULL 84.03 3.74 0.0210 -0.0385 0.0001 0.02
UNIV 75.08 47.94 4.9622 * 0.0815 0.0260 4.94
NS 82.37 3.54 0.0208 ** -0.0360 0.0001 0.02
TRUE 89.05 3.78 0.0173 ** -0.0303 0.0001 0.02

Generating model: COMPLEX

Response 1
FULL 87.95 3.64 0.0193 -0.0313 0.0000 0.02
UNIV 95.75 7.36 0.0437 * -0.0279 0.0000 0.04
NS 85.35 3.41 0.0173 ** -0.0315 0.0000 0.02
TRUE 88.55 3.56 0.0153 ** -0.0416 0.0001 0.02

Response 2
FULL 90.27 4.14 0.0200 -0.0082 0.0002 0.02
UNIV 76.20 45.71 4.3479 * 0.0840 0.0554 4.29
NS 85.87 3.58 0.0181 ** 0.0019 0.0001 0.02
TRUE 90.63 3.79 0.0160 ** 0.0032 0.0002 0.02

Results in hundredths. A ‘∗∗’ (‘∗’) indicates better (worse) MISE compared to FULL by Wilcoxson
rank sum test, α = 0.05.
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Figure A.5: Group mean functions when NS is the generating model with N = 10 (Scenario 5).
Gray lines indicate estimated mean functions from each of the 100 Monte Carlo replications.
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Figure A.6: Group mean functions when COMPLEX is the generating model with N = 10
(Scenario 6). Gray lines indicate estimated mean functions from each of the 100 Monte Carlo
replications.
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A.3 Weighted least squares for initial values

Initial values of the Matérn parameters for the maximum likelihood procedure
are found through the method of weighted least squares. Define an equally spaced
grid of m increasing spatial lags δ = [δ1, . . . , δm] where δ1 = 0 and δk ∈ (0, ∆∗) for
k > 1. As in (2.7), estimation of the cross semi-variogram is split into two cases, the
first for δ1 = 0 and the second for δk ∈ (0, ∆∗). For non-zero grid values δk, the
estimator γ̃pp′(δk, ε) of the cross semi-variogram is given in (2.5) with expectation
E{γ̃pp′(δk, ε)} = Cpp′(0) − Cpp′(δk) + η̄b,pp′ . Assuming a bivariate Matérn structure,
this becomes γpp′(δk|θpp′ , η̄b,pp′) = E{γ̃pp′(δk, ε)} = η̄b,pp′ + σpp′{1−M(δk|app′ , νpp′)},
where θpp′ = [σpp′ , app′ , νpp′ ] are bivariate Matérn parameters. For δ1 = 0, the
cross semi-variogram estimator γ̃0

pp′ is given in (2.6) and has expectation γ0
pp′,ε =

E{γ̃0
pp′,ε} = σpp′ + η̄a,pp′ . Let ηpp′ = [η̄a,pp′ , η̄b,pp′ ] be nuisance parameters. Define

the loss function Lε(θpp′ ,ηpp′) = |N (∆∗, ε)|{1 − γ0
pp′/γ̃0

pp′,ε}
2 + ∑m

k=2N (δk, ε){1 −
γpp′(δk|θpp′ , η̄b,pp′)/γ̂pp′(δk, ε)}2. We proceed in the same way as the three-step max-
imum likelihood procedure outlined in Section 2.3.1 in order to find [θ̂pp′ , η̂pp′ ] =

argmin
θpp′ ,ηpp′

{Lε(θpp′ ,ηpp′)} for p, p′ = 1, 2, beginning with fitting the marginal parame-

ters and treating them as fixed when estimating the cross parameters in terms of the
quantities ∆A, ∆B, and σ2

12.

A.4 Additional simulation results for Scenarios 1-4

The remaining figures and tables give additional simulation results from Scenar-
ios 1-4. Diet mean estimates from each model are given for Scenarios 2 through 4 in
Figures A.7 through A.9, respectively. Tables A.3 and A.4 show numeric results for
Scenarios 3 & 4. Figure A.10 shows that the Matérn parameters are estimated well,
and Figures A.11 through A.14 show that the level 1 & 2 eigenfunctions are estimated
well.
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Table A.3: Mean function estimation comparisons for Scenario 3
when FULL is generating model

90% Coverage C.I. Length MISE Int Bias Int Sq Bias Int Var

Response 1
FULL 91.2 13.7 0.168 0.119 0.001 0.167
UNIV 91.6 14.2 0.172 ∗ 0.122 0.001 0.171
NS 79.2 11.8 0.214 ∗ 0.098 0.001 0.214
TRUE 90.8 13.7 0.163 ∗∗ 0.091 < 0.001 0.162

Response 2
FULL 87.8 13.7 0.190 0.076 < 0.001 0.190
UNIV 90.5 29.8 0.934 ∗ 0.152 0.008 0.927
NS 75.3 11.7 0.224 ∗ 0.209 0.001 0.224
TRUE 89.3 13.7 0.186 ∗∗ 0.085 < 0.001 0.186

Results in hundredths. A ‘∗∗’ (‘∗’) indicates better (worse) MISE compared to FULL by
Wilcoxson rank sum test, α = 0.05. Scenario 3: ρ = 0.2 and N = 50.

Table A.4: Mean function estimation comparisons for Scenario 4
when FULL is generating model

90% Coverage C.I. Length MISE Int Bias Int Sq Bias Int Var

Response 1
FULL 84.9 30.9 1.149 -1.145 0.014 1.135
UNIV 85.5 32.1 1.182 ∗ -0.989 0.010 1.171
NS 69.1 23.6 1.293 ∗ -0.838 0.008 1.286
TRUE 88.3 30.6 0.956 ∗∗ -0.903 0.009 0.947

Response 2
FULL 90.0 30.8 0.856 0.166 < 0.001 0.856
UNIV 86.1 60.2 4.771 ∗ 0.178 0.160 4.610
NS 72.4 23.4 1.085 ∗ 0.669 0.005 1.080
TRUE 92.6 30.6 0.768 ∗∗ 0.217 0.003 0.766

Results in hundredths. A ‘∗∗’ (‘∗’) indicates better (worse) MISE compared to FULL by
Wilcoxson rank sum test, α = 0.05. Scenario 4: ρ = 0.2 and N = 10.
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Figure A.7: Group mean functions when FULL is the generating model with ρ = 0.8 and N = 10
(Scenario 2). Gray lines indicate estimated mean functions from each of the 100 Monte Carlo
replications.
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Figure A.8: Group mean functions when FULL is the generating model with ρ = 0.2 and N = 50
(Scenario 3). Gray lines indicate estimated mean functions from each of the 100 Monte Carlo
replications.
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Figure A.9: Group mean functions when FULL is the generating model with ρ = 0.2 and N = 10
(Scenario 4). Gray lines indicate estimated mean functions from each of the 100 Monte Carlo
replications.
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Figure A.11: Eigenfunctions obtained by fitting FULL for level 1 functional process when FULL is
the generating model with ρ = 0.8 and N = 50 (Scenario 1). Solid gray lines indicate estimated
functions from each of the 100 Monte Carlo replications while dashed black lines indicate true
eigenfunctions.
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Figure A.12: Eigenfunctions obtained by fitting FULL for level 2 functional process when
FULL is the generating model with ρ = 0.8 and N = 50 (Scenario 1). Solid gray lines indicate
estimated functions from each of the 100 Monte Carlo replications while dashed black lines
indicate true eigenfunctions.
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Figure A.13: Eigenfunctions obtained by fitting FULL for level 1 functional process when FULL is
the generating model with ρ = 0.8 and N = 10 (Scenario 2). Solid gray lines indicate estimated
functions from each of the 100 Monte Carlo replications while dashed black lines indicate true
eigenfunctions.
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Figure A.14: Eigenfunctions obtained by fitting FULL for level 2 functional process when FULL is
the generating model with ρ = 0.8 and N = 10 (Scenario 2). Solid gray lines indicate estimated
functions from each of the 100 Monte Carlo replications while dashed black lines indicate true
eigenfunctions.
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APPENDIX B

Additional details for Chapter 3

B.1 Approximating Smooth Covariance

In this section, we show that we can approximate any smooth covariance using
the predetermined basis method. For simplicity, assume that the functional responses
are observed at the same locations tp` ≡ t` for ` = 1, . . . , L for each response p. We
specify this model for an arbitrary subject, and thus drop the subscript i. Let ψpk be
the vector of length L formed by evaluating at every t` the basis functions ψpk(t),
k = 1, . . . , Mp, and define the vector fp analogously. Then we form the L×Mp matrix
Ψp = [ψpk, . . . ,ψpMp ] and the coefficient vector αpi = [αp1, . . . , αpMp ]

T so that we can
write fp = Ψpαp. We combine fp for all responses to form one vector f of length
n = PL, and define the coefficient vector αT = [αT

1 , . . . ,αT
P] of length m = ∑P

p=1 Mp

and corresponding block-diagonal matrix Ψ of dimension n×m with blocks Ψp. The

resulting vector f = Ψα has length n, and we assume α iid∼ N(0, Σ) where Σ is a
covariance matrix of dimension m×m with elements Cov(αpk, αp′`) = ξk`pp′ .

To illustrate the flexibility of the model, assume Ω0 is the true n× n covariance
matrix of f evaluated at locations tl. Ω0 is now approximated by the variance-
covariance matrix Ω = Cov(Ψα) = ΨΣΨT. Since the basis comprising Ψ is pre-
specified, the quality of the approximation Ω ≈ Ω0 is reliant on Σ. By fitting a large
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number of basis functions, i.e. setting m = n, it is possible to fit any smooth covari-
ance function. When m = n then Ψi is a square matrix. Assume Ψi is full rank and
thus ΨT

i Ψi is invertible. Pre- and post- multiplication gives ΨT
i ΩΨi = ΨT

i ΨiΣΨT
i Ψi.

Since Θ = {ΨT
i Ψi}−1 exists we can recover Σ = ΘΨT

i ΩΨiΘ. Though this approach is
quite flexible, it is hard to estimate Σ if it is high-dimension; therefore it is unlikely
to perform well if the processes cannot be represented by a small number of basis
functions.

B.2 Latent Cross Covariance Estimator

Here we describe in more detail the derivation of the latent cross covariance esti-
mator. As our approach is inspired by Hall et al. (2008), we start with a brief summary
of the method they proposed for finding the auto-covariance of the latent process cor-
responding to the binary response, that is, response p = 2. First, estimate the mean
function for p = 2, µ̂2(t) = g−1{η̂2(t)} where η̂2(t) estimates E[g{Z2i(t)}] = η2(t)
and is found by smoothing the data

(
t, Y2i(t)

)
for i = 1, . . . , N. Next, find the esti-

mator Ŝ22(t, t′) of S22(t, t′) = E{Y2i(t)Y2i(t)} = E
[
g{Z2i(t)}g{Z2i(t)}

]
by performing

bivariate smoothing of the data
(
(t, t′), Y2i(t)Y2i(t′)

)
for i = 1, . . . , N, once again re-

moving the diagonals before smoothing. The estimator of the latent process covari-
ance operator for the second response is given by

K̃22(t, t′) = {Ŝ22(t, t′)− η̂2(t)η̂2(t′)}/[g(1){µ̂2(t)}g(1){µ̂2(t′)}]. (B.1)

Equation (B.1) was developed for a univariate response, so in order to estimate
the latent cross covariance operator K12(t, t′) = K21(t′, t) = Cov{Z1i(t), Z2i(t′)}, we
must derive an analogous estimator. This requires the following Taylor expansion,
also given by equation (5) in Hall et al. (2008),

g{Zi(t)} =g{µ(t)}+ δXi(t)g(1){µ(t)}+ 1
2

δ2{Xi(t)}2g(2){µ(t)}

+
1
6

δ3{Xi(t)}3g(3){µ(t)}+ Op(δ
4). (B.2)

We can expand the covariance of the observed processes Cov
{

Y1i(t), Y2i(t′)
}

=

Cov
[
Z1i(t), g{Z2i(t′)}

]
by substituting (B.2) for g{Z2i(t′)} and µ1(t) + δX1i(t) for
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Z1i(t), which gives

Cov
{

Y1i(t), Y2i(t′)
}
= g(1){µ2(t′)}Cov{δX1i(t), δX2i(t′)}+ O(δ4). (B.3)

Note that the term (suppressed from equation (B.3))
δ3 1

2 g(2){µ2(t′)}Cov{X1i(t), X2
2i(t
′)} = 0 due to Cov{X1i(t), X2

2i(t
′)} =

E{X1i(t)X2
2i(t
′)} = E[X2

2i(t
′)E{X1i(t)|X2i(t′)}] = σ1/σ2ρE[X3

2i(t
′)] = 0 since

X1i(t)|X2i(t′) ∼ N
(
σ1/σ2ρX2i(t′), (1 − ρ2)σ2

1
)
. Now, because Cov{Z1i(t), Z2i(t′)} =

Cov{δX1i(t), δX2i(t′)}, we have from (B.3) that K12(t, t′) = Cov{Z1i(t), Z2i(t′)} =

Cov
{

Y1i(t), Y2i(t′)
}

/g(1){µ2(t′)} + O(δ4), which, assuming the effect of O(δ4) is
negligible, leads to

K12(t, t′) = Cov
{

Y1i(t), Y2i(t′)
}

/g(1){µ2(t′)}. (B.4)

Estimation of (B.4) requires a smooth estimate η̂1(t) of E[Y1i(t)] = η1(t) which
is found by smoothing the data

(
t, Y1i(t)

)
for i = 1, . . . , N. We obtain the estimator

Ŝ12(t, t′) of S12(t, t′) = E{Y1i(t)Y2i(t′)} = E
[
Y1i(t)g{Z2i(t′)}

]
by performing bivariate

smoothing of the data
(
(t, t′), Y1i(t)Y2i(t′)

)
for i = 1, . . . , N, removing the diagonals

before smoothing. The resulting smooth estimator of the latent cross covariance is

K̃12(t, t′) = {Ŝ12(t, t′)− η̂1(t)η̂2(t′)}/g(1){µ̂2(t′)}, (B.5)

which is the direct analogue to (B.1).

B.3 Derivations of Posteriors

In this section we present the derivations of the conditional posterior distribu-
tions.

B.3.1 Random effects

Let Li be the number of subunits t observed for subject i and define the latent
response vector for subject i as Wi = [W1(t1), . . . , W1(tLi), W2(t1), . . . , W2(tLi)]

T, with
corresponding mean vector E(Wi) = Uiβ + Ψiαi. Assume Wi|αi ∼ N2Li

(
Uiβ +

Ψiαi,Di
)

where Di = diag(τ2
1 , 1) ⊗ ILi , or in terms of the precision, Pi = D−1

i =
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diag(ω1, 1)⊗ ILi . Also assume the m× 1 vector αi|Q ∼ Nm(0,Q−1) for i = 1, . . . , N
and for the m×m covariance matrix Q−1, or equivalently, the precision matrix Q.
Define Ri =Wi −Uiβ. To find the posterior for αi|· we know

p(αi|·) ∝ p(Wi|·)× p(αi|Q)

∝ exp
[
−1

2

{
(Ψiαi −Ri)

TPi(Ψiαi −Ri) +α
T
i Qαi

}]
,

∝ exp
[
−1

2

{
αT

i ΨT
i PiΨiαi − 2RT

i PiΨiαi +R
T
i PiRi +α

T
i Qαi

}]
,

and ignoring terms not involving αi or Q results in

p(αi|·) ∝ exp
(
−1

2

[
−2RT

i PiΨiαi +α
T
i

{
ΨT

i PiΨi +Q
}
αi

])
.

We want to form this term into the kernel of a Gaussian distribution where
the exponent is −1/2(αi −M )TV −1(αi −M ) = −1/2(αT

i V
−1αi − 2MTV −1αi +

MTV −1M ) for some matrices M and V . To complete the square, set V =

{ΨT
i PiΨi +Q}−1 and match the coefficients of αi, giving RT

i PiΨi = MTV −1 =⇒
M = V ΨT

i PiRi. Thus, the full conditional posterior for αi is given by

αi|· ∼ N(µα,Vα)

for µα = {ΨT
i PiΨi +Q}−1ΨT

i Pi(Wi −Uiβ) and Vα = {ΨT
i PiΨi +Q}−1.

B.3.2 Random effects precision matrix

Assume the m × 1 vector αi|Q ∼ Nm(0,Q−1) for i = 1, . . . , N and the m ×m
precision matrix Q ∼ Wishartm(V , ν) for which the kernel of the density is given
by |Q|(ν−m−1)/2exp

{
−1

2 tr(V −1Q)
}

. Define S = ∑N
i=1αiα

T
i as the sum of squares

matrix of αi. We use S to write ∑N
i=1α

T
i Qαi = tr(∑N

i=1α
T
i Qαi) = tr(∑N

i=1αiα
T
i Q) =

tr(SQ) in the kernel of the multivariate normal density, using the properties tr(a) =
a for scalar a and tr(AB) = tr(BA). We also use the following properties of the
trace to combine like-terms: 1) |A|−1 = |A−1| for A invertible and 2) for two square
matrices A and B of the same dimension, tr(A+B) = tr(A) + tr(B). Using this,
we can show the conditional posterior p(Q|·) for Q is proportional to the kernel of a
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Wishartm{(S + V −1)−1, N + ν}:

p(Q|·) ∝
N

∏
i=1

p(αi|Q)× p(Q)

∝ |Q−1|−N/2exp
{
−1

2
tr(SQ)

}
× |Q|(ν−m−1)/2exp

{
−1

2
tr(V −1Q)

}
(B.6)

∝ |Q|(N+ν−m−1)/2exp
[
−1

2
tr{(S + V −1)Q−1}

]
.

Thus, Q|· ∼Wishartm{(S + V −1)−1, N + ν}.

B.3.3 Fixed effects

Assume as before that the 2Li × 1 response vector for subject i is Wi|αi
indep∼

N2Li

(
Uiβ + Ψiαi,Di

)
for Di = diag(τ2

1 , 1) ⊗ ILi , or in terms of the precision, Pi =

D−1
i = diag(ω1, 1)⊗ ILi . Define the 2Li × 1 vector Ui = Wi − Ψiαi. The r× 1 vector

β ∼ Nr(0,C−1) for C−1 = σ2
βIr. To find the full conditional distribution of β|·, we

have

p(β|·) ∝
N

∏
i=1

p(Wi|·)× p(β)

∝ exp

(
−1

2

[
N

∑
i=1

{
(Uiβ−Ui)

TPi(Uiβ−Ui)
}
+ βTCβ

])

∝ exp

[
−1

2

N

∑
i=1

{
(Uiβ−Ui)

TPi(Uiβ−Ui)
}
− 1

2
βTCβ

]

∝ exp

[
−1

2

N

∑
i=1

{
βTUT

i PiUiβ− 2UT
i PiUiβ+UT

i PiUi

}
− 1

2
βTCβ

]

and ignoring constant terms results in

∝ exp

[
−1

2

{
βTCβ+ βT

(
N

∑
i=1
UT

i PiUi

)
β− 2

(
N

∑
i=1
UT

i PiUi

)
β

}]

∝ exp

[
−1

2

{
βT

(
C +

N

∑
i=1
UT

i PiUi

)
β− 2

(
N

∑
i=1
UT

i PiUi

)
β

}]
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As we did before, we want to form this term into the kernel of a Gaussian distri-
bution and where the exponent is −1/2(β −M )TV −1(β −M ) = −1/2(βTV −1β −
2MTV −1β +MTV −1M ) for some matrices M and V . To complete the square, set

V =
(
C + ∑N

i=1U
T
i PiUi

)−1
and match the coefficients of β, giving ∑N

i=1U
T
i PiUi =

MTV −1 =⇒ M = V
(

∑N
i=1U

T
i PiUi

)T
. Thus, the full conditional posterior for β is

given by
β|· ∼ N(µβ,Vβ)

for µβ = Vβ

{
N

∑
i=1

(Wi −Ψiαi)
TPiUi

}T

and Vβ =

(
σ−2
β Ir +

N

∑
i=1
UT

i PiUi

)−1

.

B.3.4 Error Variance (Precision)

Assume that the error precision ω1 ∼ Gamma(g, h) where we parameterize the
density such that g is the shape parameter and h = 1/s is the inverse of the scale pa-
rameter, called the rate parameter. Specifically, if X ∼ Gamma(g, h) then p(x|g, h) =
xg−1e−xh{hg/Γ(g)}. For simplicity of notation, denote the continuous response at t`
for subject i as Yi` = Y1i(t`) for i = 1, . . . , N and ` = 1, . . . , Li, and define the total

number of responses observed as n = ∑N
i=1 Li. Let Yi`

indep∼ N(µi`, precision = ω1).
Then

p(ω1|·) ∝
N

∏
i=1

Li

∏
`=1

p(Yi`|·)× p(ω1)

∝ ωn/2
1 exp

{
−ω1

2

N

∑
i=1

Li

∑
`=1

(Yi` − µi`)
2

}
×ω

g−1
1 exp(−ω1h)

∝ ω
(n/2+g)−1
1 exp

[
−ω1

{
1
2

N

∑
i=1

Li

∑
`=1

(Yi` − µi`)
2 + h

}]
.

This is the kernel of a Gamma density, so the posterior for ω1|· ∼ Gamma(gω, hω)

with shape and rate parameters gω = n/2+ g and hω = 1/2 ∑N
i=1 ∑Li

`=1(Yi`−µi`)
2 + h.
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