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Abstract

WIGGS, JAMES H. Comparison of Adaptive Algorithms for Cancellation of

Harmonic Noise on Distribution Power Lines. (Under the direction of Dr. H.

J. Trussell.)

Adaptive digital filters have been used for many years in speech
processing, echo cancellation, and other areas. The ability of adaptive
filters to remove harmonic noise from a contaminated signal, especially when
the noise is slowly varying with time, is of special interest in the field of
distribution power line carrier communications. This thesis compares the
effectiveness of three of the more well-known adaptive digital filter
algorithms at removing 60 Hz harmonic noise from an actual distribution power
line noise sample: the Widrow-Hopf Least Mean Square (LMS) algorithm the
Least Square Lattice (LSL) algorithm, and the Fast Kalman algorithm. The
algorithms are compared in terms of convergence rate, overall noise power
reduction, and the ability to reduce the bit error detection rate (BER) of

phase-shift-keyed digital data in the noise.

Results indicate that the LMS algorithm, while the slowest to converge,
has the best BER performance. It is shown that the performance of the LSL and
Fast Kalman algorithms is strongly dependent on the value of the
misadjustment parameter; a value of .01 for this parameter causes very poor
BER performance, while a value of .1 causes the algorithms to perform almost

as well as the LMS algorithm but with much faster convergence rates.
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Chapter 1

Introduction

Digital filtering has begun to find widespread use in many applications,
ranging from seismic data to speech processing. It has some significant
advantages over standard analog filtering, including the capability of
analyzing and re-analyzing stored data, and the capability of constructing
filters that are not able to be realized by analog means. This does not mean
that digital filters are perfect for all applications; on the contrary,
analog filters, being much cheaper to realize in the majority of cases, will
continue to coexist with digital filters for the foreseeable future.
Horeover, analog low-pass filters must be used as front-ends to digital
filters to limit the bandwidth of the filtered signal to avoid aliasing
effects of sampling. However as digital hardware (especially A/D
converters) comes down in price and increases in performance, digital
filters will be used more and more for filtering tasks as digital hardware

takes over more and more of the traditional analog work.

In this thesis, we will examine the use of adaptive digital filters in the
area of noise reduction for power-line carrier communications systems.
Power-line communications is implemented by injecting & signal (usually
digital) on to the existing transmission or distribution power lines owned by
the public utilities. This signal is then detected at a receiver elsewhere

on the power system and the signal is decoded and acted upon. This



communication medium is used currently for load management, remote meter
reading, and distribution equipment monitoring and control. It is also being
used for voice-grade communications in remote housing areas, and in the home

for local control and monitoring of appliances.

1.1 Power-Line Carrier Noise Characteristics

Power 1lines are traditionally a very noisy environment in which to
transmit signals, and are divided into 2 broad categories by the utility

industry: transmission lines and distribution lines. Transmission lines are

those 1lines which carry power from the generator to the distribution
substations, where the power lines branch out to individual homes and are

called distribution lines. The noise characteristics of these 2 types of

power lines are different.

Because the power line is used to transmit power from the generator to the
home, it obviously contains (in this country) 60 Hz signals and its
harmonics. All manner of devices are connected to the distribution power
lines. Each device injects some signal back on to the power lines. Generally
these signals are not very large in relation to the primary 60 Hz voltage, but
when it is desired to transmit a control signal on this same transmission
medium the stray signals become significant noise problems, especially when
control signals are transmitted over a distance long enough to cause
substantial attenuation of the signal. thus decreasing the signal-to-noise

ratio. The largest producers of noise on the distribution power line are



switching devices, such as light dimmers, which produce voltage/current
spikes synchronously with the 60 Hz power [1]. Universal motors and other
common household appliances ([2] also contribute to the noise on the
distribution power lines. These sources of noise can completely mask any
communication signal if not removed from the line by some type of filtering

technique.

Transmission power lines, however, do not have consumer or industrial
switching devices connected to them because they are very high voltage lines
used exclusively to carry power from the generator to the distribution
substations. They are therefore much cleaner than distribution power lines,
and make a better transmission medium. However, most current interest in
power line communications is directed toward the distribution power line, so
that the utilities may have access to individual homes and commercial

customers.

1.2 Filtering of Power Line Noise

1.2.1 Current Techniques

Currently, the removal of distribution power line noise is accomplished
almost exclusively with standard analog filters. Since most communications
systems are only interested in a very narroe band of signals, very high Q

bandpass filters can be used to filter out all noise outside of the



transmission frequency band. This can obviously provide satisfactory
performance, since there are systems on the market today which utilize this
technique. Note however, that this technique does not remove any noise
components in the frequency band of interest. Thus if there is a device
producing a large level of noise in the frequency range of interest, this

type of filter will not remove that noise.

Another technique used today is to implement the transmission and
detection of signals based on the zero-crossings of the 60 Hz power signal.
This, however, leads to an absolute maximum data rate of 120 baud, and most

systems use much lower data rates.

Since most of the noise on the distribution power line is 60 Hz harmonics,
a notch filter can be used which attenuates each 60 Hz harmonic in the
frequency band of interest. The drawback to this technique is that the 60 Hz
power signal can vary about ¢ .08% [3]). This is not much of a problem at low
frequencies, but at high frequencies the variation becomes significant. For
example, at 60 Hz, a t.08% variation in the 60 Hz harmonics causes the

frequency to vary from 58.952 Hz to 60.048 Hz, a bandwidth of only .096 Hz.

At the 200" harmonic (12 kHz) however, the frequency varies from 11.99 kHz

to 12.01 kHz, a bandwidth of 19.2 Hz.

1.2.2 Digital Techniques

An alternative approach to the current technigues of filtering
distribution power line noise is to use some type of digital filtering. This

has an intuitive appeal. in that most applications of power line carrier



communications use some kind of digital microprocessor as the hardware in the
receiver. A very high Q digital filter could be designed to do exactly what
its analog counterpart does currently, but the cost of such an approach would
almost certainly be higher than the current one, because of the additional
A/D converter required and the need for an analog anti-aliasing filter.
Without some increase in performance or other added benefit, it is difficult

to justify this increased expense.

Another approach involves the use of adaptive digital filters to
characterize the noise on the power line before transmission takes place, and
then use the resulting filter to clean up the signal at the receiver during
reception. The advantage of this approach is that correlated noise in the
frequency range of interest can be reduced, thus increasing the
effectiveness of the filter and increasing signal-to-noise ratio. Some
studies have already been done in this area, notably [1]). The results have
been very positive, and this thesis is an extension of the work being done in
this area. Adaptive digital filters have been used in & variety of
applications including speech processing [4-7], radar/sonar [8], and EKG

signal processing [9-10], as well as others.

1.3 Outline of Thesis

This thesis describes the basic theory and implementation of adaptive
digital filters for distribution power line carrier noise cancellation.

Chapter 2 describes the theory behind three types of adaptive digital



filtering techniques - the Widrow-Hopf Least Mean Squares (LHS) algorithm,
the Least Squares Lattice (LSL) algorithm, and the Fast Kalman algorithm.
Chapter 3 describes the implementation of these algorithms for the current
experiments on distribution power line noise, and Chapter 4 presents the
results of the experiments for each algorithm. Chapter S concludes with &

summary of the major results and indicates problem areas and areas of future

research.



Chapter II

Theory

2.1 Introduction

2.1.1 System Modeling

The concept of adaptive digital filtering draws heavily from the fields of
digital filtering and linear prediction. In the cases of interest here, the
system to be modeled by adaptation is assumed to arise from & finite-order
discrete-time linear system driven by white noise [11]. That is to say, the
signal is sssumed to have been generated by passing white noise through &
linear filter, either of the all-pole, all-zero, or pole-zero type. Systems
so generated are called auto-regressive (AR), moving average (MR), or
auto-regressive moving average (ARMA), respectively [12]. These systems can
be modeled by all-zero, all-pole, or pole-zero filters of the same order as
the filter used to generate the system. It is the goal of modeling to
generate the “whitening” filter for & given system of interest, which when
applied to the output of the AR process will produce a white noise sequence.
In this work we are interested in modeling the power line noise as an AR

process plus white noise, as shown in figure 1. This leads to an all-zero
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whitening filter which can then be used to cancel the correlated signal

components of the system.

'1(")

x{n)
w(n)

Figure 1

AR Process Generation Model

Note first of all that this assumption of a signal that has been produced
by a linear filter implies that some of the signal components in the system
are correlated. The best that a whitening filter can hope to do is predict
all correlated components of a system; white noise cannot be predicted.
Thus an adaptive filter cannot be used to reduce the white noise 1in the

frequency band of interest to power line carrier communications.



The whitening filter takes the form of a linear predictor, which can be
implemented as a linear transversal FIR digital filter. A linear predictor

has the form

p
y(n) = I ai x(n-i) (2.1)

i=1

where n is the index corresponding to time, p is the order of the filter,
and the aj are the filter coefficients. The linear predictor tries to
predict the value of the desired sequence d(n) from a linear combination of
past inputs, x(n). The difference between the predicted value of x(n) and

the desired value is called the prediction error, and is defined as

p
e(n) = d(n) - y(n) = d(n) - ¥ aj x(n-i) (2.2)
i=1

How the desired value d(n) can be obtained is discussed in the next
section. This error e(n) is used by all adaptive algorithms to drive the

adaptation process. This is shown pictorially in figure 2.
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d(n) a(ii) » e(n)

X(n) ——————o Filter

Figure 2

The Adaptive Process

All adaptive modeling techniques seek to “minimize" the error term e(n) in
some least-squares sense. The different techniques presented here use
different methods and assumptions to minimize the mean square error. These

methods and assumptions are discussed in later chapters.

The entire system presented can be shown as in figure 3. A filter is
allowed to adapt to the power line noise by one of the adaptive techniques
described, and the resulting FIR filter is used to predict the correlated
components of the input, which are subtracted out of the original data. As
will be mentioned below, a delayed version of the noise input is used as the
input x(n). and the current sample of the input is used as d(n). The
objective of this thesis is to compare the results of the three different
algorithms in terms of convergent rates, reduction of noise power, and bit

error rates for phase-shift keyed (PSK) digital data.
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d(n)

Decorrelation
Delay

J, e
A

x(n) /ﬁ

—————» Filter

y(n)

Figure 3

The Adaptive Filter System

2.1.2 Reference Input

Of special interest is the reference input, d(n). which is used to
calculate the error of the prediction at time n. This reference input does
not have to match point-for-point the “predictable” part of the input; it
need only be highly correlated with that part of the input. The degree to
which adaptation will occur is directly proportional to the degree of
correlation between the reference input d(n) and the input signal. Since the
result of all this is a digital filter, the adaptation will produce & filter
which “matches”™ the “predictable” part of the input. and will thus remove

those “predictable” parts.
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This reference input can be obtained from several sources. In the system
of interest, power line carrier communications, the signal is not always
present on the power line. A signal is sent (and possibly received), and then
the power line is “quiet” for a while. This leads to the concept of
“start-stop” adaptation, where the adaptation takes place during periods of
“quiet® on the power line, and the filter weights are frozen during periods
of transmission. Since all known systems are polled systems, this is easy to

implement at the polling site because the transmitter knows when it is going

to transmit.

Another approach utilizes the fact that all power line carrier systems
operate in a very narrow frequency band. Since all that is needed to cancel
the harmonic noise in the transmission frequency band is some input which is
correlated with this noise, the fact that the noise outside of the
transmission frequency band is very similar to the noise inside the
transmission frequency band can be used to advantage. Since the harmonic
noise on the power line is a broad-band phenomena, i.e. the 60 Hz harmonics
cover the entire frequency range from base-band 60 Hz to the highest
frequency of interest, a highly correlated estimate of the “in-band" noise
could be gathered from some frequency range which is “"out-of-band” with the
carrier frequency band. This would allow adaptation to continue at all
times, even during transmission of data. This requires a front-end band-pass
or low-pass filter to generate this out-of-band reference signal, but this is
easily accomplished either by an analog or digital filter. Some results
using the LMS algorithm with these different methods of generating the

reference noise signal may be found in the paper by Trussell and Wang [1].
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There it was discovered that the “start-stop” method always produced good
results, and that continuous adaptation using “out-of-band” reference noise
was somewhat worse, though still acceptable. Reduction of harmonic noise on

the order of 14 to 1 were reported by that study.

2.2 Least Hean Squares (LMS) Adaptive Digital Filter

2.2.1 History

According to Widrow [13], the earliest work on the LMS algorithm grew out of
work on noise cancellation. Howells and Applebaum at the General Electric
Company worked on a system for antenna sidelobe canceling that used a simple
two-weight filter. In 1959 Widrow and Hopf at Stanford University developed
what we know today as the LMS algorithm. and used it in a pattern recognition
scheme known as Adaline. Other efforts on sdaptive filtering were being done
independently at Cornell, in the U.S.S.R. and in Britain. In the early to
middle 1960's, however, work on adaptive filtering began to take off, with
hundreds of papers in the literature devoted to the subject. The best know
commercial application of adaptive filtering at that time was the work done
by Lucky at Bell Laboratories on high speed modems for digital
communications. Since then adaptive filtering has been applied to many
problems, including speech processing radar, sonar, electrocardiography,

echo cancellation in phone networks, and geophysics.
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2.2.2 Algorithm.

Recall that the output at time n of a linear predictor is given by

p
y(n) = I ai x(n-i) (2.3)
i=1

which may be written in matrix notation as

y(n) = AT(n) X(n) (2.4)

where A(n) is defined as [ay 22....8p]7 and X(n) is defined as
[x(n-1), x(n-2)...x(n-p)17. The error at time n is given by
e(n) = d(n) - y(n) = d(n) - A(MT X(n) (2.5)
The squared error can be written as
e(n)2 = d(n)2 - 2d(n) AT X(n) + AT X(n)x(n)TA(n) (2.6)

The mean square of the error is found by taking the expectation of both

sides of the equation
Ele(n)2] = E[d(n) 2] - 2E[a(n)X(n)TT1A(n) + A(M)TE[X(MX(n)T] A(n)

(2.7)

Defining P(n) = E[d(n)X(n)T] and recognizing E[X(n)X(n)T] as the

autocorrelation matrix R gives
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E[e(n)?] = E[d(n)2] - 2P(mTA(n) + A(M)TR(N)A(N) (2.8)

It can be noted that the mean square error is a quadratic function of the
weights, which can be pictured as a concave hyperparaboloidal surface in
p-space [14]. Adjusting the weights to minimize the means square error can
be done by "descending” along this surface until the “"bottom™ of the
parabaloid is found. The gradient of the error function can be used to do
this, and this method of minimizing the mean square error is known as the
gradient method. It is also used in the Gradient Lattice (GL) discussed in

section 2.3.1. The gradient g(n) of the error function is defined as the

partial derivative of E[e(n)2] with respect to the weight vector, which from

Eq. 2.8 is
g(n) = -2P(n) + 2R(n) A(n) (2.9)

The optimal weight vector A=(n) is found by setting the gradient of the

mean square error to zero, or

A*(n) = R 1(n) P(n) (2.10)

which is seen to be the Wiener-Hopf equation in matrix form. Since there
is no prior knowledge of the autocorrelation matrix R(n) or the correlation
matrix P(n), the LMS algorithm tries to approximate the optimal weight vector
by iteratively updating a "guess™ at the optimal weight vector by taking the
present value of the weight vector and making & change to it proportional to

the negative of the instantaneous gradient g(n), i. e.,
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A(n+1) = A(n) - u g(n) (2.11)

where U is a parameter that controls stability and rate of convergence, and
which will be discussed in more detail later. An estimate, g(n)", of the

instantaneous gradient can be found by letting e(n)? in equation 2.6 be an

estimate of the mean-square error and differentiating it with respect to the
weight vector A(n). This gives
a(n)” = -2.d(n) X(n) + 2 A(M)T X(n) X(n)T (2.12)

or

g(n)” = 2X(n) [ -d(n) + A(n)T x(n) ] (2.13)
Noticing that -d(n) + A(n)T X(N) is -e(n) gives

g(n)” = -2 e(n) X(n) (2.18)

Substituting the estimate for the gradient in Eg. 2.11 gives the update

formula for the weight vector as
A(n+1) = A(n) + 2ue(n) X(n) (2.15)

This update formula is attributed to Widrow and Hopf and is known as the
¥idrow-Hopf Least Mean Squares (LMS) algorithm. This is a very simple update
formula, and can be rapidly calculated with 2 multiplications and 2 additions
per filter coefficient per input sample. For this reason, the LMS algorithm
is widely used in echo cancellation, speech processing and other
applications, despite some of the drawbacks which will be discussed

presently.
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The parameter u is the size of the step taken in the opposite direction of
the gradient, and is of special importance when evaluating the performance of
the LMS algorithm. The rate of convergence of the algorithm has been showsn
(157 to be proportional to 1/(u A max). where Apax is the maximum eigenvalue
of the autocorrelation matrix R of the input data. Actually, each harmonic
component of the input, which roughly corresponds to each eigenvalued of R,

will converge at a rate proportional to 1/(u A).

Another property of u is that the LMS algorithm will only converge to the

minimum weight vector when [14]

1/Amax > u > 0 (2.16)

This dependence of the algorithm on the statistical parameters of the input
data causes it to be unacceptable in some situations, especially when there
are multiple signal components of greatly differing power [16]. The
parameter u also determines the misadjustment M of the algorithm. The
misadjustment is the amount of "wander” that the weight vector does around

the actual minimum weight vector after it has converged. This misadjustment

has been shown to be [14]

H=0pudadij (2.17)

where Ai's are the eigenvalues of the input correlation matrix, which
correspond roughly to the powers of the orthogonal components of the input.
The misadjustment is thus different for each input signal component. Since

the rate of convergence is proportional to 1/u and the level of misadjustment
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is proportional to 1. the choice of u is a trade-off between convergence rate

and misad justment after convergence.

2.3 Least Squares Lattice (LSL) Adaptive Digital Filter

2.3.1 History

The Yule-Walker equations are expressed in matrix form as [12]

A(n) R(n) = E(n) (2.18)

where A(n) is [1, 31,32, ....8pl, E(n) is [e(n)z, 0,0,....,0}], and R(n) is a
matrix of autocorrelation functions

R R e © & R
1 p
1

°
[
® ¢ ®
R
R

i 0

Each Ri is the autocorrelation with lag i of the input x(n), defined as

N
Ri-3 = N I x(n+i) x(n+j) (2.19)
n=1
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The Yule-Walker equation as expressed above is a means of calculating the

optimal Wiener filter coefficients. Solving for A(N) gives

ACn) = E(n) R 1(n) (2.20)

This equation can be solved in several different ways. One way is similar
to that shown above in the development of the LMS algorithm. Another method,
which iteratively calculates the inverse of the autocorrelation matrix is
attributed to Levinson [17] and Durbin [18]. The Levinson-Durbin recursions

lead naturally to the representation of the optimal W¥iener filter in a

lattice form as shown in figure 4, with K€ = KT = K, and where the ej's and

ri's are known raspectively as the forward and backward error residuals at

the ith stage of the lattice. This formulation involves the use of the
so-called forward and backward prediction error sequences. The forward

prediction error e(n) is simply the predictor mentioned in the development of

the LMS algorithm which is
p .
e(n) = x(n) - Y ai x(n-i) (2.21)
i=1
where the 8i’'s are the forward predictor coefficients.

The backward error predictor r(n) is similar to the forward predictor,
but works in the reverse (in time) direction, and is given by
p-1

r(n) = x(n-p) - I bj x(n-i) (2.22)
i=0
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where the bj's are the backward predictor coefficients.

ro(n) r1(n) rz(n) rp-1(n)
coe ' T p(n)
x(n) —
(n)
eq(n) e «(n) ep(n) ’ eg-1(n) a

Figure 4

Lattice Filter Structure

This filter implemented as a lattice structure has several advantages
over the standard tapped delay line (TDL) filter [18]. First, the p-stage
lattice filter generates all outputs which could be generated by p different
TOL filters of lengths from 1 to p. This would allow the dynamic assignment
of the most effective filter length based on the input at any instant in time.
The lattice filter also has the property that larger order filters are built
up from smaller ones by simply adding more lattice stages. This should be
useful in designing very large scale systems. Another advantage of the
lattice structure in general is the lower sensitivity to digital arithmetic
roundoff errors [20] than the convention TDL. This is always nice to know,
since it means that a given filter might possibly be implemented with fewer

bits. Finally, the lattice filter has been shown to have faster convergence



21

properties than the LMS algorithm [16], and the rate of convergence is not

related to the eigenvalue spread of the input correlation matrix.

All adaptive lattice algorithms aim to minimize some error condition, and

in doing so to calculate the reflection coefficients K€ and K¥. There are two

main ways of doing this.

The first method involves finding the set of reflection coefficients that
minimizes the sum of the mean squares of the forward and backward error
residuals for each stage of the lattice. This is done by a gradient method
similar to the LHS algorithm and is known in the literature as the Gradient

Lattice (GL). If the input data is assumed to be stationary, the result is

reflection coefficients such that K& = KT = K [16]. The other method involves
finding the set of reflection coefficients that minimizes the sum of the

squares of the forward and backward error residuals. Because this method
does not make the assumption that the data is stationary, K® is not
necessarily the same as K. Actual results with distribution power line dats

show that K® and k¥ are in fact not equal though they differed only slightly.
Hinimizing the sum of squares of the errors is similar to what is done in the
Kalman algorithm. and the lattice algorithm which does this is knoen as the
Least Squares Lattice. and is seen to be a special case of the Kalman filter.
It is the Least Squares Lattice that is used in the algorithm comparisons in
this thesis, and more detail about its derivation is given below. An

excellent summary of lattice filter derivations and their histories can be

found in [11].
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Thus it can be seen that all adaptive filter algorithms mentioned in the
literature can be divided into four categories. There are those which
calculate the transversal filter coefficients directly and those which
calculate the reflection coefficients of the lattice structure directly. In
each of these two categories, either the gradient method or the least squares
method can be used, and the result is the LHS, Kalman, Gradient Lattice, and

Least Squares Lattice, respectively.

2.3.2 Algorithm

As mentioned above, the LSL algorithm at every time n, seeks to minimize
the sum of the squares of the prediction error up to time n. This is done by
using the lattice structure as shown in figure 4, and exploiting the
orthogonality properties of the forward and backward error sequences ej and
bj. An exponentially decaying weighting of the squared errors can also be
used to cause the LSL algorithm to track nonstationary input. Thus the

prediction error to be minimized is

n
€)= I (1-00" e(m? (2.23)
k=

and
ET(N) = § (1 -®)"K r(n)? (2.24)

where 0 (X< 1 is the “fade factor™ of the algorithm.
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The LSL algorithm is summarized as follows [16]. with the following

quantities defined.
ri Backward error residual

ej Forward error residual
Ef; Backward error power at stage i
E®i Forward error power at stage i

K®, k¥ Reflection coefficients
) Cross correlation of forward and backward prediction errors

B Likelihood variable

LSL Algorithm

Initialization (1=0,1,...,p):
ri(-1) = 0, iep
ETi(-1) = 8, d positive but close to 0; i ¢ p

8i(-1) =G, i¢0



Time Update (n=0,1,..., w):
eg(n) = ro(n) = x(n)

E®0(n) = ETp(n) = (1 &) ETg(n-1) + x(n)2

B-1(n-1) =0

Order Update (i =1.2,..., p)
8i(n) = (1 -&) 8i(n-1) - [ei-1(n) ri-1(n-1) / (1 - Bi-2(n-1)) ]
K®i(n) = 4i(n) / E®j-1(n)
KTi(n) = a5(n) /7 EFj-1(n-1)
ri(n) = ri-1(n-1) + k®i(n) ej-1(n)
ei(n) = ei-1(n) +KTi(n) ri-1(n-1)
ETi(n) = ET§-1(n-1) - 81(n)? E&j-1(n)
E®i(n) = E®j-1(n) - 85(n)2 / EF§-1(n-1)

Bi-1(n-1) = Bj-2(n-1) + ri--1(n-‘l)2 7 ETi-1(n=1)

2.4 Fast Kalman Adaptive Digital Filter

24
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2.4.1 History

In the early 1960°'s, Kalman [21] and Kalman and Bucy [22] cast the linear
prediction problem as a recursive solution to a set of linear difference
equations which defined the system. This so-called Kalman filtering method
was applied by Godard [23] to channel equalization, and in that paper he
showed that the Kalman algorithm had a faster speed of convergence than the

gradient based algorithms in use at the time, but the algorithm required the

calculation of a p X p matrix at each time n, and therefore required 0(p?)
operations at each iteration. MHorf and Ljung [24]. and Falconer and L jung
[25] later expanded Kalman's algorithm by using the minimization of the sum
of squared errors as the error criterion, and exploited certain shifting
properties of the autocorrelation matrix to reduce the number of operations
for the Kalman algorithm to O(p). This formulation is known in the
literature as the Fast Kalman algorithm, and is mathematically equivalent to
the original algorithm proposed by Kalman and Bucy. It is the Fast Kalman

algorithm that is used in the comparisons made in this thesis.

2.4.2 Algorithm

As mentioned above, the Fast Kalman algorithm seeks to find a set of
filter coefficients at time n which will predict the desired response d(n) of
the system from past values of the input x(n) in such a way as to minimize the
total prediction error. The prediction error is derived from the known

response d(n) and is given by
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e(n) = d(n) - Ap(n-1)T xp(n) (2.25)

Here xp(n) is the vector of p previous inputs (p being the filter order).

Subscripts on variables will indicate their dimensions. The Fast Kalman

algorithm calculates the coefficient vector Ap(n) at time n which minimizes

the cumulative squared error up to that time:
n

L ld(k) - Ap(mT xp(k)]12 (2.26)
k=1

As mentioned in the section on Lattice filters, the minimum coefficient

vector is the solution to the Wiener-Hopf equation, which is

n
Ap(n) = Rpp(n)™! [T d(k) xp(k) ] (2.27)
k=1
where
n
Rpp(n) = I xp(k) xp(k)T +§ (2.28)
k=1

or the estimated covariance matrix. The parameter § is a small positive
constant which is used in practice to insure the nonsingularity of Rpp(n).

The Kalman algorithm as shown by Godard [23] then calculates the coefficient

vector Ap(n) recursively as

Ap(n) = Ap(n-1) + kp(n) e(n) (2.29)

where
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kp(n) = Rpp(n)~" xp(n) (2.30)

The point of the "fast™ Kalman algorithm is to calculate the Kalman gain
vector kp(n) recursively, without requiring the inversion of Rpp(n). The
algorithm takes advantage of the fact that at time n the vector xp(n) does not
get p new elements, but some number much less than p, in this case one. This
new element at time n will be designated i(n) and is x(n). At the same time
one element is discarded from xp(n-1) to form xp(n). This element shifted
out will be designated o(n). This shifting property of xp(n) is used to
derive an algorithm which is mathematically egquivalent to the equations
above, but which recursively calculates the Kalman gain vector kp(n) and the

inverse of the autocorrelation matrix Rpp(n).

The equations above assume that the input data is stationary, but in real
world situations the data is often slowly varying with time. It is possible
to cause the algorithm to track time variations of the statistics of the data
by causing it to “"forget” errors from the distant past. This is done by
introducing an exponentially decaying memory factor & in the squared error

calculation as in the lattice method. Thus

n
Tk [dk) - Ap(n)T xp(k) )2 (2.31)

k=1
where « is & positive number less than or equal to 1. The updated

coefficient vector then becomes

n

Ap(n) = Rpp(n)™1 [ Ta" X a(k) xp(k)] (2.32)
k=1
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where
n
Rpp(n) = T "Kup(k) xp(k)T + 3 (2.33)
k=1

and the same formula for the Kalman gain vector kp above applies.

The fast Kalman algorithm for calculating the Kalman gain vector kp(n)
without requiring the inversion of Rpp(n) directly is given below, and the
derivation of the algorithm making use of the shifting property of the input

can be found in [25]. The subscripts on the variables indicate the size of

the matrices.

Fast Kalman Algorithm
Initialization:
Bp(0) = Dp(0) = 0Op
E=4
kp(1) = 0p

xp(n) =0 forng 0

Time update (n=1to =):

er(n) = i(n) + Bp(n-1)7 xp(n)
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Bp(n) = Bp(n=1) - kp(n) er(n)

er(n)” = i(n) + Bp(m)T xp(n)

E(n) =*®¢E(n-1) + er(n) er(n)

kM~ is constructed by making the first element be
er(n) /E(n)

and the last p elements to be
Kp(n) + Bp(n)er(n) /E(n)

The first p elements of kM~ are then taken to be mp(n) and the last

element of kyq~ is taken as u(n).

c(n) = o(n) + Dp(n~‘i)T xp(n+1)

Dp(n) = [Dp(n-1) - mp(n) c(n)] 7 [1-u(n) c(n)]

kp(n+1) = mg(n) - Dp(n) u(n)

The filter coefficients are then updated as in Eq. 2.28

Ap(n+1) = Ap(n) + kp(n+1) e(n+1)

The complexity of this algorithm is much greater than the LMS algorithm
taking 0(10p) multiplications and 0(12p) additions per input sample. The
advantage of this algorithm over the LMS, however, is that the filter can
more rapidly track changes in the statistics of the input x(n). This is
advantageous in some situations, but in the case of distribution power line

noise, the Fast Kalman algorithm can actually track the input too fast.
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resulting in false estimation of the harmonic noise in the input. This

aspect of the Fast Kalman alogorithm is discussed in the section on results.
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Chapter III

Implementation

3.1 Introduction

The three algorithms compared in this thesis were chosen because of their
wide representation in the literature. Most results in the literature have
been generated from simulated data, with & fes reports of implementation on
actual speech data. In this thesis the algorithms were run on actual
distribution power line noise data, so the results are directly applicable to

distribution power line carrier systems.

3.2 Power Line Noise Sample

The data used to test the algorithms was gathered from a distribution
substation of a local power company. The data was gathered by low-pass
filtering the analog data and then sampling at a rate of 40 kHz. An analog
high pass filter was also used to eliminate the 60 Hz power frequency and all
harmonics below 1 kHz before sampling. Approximately 1.6 seconds of data
(65, S36 samples) was gathered by the sampling procedure. This represents a

good sample of data that is within the frequency range of all known power line
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carrier systems (that do not use 60 Hz transmission). It is obviously a very
small sample of all possible power line noise; however, it is sufficient to

examine the effect of the adaptive algorithms on power line noise.

In all of the experiments run, the original data was first demodulated to

bring the 100" 60 Hz harmonic (6 kHz) down to the baseband, and resampled at
a ratio of 16-to-1. This allows the length of the filters to be reduced by

the same 16-to-1 ratio to produce the same results as filters on the original

noise.

3.3 Algorithms

The three algorithms, LMS, LSL. and Fast Kalman, were coded in the C
programming language and run on a Vax 11/780 under 4.2 BSD UNIX™. A filter
length was chosen (either 128 or 256 taps) and the filters were allowed to
adapt to the power line noise for a specified number of samples. A version of
the data delayed by m samples was used as the input x(n), and the current
sample n as d(n). In the LMS and Fast Kalman cases, the delay m was allowed to
be specified, and the significance of its choice will be discussed later. In
the LSL case, the algorithm is by definition a 1-step forward linear
predictor, so the delay m is fixed by definition at 1. Other algorithm
parameters, such as the fade factor and the small constant used to keep the
matrices non-singular, were also specified and changed from experiment to
experiment. The effect of the different algorithm parameters is discussed in

the Results. The final filter weights were then stored for later use. The
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error output e(n) of the adaptation was plotted for future reference and for

inclusion in the section on Results.

The stored filter weights were then use to filter the original
(demodulated) noise data, using the delay m to specify the current input
point and the value to be predicted, as shown above in figure 3. The power
spectrum of the data was plotted before and after the filter was applied,
which allowed the reduction in harmonic noise to be seen as the maximum
signal power (in the frequency domain) before and after filtering.
Comparison was then made of the plots generated from the different

algorithms.

Reduction of the noise power alone is not a definitive measure of a
filter's performance, since a filter could simply 2ero the input and thereby
reduce the noise power. A better measure of the performance of a filter is
how well it can be used to detect digital data buried in the noise.
Simulation of phase-shift keyed (PSK) digitsl dats buried in the demodulated

power line noise data was used to test each filter.

3.4 Algorithm Parameters

Of particular importance to the correct functioning of all three adaptive
algorithms are the various algorithm parameters, such as filter length,
decorrelation delay, and allowed misadjustment. The three algorithms fall

naturally into 2 groups for the purpose of discussing parameters: the LMS on
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one hand and the LSL and Fast Kalman on the other. However there are some

parameters that are common to all three algorithms, and they will be

discussed first.

The parameters common to all three algorithms are the filter length p, the
length of data N on which the filter is allowed to learn, and the
decorrelation delay 4. The decorrelation delay functions differently in the

2 groups of algorithms, so it will be discussed separately for each group.

For best results, the number of taps of the filter must be long enough to
span at least one period of the 60 Hz spike train, and preferably more than
one. The typical number of taps used was either 128 or 256, allowing 3 and 6
periods of the 60 Hz spike train to be spanned. These seemed to work well,
even though it can be shown that not all taps are necessary for the canceling
of the 60 Hz harmonics, so that some can be constrained to be zero.

Investigation of this case is a current research topic.

The length of data N on which the filter is allowed to learn is determined
by the length of time needed for the algorithm to converge. This time is
different for the three algorithms, and different depending on other
parameters as mentioned below. In general. the LHS algorithm needs about
2500 samples (1 second) to converge, and the others need anywhere from 500
(.2 seconds) to 1500 (.6 seconds) samples, depending on other parameters.
Many different combinations of parameters were tried with different values

of N, and the results are summarized in the next chapter.

The LMS algorithm has two parameters unigue to it: w the parameter

affecting convergence rate and level of misadjustment, and 4. the
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decorrelation delay. At very small values of u around .001, the LMS
algorithm can take many seconds to converge. A value of 1.0 was used for most
experiments, which allowed the filter to converge in about 2500 samples (1
second). The decorrelation delay has been found to be important to the LMS
algorithm, with delays of more than one 60 Hz period (41 samples) required to
adequately cause the LMS algorithm not to adapt to the white noise, which may
have some short-term correlations. A decorrelation delay of 82 was used for

most experiments.

The other two algorithms, LSL and Fast Kalman, have several parameters
specific to them. They aree¢, the fade factor, A, the decorrelation delay,

and 94, the small constant used to insure non-singularity of the
autocorrelation matrix R. The parameter & is defined as " for the Fast

Kalman algorithm and (1-&)" for the LSL algorithm. Both will be called ac

here with no loss of generality.

The fade factor ¢ has been shown in the literature not to be very
critical, as long as it is close to 1, Values from .9 to .9999 were used in

the experiments, with .399 and . 9999 being used most often.

The decorrelation delay A was not found to be as critical in the LSL and
Fast Kalman algorithms as it is in the LMS algorithm. The LSL algorithm by
definition, only allows a decorrelation delay of 1. The Fast Kalman
algorithm however, can use any decorrelation delay desired, and setting it
to 1 caused the Fast Kalman algorithm to behave in the same manner as the LSL

algorithm. Setting  to something other than 1, such as the 82 used in the
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LHS algorithm, did not seem to affect the performance of the Fast Kalman

algorithm much, especislly not as much as varying d.

The small constant used to keep R from being non-singular, 3, was found to
be one of the most critical parameters of the LSL and Fast Kalman algorithms.
This parameter also determines the amount of misadjustment these algorithms
will have at convergence. Very small values of 4, in the range of .001,
caused the algorithms to converge so fast with so little misadjustment that
they were unable to separate the 60 Hz harmonics from the white noise very
well; that is, the stop bands were very broad. Figures S and 6 show the power
spectrums of the LSL and Fast Kalman filters which were allowed to adapt with
a 3 value of .001. Note the lack of well defined spectral peaks at each 60 Hz
harmonic, and the relatively high level of “noise" at the edges of the 60 Hz

peaks that do exist.
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Fast Kalman Adaptation with 3 value of . 001

On the other hand, values of 3 around 0.1 allowed the algorithms to
separate the 60 Hz harmonics from the white noise, while slightly increasing
the time of convergence, as will be shown in the Results section on
convergence rates. Figures 7 and 8 show the power spectrums of the LSL and
Fast Kalman filters which were allowed to adapt with a d value of 0.1. Note
the better resolution of the 60 Hz harmonics and the lower levels of “noise"
at the edges of the peaks. The results of comparison of bit error rates of

these tio choices of @ are detailed in the Results.
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Figure 8
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Chapter IV

Results

4.1 Algorithm Comparison Criteria

4.1.1 Rate of Convergence

Comparison of the rate of convergence of these adaptive algorithms is by
nature subjective. The error residual is plotted while the filter is
adapting, and by examining the plot, it can be noticed that the error will
eventually resch a “steady-state” range of values. The variation in this
range is dependent on the level of misadjustment that the algorithm is
allowed based on the parameter u in the LMS algorithm and the parameter 4 in
the LSL and Fast Kalman algorithms. The convergence times mentioned below
were chosen by looking &t the plots of the error residual and choosing the

approximate spot at which the error sppeared to reach this steady-state

condition.

4.1.2 Reduction of Noise Power

After the algorithm had been allowed to adapt to the power line noise, the

filter weights were frozen and then used to filter the original data. The
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power spectrum of the original data was then compared to the power spectrum
of the filtered noise, and the difference in peak power between the two was
taken as the total reduction of peak noise power. This reduction in peak
power is not a complete measure of the performance of the filters, however,
because the filter could behave in such a way as to filter out more than just
the 60 Hz harmonics of the noise, in which case the noise power would be
reduced, but signal power would also be reduced, which is undesirable. Since
in most power line communications systems the signal transmitted is digital
data, this reduction of the signal power could result in a higher bit
detection error rate. Simulation of this condition is the subject of the

next section.

4.1.3 Bit Error Rate

Once an algorithm was run on the distribution power line noise and filter
coefficients obtained, the coefficients were saved and used as input into a
program which simulated a digital signal in PSK format superimposed on the
original (demodulated) noise. The program was used to add the PSK signal at
the baseband frequency to the noise, and then the signal plus noise was
filtered using the saved filter weights. A matched filter was then used to
detect the bits after filtering, and the number of errors between the
detected bits and the original bits was reported as the bit error rate (BER).
This BER is used as a comparison criterion for the different algorithms

because it shows hoe well the resultant adaptive filter attenuated only the
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harmonic noise, and not the signal. This is the situation of interest in

distribution power line carrier communication systems.

4.2 Algorithm Results

Before mentioning the results of the algorithm comparisons, it is
necessary to give information about the noise sample used in the experiments.
Figure 9 shows the time domain plot of the first 1024 samples of the noise
sample as gathered directly from the distribution power line. Note the
periodicity of the spikes occurring at 60 Hz intervals (666 samples). Figure
10 is the time domain plot of the original data after demodulation and
re-sampling. The 60 Hz spikes can now be seen even more clearly, since they
occur only 41 samples apart. Figure 11 shows the power spectrum of the
demodulated data. This will be used later in comparison of the reduction of

noise power of the filters.
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Power Spectrum of Demodulated Noise

4.2.1 Rate of Convergence

Much work has been done on the rate of convergence of the LMS algorithm,
and it is well known that it does not converge as fast as the LSL or Fast
Kalman algorithms. This known characteristic of the LMS algorithm was
confirmed in the experiments run on the power line noise sample. Figures

12-14 show examples of the error residual during adaptation of all three
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algorithms. The long convergence time, about 2500 samples, of the LMS filter
can be noted, as well as the relatively short convergence time of the other
two aslgorithms. The plots shown are for adaptations which produced filters
which gave approximately the same bit error rate. As can be seen, the LSL and
Fast Kalman algorithms converge in about 30% of the time of the LMS

algorithm.
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Convergence Plot, LMS
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Of particular importance, as mentioned in section 3.4 above, is the change
in the rate of convergence when different values of the misadjustment
parameter d are used in the LSL and Fast Kalman slgorithms. Figures 13 and 14
above show the plot of the error residual for the LSL and Fast Kalman filters
with a 3 value of .1. The gradual “leveling of f“ of the error can be clearly
seen. Figures 15 and 16 show the same filters with a & value of .001. No
gradual “leveling off"“ can be seen; the filter adaspts so fast to the harmonic
as well as white noise input that the error residual seems to be widely

varying continually. As mentioned below, this low value of d slso causes the
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resultant filter not to pick out the 60 Hz harmonics very well, giving a

filter that will attenuate any desired signal components, resulting in a

higher bit error rate.
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Convergence Plot, LSL, 8 = .001
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4.2.2 Reduction of Noise Power

All three algorithms produce approximately the same reduction in noise
power when the optimal parameters for each is chosen. Figure 17 shows the
power spectrum of the demodulated noise sample after being filtered with the
LMS filter weights. The reduction in peak noise power was about 11 dB.

Figures 18 and 19 show the same plots for the LSL and Fast Kalman algorithms.
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These two filters were able to achieve a reduction of 16 dB and 15 dB,

respectively.
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Noise Power Reduction, LMS
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Noise Power Reduction, Fast Kalman

4.2.3 Error Rate

The bit error rate (BER) is perhaps the most significant measure of the
performance of any filter on power line noise, either adaptive or fixed,
since the objective of power line communications systems is to transmit and
receive digital information. As a conseqguence, many experiments on the BER
of the different algorithms were run. First the simulation of digital bit

detection was run without any filtering for use as a reference for comparing
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the absolute performance of the filters. Four different signal-to-noise
(SNR) ratios (RMS signal to RMS noise) were used: -24 dB, -27 dB, -30 dB, and
-33 dB.

Since much work has been done on the LMS algorithm by Trussell and Wang, as
well as others, only the best LMS adaptation was used in comparing the three
filters. The parameters of the best LMS adaptation were a filter length of
256, adaptation time of 2500 samples, a decorrelation delay of 82 samples,

and 8 convergence and misad justment parameter of 1.0.

As mentioned above, the misadjustment parameter 3 greatly influences the
performance of the LSL and Fast Kalmaen algorithms. BER calculations were
performed on LSL and Fast Kalman filters which were adapted using a 3 of . 001
and .1, each with a filter length of 128 and 256. The decorrelation delay
used in the LSL algorithm was 1, and in the Fast Kalman algorithm was 82. The

fade factor of both algorithms was set at .999g.

The results of all three algorithms, as well as the case of no filtering
are presented in the tables below. It can be easily seen that the
misadustment parameter § of the LSL and Fast Kalman algorithms has a great
impact on the BER of the filter. It can also be noted that the LSL and Fast
Kalman filters give performance very close to the LMS algorithm, yet with

much faster convergence, as noted above.



Table 1
BER for PSK signal

No filtering and LMS filtering

SNR (dB) Algorithm BER (%
-24 None 0.0
LMS 0.0

-27 None 1.6
LMS 0.0

-30 None 21.6
LMS 3.8

-33 None 37.3

LMS 23.9
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LSL and Fast Kalman filtering, 256 taps
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3.3
5.0
8.8
23.4

0.0
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10.0
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Table 3
BER for PSK signal

LSL and Fast Kalman filtering, 128 taps

Kalman
BER (%X SNR_(dB) [} BER(%
3.2 -24 . 001 3.2
4.0 =27 . 001 4.0
8.5 -30 .001 8.5
26.7 -33 . 001 25.9
1.6 -24 .0 1.6
3.6 =27 .0 3.6
8.1 -30 .01 7.7
24.7 -33 .01 24.7
0.0 =24 A 0.0
1.2 =27 i 0.4
6.1 -30 A 6.1
24.7 -33 1 25.5
0.0 -24 i.0 0.0
0.4 =27 1.0 0.4
12.6 -30 1.0 13.0
20.8 -33 1.0 30.8
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Chapter V

Conclusions

5.1 Summary

In this thesis we have attempted to compare the performance of three
different adaptive digital filters on distribution power line noise: the
Least Mean Square (LMS), Least Square Lattice (LSL), and Fast Kalman
algorithms. Studies have been done on the performance of these algorithms in
other application areas, but little has been done on these algorithms in the
power line noise environment. Comparison of the algorithms was done in three
areas: rate of convergence.'reduction of noise power, and reduction of bit

error rate.

The LMS algorithm has been widely studied, and its characteristics are
fairly well know. It was found that the LHS filter performs in a manner that
would be expected from the literature in the power line noise environment.
The filter is the slowest of the three to converge., but will give slightly

better results than the other two if allowed time to converge completely.

The LSL and Fast Kalman algorithms were seen to perform almost as well as
the LMS algorithm, while requiring much less time to converge to optimal
performance. It was discovered that the parameter governing misadjustment

is a critical parameter in the power line noise environment. The algorithms
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must be allowed a larger misad justment and thus slower convergence than would
be chosen from reading the literature in order to keep the filters from
adapting to “perceived* short-term correlations in the white noise. Even
with the slower convergence, however, the LSL and Fast Kalman algorithms

converge at least twice as fast as the LMS algorithm, while giving similar

bit error rate results.

5.2 Problem Areas

One of the major problems in producing & real-time filter using the LSL or
Fast Kalman algorithm is the number of multiplications/divisions needed per
input sample. The algorithms need 0(10p)-0(13p) multiplications/divisions
per input sample, and at high data rates this can be prohibitive. Some means
of demodulating the input before adaptation could be used, as was done in the
simulation here, or some form of multiprocessor implementation could be used
to perform the arithmetic in the required amount of time. A low-cost
solution to this problem will be necessary before these filters will be able

to find widespread use in power line carrier communications.

Another problem area is the effect of arithmetic roundoff errors in the
calculation of the filter coefficients. It is conceivable that roundoff
errors could cause the filters to become unstable, giving useless results.

Results from other sources seem to indicate that the LSL algorithm will be
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the least sensitive to this problem, but it is not known how well any of the

algorithms will perform with limited word-size arithmetic.

5.3 Areas of Future Research

As mentioned above, arithmetic roundoff error is an area that will need
research in order to determine it's effect on the stability and performance
of the adaptive algorithms. Obviously. the smsller the word size needed to
perform the arithmetic, the faster and cheaper the hardware can be. Thus

some quantization of the effects of roundoff on the filters would be

desirable.

Another area that could be addressed is the use of adaptive filters that
assume an autoregressive-moving average (ARMA) model for the input noise.
This would lead to an infinite impulse response (IIR) filter rather than an
FIR filter, but a smaller number of coefficients could possibly give the same
results as the FIR filter if the power line noise is more accurately modeled
in this way rather than as an AR process. The adaptation calculations for an
IIR filter will be at least as complex as for the FIR filters presented here,
and probably more so, but the prospect of better performance with fewer

coefficients is worth investigating.
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Appendix

LSL and Fast Kalman Filters

The following are the listings of the subroutines used to generate the
results discussed in this thesis. There is one subroutine for LSL adaptation

and one for Fast Kalman. The routines are written in C and were compiled and

run on 4.2 BSD Unix .

LSL Routine

PO T VU VU UV VU U VU U UV VRV RV R VRV E VUV CE VR VRV VEVEVEVEVETR VA TR VEVEVEVEVESEVEVE 'S B RV SR SRR R S R SR S

0000000000 OOONDODODODOO0OO0O0O00O0O0

Least Squares Lattice
Adaptive Digital Filter

Constrained or Unconstrained

Calling convention:

1sl_init is called once to set up the data structures and then
lsl_pt is called once for each data point.

lsl_init(d.p,alpha.epsilon.tapper,var)

Parameters:
d : pointer to 1sl structure defined in 1lsl.h
p : Filter order: number of weights. INT



0000OOOOOODOOOOOOOOOOOOOOODOOOOOOOOOOOOOOOOOOOOOOO

alpha
epsilon

tapper

var

67

Fade factor. HMust be >0.0 but <1.0.
Convergence value. Small FLOAT number.

Period of taps that are not constrained.
The first period is assumed to start at
tap 0. 0 -> no constraining. INT.

Number of taps before AND after the
unconstrained taps that are not to be
constrained. INT.

1sl_pt(data, output, d, wt, freeze)

Parameters:

data
output

d

wi

freeze

Input data point. FLOAT.
Error value at this point. FLOAT. Qutput only.

“Correct” data value at this point. FLOAT.
Input only.

Filter weights at this point. P elements long
OUTPUT ONLY. FLOAT.

Flag to indicate when filter weights are to be
calculated. 1-> calculate. INT.

Notation and variable names are taken from the paper by
Hodgkiss and Presley, IEEE Transactions on Acoustics, Speech, and
Signal Processing, Vol. ASSP-2Q, No. 3, June 1981 pp.710-721

Since only the values at time N and N-1 sre needed for any variables,

N.X 2 is used to point to the correct place in the arrays
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¢ Restrictions:

c

c filter may not be of order > 512; all arrays are sized to this

c

c

¢ ¥ritten by: James H. Wiggs

c

c
cWWW“mWW”WW
»/

#include <math.h>
#include <stdio.h>
#include </ncs/jhw/1sl/1pt/1sl.h>

1sl_init(d, p, alpha, epsilon, tapper, var)

float alpha, epsilon;
int p. tapper, var:
struct 1lsl_data *d;

{
int i, 1.k
if(p > MAX_ORDER) return(0):
/&
store values away for later use
»/
d->p = p:
d->alpha = alpha;
d->n = -1; /* no input yet */
d->tapper = tapper:
d->var = var;
/«
c
¢ init; mod(-1,2) =1
c
»/

for(i=0;i<p;i++) {
) d->r(i}{1] = 0.0 :

for(i=0;i¢p;i++) { ‘
d->esupr(il{1] = epsilon :
);
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for(i=1;i<=p;i++) {
d->delta(i] = 0.0 ;

for(i=1;i¢p;i++) {
for(k=0; k<i; k++) {
d->b[k][i][1] = 0.0 ;

}

return;

#define I (i+1)
#define MINUST O
float  a[MAX_ORDER+1][MAX_ORDER+1];

1s1_pt(data, output, d, wt, freeze, pred, ke, kr)

float data, /% input point =/
*output, /®* output point =/
wt[]. /= filter coefficients =/
pred; /% value to predict =/
struct 1sl_data «d; /* 1lsl data from init call =/
int freeze; /» flag to indicate weight calculation. 1->calculate */
/* weights:; 0 -> do not calculate weights %/
float ke[].kr[]; /= Reflection coefficients %/

{
double sum_a, sum_b :
int i, ). k. n, p, place;
float e, esupe, alpha, ksupe_sav[MAX_ORDER+1), ksupr_sav[MAX_ORDER+1];
float delta[MAX_ORDER+1];
float  r[MAX_ORDER+1], forw[MAX_ORDER+1];
float  rn[MAX_ORDER+1], en[MAX_ORDER<1];
float  ksupe, ksupr;
/c
use this input value to generate new filter coefficients
®/
p = d-o>p;
d-on++;
n = d->n;
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d->input{n % p] = data;

/d
Set up (abs(n-1) ¥ 2)
*/
place = abs(n-1) % 2;
alpha = d-)>alpha;
for(i=1:i<¢=p;i++) delta[i] = d->delta[i];
/l
c
¢ 1init first stage of lattice
*/
e = data;
d->r[(0]{n % 2] = data;
esupe = (1.0-alpha)*d->esupr[0][place]
+data*data;
d->esupr[0][n ¥ 2] = esupe ;
d->gamma{MINUS1]}[place] = 0.0 ;
/G
c

¢ perform update of values of lattice for each stage of the lattice
c

»/
for(i=1;i<=p;i++) {
delta[i] = (1.0-alpha)»delta[i]
- (e *d->r{i-1][place] ) /
( 1.0-d->gamma[I-2][place] ) :
/%

Is this set of reflection coefficients to be constrained to 07
»/
if(d->tapper != 0 8&& (((i % d->tapper) > d->var) &
((i ¥ d->tapper) ¢ (d->tapper - d->var)) ) )
{

ksupe
ksupr

}

else

if (esupe == 0) {
ksupe = 0.0;

else { _
ksupe = delta[i] / esupe:

}
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»/

if (d->esupr[i-1][place] == 0.0) {
ksupr = 0.0;

else

{

ksupr = delta[i] / d->esupr(i-1][placel:

y o/

d->r(i
e =e

end of "else if not constrained..."™ */

1[n ¥ 2] = d->r[i-1][place] + ksupe * e;
+ ksupr * d->r(i-1][{placel]:;

if (esupe == 0.0) {
d->esupr[i][n % 2] =

else {

d->esupr[i][n % 2] = d->esupr(i-1]{place] -

delta[i]»deltal[i] /

) esupe;

if(d->esupr{i-1][place] == 0.0) {
esupe = 0.0;

else {

esupe = esupe -((delta(i]~delta{i])/

}

if(d->esupr(i-1]{place] ==
d->gamma(I-1][place] = 0.0

else {

d->esupr[i-1]{place] ):

0) {

d->gammal[I-1]{place] = d->gamma{I-2][place] ¢

d->r[i-1]}{place]*
d->r(i-1][place] 7/
d->esupr[i-1]{place].

Save ksupe and ksupr

ksupe_sav[i] = ke[i-1]

ksupe;

ksupr_sav{i] = kr[i-1] = ksupr:

} /=

soutput =

End of for i=1 top */

/* Return prediction error

©/
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if(freeze == 1) {

/as
c
¢ return the final filter coefficients
c
»/

r(o] = 1;

for(n=1;n<=p;n++) {

rn{n] = 1;

for(k=n-1:k>0;k--) rn[k] = r[k-1] + ksupe_sav[n]*foru[k];
rn{0] = ksupe_sav[n]:

en{0] = 1;
for(k=1.k<n;k++) en[k] = forw[k] + ksupr_sav[n]*r(k-1];
en(n] = ksupr_sav[n];

for (j=0; j<=p: j*++) {
r{j] = m{jk
) fore(j] = en[j];
}
for(k=1;k<=p;k++) wt[k-1] = forw[k];

} /% end of if freeze... =/

for(j=1; j<=p:; j++) d->deltal[j] = delta[j].
} /* End of LSL algorithm »/

12
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Fast Kalman Routine

Routines to implement Fast Kalman filtering.

Calling sequence is:

Call kalman_init once to initialize the data structures,
then call kalman_pt once for each data point.

kalman_init(ptr, N, delta, lambda, delay)

ptr

N

delts
lambda

delay

kalman_pt(ptr.y, e, wt)

ptr

wt

dk

pointer to kalman_data structure defined in
kalman. h

Number of taps in filter

Small real number (>0) to be used to make
sure the arrays are non-singular

Fade factor. Should be < 1.0 but > 0.0
NOT USED.

Pointer to kalman_data structure defined in
kalman. h

Current date point. FLOAT
Current error. returned by the routine. FLOAT

Array of filter weights returned by the
routine for this point. FLOAT

Value to use as the “correct” value for this
point. FLOAT

NOTE: All notation is taken from the paper by Falconer and L jung
IEEE Transactions on Communications, Vol. COM-26, Oct. 1978.
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#include {/ncs/3hw/1sl/1pt/kalman. h>
#include {stdio.h>

kalman_init(ptr, N, delta, lambda, delay)

struct kalman_data “ptr;
int N, delay:;
float delta, lambda;

{
int )
for (j=0; j<N; j++) ptr->AN[j] = ptr-)DN[j} = 0.0; .
for (j=0; j<=N; j++) ptr->kn[j] = ptr->xn[j] = ptr->CN(j] = 0.0;
ptr->Epp = delta;
ptr->taps = N;
ptr->n = -1;
ptr->lambda = lambda;
return;
}
#define tap_len j=0; j<ptr->taps; j++
#define mn kn

kalman_pt(ptr, y. e, et, dk)

struct kalman_data “ptr.
float y. “e wt[], dk:

flost temp, epsilon, epsilon_prime, rho, mu, eta;
int ). taps:

14
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taps = ptr->taps;

/«
Return newest error and filter weights
»/
temp = 0.0;
for(tap_len) temp = temp + ptr->CN[j] » ptr->xn{jl:
»e = dk - temp; /* error at pt. n =/
/6
Calculate new weights
=/
for(tap_len) ptr->CN(j] = wt[j] = ptr->cN[j] + ptr->kn{j] = =e:
/u
Start update of kalman gain vector kn
*/

/* epsilon =/
temp = 0.0;
for(tap_len) temp = temp + ptr->AN[j] = ptr->xn{jl:
epsilon = y + temp;

/* AN array */
for(tap_len) ptr->AN[j] = ptr->AN[j] - ptr->kn[j] = epsilon;

/% epsilon prime =/
temp = 0.0;
for(tap_len) temp = temp + ptr->AN[j] » ptr->xn[jl;
epsilon_prime = y + temp;

/% Epp array */
ptr->Epp = ptr->lambdas * ptr->Epp + epsilon * epsilon_prime;

/b
calculate km vector that will be partioned intc mn and mu
®/
}f(ptr-)Epp 1= 0)

for(j=taps; j>0:; j-=) ptr->kn(j] = ptr->kn[j-1] ¢
ptr->AN[j-1] » epsilon_prime / ptr->Epp:;
ptr->kn{0] = epsilon_prime / ptr->Epp;

else

tC
for(j=teps:; j>0; j==) ptr->kn[j] = ptr->kn[j-1];
ptr->kn[0] = 0.0;
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}

Partition. km (kn) into mu and mn. Pull out mu, leaving kn[0...] as mn

VA

»/
mu = ptr->kn[taps];

/* Shift xn, adding new point as xn[0] =/
rho = ptr->xn{taps-1];

for(j=taps-1. 1>0; j--) ptr->xn[j] = ptr->xn[j-1];
ptr->xn[0] = y:

/* eta =/
temp = 0.0;

for(tap_len) temp = temp + ptr->DN[j] * ptr->xn[j]);
eta = rho + temp;

/* Update DN array */
for(tap_len) ptr->ON[j] = (ptr->DN[j] - ptr->mn[j] * eta) /
(1.0 - mu ~ eta);

/% Update kalman gain vector for next point <=/
for(tap_len) ptr->kn[j] = ptr->mn{j] - ptr->ON[j] = mu;

pLr-d>n++;

return;
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Kalman Filter Common File

#define MAX_KALMAN 1024

struct kalman_data {

float

int

AN[MAX_KALMAN],
DN[MAX_KALMAN],
CN[MAX_KALMAN],
kn{MAX_KALHAN],
xn[MAX_KALMAN],
lambda,

Epp:

n,

t8ps.

delay,

tapper,

var,

LSL

#define MAX_ORDER 256

struct lsl_data
float

float

{
r[MAX_ORDER+1][2].
e,
esupr[MAX_ORDER+1][2],
esupe,
delta[MAX_ORDER+1],
gamma[MAX_ORDER+1]}[2]).

VA
VA
[/
/b
/w
/w
/»

/cb
/»

/&

temporary recursion array */
temporary recursion array */

tap weight array »/
Kalman gain array 4
the last N inputs ~/
fade factor -/
temporary recursive error *®/

number of points »/
number of taps in filter */

period of taps not to be
constrained »/
number of taps on each

side of tapper not to be
constrained “/

Filter Common File

/®
/*
Y Aud
/®

reverse linear predictor value */
forward linear predictor value */
(E super r) *»/
(E super e) =/

/® intermeditate values */

b(MAX_ORDER+1][MAX_ORDER+1][2], /*backward filter coefficients®/
a[MAX_ORDER+1][MAX_ORDER+1], /*forward filter coefficients ®/

ksupe,
ksupr ;

input [MAX_ORDER].
alpha;

/*
VA

last p inputs ®=/
fade factor */
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int n, /* current data point (mod p) =/
p. /% filter length (number of weights) %/
tapper, /* Tap period that is not to be
constrained */
var; /% Number of taps on each side of

tapper that are not to be

constrained %/
} ; /% end of 1lsl data structure %/



