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Abstract

WIGGS, JAMES H. Comparison of Ad8pti ve Algorithms for Cancellation of

Harmonic Noise on Distribution Power Lines. (Under the direction of Dr. H.

J. Trussell.)

Adaptive digital filters have been used for many years in speech

processin~ echo cancellation, and other areas. The ability of adaptive

filters to remove harmonic noise from a contaminated signal, especially when

the noise is slowly varying with time, is of special interest in the field of

distribution power line carrier communications. This thesis compares the

effectiveness of three of the more well-known adaptive digital filter

algorithms at removing 60 Hz harmonic noise from an actual distribution power

line noise sample: the Widrow-Hopf Least Mean Square (LMS) algorit~ the

Least Square Lattice (LSL) algorit~ and the Fast Kalman algorithm. The

algorithms are compared in terms of convergence rate, overall noise power

reduction, and the ability to reduce the bit error detection rate (BfR) of

phase-shift-keyed digital data in the noise.

Results indicate that the LMS algorithm. while the slowest to converge,

has the best BER performance. It is shown that the performance of the LSL and

Fast Kalman algorithms is strongly dependent on the value of the

misadjustment parameter; a value of .01 for this parameter causes very poor

BER performance. while a value of . 1 causes the algorithms to perfonm almost

as well as the Lt1S algorithm, but with much faster convergence rates.
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Chapter I

Introduction

Digital filtering has begun to find widespread use in many applications,

ranging from seismic data to speech processing. It has some significant

advantages over standard analog filtering., including the capability of

analyzing and re-analyzing stored data, and the capability of constructing

filters that are not able to be realized by analog means. This does not mean

that digital filters are perfect for all applications; on the contrary,

analog filters, being much cheaper to realize in the majority of cases, will

continue to coexist with digital filters for the foreseeable future.

Moreover, analog low-pass filters rIlJst be used as front-ends to digital

filters to limit the bandwidth of the filtered signal to avoid aliasing

effects of samplingo However as digital hardware (especially AID

converters) comes dow" in price and increases in performance, digital

filters will be used more and more for filtering tasks as digital hardware

takes over more and more of the traditional analog worko

In this thesis, we .ill examine the use of adaptive digital filters in the

area of noise reduction for power-line carrier conmunications systems.

Power-line conmunications is i~lemented by injecting a signal (usually

digital) on to the existing transmission or distribution power lines owned by

the public utilitieso This signal is then detected at a receiver elsewhere

on the power system, and the signal is decoded and acted upon. This
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communication medium is used currently for load management, remote meter

readin~ 8nd distribution equipment monitoring 8nd control. It is also being

used for voice-gr8de communications in remote housing areas, and in the home

for local control 8nd monitoring of 8ppli8nces.

1. 1 Po.er-Line Carrier Noise Characteristics

Power lines are traditionally a very noisy environment in which to

transmit signals, and are divided into 2 broad categories by the utility

industry: trans~ssion lines and distribution lines. Transmission lines are

those lines which carry power from the gener8tor to the distribution

substations, where the power lines branch out to individual homes and are

called distribution lines. The noise characteristics of these 2 types of

power lines are different.

Because the power line is used to transmit power from the generator to the

home, it obviously contains (in this country) 60 Hz signals and its

harmonics. All manner of devices are connected to the distribution po.er

lines. Each device injects some signal back on to the po.er lines. Generally

these signals are not very large in relation to the primary 60 Hz voltage, but

_hen it is desired to transmit 8 control signal on this same transmission

rneditn. the stray signals become significant noise problems, especially .hen

control signals are transmitted over a distance long enough to cause

substantial attenuation of the signal, thus decreasing the signal-to-noise

ratio. The largest produoers of noise on the distribution power line are
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switching devices, such 8S light dinners, which produce voltage/current

spikes synchronously with the 60 Hz po.er [1]. Universal motors and other

coomon household appli8nces [2] also contribute to the noise on the

distribution power lines. These sources of noise can completely mask any

communication sign81 if not removed from the line by some type of filtering

technique.

Transmission power linesl ho.everl do not have consumer or industrial

s.itching devices connected to th~ because they are very high voltage lines

used exclusively to carry po.er from the genefator to the distribution

substations. They are therefore much cleaner than distribution power linesl

and make a better transmission medium. Ho~eYerl most current interest in

po.er line conmunic8tions is directed to.ard the distribution power line. so

that the utilities may have access to individual homes and conmercial

custoeers.

1. 2 Filtering of Power Line Noise

'.2. 1 Current Techniques

CurrentlYI the removal of distribution po.er line noise is accomplished

almost exclusively .ith standard analog filters. Since most communications

systems are only interested in a very narrow band of signals, very high Q

bandpass filters can be used to filter out all noise outside of the
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tr~nsmission frequency band. This C8n obviously provide satisfactory

performance, since there 8re systems on the ~rket tOd8y .hich utilize this

technique. Note ho.ever, that this technique does not remove any noise

components in the frequency band of interest. Thus if there is a device

producing a large level of noise in the frequency range of interest, this

type of fil ter .ill not remove that noise.

Another technique used today is to i"",lement the transmission and

detection of signals based on the zero-crossings of the 60 Hz po.er signal.

This, ho.ever, leads to an absolute maximum data rate of 120 baud, and most

systems use much lower data rates.

Since most of the noise on the distribution PO_Sf line is 60 Hz harmonics,

a notch filter can be used which attenuates each 60 Hz harmonic in the

frequency band of interest. The drawback to this technique is that the 60 Hz

po.er signal can vary about t .08' [3]. This is not much of a problem at low

frequencies, but at high frequencies the variation becomes significant. For

example, at 60 Hz, 8 t. 08' variation in the 60 Hz harmonics causes the

frequsncy to vary from 59.952 Hz to 60.048 Hz, 8 bandwidth of only .096 Hz.

At the 200t h harmonic (12 kHz) however, the frequency varies from 11.99 kHz

to 12. 01 kHz, a bandwidth of 19. 2 Hz.

1.2.2 Digital Techniques

An alternative approach to the current techniques of filtering

distribution power line noise is to use some type of digital filtering, This

has an intuitive appeaL in that most applications of power line carrier
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cOI1II1Unications use some kind of digital microprocessor as the hard.are in the

receiver. A very high Q digit81 filter could be designed to do eX8ctly what

its analog counterp8rt does currently, but the cost of such an appro8ch would

almost certainly be higher than the current one, because of the additional

AID converter required and the need for an analog anti-aliasing filter.

Without some increase in perfonmance or other added benefit~ it is difficult

to justify this Increased expense.

Another approach involves the use of adaptive digital filters to

characterize the noise on the power line before transmission takes place, and

then use the resulting filter to clean up the signal at the receiver during

reoeption. The advantage of this approach is that correlated noise in the

frequency range of interest can be reduced, thus increasing the

effectiveness of the filter and increasing signal-to-noise ratio. Some

studies have already been done in this area, notably [1]. The results have

been very positive, and this thesis is an extension of the .ork being done in

this aree. Adaptive digital filters have been used in a variety of

applications including speech processing [4-7], radar/sonar [8], and EKG

signal processing [9-10]~ as well as others.

1. 3 Outline of Thesis

This thesis describes the basic theory and implementation of adaptive

digital filters for distribution palter line carrier noise cancellation.

Chapter 2 describes the theory behind three types of adaptive digital
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filtering techniques - the ~idro.-Hopf Least Mean Squares (LHS) algorit~

the Le8st Squares Lattice (LSL) algorit~ and the Fast Kalman algorithm.

Chapter 3 describes the implementation of these ~lgorithms for the current

experiments on distribution power line noise, and Chapter 4 presents the

results of the experiments for each algorithm. Chapter 5 concludes .ith a

summary of the major results and indicates problem areas and areas of future

research.
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Chapter II

Theory

2. 1 Introduction

2. 1. 1 System Modeling

The concept of adaptive digital filtering dr 8.S heavily from the fields of

digital filtering and linear prediction. In the cases of interest here, the

system to be modeled by adaptation is assumed to arise from a finite-order

discrete-time linear system driven by white noise [11]0 That is to say, the

signal is assumed to have been generated by passing white noise through a

linear filterB either of the all-poleD allomzero, or pole-zero type. Systems

so generated are called auto-regressive (AR).. moving average (HA). or

auto-regressive moving average (ARHA)D respectively [12]. These systems can

be modeled by all-zero, all-pol~ or pole-zero filters of the same order as

the filter used to generate the system. It is the goal of modeling to

generate the ·whitening~ filter for a given system of interes~ which when

applied to the output of the AR process will produce 8 white noise sequence.

In this work we are interested in modeling the power line noise as an AR

process plus white noise, as shown in figure 1. This leads to an all-zero
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.hitening filter which C8n then be used to c8ncel the correlated signal

components of the system.

• ,(n)

w(n) ••• -_7

Figure 1

AR Process Generation Hodel

x(n)

Note first of all that this assumption of 8 signal that has been produced

by a linear filter implies that some of the signal components in the system

are correlated. The best that 8 .hitening filter can hope to do is predict

all correlated components of a system; white noise cannot be predicted.

Thus an adaptive filter cannot be used to reduce the white noise in the

frequency band of interest to power line carrier COOIIMJnic8tions.
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The whitening filter takes the fonm of a linear predictor, .hich can be

implemented 85 8 linear transversal FIR digital filter. A linear predictor

h8S the form

p

y(n) = r a1 x(n-i)
i=1

(2.1)

where n is the index corresponding to time, p is the order of the filter,

and the 8i are the f11 ter coefficients. The linear predictor tries to

predict the value of the desired sequence d(n) from a linear combination of

past inputs, x(n). The difference between the predicted value of x(n) and

the desired value is called the prediction error, and is defined 8S

p
e(n). d(n) - y(n) = d(n) - I ai x(n-i)

i=1
(2.2)

How the desired value d(n) can be obtained is discussed in the next

section. This error e(n) is used by all adaptive algorithms to drive the

adaptation process. This is shown pictorially in figure 2.



d(n) ----------------aJ+t-----.....-.... e(n)

10

x(n) ----....... Filter

Figure 2

The Adaptive Process

All adaptive modeling techniques seek to "minimize" the error term e(n) in

some least-squares sense. The different techniques presented here use

different methods and assumptions to minimize the mean square error. These

methods and asslJDPtions are discussed in later chapters.

The entire system presented can be shown as in figure 3. A filter 1s

allowed to adapt to the po.er line noise by one of the adaptive techniques

described, and the resulting FIR filter is used to predict the correlated

components of the input, .hich are subtracted out of the original data. As

.111 be mentioned bela., 8 delayed version of the noise input 1s used as the

input x(n), and the current sample of the input is used as d(n). The

objective of this thesis 1s to compare the results of the three different

algorithms in terms of convergent rates, reduction of noise po.er, and bit

error rates for phase-shift keyed (PSK) digital data.
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+

.......--. Decorrelation
Delay

x(n)

Filter
y(n)

2G 1.2 Reference Input

Figure 3

The Adaptive Filter System

Of special interest is the reference input, d(n)1 .hich is used to

calculate the error of the prediction at time n. This reference input does

not have to match point-for-point the ·predictableM part of the input; it

need only be highly correlated .ith that part of the input. The degree to

.hich adaptation .ill occur 1s directly proport.ional to the degree of

correlation bet.een the reference input d(n) and the input signal. Since thQ

result of all this is a digital filter, the adaptation -ill produce a filter

which -matches· the ·predictableM part of the inpu~ and -ill thus remove

those "predictable tO parts.
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This reference input can be obt8ined from several sources. In the system

of interest, power line c~rrier communic8tions, the signal is not always

present on the power line. A signal is sent (and possibly received), and then

the power line is "quiet" for a while. This leeds to the concept of

·start-stop· adaptation, where the adaptation takes place during periods of

-quiet" on the power line, and the filter _eights are frozen during periods

of transmission. Since all known systems are polled systems, this is easy to

~lement 8t the polling site because the transmitter knows _hen it is going

to tr8nsmit.

Another approach utilizes the fact that all power line carrier systems

operate in a very narrow frequency band. Since all that is needed to cancel

the harmonic noise in the transmission frequency band is some input which is

correlated .ith this noise, the fact that the noise outside of the

transmission frequency band is very similar to the noise inside the

transmission frequency band can be used to advantage. Since the harmonic

noise on the po.er line is a broad-band phenomen~ i.e. the 60 Hz harmonics

cover the entire frequency range from base-band 60 Hz to the highest

frequency of interest, a highly correlated estimate of the Min-band- noise

could be gathered from some frequency range .hich is ·out-of-bandM with the

carrier frequency band. This would allow adaptation to continue at all

times, even during transmission of data. This requires a front-end band-pass

or low-pass filter to generate this out-of-band reference signal.. but this is

easily accomplished either by an analog or digital filter. Some results

using the LHS algorittvn with these different methods of generating the

reference noise signal may be found in the paper by Trussell and lang [1].
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There it .85 discovered that the Mstart-stop· method alw8ys produced good

results, and th8t continuous 8dept8tion using Mout -of- b8nd- reference noise

.85 Somewh8t worse, though still accept8ble. Reduction of ha~nic noise on

the order of 14 to 1 "ere reported by that study.

2. 2 Least Mean Squares (LMS) Adaptive Digital Filter

2.2.1 History

According to 'idro~ [13], the earliest .ork on the LHS algorithm grew out of

.ark on noise cancellation. Ho.ells and Applebaum at the General Electric

Company worked on a system for antenna sidelobe canceling that used 8 simple

two-.eight filter. In 1959 _idrow and Hopf at Stanford University developed

_hat we kno. today as the U1S algorithla and used it in a pattern recognition

scheme kno.n as Adaline. Other efforts on adaptive filtering .9r9 bQing done

independently at Cornell, in thQ UeS.S.R, and in Britain. In the early to

mdddle 1960·s. ho.evar, .ark on adaptive filtering began to take off, .ith

hundreds of papers in the literature devoted to the subject. The best know

commercial application of adaptive filtering at that time .as the .ark done

by Lucky at Bell Laboratories on high speed modems for digital

COIIIIlJnic8tions. Since then adaptive fil taring has been applied to many

problems, including speech processin~ radar8 sonar, electrocardiography,

echo cancellation in phone net.arks, and geophysics.
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2. 2.2 Algorithm.

Recall that the output at time n of a linear predictor is given by

p
y(n) = r8i x(n-i)

i=1

which may be written in matrix notation as

y(n) = AT (n) X(n)

(2.3)

_here A(n) is defined as [a1,8Q, ... ap]T and X(n) is defined as

[x(n-1),x{n-Z) .•. x{n-p)]T. The error at time n is given by

e(n) = d(n) - y(n) = d(n) - A(n)T X(n)

The squared error can be written as

(2.5)

e(n)2 III d(n)2 - 2 d(n) A(n)T X(n) + A(n) T X(n)X(n)TA(n) (2.6)

The mean square of the error is found by taking the expectation of both

sides of the equation

E[e(n)Z] = E[d(n) 2] - 2 E[d(n)X(n)T] A(n) + A(n) T E[X(n)X(n)T] A(n)

(2. 7)

Defining P(n) • E[d(n)X(n)T]

autocorrelation matrix R gives

and recognizing E[X(n)X(n)T] as the
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(2.8)

It can be noted that the mean square error is a Quadratic function' of the

.eight~ which can be pictured as a concave hyperparaboloidal surface in

p-space [14]. Adjusting the weights to ~nimize the means square error can

be done by "descending" along this surface until the "bottom" of the

parabaloid is found. The gradient of the error function can be used to do

this, and this method of ~nimizing the mean square error is known as the

gradient method. It is also used in the Gradient Lattice (GL) discussed in

sQction 2.301 0 The gradiQnt g(n) of the error function is defined as the

partial derivative of E[e(n)2] with respect to the weight vector. which from

Eqe 2.8 is

g(n) • -2 P(n) + 2 R(n) A(n) (2.9)

The optimal weight vector A*(n) is found by setting the gradient of the

mean square error to zero, or

.hich is seen to be the 'iQner~opf equation in matrix form. Since there

is no prior kno.ladgQ of thQ autocorralation matrix R(n) or tha corrQlation

matrix P(n).r the U1S algorithm tries to approximate the optimal weight vector

by iteratively updating a -guess· at the optimal WQight vector by taking the

present value of the weight vector and making 8 change to it proportional to

the negative of the instantaneous gradient g(n), L e.,



A(n+ 1) = A(n) - J.1 g(n)

16

(2. 11)

where ~ is a parameter that controls stability and rate of convergence, and

which will be discussed in more detail later. An estimat~ g(n)'. of the

instantaneous gradient can be found by letting e(n)2 in equation 2.6 be an

estimate of the mean-square error and differentiating it with respect to the

weight vector A{n). This gives

g(n)' = -2 d(n) X(n) + 2 A(n)TX(n) X(n)T

or

g(n)' :II 2 X(n) [-d(n) + A(n)T X(n) ]

Noticing that -d(n) + A(n)T X(N) is -e(n) gives

g(n)" = -2 e(n) X(n)

(2. 12)

(2. 13)

(2.14)

Substituting the estimate for the gradient in Eq. 2.11 gives the update

forlllJla for the .eight vector as

A(n+') = A(n) + 2 ~ e(n) X(n)

This update formula is attributed to Widrow and Hop( and is known 8S the

Widro.-Hopf Least Mean Squares (U1S) algorithm. This is 8 very simple update

formula, and can be rapidly calculated .ith 2 multiplications 8nd 2 eddit i.ons

per filter coefficient per input sample. For this reason, the LHS algorithm

is widely used in echo cancelletion, speech processin~ and other

applications, despite some of the drawbacks which will be discussed

presently.
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The parameter LA is the size of the step taken in the opposite direction of

the gradient, and is of special importance when evaluating the performance of

the LMS algorithm. The rate of convergence of the algorithm has been shown

[15] to be proportional to 1/(u ~ max), where ~max is the maximum eigenvalue

of the autocorrelation matrix R of the input data. ActuallYI each harmonic

component of the input, which roughly corresponds to each eigenvalue(l of R1

will converge at a rate proportional to 1/(u ~ ).

Another property of u is that the LMS algorithm will only converge to the

minimum weight vector when [14]

, I ?1 max ) u ) a

This dependence of the algorithm on the statistical parameters of the input

data causes it to be unacceptable in some situations, especially when there

are multiple signal components of greatly differing power [16J. The

parameter u also determines the misadjustment M of the algorithm. The

misadjustment is the amount of "wander- that the weight vector does around

the actual minimum weight vector after it has converged. This mdsadjustment

has been shown to be ['4]

M = P u ~i (2.17)

where la i' s are the eigenvalues of the input correlation matrix' which

correspond roughly to the powers of the orthogonal components of the input.

The misadjustment is thus different for each input signal component. Since

the rate of convergence is proportional to '/~ and the level of misadjustment
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is crcport.Icna; to J.L. the choice of ~ is 8 trade-off between convergence rate

and misadjustment after convergence.

2.. 3 Least Squares Lattice (LSL) Adaptive Digital Filter

2. 3. 1 History

The Vule-"alker equations are expressed in matrix form as [12]

A(n) R(n) = E(n) (2. 18)

where A(n) is [1, al, az, ... , ap], E(n) is [e(n)2, 0, 0, ... ,0], and R(n) is a

matrix of autocorrelation functions

R
O R,. • • R

P• •R_
l •• •• • •• • •• • e

R•• • 1

R • • • R_
1

R
O-p

Each Ri is the autocorrelation .ith lag i of the input x(n). defined as

N
Ri- j = lIN I x(n+i) x(n+j)

n=1

(2. 19)
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The Vule-Ialker equation 8S expressed above is a means of calculating the

optimlJl Wiener filter coefficients. Solving for A(N) gives

A(n) = E(n) R- 1(n)

This equation can be solved in several different ways. One way is similar

to that shown above in the development of the LMS algorithm. Another method,

which iteratively calculates the inverse of the autocorrelation matrix is

attributed to Levinson [17] and Durbin [18]. The Levinson-Durbin recursions

lead naturally to the representation of the optimal Wiener filter in a

latticQ form as sho.n in figure 4, .ith Ke =Kf =~ and where the Qi', and

fi', arQ known rQsPQctivQly as tha forward and back.ard arror rasiduals at

the i t h stage of the lattice. This formulation involves the use of the

so-called for.ard and back'lard prediction error sscuences. The forward

prediction error e(n) is simply the predictor mantioned in thQ devQlopment of

the U1S algorithm. .hich is

p
e(n) = x(n) - I 8i x(n-i)

i=1

_here the ai' s are the forward predictor coefficientso

(2.21)

The back.ard error predictor r(n) is si~lar to the for.8rd predictorl

but .orks in the reverse (in time) direction, and is given by

p-1
r(n) = x(n-p) - I bi x(n.-i)

i-a
(2.22)
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"here the bi •s are the backward predictor coefficients.

TO(n) r p-1(n)
• • • -1 T p<n)

x(n) K
r
p

K
e
p

ep(n)
eO(n) e p-1(n)

Figure 4

Lattice Filter Structure

This filter implemented as a lattice structure has several advantages

over the standard tapped delay line (TDL) filter [19]. First, the p-stage

lattice filter generates all outputs which could be generated by p different

TeL filters of lengths from 1 to p. This would allow the dynamic assignment

of the most effective filter length based on the input at any instant in time.

The lattice filter also has the property that larger order filters are built

up from smaller ones by simply adding more lattice stages. This should be

useful in designing very large scale systems. Another advantage of the

lattice structure in general is the lower sensitivity to digital arithmetic

roundoff errors [20] than the convention TOL. This is always nice to know,

since it means that a given filter might possibly be implemented with fewer

bits. Finally. the lattice filter has been shown to have faster convergence
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properties than the LHS algorithm [16], and the rate of convergence is not

related to the eigenvalue spread of the input correlation matrix.

All adaptive lattice algorithms aim to min~ize some error condition, and

in doing so to calculate the reflection coefficients Ke and KT
• There are two

main ways of doing this.

The first method involves finding the set of reflection coefficients that

minimizes the sum of the mean squares of the forward and backward error

residuals for each stage of the lattice. This is done by a gradient method

similar to the LMS algorithm and is known in the literature as the Gradient

Lattice (GL). If the input data is assumed to be stationary_ the result is

reflection coefficients such that I(e =I(r z I( [16]. The other method involves

finding the set of reflection coefficients that minimizes the sum of the

squares of the for.ard and back.ard error rQsiduals. Because this method

does not make the assunption that the data is stationary~ KQ is not

necessarily the same as Kr. Actual results with distribution po.er line data

show that Ke and Kr are in fact not equaL though they differed only slightly,

Minimizing the sum of squares of the errors is similar to _hat is done in the

Kalman algorit~ and the lattice algorithm which does this is known as the

Least Squares Lattice, and is seen to be a special case of the Kalman filter.

It is the Least Squares Lattice that is used in the algorithm comparisons in

this thesis, and more detail about its derivation is given belo.. An

excellent summary of lattice filter derivations and their histories can be

found in [11 l.
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Thus it C8n be seen that 811 8d8ptive filter algorithms mentioned in the

literature can be divided into four categories. There are those which

calculate the transversal filter coefficients directly and those which

calculate the reflection coefficients of the lattice structure directly. In

each of these two categories, either the gradient method or the least squares

method C8n be used, 8nd the result is the LHS. KaLman. Gradient L8ttice. and

Least Squares L8ttice. respectively.

2. 3. 2 Algorithm

As mentioned above, the LSL algorithin, at every time n, seeks to minimize

the sun of the squares of the prediction error up to time n. This is done by

using the lattice structure as shown in figure 4, and exploiting the

orthogonality properties of the for.ard and backward error sequences ei and

bi. An exponentially decaying .eighting of the squared errors can also be

used to cause the LSL algorithm to track nonstat1onary input. Thus the

prediction error to be minimized is

n
EQ(n) • I (1 _4It)n-k e(n)2

k=l

and

.here 0 <~<, is the -fade factor- of the algorithm.

(2.23)

(2.24)
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The LSL algorithm is slIImarized as follows [16], .ith the follo.ing

quantities defined.

ri Backtttard error residual

ei Foreerd error residual

Er i Backward error power at stage i

Eei Foreerd error power at stage i

Ke, Kf Reflection coefficients

6 Cross correlation of forward and backward prediction errors

B Likelihood variable

LSl Algorittn

Initialization (i =0,1, ... ,p):

ri (-1) =0,

Er i (- 1) :ad~ dpositivebutclosetoO; i.p



Time Update (n =O. 1•...• _):

eo(n) =ro(n) =x(n)

Eeo{n) =ETo(n) = (1 ....) ETo(n-1) + x(n)2

B-1 (n-1) = 0

Order Update (i = 1, 2, .... p)

6i(n) = (1 -«) 6i(n-l) - [ei-1(n) ri-1(n-1) / (1 - Bi-2(n-1» ]

K@i(n) = 6i(n) I Eei-,(n)

f(ri(n) =Ai(n) / Eri-1(n- 1)

r i (n) = r i -, (n-1) + K9i (n) ei- , (n)

ei(n) =Qi-l(n) + J(ri(n) ri-1(n-l)

ETi(n) • ETi-1(n-l) - 6i(n)2 Eei-l(n)

Eei(n) = Eei - l (n) - 6i(n)2 / Eri-l(n-l)

Bi-l(n-1) =Bi-2(n-l) + ri-l(n-l)2 / ETi - l (n- l)

2.4 Fast Kalman Adaptive Digital Filter

24
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204.1 History

In the early 1960's, Kalman [21] and Kalman and Buey [22] cast the linear

prediction problem as a recursive solution to a set of linear difference

equations which defined the system. This so-called Kalman filtering method

was applied by Godard [23] to channel equalization, and in that paper he

sho.ed that the Kalman algorithm had a faster speed of convergence than the

gradient based algorithms in use at the time, but the algorithm required the

calculation of a p XP matrix at each time ~ and therefore required O(p2)

operations at each iteration. Morf and Ljung [24]~ and Falconer and Ljung

(25] later expanded Kalman's algorithm by using the minimdzation of the sum

of squared errors as the error criterio~ and exploited certain shifting

properties of the autocorrelation matrix to reduce the number of operations

for the Kalman algorithm to O(p)o This fornaJlation is known in the

literature as the Fast Kalman algorit~ and is mathematically equivalent to

the original algorithm proposed by Kalman and Buey. It is the Fast Kalman

algorithm that is used in the comparisons made in this thesis.

2. 4. 2 Algorithm

As mentioned abov~ the Fast Kalman algorithm seeks to find a set of

filter coefficients at time n which .ill predict the desired response d(n) of

the system from past values of the input x(n) in such a way as to minimize the

total prediction error. The prediction error is derived from the known

response d(n) and is given by



e(n) = den) - Ap(n- l )T xp(n)
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(2025)

Here xp(n) is the vector of p previous inputs (p being the filter order).

Subscripts on variables will indicate their dimensions. The Fast Kalman

algorithm calculates the coefficient vector Ap(n) at time n which minimizes

the cUIIlJlative squared error up to that time:

n
! [d(k) - Ap(n) T xp(k)]2

k=1
(2.26)

As mentioned in the section on Lattice filters, the minimum coefficient

vector is the solution to the Wiener-Hopf equation, .hich is

n
Ap(n) = Rpp(n) -1 [r d(k) xp(k) ]

k=1

n
Rpp(n) = I Xp(k) Xp(k)T + S

k=1

(2.21)

(2.28)

or the estimated covariance matrix. The parameter Sis a small positive

const8nt which is used in practice to insure the nonsingularity of Rpp(n).

The Kalman algorittvn as shown by Godard [23] then calculates the coefficient

vector Ap(n) recursively as

where

Ap(n) a Ap(n-l) + kp(n) e(n) (2.29)
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(2.30)

The point of the -fast" Kalman algorithm is to calculate the Kalman gain

vector kp(n) recursively, without requiring the inversion of Rpp(n). The

algorithm takes advantage of the fact that at time n the vector Xp{n) does not

get p new elements, but some number JIlJch less than p, in this case one. This

new element at time n will be designated i{n) and is x(n). At the same time

one element is discarded from xp(n-1) to form xp(n). This element shifted

out will be designated o(n). This shifting property of xp(n) is used to

derive an algorithm which is mathematically equivalent to the equations

aboveD but which recursively calculates the Kalman gain vector kp(n) and the

inverse of the autocorrelation matrix Rpp(n).

The equations above assume that the input data is stationary~ but in real

world situations the data is often slowly varying with time. It is possible

to cause the algorithm to track time variations of the statistics of the data

by causing it to -forget- errors from the distant past. This is done by

introducing an exponentially decaying memory factor ~ in the squared error

calculation as in the lattice method. Thus

n
Ltit.n-k [d(k) - Ap(n)T xp(k)]2 (2.31)

k=1

_here oc is a positiva number less than Of equal to , 0 The updated

coefficient vector then becomes

n
Ap(n) = Rpp(n) -1 [ r.:n-k d(k) xp(k)] (2.32)

k=l
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where

n

Rpp(n) ,., r n-k xp(k) xp(k)T + ~

k=1

and the same formula for the Kalman gain vector kp above applies.

(2.33)

The fast Kalman algorithm for calculating tne Kalman gain vector kp(n)

without requiring the inversion of Rpp(n) directly is given below, and the

derivation of the algorithm making use of the shifting property of the input

can be found in [25]. The subscripts on the variables indicate the size of

the matrices.

Fast Kalman Algorithm

Initialization:

Bp(O) =Op(O) =Op

E =d

kp(1) = Op

xp(n) =0 for n s 0

Time update (n-1 to -):

er(n) =i(n) + Bp{n-l)T xp(n)
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Bp(n) =Bp(n"") ... kp(n) er(n)

er(n)' :: i(n) + Bp(n)T Xp(n)

E(n) :: t(E(n-1) + er(n) P er(n)

kM" is constructed by m8king the first element be

er(n)'"/E(n)

and the last p elements to be

Kp(n) + Bp(n)er(n)F/E(n)

The first p elements of kM~ are then taken to be mp(n) and the lest

element of kM'" is taken 8S ~(n).

c(n) :: o(n) + Op(n-1)T Xp(n+1)

Op(n) = [Op(n-') - mp(n) c(n)] I [, -u.(n) c(n)]

kp(n+1) =mp(n) C) Dp(n) Ll(n)

The filter coefficients are then updated as in Eqo 20 29

Ap(n+') = Ap(n) + kp(n+1) e(n+')

The complexity of this algorithm is much greater than the LMS algorit~

taking O(10p) multiplications and O(12p) additions per input sample. The

advantage of this algorithm over the LMS, however, is that the filter can

more rapidly track changes in the statistics of the input x(n). This is

advantageous in some situations# but in the case of distribution power line

noise, the Fast Kalman algorithm can actually track the input too fast"
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resulting in false estimation of the harmonic noise in the input. This

aspect of the Fast Kalman alogorithm is discussed in the section on results.
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Chapter III

I~letlentation

3. 1 Introduction

The three algorithms compared in this thesis .Qre chosen because of their

_ide representation in the literatufQ. Host results in the literature havQ

been generated from simulated d8t~ .ith a f9. reports of implementation on

actual speech data. In this thesis the algorittlns were run on actual

distribution power line noise data~ so the results are directly applicable to

distribution power line carrier systems ..

3. 2 Power Line Noise Sample

The data used to test the algorithms was gathered from a distribution

substation of a local power company_ The data was gathered by low-pass

filtering the analog data and then sampling at a rate of 40 kHz. An analog

high pass filter .as also used to eliminate the 60 Hz power frequency and all

harmonics below 1 kHz before samplingo Approximately 1.6 seconds of data

(65,536 samples) was gathered by the sampling procedure. This represents a

good sample of data that is within the frequency range of all known power line
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carrier systems (that do not use 60 Hz transmission). It is obviously a very

small sample of all possible power line noise; however, it is sufficient to

examine the effect of the adaptive algorithms on power line noise.

In all of the experiments run, the original data was first demodulated to

bring the 100t h 50 Hz harmonic (6 kHz) down to the baseband. and resampled at

a ratio of 15-to-1. This allows the length of the filters to be reduced by

the same 15-to-1 ratio to produce the same results as filters on the original

noise.

3. 3 Algorithms

The three algorithms" LMS" LSL and Fast Kalman., were coded in the C

programming language and run on a Vax 111780 under 4.2 BSO UNIX-. Afilter

length was chosen (either 128 or 256 taps) and the filters were allowed to

adapt to the power line noise for a specified number of samples. Aversion of

the data delayed by m samples was used as the input x(n)~ and the current

sample n as d(n). In the LMS and Fast Kalman cases, the delay mwas allowed to

be specified., and the significance of its choice will be discussed later. In

the LSI. case" the algorithm is by definition a 1-step forward linear

predictor., so the delay m is fixed by definition at 1. Other algorithm

parameters., such as the fade factor and the small constant used to keep the

matrices non-singularl were also specified and changed from experiment to

experiment. The effect of the different algorithm parameters is discussed in

the Results. The final filter weights were then stored for later use. The
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error output e(n) of the 8d8ptation .85 plotted for future reference and for

inclusion in the section on Results.

The stored filter weights .ere then use to filter the original

(demodulated) noise data, using the delay m to specify the current input

point and the value to be predicted as shown above in figure 3. The power

spectrum of the data .as plotted before and after the filter was applied,

.hich allowed the reduction in harmonic noise to be seen as the maximum

signal power (in the frequency domain) before and after filtering.

Comparison .as then made of the plots generated from the different

algorithms..

Reduction of the noise po.er alone is not 8 definitive measure of a

filter's performance, since a filter could simply zero thQ input and thereby

reduce the noise po_ere A better measure of the performance of a filter is

ho., well it can be used to detect digital data buried in the noise.

Simulation of phase-shift keyed (PSK) digital data buried in the demodulated

power line noise data was usad to test each filter 0

3.4 Algorithm Parameters

Of particular importance to the correct functioning of all three adaptive

algorithms are the various algorithm parameters, such as filter length,

decorrelation delay, and alla_ed mdsadjustment. The three algorithms fall

naturally into 2 groups for the purpose of discussing parameters: the LHS on
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one hand and the LSL and Fast Kalman on the other. However there are some

parameters that are corrmon to all three algorithms, and they will be

discussed first.

The parameters comnon to all three algorithms are the filter length p, the

length of data N on which the filter is allowed to learn, and the

decorrelation delayA. The decorrelation delay functions differently in the

2 groups of algorithms, so it will be discussed separately for each group.

For best results, the number of taps of the filter must be long enough to

span at least one period of the 60 Hz spike train, and preferably more than

one. The typical number of taps used was either 128 or 256, allowing 3 and 6

periods of the 60 Hz spike train to be spanned. These seemed to work well.

even though it can be shown that not all taps are necessary for the canceling

of the 60 Hz harmonics., so that some can be constrained to be zero..

Investigation of this case is a current research topic.

The length of data Non which the filter is allowed to learn is determined

by the length of time needed for the algorithm to converge. This time is

different for the three algorithms., and different depending on other

parameters as mentioned below. In generaL the LMS algorithm needs about

2500 samples (1 second) to converge. and the others need anywhere from 500

(.2 seconds) to 1500 (.6 seconds) samples, depending on other parameters.

Many different combinations of parameters were tried with different values

of N, and the results are slIIInarized in the next chapter.

The LMS algorithm has two parameters unique to it: u, the parameter

affecting convergence rate and level of misadjustment, and A, the
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decorrelation de18Y. At very sm811 values of ~ around 0 001, the LHS

algorithm can take many seconds to converge. A value of 1. 0 was used for most

experiments~ .hich allowed the filter to converge in about 2500 samples (1

second). The decorrelation delay has been found to be important to the LHS

algorithm, with delays of more than one 60 Hz period (41 smnples) required to

adequately cause the LMS algorithm not to adapt to the white noise, which may

have some short-term correlations. Adecorrelation delay of 82 was used for

most experiments.

The other two algorithms, LSL and Fast Kalma~ have several parameters

specific to them. They are«, the fade factor, ~, the decorrelation delay#

and d, the small constant used to insure non-singularity of the

autocorrelation matrix Ro The parameter tJt is defined 8S« n for the Fast

Kalman algorithm and (1-~)n for the LSL algorithm. Both will be called-e

here with no loss of generalityo

The fade factor 0( has been shown in the literature not to be very

critical, as long as it is close to 1. Values from .9 to .9999 were used in

the experiments, with. 999 and. 9999 being used most often.

The decorrelation delay A was not found to be as critical in the LSL and

Fast Kalman algorithms as it is in the LMS algorithm. The LSl algorithm, by

definiticn, only allows a decorrelation delay of 1. The Fast Kalman

algorit~ however, can use any decorrelation delay desired, and setting it

to 1 caused the Fast Kalman algorithm to behave in the same manner as the LSL

algorithm. Setting to something other than 1, such as the 82 used in the
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LHS 81gorit~ did not seem to 8ffect the performance of the F8St Kalman

algorithm much, especially not 8S IIkJch as varying d.

The small constant used to keep R from being non-singular, d, was found to

be one of the most critical parameters of the LSI.. and Fast Kalman algorithms.

This parameter also determines the amount of mdsadjustment these algorithms

.ill have at convergence. Very small values of d, in the range of .001,

caused the algorithms to converge so fast with so little misadjustment that

they .ere unable to separate the 60 Hz harmonics from the .hite noise very

well; that is, the stop bands were very broad. Figures 5 and 6 sho. the power

spectrums of the LSI.. and Fast Kalman filters which .ere allowed to adapt with

a a value of . 001. Note the lack of well defined spectral peaks at each 60 Hz

harmonic, and the relatively high level of -noise- at the edges of the 60 Hz

peaks that do exist.
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Fast Kalman Adaptation with d value of .001

On the other hand, values of d around O. 1 allowed the algorithins to

sep8r8te the 60 Hz harmonics from the white noise, while slightly incre8sing

the time of convergence, 85 will be shown in the Results section on

convergence rates. Figures 7 and 8 show the power spectrums of the LSL and

Fast Kalman filters which .ere allowed to ad8pt with a d value of 001. Note

the better resolution of the 60 Hz harmonics and the lower levels of MnoiseM

at the edges of the peaks. The results of comparison of bit error rates of

these two choices of ~ are detailed in the Results.
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Chapter IV

Results

4. 1 Algorithm Comparison Criteria

40 1.' Rate of Convergence

Comparison of the rate of convergence of these adaptive algorithms is by

nature sUbjective. The error residual is plotted tthile the filter is

adaptin~ and by examining the plot~ it can be noticed that the error will

eventually reach a ·ste8dy-state·~ range of values. The variation in this

range is dependent on the level of misadjustment that the algorithm is

allowed based on the parameter ~ in the LHS algorithm and the parameter a in

the LSL and Fast Kalman algorithms. The convergence times mentioned below

.ere chosen by looking at the plots of the error resi~u81 and choosing the

approximate spot at .hich the error appeared to reach this steady-state

condition.

4.1.2 Reduction of Noise Power

After the algorithm had been allo.ed to adapt to the power line noise, the

filter _eights were frozen and then used to filter the original data. The
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power spectrum of the original dat8 was then compared to the power spectrum

of the filtered noise, and the difference in pe8k power between the two .~s

taken as the tot81 reduction of pe8k noise power. This reduction in peak

power is not a complete me8sure of the perform8nce of the filters, however,

because the filter could behave in such a way as to filter out more than just

the 60 Hz harmonics of the noise, in which C8se the noise power .ould be

reduced, but signal power .auld elsa be reduced, which is undesirable. Since

in most power line communications systems the signal transmitted is digital

d8ta, this reduction of the signal power could result in a higher bit

detection error r~te. Simulation of this condition is the subject of the

next section.

4. 1. 3 Bit Error Rate

Once en algorithin .as run on the distribution power line noise and filter

coefficients obtained, the coefficients .ere saved and used as input into a

program which simulated a digital signal in PSK format superimposed on the

original (demodulated) noise. The program was used to add the PSK signal at

the baseband frequency to the nois~ and then the signal plus noise was

filtered using the saved filter weights. Amatched filter was then used to

detect the bits after filtering, and the m.ll'lber of errors between the

detected bits and the original bits was reported as the bit error rate (BER).

This BER is used as a comparison criterion for the different algorithms

because it shows how well the resultant adaptive filter attenuated only the
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harmonic noise, and not the signal. This is the situ8tion of interest in

distribution poser line carrier conmunication systems.

4.2 Algorithm Results

Before mentioning the results of the algorithm comparisonsl it is

necessary to give information about the noise sample used in the experimentso

Figure 9 shows the time domain plot of the first 1024 samples of the noise

sample as gathered directly from the distribution power line. Note the

periodicity of the spikes occurring at 60 Hz intervals (666 samples). Figure

10 is the time domain plot of the original data after demodulation and

re-samplingo The 60 Hz spikes can no. be seen even more clearly, since they

occur only 41 samples aparto Figure 11 shows the power spectrum of the

demodulated data. This will be used later in comparison of the reduction of

noise po.er of the filters.
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Figure 10

Demodulated and Re-sampled Power Line Noise
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4. 2. 1 Rata of ConvQrgence

Much work has been done on the rate of convergence of the LMS 81gorit~

and it is well known that it does not converge as fast as the LSL or Fast

Kalman algorithms. This known characteristic of the U1S algorittw was

confirmed in the experiments run on the power line noise sample. Figures

12-14 show examples of the error residual during adaptation of all three
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algorithms. The long convergence time, about 2500 samples, of the LHS filter

C8n be noted, as .ell as the relatively short convergence time of the other

t~o algorithms. The plots shown are for adaptations .hich produced filters

.hich gave approximately the S8fIle bit error fate. As C8n be seen, the LSI.. lind

Fast KallMn elgorithms converge in about 3~ of the time of the U1S

algorithm.
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Convergence Plot, Fast Kalman, a = .1

Of particular importance, 8S mentioned in section 304 above, is the change

in the rate of convergence when different values of the misadjustment

parsneter a are used in the LSI.. and Fast Kalman algorithms. Figures 13 and 14

above show the plot of the error residual for the LSL and Fast Kalman filters

.ith 8 a value of .1. The gradual -leveling offu of the error C8n be clearly

seen. Figures 15 and 16 show the same filters with 8 d value of .001. No

gradual "leveling off" can be seen; the filter adapts so fast to the harmonic

as well as white noise input that the error residual seems to be .idely

varying continually. As mentioned belo." .this low value of d also causes the
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result8nt filter not to pick out the 60 Hz h8rmonics very well, giving a

filter th8t will attenu8te any desired sign8l components, resulting in 8

higher bit error rate.
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Convergence Plot, LSL, a = .001
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4. 20 2 Reduction of Noise Power

All threa algorithms produce approx~atQly thQ same rgduction in noisQ

po.er _hen the optimal parameters for each is chosen. Figure 17 shows the

po.er spectrum of the demodulated noise sample after being filtered .ith the

LHS filter weights. The reduction in peak noise po..er .as about 11 cE.

Figures 18 and 19 sho. the same plots for the LSL and Fast Kalman algorithms.
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These two filters were able to 8chieve a reduction of 16 dB and 15 dB,

respectively.
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Noise Power Reduction, LMS

103.<t6 12'1.16



r-
N.
CC
I

r
N.

a:J (0....
""0 I

C

~. 0-:'

0 G:)

eJ
N
I

Q...
V1

'- ~

.u e»
0

~ CO
0 n

t
C-

ex:"
OJ

0

CJ:l
T
I

o 20.19 ~lo~~ 62.39 B3.L7

rie rt z .:101.

Figure 18

Noise Power Reductio~ LSL

103.96 12'1.16

53



<0
0 .
r-

I

e-
II

L::; to
-c -4

I

C
L(")

n
II

o c.,
t3J

o-'l
I

CL
~l

L.. 0-

d) e:
0

......
-1-:) ~

c; I

0"')

fi:J.
~
yj

I

C' 20.19 ~1.~9 62.38 83.1i

Her t z 1(101

Figure '9

12'1.16

54

40 2. 3 Error Rate

Noise Po.er Reduction, Fast Kalman

The bit error rate (BfR) is perhaps the most significant measure of the

performance of any filter on power line noise, either adaptive or fixed,

since the objective of po_er line communications systems is to transmit and

receive digital information. As a consequence, many experiments on the BER

of the·different algorithms were run. First the simulation of digital bit

detection was run .ithout any filtering for use 8S a reference for comparing
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the absolute perform8nce of the filters. Four different signal-to-noise

(SNR) r8tios (RHS signs1 to RHS noise) were used: -24 dB, -21 dB, -30 dB, end

-33 dB.

Since muoh "ark has been done on the LHS algorithm by Trussell and \fang, as

well as others, only the best LHS adaptation was used in comparing the three

filters. The parameters of the best LHS adaptation .ere 8 filter length of

256, adaptation time of 2500 samples, a decorrelation delay of 82 samples,

and a convergence and misadjustment parameter of 1.00

As mentioned above, the misadjustment parameter a grQatly influences the

performance of the lSl and Fast Kalman algorithms. BER calculations were

performed on LSi. and Fast Kalman filters .hich .ere adapted using 8 a of . 001

and .1, Q8ch .ith 8 filter length of 128 and 256. ThQ dQcorralation delay

used in the LSl.. algorithm .as 1, and in the Fast Kalman algorithm .as 82. The

fade f actor of both algorithins lies set at . gg99.

The results of all three algorithins, as .ell as the case of no filtering,

are presented in the tables bela.. It can be easily seen that the

misadustment parameter a of the LSl and Fast Kalman algorithms has a great

impact on the BER of the filter. It can also be noted that the LSL and Fast

Kalman filters give performance very close to the LMS algor1t~ yet with

IIlJch faster convergence, as noted above.



Table 1

BER for PSK signal

No filtering and LHS filtering

SNR (dB) Algorithm BER (l)

-24 None OGO
LMS OGO

-27 None , 06

LHS 000

-30 None 2106

LMS 30B

-33 None 31.3

LHS 23.9

56
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Table 2

BER for PSK signal

LSL and F8St Kalman filterin~ 256 taps

lSl Kalll8n

SNR (dB) d BER (') ~ (dB) a BER(')

-24 • DOl 1005 -24 .001 10.5

<G27 . 001 "01 -27 . 001 10.5

<G30 .001 13.8 -30 .001 1406

-33 .001 27.2 -33 .001 25.5

-24 .01 406 -24 . 01 3.3
-27 .01 500 co27 .01 5.0
-30 .01 8.3 cm30 .01 B08
-33 . 01 2108 ~33 . 01 23.4

-24 · 1 QoQ -24 o , QoD

-21 · 1 Q.Q -27 o1 0.4
-30 .1 603 -30 o , 601
-33 · 1 2403 -33 o , 26.8

-24 , 00 QoQ -24 100 QoQ

-27 1.0 0.4 cm27 1. 0 0.4
-30 1. a 10.9 -30 1. 0 10.0
-33 t. 0 30. 1 -33 , 00 30.1
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Table 3

BER for PSK signal

LSL and Fast Kalman filterin~ 128 taps

lSI.. KallDan

SNR (dB) d BER (,) SNR (dB) d BER(')

-24 .001 3.2 -24 .001 302

-21 .001 4.0 -21 .001 4.0

-30 .001 8.5 ~30 .001 8.S

-33 .001 26.7 -33 .001 25.9

-24 .01 '.6 -24 · 01 '.6
-27 .01 3.6 -27 .01 306

-30 . 01 8.1 -30 · 01 7.7

-33 . 01 24.7 -33 · 01 24.7

-24 ·, 0.0 -24 ·, 0.0

-27 · 1 '.2 -21 ·, 0.4

-30 · 1 6. 1 -30 ·, 6. 1

-33 · , 24.7 -33 ·, 25.5

-24 1. 0 QoQ -24 1. 0 QoQ

-27 1. a 0.4 -27 1. 0 0.4

-30 '.0 12.6 -30 1.0 13.0

-33 t. 0 30.8 -33 1.0 30.8
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Chapter V

Conclusions

5G 1 Sunrnary

In this thesis we have attempted to compare the performance of three

different adaptive digital filters on distribution power line noise: the

Least Mean Square (LMS)., Least Square Lattice (LSl)# .and Fast Kalman

algorithms. Studies have been done on the perf ormance of these algorithms in

other application areas# but little has been done on these algorithms in the

power line noise environment.. Comparison of the algorithms .as done in three

areas: rate of convergence# reduction of noise power# and reduction of bit

error rate.

The LMS algorithm has been widely studie~ and its characteristics are

fairly well knoll. It was found that the LMS filter performs in a manner that

would be expected from the literature in the power line noise environment.

The filter is the slowest of the three to converge. but will give slightly

better results than the other two if allowed time to converge completely.

The LSl and Fast Kalman algorithms were seen to perform almost as well as

the LMS algorit~ while requiring much less time to converge to optimal

performance. It was discovered that the parameter governino misadjustment

is a critical parameter in the power line noise environment. The algorithms
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must be allowed a larger misadjustment and thus slower convergence than would

be chosen from reading the literature in order to keep the filters from

8depting to ·perceivedN short-tenm correlations in the white noise. Even

.ith the slower convergence. however. the LSl and fast Kalman algorithms

converge at least t.ice as fast as the LHS algorithm, .hile giving similar

bit error rate results.

5. 2 Problem Areas

One of the major problems in producing a re8l-time filter using the LSI.. or

Fast Kalman algorithm is the number of multiplications/divisions needed per

input sample. The 81gorithms need O(10p)-O(13p) multiplications/divisions

per input sample. and at high data rates this can be prohibitive. Some means

of demodulating the input before adaptation could be used, 8S .as done in the

simulation here, or some form of multiprocessor implementation could be used

to perform the arithmetic in the required 8IT1Ount of time. A low-cost

solution to this problem .ill be necess8ry before these filters will be able

to find .idespread use in power line carrier cOOIIlJnic8tions.

Another problem area is the effect of arithmetic roundoff errors in the

calculation of the filter coefficients. It is conceivable that roundoff

errors could cause the filters to become unstable, giving useless results.

Results from other sources seem to indicate that the LSL algorithm will be
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the least sensitive to this probl~ but it is not known how well any of the

algorithms will perform 'lith limited lIord-size arithmetic.

5. 3 Areas of Future Research

As mentioned above, arithmetic roundoff error is an area that will need

research in order to determdne it's effect on the stability and performance

of the adaptive algorithms. Obviously, the smaller the word size needed to

perform the arithmetic, the faster and cheaper the hardware can be. Thus

some quantization of the effects of roundoff on the filters .auld be

desirable.

Another area that could be addressed is the use of adaptive filters that

assume an autoregressive-moving average (ARHA) model for the input noise.

This would lead to an infinite impulse response (IIR) filter rather than an

FIR filter, but a smaller number of coefficients could possibly give the same

results as the FIR filter if the po.er line noise is more accurately modeled

in this way rather than as an AR process. The adaptation calculations for an

IIR filter will be at least as comple)( as for the FIR filters presented here,

and probably more so, but the prospect of better performance .ith fewer

coefficients is .orth investigating.
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Appendix

LSL and Fast Kalman Filters

The following are the listings of the sUbroutines used to generate the

results discussed in this thesis. There is one subroutine for LSL adaptation

and one for Fast Kalman. The routines are written in C and were compiled and

..
run on 4. 2 BSO Unix .

LSL Rou'tine

lsI init is called once to set up the data structures and then
lsl-pt is called once for each data point.

lsl_init(d. p, alpha, epsilon. tapper, var)

Constrained or Unconstrained

d

INT

pointer to lsI structure defined in lsl.h

Filter order; number of ~eights.

Least Squares Lattice

Adaptive Digital Filter

p

Parameters:

c
c
c
c
c
c
c
c
c
c
c
c
c Calling convention:
c
c
c
c
c
c
c
c
c
c
c
c
c
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Since only the values at time Nand N-1 are needed for any variables,
N.' 2 is used to point to the correct place in the arrays

Notation and variable namQS are taken from the paper by
Hodgkiss and Presley, IEEE Transactions on Acoustics, Speech, and
Signal Pracessin~ Vole ASSP-29, No.3, June 1981 pp.710-721

lslJ)t(d8t8Doutput, d, 'ltD freeze)

d FLOAT.

FLOAT. Output only.

Small FLOAT number.

FLOAT.

Must be >0.0 but (1.0.

Fleg to indicate when filter weights are to be
calculated. 1-) calculate. INT.

Error value at this point.

"Correct" data value at this point.
Input only.

Filter weights at this point. P elements lon~

OUTPUT ONLV. FLOAT.

Input data point.

Fade factor.

Convergence value.

Period of taps that ere not constr8ined~

The first period is assumed to start at
tap O. 0 ~) no constraining. INT.

Number of t8PS before AND efter the
unconstrained taps that are not to be
constrained. INT.

freeze

output

data

var

epsilon

tepper

alphac
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c Parameters:
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c



c Restrictions:
c
c filter may not be of order > 512; all arr8ys are sized to this
c
c
c _ritten by: James H. Wiggs
c
c
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*/

#include <math~h)

'include <stdio.h>
#include (/ncs/jhw/lsl/1pt/lsl.h>

lsl_init(d,p,alphs,epsilon,tapper,var)

float alpha, epsilon;
int p, tapper, ver:
struct lsI_data *d;

{

int i, 1, k;

if(p > MAX_ORDER) return(O);

1*
store values away for later use

*1

for(i=O;i<p;i++) {
d-)r[i][1] =0.0 ;

d->p = p;
d->alpha = alpha;
d->n = -1;
d-)tapper =tapper;
d->vaf =vaT;

1*
c
c init; mod(-1,2) = 1
c
*/

}

/- no input yet -/

for(i=O;i<p;i++) {
d-)esupr[i][1] = epsilon,

}
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for(i=1;i<=p;i++) {
d->delt~[i] = 0.0 ;

}

for(i=1;i<p;i++) {
for(k=O;k<i;k++) {

d->b(k][i][1] =0.0 ;
}

}

return;

}

Idef ina I (i+ , )

'define MINUS1 0
float a[HAX_OROER+1][HAX_DRDER+1];

lsl-pt(data, output, d, wtQ freeze, prad, ke. kr)

float data, /* input point */
·output, 1* output point */
.t[l, 1* filter coefficients ~/

pred; /* value to predict */
struct lsI_data *d; /* lsi data from init call ~I

int freeze; ,- flag to indicate weight calculation. 1->calculate */
1* weights; a -) do not calculate weights */

float ke[],kr[]; 1* Reflection coefficients *1
{

double sum a~sum b ;
int i, 1-kg ~ p-:place;

float e,9supe,slpha,ksupe_sav[HAX_OROER+1],ksupr_sav[HAX_ORDER+');
float delta[HAX_ORDER+1];
float r[HAX_ORDER+1],for_[HAX_ORDER+1];
float rn[HAX_ORDER+1],en[HAX_ORDER+1];
float ksupa, ksupr;

,-
use this input value to generate new filter coefficients

~I

p = d->p;

d-)n++;
n = d-)n;
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d->input[n , p] = data;

1*
Set up (abs(n-1) , 2)

*/
place = abs(n-1) , 2;
alph8 = d-)alpha;
for(i=1;i<=p;i++) delta[i] =d-)delta[i];

I­
e
c init first stage of lattice
*/

e = data;
d->r[O][n , 2] = d8t8;
esupe = (1.0-alpha)*d-)esupr[O][place]

+data*data;
d-)esupr(O][n , 2] = esupe ;
d->g5mma[HINUS1](pl~ce] =0.0 ;

I­
e
c perform update of values of lattice for each stage of the lattice
c
*/

for(i=1;i<=p;i++) {

delta[i] = (1.0-alpha)*delta[i]
- ( e • d-)r[i-1][place] ) I

( 1.O-d-)gamma[I-2] [place] );

j-
Is this set of reflection coefficients to be constrained to O?

*/
if(d-)t8pper != 0 && «(i' d-)tapper) > d-)var) &&

«i , d-)tapper) < (d-)tapper ~ d-)var)) ) )
{

ksupQ = 0;
ksupr = 0;

}
else
{

if(esupe == 0) {
ksupe = 0.0;

}
else {

ksupe = delta(i] / esupe;
}



if(d->esupr[i-l][place] == 0.0) {
ksupr =0.0;

}
else {

ksupr = delt8[i] / d-)esupr[i-1][place];
}

} /- end of ·else if not constrained... • */

d-)r[i][n , 2] = d-)r[i-1][place] + ksupe * e;
e = e + ksupr * d-)r[i-1][place];

if(esupe == 0.0) {
d~>esupr[i][n , 2] = 0.0;

}
else {

d-)esupr[i](n , 2] = d-)esupr[i-1][place] ­
delta[i]*delta[i] I

esupe;
}
if(d-)esupr[i-1][place] == 0.0) {

esupe = 0.0;
}
elsa {

esupe = esupe -«delta[i]-delta[i])1
d-)esupr[i-1][place] );

}

if(d-)esupr[i-1][place] == 0.0) {
d-}gamma[I-1][place] = 000;

}
else {

d-)gamma(I-l][place] = d->gamme[I-2][place] +
d-)r[i-1][place]*
d-)r[i-1][place] I
d->esupr[i~'][place];

}

/*
Save ksupe and ksupr

~I

ksupe_sav(i] = ke(i-1] = ksupe;
ksupr_s8v[i] ~ kr[i-1] = ksupr;

} I- End of for i=1 to p */
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·output = e; 1* Return prediction error ~/



if(freeze == 1) {

/­
e
c return tha final filter cOQfficients
c
*/

reO] = 1;
for(n=1;n<=p;n++) {

rn[n] = 1;
for(k=n-1;k>O;k--) rn[k] = r[k-1] + ksupe_S8v[n]*forw[k];
rn[O] = ksupe_sav[n];

enrOl = 1;
for(k=1;k<n;k++) en[k] =forw[k] + ksupr_sav[n]*r[k-1];
en[n] = ksupr_sav[n];

for(j=O;j<=p;j++) {
r[j] = rn(j);
forw[j] = en[j];

}
}

for(k=1;k<=p;k++) wt[k-1] = forw[k];

} /- end of if freezeo .. */

for(j=1;j<=p;j++) d-)delta[j] = delta(j];

} 1* End of LSL algorithm *1
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Fast Kalman Routine

Routines to implement Fast Kalman filtering.

Calling sequence is:

Call kalman init once to initialize the data structures,
then call kalman-pt once for each data point.

kalman_init(ptr l N, delta, lambdag delay)

ptr

N

delta

lambda

delay

ptr

y

e

wt

dk

pointer to kalman_data structure defined in
kalman.h

Number of taps in filter

Small real number (>0) to be used to make
sure tha arrays are non-singular

Fade factoro Should be < 1.0 but) 000

NOT USED.

Pointer to kalman_data structure defined in
kalmanDh

Current data point. FLOAT

Current error~ returned by the routine. FLOAT

Array of filter weights returned by the
routine for this point. FLOAT

Value to use as the ·correct- value for this
point. FLOAT

NOTE: All notation is taken from the paper by Falconer and Ljun~

IEEE Transactions on Communications, Vol. COM-26D Oct. '978.



*/

#include
#include

</ncs/jhw/lsl/1pt/kalman.h)
<stdio.h>

14

kalman_init(ptr,N,delta,lambd8,delay)

struct kal~n_dat8 *ptr;
int N, delay;
float delt8,lambda;

{

int j;

for(j=O;j<N;j++) ptr-)AN(j] = ptr-)DN[j] = 000;
for(j=O;j<=N;j++) ptr-)kn(j] = ptr-)xn[j] = ptr-)CN[j] = 0.0;

ptr-)fpp = delta;
ptr-)taps = N;
ptr-)n = -1;
ptr-)lambda = lambda;

return;

}

Idsfine
'define

j=O;j<ptr->taps;j++
kn

kalman...pt(ptr, v, e, 'It, dk)

struct kalman data *ptr;
float y. *e. wt[ l, dk;

{

float temp,epsilon.epsilon...prime,rho,mu,eta;
int 1 taps;



taps = ptr-)t8ps;

/*
Return ne~est error and filtQT ~Qights

-/

temp = O~O;

for (tap_len) temp =temp + ptr-)CN[j] * ptr-)xn[j];
*e = dk - temp; /* error at pt. n -/

/*
Calculate new weights

*/
for(tap_len) ptr-)CN(j) = wt[j] ~ ptr-)CN[j] + ptr-)kn(j] ~ *e;

/*
Start update of kalman gain vector kn

-/

1* epsilon -/
temp = 000;
for(tap_len) temp = temp + ptr->AN(j] * ptr~>xn(j];

epsilon = y + temp;

/~ AN array */
for(tap_len) ptr-)AN[j] =ptr-)AN[j] ~ ptr->kn[j] ~ epsilon;

/* epsilon prime -/
temp = 0.0;
for(t8p~len) temp = temp + ptr~>AN[j] • ptr~)xn[j];

epsilon-prime =y + tQmP;

/* Epp array -,
ptr~>Epp = ptr~>lambd8 ~ ptr-)Epp + epsilon ~ epsilon-prime;

/*
c81culate km vector that will be partioned into mn and mu

-/
if(ptr-)Epp != 0)
{

for(j=taps;j>O;j--) ptr-)kn[j] = ptr->kn[j~1] +
ptr-)AN[j-1] • epsilon-prime I ptr~>Epp;

ptr-)kn[O] = epsilon-prime I ptr-)fpp;
}
else
{

for(j=teps;j>O;j--) ptr-)kn[j] = ptr~>kn[j-l];

ptr-)kn[O] = 0.0;

75



}
/*

Partition. km (kn) into mu 8nd mn. Pullout mu, le8ving kn[O... ] as mn

*' mu = ptr-)kn[taps];

1* Shift xn, adding new point as xn[O] */
rho =ptr-)xn[taps-1];
for(j=taps-1;j>O;j--) ptr-)xn[j] =ptr-)xn[j-1];
ptr-)xn[O] =y;

/* eta */
temp = Q.O;
for(tap_len) temp =temp + ptr-)DN[j] • ptr-)xn[j];
eta = rho + temp;

/* Update ON arr8Y */
for(tap_len) ptr-)DN[j] = (ptr->DN(j] - ptr-)mn[j] • eta) /

(1.0 - mu * eta);

/* Update kalman gain vector for next point */
for(tap_len) ptr->kn[j] = ptr->mn[j] - ptr->DN[j] * mu;

ptr-)n++;

return;

}
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Kalman Filter Common File

Idef ina MAX_KALMAN 1024

struct kalman_data {

float AN[HAX_KAlHAN],
DN(HAX_KALHAN],
CN(HAX_KAlHAN],
kn[HAX_KALHAN],
xn[HAX_KAlNAN],
laniJda,
Epp;

int n,
taps~

delay,
tapper,

ver:

};

'* temporary recursion array */
/- temporary recursion array */
/* tap .eight array */
1* Kalman gain array */
/* the last N inputs -/
1* fade factor -/
1* temporary recursive error */

/* number of points */
I~ number of taps in filter */

/- period of taps not to be
constrained */

1* number of taps on each
side of tapper not to be
constrained ~/

LSL Filter Common File

IdefinQ MAX_ORDER 256

struct lsI_data {
float r[HAX_ORDER+1][2]D '* reverse linear predictor value -/

Q~ '* for.ard linear predictor valuQ */
esupr[HAX_OROER+1][2], /* (E super r) -/
esup~ I- (E super e) */
delta[HAX_ORDER+1], I~ intermeditate values -/
gamma[HAX_OROER+1][2],
b(HAX_OROER+1][HAX_ORDER+1](2], l*backward filter coefficients~1

a[HAX_OROER+1][HAX_OROER+1], l*for.ard filter coefficients ~I

ksupe,
ksupr ;

float input [HAX_ORDER],
alph8;

1* last p inputs ~/

1* fade factor -/



int n, 1* current d8t~ point (mod p) ~/

p, /* filter length (number of _eights) *1
tapper, /* T8P period that is not to be

constrained */
var; /* Number of taps on each side of

tapper that are not to be
constrained */

}; 1* end of lsI data structure */
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