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AN UPPER BOUND FOR THE VARIANCE OF CERTAIN STATISTICSl

by

Wasslly Hoeffding
University of North Carolina

1. Results. Let xl,xa,...,xn be independent and identically dis-
tributed random variables (real- or vector-valued). Let f(Xl,Xa) be a
bounded function such that f(xl,xe) = f(Xa,Xl). With no loss of gen-

erality we shall assume that the bounds are 0 < f<X1’X2) <1l. Let

U= z £(X.,X,).
n(n-1) L§i<q§n i3
Examples of statistics of this form are given below. The mean of U is

E(U) = p
and the variance is

var(v) = ol @(n-2)(rp?) + s - 57},

where

p=E f(xl.’xe) 2

2
r=E f(xvxz) f(xl:’%): s=E°f (xl,xe) .

As n tends to infinity, /o (U-p) has a normal limiting distribution
1”2;7. Hence if we have an upper bound for the variance of U which de-
pends only on p and n, we can obtain an approximate confidence region for

p and a lower bound for the power of a test based on U when n is large (see

[37 )

1 This research was supported by the United States Air Force through the
Alr Force Office of Scientific Research of the Air Research and Develop-
ment Command, under Contract No. AF 18(600)-L458. Reproduction in whole
or in part is permitted for any purpose of the United States Government.
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It is known 172;7 that 2(r-p2) <8~ pe, and since obviously s < p, ve

have

var(V) < £ p(1-p).
In this note we shall show that, under the stated assumptions,

3/2 -p2 y D2

O}

b
1 - P <H(p) = (
(1) r - p~ < E(p) \ @032 (192, PS% .

It is easily seen that the sign of equality holds in (1) if, with proba-

. 1
bility one, £(X,,X,) = &(X,)8(X,) (for p > 3) or £(X,X5) = 1-e(x,)e(x,)

(for p < %), where g(X) takes the values O and 1 only.
Inequality (1) implies that
(2) var(U) < pre—ry {2(n-2) E(p) + 1 - p°)
= n(n-1) *

An inequality analogous to (1) was conjectured by Daniels and
Kendall Zjl;Z'for the variance of the finite population analogue of the
statistic t defined in Example 1 below. A proof of this conJecture
suggested by Sundrum thL?’does not seem to be complete.

We now give three examples of statistice to which the present bound
is applicable; in the first two examples the bound can be attained.

Exemple 1. Let X, = (Yi’zi) be a random vector with two con-
tinuously distributed components, and f(xl,Xe)‘= 1l or O according as
(Yl-Y2)(Zl-Z2) is positive or negative. In this case t = 2U ~ 1 is a
well-known rank correlation coefficient. The condition for equality
in (1) is satisfied if 2z is a function of Y of a certain form, for

instance positive and decreasing for Y < 0 and negative and increasing
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for Y> 0 (if » > %); or negative and increasing for Y < O and positive
and d;ecreasing for Y > 0 (if p < %). For if we let g(X) = O or 1 ac~-
cording as Y < O or Y > 0, then, with probability one, f(X,,X,)

= g(Xl)g(Xz) in the first case and f(Xl,XQ) = 1-g(xl)g(x2) in the
second case. These two cases correspond to the inverse canonical rank-
ing and the canonical ranking as defined by Daniels and Kendail 1—1;7
for finite populations.

Example 2. Let Xi be a real-valued random variable, f(Xl’XQ) =0
or 1 according as Xl + X2 <QOor >0, Thenp-= % if Xi has the same
continuous distribution as -Xi. Thus a test based on U might serve to
detect certain deviationsrfrom symmetry. The sign of equality in (1)
is attained, for instance, if X1 can take only two values, a and b,
such that either a+ b< 0<b (if p 2'%) ora<0<a+b (if p< %).
Here we may take g(X) = O or 1 according as X < O or X > 0 in the first

case, and g(X) = O or 1 according as X > 0 or X < 0 in the second case.

Example 3. Let X1 again be real-valued, and let

2 2
F(X),X,) =1 -2 max[Fo(xl), FO(Xe)_7+ FO(Xl) + Fo(xa) s
where'Fo(x) is a continuous (cumulative) distribution function. Then,

if X, bas the distribution function F(x),
1 [ 2
p=3+ 2/} [F(x) - Fo(x):7 dFo(x) ,

and (U - %)/2 differs in large samples negligible little from the Cramer-
von Mises goodness of fit criterion J/ZTFA(X) - Fo(x)_]2 dF  (x), where

n Fn(x) denotes the number of observations < x. 1In this case the
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condition for equality in (1) cannot be satisfied, and presumably the

upper bound for the variance can be further improved.

2. Proof of Inequality (1). We first assume that
(3) £(X,,X,) = O or 1.

Let Xl’XE""’Xn be independent and identically distributed random vari-

ables,

fiJ = f(xi}x‘j), 1 7‘1 ij) fii = OJ

A p B DB A 3B 1n o
p=n°" £ X £, r=n’ £ I % P, . f. .
i=1 j=1 1J 1= J=1 k=1 1J ik
A A

As n —> o0, p and r converge in probability to p and r respectively

We shall show that

A o) A
r < H(p) + €, 0

(1) g
vhere H(p) is the function defined in (1) and €, ere numbers which con-
verge to 0 as n —> 0. Since the function H(p) is continuous, inequality
(4) easily implies inequality (1).

Both S and g are functions of the nxn matrix ”fiJ” whose elements

satisfy the conditions

(5) fij = Qor 1, £,4=0 fij = fji .
Let
n
Fi = I fij .

Then



A n A n
n2 p= & F,, 5 r= I F?.
i=1 ¢ i=1
A A
We first show that, in order to find an upper bound for r when p

is fixed, we may assume that

(6) Fy 2 Fy dmplies £, > £, for all k # 1.

J

For suppose that there are integers i, j, k such that Fi 2> Fj, k#i,

- = t -

and fik < fj]' Thus fik = 0, fJ] = 1l. Let ”f v“ be the nxn matrix de
' P o= 't = f! = !t = -

fined by £i, = £, =1, fjk fkj 0, £}, = T, , Othervise. The trans

A
formed matrix satisfies (5}, and the value of p is not affected by the
transformation., Also, writing F& for the sum of the u-th row in the

new matrix, Fi =F, + 1, Fl = FJ -1, F& = Fu otherwise. Therefore

i J

2
J

2 2
' -
Z(Fu) z F.

(Fi+l)2 - Ff + (FJ-:L)"’ - F

2(Fi-FJ.) + 2> 0.

Thus the value of ? is increased by the transformation. By repeated
application of this transformation we can obtain a matrix which satis-
fies (6), for instance as follows. We first take one of the rows with
the largest sum to be the i-th row, and for every J # i we apply the
transformation for each k # i with fik < fjk' Having exhausted all

k and all j, we are left with a matrix such that every column different
from the i-th that has a O in the i-th place will consist of zeros
only. This implies that any further transformations will not affect
this i-th row. We next take one of the rows with the largest sum among

the remaining n-1 rows, and repeat the procedure described sbove, and
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80 on. Eventually we obtain a matrix which satisfies the conditions
(5) and (6) without changing the value of S and without decreasing the
value of ;. |

With no loss of generality we may assume that, in addition to

(5) and (6), the matrix ”fij” satisfies the condition

E‘QIEF .

(7) P 2F .

2

For this can always be achieved by rearranging suitable rows and columns,
A A

which will not affect the values of p and r, Thus we now restrict our-

selves to symmetric matrices whose every row and every column, apart

from & O in the main diagonal, consists of a sequence of l's followed

by & sequence of 0's. A typical matrix of this form is shown below.

O F O o
O 0O O K B O
O © O +H O ¢ K
O O O O +H o
O 0O 00 0 o W
O O 0O O O O =
C 0O 0O 0 o0 o o

For a fixed matrix ”fij” of this type let m denote the greatest
integer such that fm,m+l = 1. Then fij =1lif i<ml, J<wl (1 # ),
and fij =0if i >mtl, J > mtl, Hence

21\. m m m n n m
wpe I E £+ I I f.+ I 37,
i=l g=1 1 o) gemed 13 gopry gm0

and



If we put

we obtain

(8)

and

(9)

Now

3%= I (=3 z )2 z (z £. )2
nr = £, + T +
i=1 ‘j=1 "1J Jem+1 137 j=m+1 J=1 id
2 g 2
= Z (m -1+ Z f ) + 2 £, )
i=1 13 i=m+1 J=1
n n 2 2
=mm-1)+2m-1)z S f +z(2f)+2(zf).
( ( i=l Jemtl 39 421 gemed 197 ey i=1 3
n m
1 1
= e T f b, == T
ai n-n i=m+1 ij’ J n i=1 ij’
m n m n
1 1 1
= z X = - I =-— ¥ b
B(8-m) 421 jems1 137w joy 1 BE seme1 9
2 A
n = m(m-1) + 2 m(n-m)d
A A n
0= (m-1) n° P+ (n-m) Z a?-r ne T b2
1=1 Fmel J
A
= (m-1) n2 p + m(n-m)n a2
I 1 2 2 25
+ n(n-n)/ (n-m) = I (a -d) + m o (b,-d)
=1 00 el 9 -
ﬁ-(ﬁl_—m)- mri z /—(fij-d) - (a;-d) - (bj-d)Jg
i=l j=m+1
1 Tz 2 1 18 1 n 2
= b¥ X (f£,,-d) -= Z -d — I (b,-d
n(o-m) ;) :j—nrl-l( SR T j=m|-l( g7
m n
=a-a"-1 50 - L = (b,-a)
i=1 Jem+l
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Since the left hand side is nonnegative, we obtain 2

1 B 2 1 B 2 2
10 = 5 ~d)"+ = T (b,-d)°<aq - d°,
(10) m ,Z (a;-4) e ( 3 )" <

It now follows from (9) and (10) that

A A
n5 r < (m-1) n2 p + m(n-m) n d2
(11)

+ m(n-m)max(m, n-m)(d-de).

A A
We thus have obtained an upper bound for r in terms of p for all

matrices l&ij“ with m fixed. We now put

cC =

Sig

By equation (8), since 0< 4 <1, the range of c is given by

C

2
c et
n

(12) .

A A
<p+$, (1-c)®<1-p -

We therefore may assume that ¢ is bounded away from Oand 1 as n —> o0 .
Indeed, inequality (1) is trivially true if p= O or 1; and if 0 < r<l1,
since g tends to p in probability, inequalities (12) imply that ¢ is
bounded away from O and 1 with a probability which approaches one as n
tends to infinity.

From (11) we obtain

AL A 2 2 :
r<cp+ c(l-c)d” + c(l-c)max c(l-c)(d-d%) + €

where €, "> 0as n —> 0. If we express d in terms of 3 and ¢ by

2VInequea.lit:ies (10) and (11) are closely related to the sharp upper bound
for the variance of the Wilcoxon-Mann-Whitney two-sample statistic in
terms of its mean; see D. van Dantzig, "On the consistency and the
power of Wilcoxon's two sample test," Nederl. Akad. Wetensch. Proc.
Ser. A, Vol, 54, No. 1, pp. 1-8 (1951), footnote k4.



means of (8), we have

A AR A
r-p LH(, c)+ e,

where

2 2 2
2 - -c -
H(p,c) = -p~ + cp + 2 ; ZT 20%1-05 + max(c, l-c)(1 - 2c%lfc5);7

and €, —>0asn~—> ®.
We now maximize H(p, ¢) with respect to c. By (12) we may assume
that

1/2

c<p ', lec £ (1‘P)l/?'

We can write

V] F

H(p,c) = G(1-p, 1-c), ¢ <35 H(p,c) = G(p,c), ¢ >

L

N

where
2 1 -
G(p,c) = -p° + pc + [P e -gc.

We cslculate

2

6(p, 27%) - a(ps0) = 7;13 (0/2-e) (c2 + 2pt/

c -p).

Ifc> %, the right side is positive, and hence G(p,c) < G(p, pl/é)

= p3/2 - p2. It follows that

H(p,c) < maXI93/2 - %5, (1-13)5/‘2 - (l-p)ej ’

and the function on the right is just H(p) as defined in (1). This com-
pletes the proof for the case where f(Xl’XQ) takes on the values 0O and
1 only.

Now let f(Xl,Xe) be any function which satisfies the assumptions

of the theorem. Then f(Xl,X2) can be approximated by a function f'(Xl,Xe)
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which also satisfies the assumptions of the theorem and takes only fi-
nitely meny values, in such & way that p' = E f‘(Xl,XQ) and

r* =E f'(Xl,XE) f'(Xl’XB) are as close as we please to p and r, re-
spectively. It will therefore be sufficient to assume that f(Xl,Xa)
takes on the k values fl’fe""’fk‘ Then it can be written in the
form

k
f(Xl,Xg) = 15_1 ficiéxl’x2)’

ci(xl,:-f.e) = ci(xa,xl) = Qor 1;
°1(X1’X2)°3(X1’X2) = 0, i3,
Now let Yl,YQ,Y3 be mutually independent random varisbles, inde-
pendent of Xl’XE’Xj’ where eeach Yi is uniformly distributed on the
intervel 0 <Y, < 1. The random vectors ZJ = (Xj’ YJ), J=1,2,3, are

mutually independent and identically distributed. Now define

k
*
£ (Zl’ZQ) = 153 di(Yl) di(YE) ci(Xl’XQ)’
where
1, O’S'Y 5 fi/é

a,(¥) =
0 otherwise,

Then
f*(zl,ze) = f*(ze,zl) = 0or 1.

The conditional expected value of f*(Zl,Ze) for Xl’XE fixed is

k
E[f*(zl,za) le,x2_7 = i;vsl £ie, (X,X5) = £(X;,%5)

Hence
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(13) E f*(zl,zg) = E f(xl,xa). = D.
Also

k k
f*(zl,za) f*(zl,z5) = z Jz di(Y ) 4, (YE) ci(xl,xe)

d4(¥)) a4(¥5) c (X),X5)
so that

E/T%(Z,,2,) f*(Zl,ZB)IXI, o x3;7

k k _
- 1 12, 1/ 102
f in min(fy £y ) £ fj c; (X,,%,) CJ(Xl:X

i=1 3)

k k
> 35& JE f f c. ( 1’X2) c. (Xl’XB)
= f(xl’xe) f(Xl,Xj) .
Thus

(1) E f*(zl,ze) f*(zl,z5) >E f(xl,xa) f(Xl,XB) .

Since, by the first part of the proof, inequality (1) is true for f*,
it follows from (13) end (14) that it is also true for f. The proof

is complete.
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