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Abstract: Using infrared technics, the thermomechanical behaviour of a Cu-Zn-Al alloy is
observed during mechanical solicitations at constant room temperature. The phase transition
appears to be a non isothermal and non dissipative process. The incidence of this statement is
tested on classical modelling approaches through numerical simulations.

1 INTRODUCTION

Several authors [Frémond, 1987; Lexcellent, 1991; Patoor, 1987], use the possible occurrence
of dissipative phenomena accompanying the martensitic phase transformation to describe the
hysteresis of “pseudo-elastic” behaviour of shape memory alloys.

On the other, Van Humbeek et al. (1987) show that the temperature variations of the material,
due to the martensitic transition, could explain the existence of the hysteresis loop.

The hysteresis area exhibits an amount of mechanical energy that can be interpreted as an
internal energy variation for the material. Nowadays, the literature does not provide with any
clue to conclude wether this variation'is converted into dissipated energy, stored energy or
latent heat.

After a brief presentation of the theoretical interpretation framework, an experimental analysis
of the “pseudo-elastic” behaviour of shape memory alloys will be put forward. From thermal
data given by an infrared device, non negligible temperature variations have been recorded in
the case of load-unload cycles at constant room temperature. These observed variations are so
that no heat is globally exchanged between the sample and the surroundings, at the end of each
hysteresis loop. Then, associating a thermodynamic cycle to each loop yields an intrinsic
dissipation identically equal to zero. In a last part, nimerical simulations of the hysteresis
phenomena are performed using classical modelling approaches. The predicted mechanical
responses are compared, assuming first an isothermal and dissipative process, and second, a
non-isothermal and non-dissipative process.

2 THERMODYNAMIC FRAMEWORK

Classical concepts and results of the Thermodynamics of Irreversible Processes are used,
[Boccara, 1968; Germain, 1973]. The thermodynamic state of a volume element is
characterized at each instant t, by a set of n + 1 state variables. Let us take T (T = o) the
absolute temperature, € the strain tensor (€ = 1) and @, i = 2,..., n, a set of n - 1 internal
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variables completing the description of the thermodynamic state. The specific Helmholtz free
energy is denoted by y and s symbolizes the specific entropy.

As a function of the chosen variables, the local form of the second principle leads to the
inequality of Clausius-Duhem:

(1) D=o‘:é-p%dj-%g__I'EaTZO,j=1y-o-,n’
)

where ¢ is the Cauchy stress tensor, p the mass density, 21' the heat influx vector, and D the
dissipation. When D is equal to zero, the irreversible entropy supply D/T is equal to zero, the
processes are then reversible. Classically, the intrinsic dissipation is supposed to be positive
and is written as:

) Di=0c:¢€ - 020, j=1,.n

a\y
Pa-
do, 0
In the experimental conditions of the tests presented here, it is shown in [Chrysochoos, 1992],
that the heat conduction equation can be simplified as:
az\p o
(3) pCae kA= D; + pT 390 =Wcp» J=1..,0,

where 6 =T - T, with Tg the equilibrium temperature field. The specific heat Cq and the
isotropic conduction tensor k are supposed to be constant. In the second member of equation
(3), the intrinsic dissipation and the crossing terms corresponding to the thermomechanical
couplings, are gathered. The term w’ ¢, symbolizes the volume heat sources.

3. EXPERIMENTAL ANALYSIS
3.1 Experimental arrangement

The experimental set-up is essentially made of a testing machine and an infrared camera
[Chrysochoos, 1992].

Fig. 1: Basic sketch of the set-up
1: uniaxial testing machine (100 kN). 2:
command unit. 3: micro-computer #1:

D: loading parameters control, mechanical

6 data storage and processing. 4: transfer

lc— | unit for load, stroke and extensometer

7 , signals. §: infrared camera; Insb

[‘] detector, liquid nitrogen cooled. 6:

‘ ' display unit. 7: numerization system of

ai 9 the video signal (THERMAK). 8: micro-

, e computer #2: storage, visualization, and
et 3 8 10 processing of the thermal data. 9, 10:

printer or plotter output.
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Mechanical tests are performed with a computerized uniaxial testing machine (1, 2, 3). The
infrared thermography device is made of the camera (5), the display unit (6) and the
numerization system (7) allowing the storage of thermal pictures in a second microcomputer
(8). The pictures are matrixes of 256 lines per 180 columns numerized on 12 bits.

The numerization system allows to record, by the means of (4), the load and deformation
signals.

3.2 Linking the temperature field to the heat source

The calibration of the video signal is performed using a special warming target equipped with
thermocouples. The calibration law is strongly non linear even near thermal equilibrium. It has
been approximated by a quadratic law (second order approximation).

The temperature variations are obtained relatively to a reference thermal picture. The
evaluation of w’cp volume amount is deduced from a numerical estimation of the time
derivative and the laplacian of the temperature.

In the particular case of quasi-static and homogeneous tests, a linearization of the thermal
losses is possible. Then, the local equation of heat conduction becomes:

d0 1
(4) pCo, (E + %) = Wep »

where Ty, is a constant characterizing the thermal losses. The energy amounts are calculated for
the gauge volume Vg of the sample (Vo = 150 mm3):

t

5) Wen(® = Vo f W'en(t) dt .
0

3.3 Experimental results
3.3.1 Sample and experiment

Flat samples of Cu-70.17% Zn-25.63% Al polycrystalline alloys have been used. The
transformation temperatures of such an alloy are the following: Mg =15 °C, Mf=6 °C, Ag = 7
°C, Ag= 19.5 °C. The slope of the transition line is around 2 MPa °C-1.

The thermoelastic constants of the material are: E = 24 GPa (Young’s modulus), v = 0.33
(Poisson’s ratio), Ath = 18.10-6 °C-1 (thermal expansion), p = 7700 kg m™3 (mass density), C =
393 J kg-1 °C-1 (specific heat) et k = 80 W m-! °C-1 (thermal conductivity). The room
temperature is constant and is equal to 30 °C.

To insure an initial austenitic state, the samples are annealed at 850 °C during 10 mn and then
oil-quenched [Vacher, 1991] during one hour [Vacher, 1991]. The storage temperature of
samples is greater than 35 °C. Just before testing, a thin coat of black painting is laid down on
the surface of the samples to improve its emissivity.

Two kinds of experiment have been performed: load-unload paths with increasing amplitude
of strain (€max = 0.5%, 1%, 1.5%) and load-unload paths with constant amplitude (Emax = 1%).
The solicitations are strain controlled during the loading and stress controlled during the
unloading to avoid buckling phenomena.

The figures 1 and 2 give the evolutions of the deformation. The absolute value of the strain
rate is less than 1.10-3 s-1. The corresponding hysteresis loops can be observed on figures 3 and
4. Finally, the evolution of 6 and W¢, are plotted on figures 1 and 2.
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3.3.2 Observations

Observation 1: The amplitude of temperature variations is around 3°C. These variations are
small compared to absolute temperature but they are not negligible in comparison with the size
of the transition domain (Af - Mg~ 13.5 °C).

Observation 2: The amount of heat W¢p, exchanged between the sample and the surroundings
returns to zero at the end of each hysteresis loop.
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Fig.1: Load-unload cycles with Fig.2: Load-unload cycles with
increasing amplitude. Thermal response constant amplitude. Thermal response
and evolution of heat (deduced from the becomes periodic and symmetric after
thermal data). This energy amount few cycles. The heat W, returns to
returns to zero at the end of each cycle. zero at the end of each hysteresis loop.
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Fig. 3: Mechanical response. Fig.4: Mechanical response.
Hysteresis loops increasing. Stabilization of hysteresis loops.

3.3.3 Discussion

Consequently, rather than assuming an isothermal process (T = Tp), a linearized thermal
approach (0 / T << 1) will be tested in part 4.
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Now, let us precise first, the conditions required to associate a thermodynamic cycle with
each hysteresis loop, so that we get:

(6) f W (D) dt = 0,
C

where C is the duration of the cycle. And second, let us show that the intrinsic dissipation D
remains identically equal to zero during such a thermodynamic cycle.

At the end of each hysteresis loop, the deformation comes back to its initial value within
about the thermoelastic strain that is hardly measurable. Moreover, the internal state of the
material is afresh austenitic as soon as the stress is equal to zero for a temperature greater than
Af. We shall suppose, a priori , that the internal state variables (o)), i = 2,..., n, take their initial
values again. The temperatures observed at the beginning and at the end of the loop can be
naturally different, because of the heat diffusion. Both following cases occur:

i) the temperatures T; and Tr are the same, (see the case of constant amplitude pulsating
tests, after several load-unload cycles (fig.2)). In such a case, each loop represents a
thermodynamic cycle.

ii) the temperature T;j and Tg are different, but they remain greater than Ag. Then the
thermodynamic cycle can be closed using two thermoelastic transformations, the stress being
equal to zero. These fictitious transformations assure respectively the passage from Tg to Tj,
and from Tgto To. Assuming a linear and isotropic thermoelastic behaviour, the amount of heat
evolved by both transformations can be written as:

™ [Wedh + [Wenld = -Vo[Ad To E Ty - Tp).

For a maximal spread corresponding to 2 Celsius degrees between T; and T, the value of the
energy defined by (7) is around 2.10-3 J and corresponds to a strain amplitude less than 10-4.
These orders of magnitude are so small that they cannot be detected by our captors.

Then, associating a thermodynamic cycle to each hysteresis loop, that verifies the equation
(6), seems to agree with our observations. Now, let us show that the dissipation is identically
equal to zero during such a cycle, if the temperature variations remain small.

For all thermodynamic cycle of duration C, we then have:

. 2
®) psdt = pCaI—dt- p—a——‘v—djdt = 0, forj = 1,...,n
T da;0T
C C C
The first integral in the right hand of (8), being equal to zero, the second one is also equal to

zero. Then taking into account the small variations of 8 (8/Tgp < 2%), a linearized version of
(3), integrated on the cycle yields D1 = 0.

This result is established for a polycrystalline alloy, in the case of mechanical solicitations at
constant room temperature. It can be compared with the one obtained by differential
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calorimetry on the same alloy, during thermal solicitations when the stress is equal to zero
[Ortin, 1988]. v

In every case, it appears that if the intrinsic dissipation takes place, it remains very small in
comparison with the latent heat rate of phase change.

Table 1 describes, in the case of cycles with increasing deformation amplitude, the relative
importance of dissipated energy against thermomechanical couplings’ energies. On the one
hand, this importance can be traduced by the ratio Rt defined in (9-a). This ratio is equalto 1,
when the behaviour is exclusively dissipative (without thermomechanical couplings), and it is
equal to zero when the behaviour is non dissipative. On the other hand, the hysteresis area can
be characterized from a mechanical viewpoint, by the ratio Ry defined by (9-b).

f w,, (D) dt f ot dt
C C

(9-2) Rr=————, (9-b) RMm =
f oe dt
Load

mem
C

The integralf oedt represents the volume energy associated with the hysteresis area.
C
Tab. 1: Evolution of the ratios Rt and Ry during the tests with increasing
amplitude of deformation.

, Rt R
2‘7‘}3" vof Iwey) dt %) Vo f ot dt @)
C C
(103 3) 103 1)
0,5 3585 2,1 6 18
1,0 5173 2,7 27 34
1,5 8010 0,5 55 43

First, note that the ratio Rt remains very small, which is in good agreement with a non-
dissipative phase transformation hypothesis. Second, one can observe very weak amounts of
mechanical energy corresponding to the hysteresis area (less than 1.10-2 J) in comparison with
the latent heats (greater than 1. J). Third, the “hysteresis energy” is not negligible against the
mechanical energy provided by the testing machine to deform the sample (Ryp > 15 %).

4 CONSEQENCE OF THE EXPERIMENTAL RESULTS ON CLASSICAL MODELS

In this part the numerical predictions of two classical modellings are compared, assuming
either an isothermal and dissipative phase transition (hypothesis H;) or a non-isothermal and
non-dissipative phase transition (hypothesis Hp).

Both models belong to the formalism of the Generalized Standard Materials [Halphen, 1975].
The thermomechanical behaviour of the material is then described by two potentials: a
thermodynamic potential and a pseudo-potential of dissipation. In most cases, the specific
Helmholtz free energy W is chosen. The dissipation potential is taken as a positive convex
function of the state variables rate 0, and it is equal to zero at the origin. These properties
insure the validity of Clausius-Duhem inequality.
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The state variables are T, €, B, where B = (B1,..., Bm) is the volume proportions of the m
martensite twins. The mass balance implies the following inequalities:

m
(10) 0<Pi<l,I=1.,m;and 0< > B <L
1=1

The mathematical treatment of (10) uses the basic convex analysis tools. The term of (xqg)
denotes the subdifferential in xq of the convex function f defined on R™, It is reminded that:

11) of(x0) = {y € R1/f(x) 2 f(x) + (x - x0).y, ¥x € R1},
If f is a regular function in x( then df(xq) is reduced to the gradient of f in xg.

4.1 Model 1 based on a Frémond’s approach

The following expression of the specific free energy is adopted for the particular case in which
two martensite twins are taken into account [Frémond, 1987]:

2
(12) pW(TeB) = p(L-B1-B)Va(Te)+p Y, Brwmi (Tie) +1(B),
I=1

The mass density p is supposed to be the same for all phases; the terms Ya, Wm1, Wm2 are
respectively the specific free energy of the austenite phase, and the specific free energies of the
martensite twins. Phase interactions are not taken into account. The symbol I (B) represents the
indicator function of the following convex set G:

C={(mw/0<1%<1,k=1,2and0<y +y, <1}
IB)=0ifBe CandI(B) =+o0 if P& G .

If the dissipation is exclusively due to the phase change, the dissipation potential solely
depends on the rate of B. The state laws are:

2

(13) 6=p(1-B1-I32)% (Te)+p Y, Bn%(u);
I=1

(14) B = p (Wmi1 (T>€) - ¥a (T,e)), for 1=1,2;

(15) ‘B € JI(B)+3¢(B), with B = (B1,By).

In the case of a non-dissipative behaviour, the state law (15) becomes:
(16) -B € JI(B), with B = (B1,B»).
In such a case, the “pseudo-elastic” hysteresis cannot be obtained under isothermal testing

hypothesis [Frémond, 1987]. At least, Frémond suggested to transform the triangle defined by
G in a curvilinear triangle included in T to take into account phase interactions. Other trials
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can be seen in the literature (see for example [Miiller et al., 1991]). The following model try to
consider these interactions through an “interaction specific energy”.

4.2 Model 2 based on a Lexcellent-Licht’s approach

In this model [Lexcellent, 1991], the expression of the free energy is deduced from the specific
enthalpy defined by [Patoor, 1987], using the Legendre-Fenchel transform. An indicator
function I(B) is introduced in the free energy form to improve the formal coherence of the
model:

m 2
(A7) pWTEP) = Welast (€-2 3, RiBD + (D, B1) Wehem (T) + Wine(B) + I(B).
1=1 1=1

The terms Welast, Wchem, Wint Symbolize respectively the elastic energy, the chemical energy
and the energy of interactions. The sum gX.RiB; represents the deformation due to phase
changes. If dissipation potential ¢ solely depends on the rate of 3, then the state laws are:

m
& o = Melast e g ' Rp);
€ 1=1
(19) By = - gR1G + Wehem (T)+§’5V!Biﬂ‘- @), 1=1,.., m:
1
(20) B € OI(B) +30(B), with B = (Bi,..., Bm).

In the case of a non dissipative behaviour, the state law (20) becomes:
2D -B € JI(B), with B =(Bjy,..., By).

As in the former model, the state laws cannot predict the pseudo-elastic hysteresis if the
temperature is constant. In such a case, the equations (19) and (21) define a map-to-map
relationship between ¢ and B (Wi being supposed strictly convex).

4.3 Numerical results

One-dimensional numerical simulations are performed. Load-unload cycles are considered and
it is supposed that only one martensite twin is activated. The room temperature is constant and
greater than Af. For both models a viscous dissipation potential form is adopted to bring to
light the incidences of the hypothesis Hj:

. . 2
22) o@®=3np
4,3.1 Model 1
The free energy form, defined in part 4.1, can be decomposed into:

(23) pva = LEe?-pl (T-My- pCoTLogT
S
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(24) PYm = %E &2 - pa(T)e - pCoTLogT,
where o(T) is defined by:

(25)

_ ) -a(T-My), if T £ My,
o(T) = {0, otherwise .

The symbol L is related to the latent heat; My is the temperature above which no
transformation occurs. To obtain qualitatively realistic hysteresis loop the following
coefficients have been chosen: V= 150 mm3, p = 7700 Kg m3, E = 24 GPa, v = 0.3, L =1000
T kg1, Mg = 6°C, Mg = Mg + 75°C, Tg = 30 °C, a = 147.72 J kg 1K1, Cy=147Tkgl K1, 1=
17 s, |€] =0.0001 s-1.

The viscosity coefficient 1 = 9.106 J m=3 s, when the transformation is dissipative.
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4.3.2 Model 2

The different terms defined in part 4.2 can be written as:

= Lge-gp? - —E - Lo g?
26) Wosst = LEC-88" - Eha0c - p 120
(27) Wchem = AT+B
(28) Wine = -B(1-B)D

The coefficients taken in the simulations are : V= 150 mm3, p =7700 kg m'3, E =24 GPa,
v=0.3, Ag= 18 10-6K-1, M= 6°C, Mf=15°C, Tp=30°C, Cq=102J kgl K1, t=135,
|€] =0.0001 51, A=45.17Jm3K-l, B=1302842Jm3, D=151.98Jm3.

The viscosity coefficient n = 9.106 J m-3 s, when a dissipative process is assumed.
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4.3.3 Numerical results

On the figures 7 and 10, the mechanical responses for a load-unload cycle are plotted; the solid
lines are used in the case of Hj, and dashed lines in the case of Hp. The variations of the
temperature and the kinematics of phase change are given on figures 8 and 11. At least, the
evolutions of W¢p, and Wy can be observed on the figures 9 and 12. The term Wy is the energy
dissipated within the gauge volume V¢ during the tensile test.

First, one can observe with both models that both hypotheses give an hysteresis loop of the
same order of magnitude. The ratios of Ry are indicated in table 2. Second, note that even in
the dissipative case (Hj), the ratio Rt is able to remain small. It comes from the set of
coefficients that have been chosen to predict a small dissipation in comparison with the latent
heat rate.

Tab. 2: Numerical simulation of the ratios RT and RMm

Model , Rr Ry
oy vof [wey| dt ®) Vo f ot dt (%)
Hypothesis c C
(H) (103 1) (103 )
Mji - Hy 4863 8.4 104 10
M - Hy 4484 5,1 72 11
Mo - Hj 2758 1 20 25
M - Ho 2552 1 15 19

5. CONCLUDING COMMENTS

The austenite-martensite phase change under stress, at constant room temperature, has been
studied on Cu-Zn-Al samples from a thermomechanical viewpoint. The infrared data
corresponding to temperature variations of the material show that the transformations are non-
isothermal processes. These variations are small (around several Celsius degrees) in
comparison with the absolute temperature; but, they cannot be neglected compared to the
transition domain size (around ten Celsius degrees). In a first order approximation, associating
a thermodynamic cycle to each hysteresis loop yields a non dissipative process. These results
justify a non-isothermal and non-dissipative process hypothesis (Hp). The incidence of such an
hypothesis has been underlined using two classical models. These models have been originally
developped assuming a dissipative and isothermal phase change (Hj). The performed
numerical simulations show that realistic hysteresis loops can be obtained using indifferently
both hypotheses H1 and Ha.
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