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1. Inbroduction. Let f = (xl, Xpy eee s xn) be an arbitrary sequence of
real numbers ( n > 0) and C the set of all sequences that can be formed
Lrom £ by permutailions.

If ¢g= (xi s Ky g oeees Xy ) is in C, we set
1 2 n

N(g) = number of indices j (1L < j < n) such that

xi + X, + 4. *+ xi > 0
1 2 3
L(g) =0 if N(g) = 0
= smallest index J (1 < J <n) for vhich
X, Y *ee. X, = max {xi R F e b X : 1<k<n}
1 2 3 1 2 1k
otherwise.

The equivalence principle in the theory of fluctuations of sums of

random variables asserts that for any nonnegative integer m > O there are
in C as many sequences g such that N(g) = m as sequences g' such that
L(g') = m. This result was proved by Sparre Andersen (1), then by Feller
[6]. Ian Richards (cited in [3]) gave an explicit proof of this result
by constructing a permutation ¢ of C such that

(1) N(g) = L(w(g)) for all g € C.

his construction was then extended by Sparre Andersen [2] to a more
general case.

Our purpose here is to rresent two new equivalence irincirles on
sequences of numbers, i.e. Tor two other pairs of functions (S, T) and
(U, V) defined on C to give the construction of two termitations W
and 6 of C such that
(2) s(g)
(3) u(e)

T( ¥ (g))
v( 6 (g))

identically.



A1 the definitions appear in the next section. An example is given in
section 3 to illustrate our results. Finally in sections 4 and 5 the

constructions of ¢ and 6 are given.

2. Definitions. In what follows it is assumed that n > 1 and the

secuence f = (xl, Xyr e xn) be fixed once for all. Let b : BE,—> R

be a function such that b(x, x') =0 if x <x' and h: R® >R a

symmetric function (i.e. h(uw y UL s eees U ) = h(ul, Uy eees un)

1 2 n
- for any permutation (Wl’ Vo e s W ) of [1, n]). Then set for

g = (Xi 3 Xy e X5 ) e ¢C

1 2 n
S(g) = h(b (Xi » Xl) ’ b(xi ) x2)’ KR b(xi ’ xn) )
1 2 n
T(g) = h(b (xi s Xie) ’ b(xi y X, ) PR b(xi F xi ), 0 )

1 2 3 n-1 'n
lote that besides the condition b(x, x') = 0 for all pairs (x, x') such
that x < x' and the fact that h is symmetric, no other assumption is made.

Finally the (U, V)-pair is so defined:

for g =(x., , X, ,ese; X, ) € €, U(g) is the sum of all indices

ll 12 ln
j such that 1<J <n-l1 and x, >X, and V(g) is the number of
3 tin
couples (Jj, k) such that 1< Jj<k<n and x > X,
J k

3.  Example, In the following example let us take

+
b(x, x') = (x - x') (=x-x'" if x-x">0 and O otherwise)

h(ul, Upy eees U ) = WUy . b

Thus we have for g = (X. , X, 5 «ve) x, )



n n-1

O S e T N
k=

k=1 k k+1

Moreover the fixed sequence f 1is
= (xl’ x2) X;) XI-L) = ("2) -1, 1, l)

We now list the 12 sequences g that can be formed from f by permutations

and the values of the six functions N, L, S, T, U and V taken by each

sequence.
X, Xi s X, Xy N L S T U v
1 2 3 L

fr= -2, -1, 1, 1 0 0 0 0 0 0
2, 1, -1, 1 0 0 2 2 2 1
-2, 1, 1, -1 0 0 2 2 3 2
-1, =2 , 1, 1 0 0 1 1 1 1
-1, 1, -2 , 1 0 0 3 3 2 2
-+, 1, 1 ,-2 1 > 5 > 5 3
1, -2, -1, 1 1 1 3 3 1 2
1, -2, 1 ,-1 1 1 3 5 L 3
T, -1, -2 , 1 1 1 3 b) 3 3
T, -1, T, -2 2 1 3 5 4 4
1, 1, =2 ,-1 2 2 5 3 2 b
] ] 1, -2 p) 2 > > > >

Tt is readily seen that every real number r occurs the same number of

times in columns N and L (resp. S and T , U and V).



L. The pair of functions (S, T) . The combinatorial theorem involving

I~

the pair (8, T) is the following

THEOREM ([7] p. 156). Let f = (xl, Xy eeo xn) be a sequence of n

2’

(n > 1) real numbers and C the set of all sequences that can be formed

by permutations. One can construct a permutation ¥ of C such that to

each g=(x, ,%. 5, ... , %X, ) € C corresponds a sequence
¥(g) =(x. ,%x_ , ..o ,%_ ) € C satisfying the following
v v v
1 2 n
condition
to each k ¢ [1, n] for which X; > X

k

corresponds in a one-to-one manner as index k' € [1, n-1] such that

X = X > xk = ka'+1 .

Identity (2) is satisfied by ¢ for if g = (xil s xi2 seees Xy )
is an element of C , let us designate by (kl’ Koy eee km ) the ?
increasing sequence of indices k such that Xg > xk and by
k'l ’lié’ oo k&n the corresponding indicesk k' such that

x> x in the sequence V¥ (g) = (x , X , ve. , x ).
Vit Vk'+1 i Y2 Vn

Then we get, since b(x, x') =0 if x <x' and h isa
symmetric function,

s(g)

n (x, , x,) , blx, , x),blx, , x),..., b(x, , x))
1l 1 12 1 12 2 ln n

i

h(b (x, s ), blx, ) )y eee 5 B(x, » X ) 5 0,...,0)
1kl Xk2 1k2 sz 1y k

m
m

= h(b(x ,X ), b(x X ),...,b(x , X Yy e0e30,04.,0)
Vs Vi V. 4 Vo 4 Vo 1 Ve
k! kAL k) kg 41 A

=h(b(x_, x_), b(x, , x_), ..., b{x x_ ), 0)
i V2 Vo' V3 Vn-1 'n

= T(¥ (g)).



Hence identity (2) is satisfied.

If the set C contains n! elements exactly, i.e. if all the X 's
(1 <k < n) are distinct, the construction of ¥ is easy and is connected
with the one used by Spitzer [15] to establish his famous identity.

Let us sketch the construction in this case. Let g = (xil, X, yees

i
2
be in C. Since all the X 's (1 <k <n) are distinc%, the map

g xi —_—> X, (l_<_k_§n)
k
defined on the set A = [xl, x2, cee xn} is a perrutation of A that

can be written as a product of disjoint cycles

g = (x X ...x ) (x ceeX Veos (x ceex )
v, Vv v v V. V. \Z
1 o kq ki+1 LN kg1 k
As each cycle is defined up to a cyclic permutation of its elements, we can

assume that for each p ¢ [1, s]

bl =ma,x{xv s X seees X } .
Ve 41 "k 41 Ve 42 k
p-1 p-1 p-1 P

Moreover g being defined up to a permutation of its cycles, we can assume
that the sequence of the first elements of each cycle, i.e.

X, s X, , X
1 L N

) * e 0 , X
is increasing. It can be verified that to each g € C corresponds in a

one-to-one manner a pertmutation g that can be written as above.

Then we set

v (g) = (XV ’ Xv 3 e xV ).
L 2 n

It is easily proved that the conclusions of theorem 1 are satisfied.



Now 1f the X 's (L% <n) are not distinct, one has to make use
o7 a result proved by Schiltzenberger [14] generalizing the works by Meier-
Wanderli [12] , Hall [9] and Chen, Fox & Lyndon [4] on the factorisation
of free monoids. It would be too long to reproduce here that construction.
The reader will find all the details in [7] (chapter 8).

As a conclusion to this section we mention that the particular case
where b 1is the function equal to 1 if x > x' and O otherwise and
where h is the function (ul > Uy g eee s un) >u, tu, fe..tu o,
has already been considered by MacMahon ([10] p. 186). For this partic-
ulaxr couple of functions he proved that for any integer m there are as

many elements g in C such that S(g) = m as elements g' such that

T(g') = m . However no explicit one-to-one correspondence was given.

5. The QU, V!-couRle. The functions U and V are defined in section

2. The function U appears in MacMahon ([10] p. 135) in the study of
ordered partitions. The function V seems to have been introduced by
Netto [13] and rediscovered many times in statistics. V(g) is then called

the inversion number of the sequence g and is used in the two-sample

problem under the name of Wilcoxon-Mann-Whitney statistic (see e.g. [5]) .

MacMahon [11] showed that the generating functions of U and V have
the same expression. 1In other words if ris Tgy eee 5 Ty o @YE d (d > 0)

real numbers and if the fixed sequence f = (xl, Xy eee xn) contains

exactly, ... , n. times the element n. exactly

nl times the element r a 4

1

with ny + n, + ... + ng=n and if q 1is a real or complex variable,

then he showed



IS B LIS
T -4
k=1

n o !
kl_ll (1-d% . 1—' _ll -q. . 1|_1| (1 - &

Hence the fact that for any nonnegative integer m there are in

C as many sequences g such that U(g) = m as sequences g' such that V(g')=m.
Our purpose is to construct a permutation € of C that will

expressly state this result, i.e. satisfying the identity

(3) U(g) =Vv( 6(g) ) for all g e C.

The properties of this function are not given here. The reader will
find them in [8].

To construct 6 it will be convenient to consider the set F(R) of
all non-empty finite sequences of real numbers. In particular Cc F(R) .
For each r € R we first define a bijection a  of F(R) onto itself
in the following manner:

let g=(xj , X, ---,xj) e F(R) ;

1 Jd2 m
if x, >r (resp. x, <r), we designate by t., t., ... , t the
Im dn~ 1’ 2 s
increasing sequences of all indices t (1 <t< m) such that xJ >r
t

(resp. x, < r).
Jt -



Then we set

1 2 m
vwhere first
= - 1 i
wtl tl if tl >1
= tl = 1 if tl =1
LA = t2 -1 if t2 - tl >1
= t2 otherwise
Ve o=t -1 if £ -t _.>1
s s s s-1
= ts otherwise;
then
Wl=tl’wt +l=t2’ ...,wt +l=ts;
1l s-1

finally for each k different from 1, tl, tl+l, t2, cee ts 1 +1,

ts , Where wk = k-].

It can be verified that for every reR, ar is a permutation of
F(R).
We then define a permutation of p of F(R) by induction on the

length n of the sequence g = (X, , X, , ««0 , X Jo
1,7 T, i

If n=1 we set p (g) = g.

If n>1, if p(x., , X, 5 ses , X, ) = (X, , X, ,.00,X )
S 317 o In-



and if Q@ (xJ , Xj yeee,X, ) = (xu , xhz,...,x )

i 1 2 Jn-l 1 n-1
n

then we set

p(g):(x,x,...,x ,X,).
ul Yo Up-1 1n

It can be proved that the restriction €@ of p on C is &a per=-

rutation that satisfies identity (3) .
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