
 

 

ABSTRACT 

KE, JIANGHUA. RANS and Hybrid LES/RANS Simulation of Airfoil under Static and 

Dynamic Stall. (Under the direction of Jack R. Edwards). 

The hybrid Large-Eddy/Reynolds-Averaged Navier-Stokes (LES/RANS) and RANS 

simulations are used to investigate the aerodynamic characteristics of subsonic flow over 

airfoils undergoing dynamic and static stall. Simulations of flow over the Aérospatiale A-

Airfoil show that the Menter BSL/SST RANS models, along with the LES/RANS models of 

Choi and Gieseking, accurately capture the velocity and Reynolds-stress fields associated 

with incipient trailing-edge separation. The inclusion of the Menter-Langtry transition model 

enables the capturing of an initial region of laminar flow culminating in a laminar separation 

bubble, in accord with experimental results. However, the transition model also results in a 

general thinning of the boundary layer downstream of the peak skin friction location and the 

elimination of incipient separation near the trailing edge. In the simulations of NACA 0012 

airfoil at static stall case, Menterôs SST with and without the inclusion of Menter-Langtry 

transition model both predict an attached flow at the leading edge, whereas the Giesekingôs 

LES/RANS model on a coarser mesh predicts a massively separated flow characterized by 

the stabilization of a detached leading edge vortex near the trailing edge. The predictions by 

Giesekingôs model on a coarse mesh agree closely with PIV measurements of mean velocity, the 

Reynolds axial stress and the Reynolds normal stress, but over-predict the magnitude of the Reynolds 

shear stress. However, Giesekingôs model on a fine mesh predicts a more attached flow 

because the under-resolved LES on the fine mesh (but not fine enough as required in a wall-

resolved LES) fails to reproduce the cascade process at the smaller scale and results in an 

overly-energetic boundary layer near leading edge which resists and delays the separation. In 

3D simulations of NACA 0012 dynamic stall case, Giesekingôs model on a coarse mesh in 

spanwise direction correctly predicts response of the massive separation at static stall angle 

of 16.7° during downstroke pitching, but it also predicts some leading edge separation which 

is not present in the experiment during upstroke pitching. Mesh refinement in the spanwise 

direction helps reducing the level of leading edge separation during upstroke pitching, but 

results in an under-separated flow solution for downstroke response.  
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Chapter 1 

Introduction  

 

A good balance between low computational cost and high fidelity is the major consideration 

in choosing a turbulence model for the numerical simulation of a high Reynolds number, wall-

bounded aerodynamic flow. As would be expected, a more accurate method typically demands more 

storage and CPU hours to meet the mesh resolution and time step requirements and hence is more 

computationally expensive. Different spatial and temporal scales need to be resolved in any 

turbulence computation, the accuracy of a model and the corresponding computational cost are 

dependent on the requirements for the resolution of such scales. Direct Numerical Simulation (DNS), 

Reynolds-Averaged Navier-Stokes (RANS) models, and Large-Eddy Simulation (LES) are the three 

major categories of methods for modeling turbulent flows.  

The whole range of spatial and temporal scales of turbulence would be resolved in a DNS 

simulation, particularly, with the spatial scales ranging from the smallest dissipative scales 

(Kolmogorov microscales) to the integral scale that is associated with the motion containing the most 

kinetic energy. DNS has the highest fidelity among the above mentioned three methods and is 

theoretically effective for any imaginable types of problems, since it seeks to solve the Navier-Stokes 

equations in a complete time-accurate, three-dimensional sense.  On the other hand, DNS is the most 

computationally expensive: a three-dimensional DNS requires a number of mesh points up to ὙὩȢ  

because of the vastly different scales must be resolved by the grid. The extremely high computational 

cost of DNS makes it unsuitable for most engineering flows of practical interest [1, 2]. 
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Unlike DNS method, RANS methods model all the turbulent behavior in a flow instead of 

solving for it directly. In RANS simulations, an ensemble averaged version of governing equations is 

solved, in which Reynolds stresses are introduced to represent the effects of turbulent fluctuations. 

The Reynolds stresses need to be modeled in order to close the problem. A variety of methods have 

been developed to do this modeling job, including algebraic or zero-equation models (e.g., Prandtlôs 

Mixing Length model, [3]), one-equation models (e.g., Spalart-Allmaras model, [4]), two-equation 

models (e.g., Ὧ ‐ model, [5], Ὧ model, [6], [7]). Since the turbulence scales no longer need to  

be resolved in RANS simulations, the required mesh can be much coarser, and the computational cost 

is much, much lower than that of DNS. In addition, statistically steady flows (although the mean flow 

could be time-varying) can also be treated with RANS equations, this is often referred to as Unsteady 

RANS (URANS). RANS models (and URANS) have long been applied in many engineering flows 

and demonstrated some level of success in predictive capabilities. However, because not all of the 

relevant physics are modeled, and sometimes the theoretical concepts on which a model is based 

could involve severe assumptions about the nature of turbulence, which may not be satisfied in 

aerodynamic flows, RANS method may not be able to accurately predict all the features in high 

Reynolds number, wall-bounded aerodynamic flows.  

LES is a technique based on the idea that only the smallest scales of turbulence are modeled 

with subgrid scale (SGS) model through a filtering operation, while the largest and the most 

important scales are allowed to be resolved. In this way, LES methods resolve the majority of the 

turbulent physics in the flow with no need for grids as dense as DNS methods, therefore greatly 

reducing computational cost incurring in the smallest scales while allowing better fidelity than RANS 

methods. LES has been successfully used in some aerodynamic flows over the last decade, for 

instance, Jansen [8] conducted the first LES of an airfoil in order to clarify the maximum lift angle of 

NACA 4412 profile in 1996. Under a project named LESFOIL, Davidson [9-10] did a series of work 

on applying LES on flow over Aérospatiale A-Airfoil at the angle of attack of 13.3° and Re = 

ςȢρ ρπ. Mary and Sagaut [11]
 
also conducted a large-eddy simulation of flow over A-Airfoil under 

the same flow configuration. However, for high Reynolds number, wall bounded aerodynamic flows, 

a wall-resolved LES is still too computationally expensive because near the wall more and more 

energy resides in the smallest scales of turbulence which need to be resolved. A much finer mesh has 

to be used to resolve these small but dynamically important eddies near wall, compared to that in the 

outer region. Chapman [12] estimated that the number of grid points required to resolve the inner 

layer (the innermost 10% of the turbulent boundary layer) is proportional to ὙὩȢ , while the grid 
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number required to resolve the outer layer and free stream region is proportional to ὙὩȢ. The high 

mesh requirement for resolving the inner layer indicates that wall-resolved LES may be applicable 

only to those aerodynamic flows of moderate Reynolds number (ὙὩḑρπ), but not to most of the 

engineering applications which usually involve a higher Reynolds  number.  

There is a clear motivation to develop approaches that combine the advantages of both RANS 

and LES. Instead of resolving the near-wall region turbulence, hybrid LES/RANS methods attempt to 

bypass the inner layer and model its effect through URANS concepts, thus dramatically reducing the 

mesh requirements (and computational cost) compared with wall-resolved LES.  In hybrid methods, 

LES is performed through most of the flow, where the physics of the larger scales can be resolved in 

a computational effective manner, and URANS is used where the majority of the turbulent scales 

cannot be resolved by the grid. This method relieves some of the practical restrictions of LES at the 

expense of some amount of physical fidelity. Some variations for modeling the near wall region 

turbulence in wall bounded flows have been developed through these years, including Wall-Modeled 

LES (WMLES), Detached-Eddy Simulation (DES), and hybrid LES/RANS.  

 

1.1 WMLES, DES, and Hybrid LES/RANS  

In a wall-modelled LES approach, which is also referred to as wall-stress-modelling approach, 

the inner layer of the boundary layer is deliberately discretized not by the LES, and a wall model 

containing the near-wall physics is introduced. Such wall model of inner layer provides a method to 

model the instantaneous wall shear stress †  directly, which serves as the flux boundary condition for 

the outer region LES. A simple wall model is analogous to the wall function commonly used in 

RANS approaches except that it is applied in the instantaneous sense in time-accurate calculations. 

Such simple models also imply that the logarithmic (or power) law of the wall holds for the mean 

velocity, which is not valid in many complex flows. For example, Schumann model [13] which was 

developed specifically for channel flow calculation assumes linear relation between instantaneous 

streamwise velocity at the first grid point off the wall and instantaneous wall shear stress. Grotzbach 

[14], Piomelli et al. [15] also design some variants of simple wall model.  

Even though such models have the advantage of adding negligible computational time 

overhead to the LES, itôs very challenging to derive a general model that takes into account most of 

the complex near-wall physics. The logarithmic law doesnôt hold when strong favorable or adverse 

pressure gradients, or flow separation and reattachment, etc. are present, say in an aerodynamic flow. 

This prompts first the derivation that corrects models based on logarithmic law [15-16], then followed 
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by the development of hybrid models in which simpler transport equations are solved in the inner 

layer, coupled to the outer layer LES.   

The two-layer model (TLM) described in Balaras [17] has weak coupling between the inner 

and outer layer, and the inner RANS and outer LES parts are computed simultaneously. A set of 

RANS turbulent boundary layer equations is solved in the inner layer by an embedded near-wall mesh 

in order to find out the wall shear stress which will be provided to LES, whereas the outer layer LES 

provides boundary conditions to represent outer region for the inner layer calculation. Cabot et al. 

[18-20] explored various features of TLM model. The two-layer model was also successfully used in 

trailing edge flow by Wang and Moin [16] through adjusting RANS coefficients dynamically to 

match LES at the boundary between the inner layer RANS and outer LES. Bocquet and Sagaut [21] 

extended the model to compressible flow. Kawai and Larson [22, 23] followed the similar idea by 

solving compressible equilibrium and non-equilibrium boundary layer equations. The computational 

cost to solve the RANS turbulent boundary layer equations is insignificant compared with that of the 

outer LES because there is no need to solve the momentum equation in the wall normal direction and 

the Poisson equation for the pressure.  

Wall modelling LES method works well for simple attached flows, such as the turbulent 

channel flow. However, the computational results by WMLES are less satisfactory for some more 

complicated flows involved in high Reynolds number and massive separations.  

Motivated by addressing high Reynolds number, separated flows, DES was first proposed by 

Spalart [24] in 1997. The idea is to redefine the length scale dependent upon wall distance and a mesh 

scale (or filter width) to determine whether a RANS or LES closure would be used in a given grid 

point. In the Spalart-Allmaras (S-A) based DES model, the DES formation is obtained by replacing 

the wall distance Ὠ by ὨḳÍÉÎ Ὠȟὅ Ў in the production/dissipation terms and model parameters 

in the transportation equation of S-A RANS model, here ЎḳÍÁØ ЎὼȟЎώȟЎᾀ, is the maximum grid 

spacing and ὅ  is the model constant. In DES applications, the wall parallel (streamwise and 

spanwise) grid spacings are on the same order of boundary layer thickness, thus the S-A RANS model 

is retained within the boundary layer as Ὠ Ὠ in this region. Outside the boundary layer, the grid 

spacing is typically smaller than wall distance, and DES reduces to LES mode through the one-

equation closure for the modified subgrid scale eddy viscosity. By this approach, turbulence model is 

in its RANS mode in the attached thin boundary layers containing flattened grid cells, whereas 

turbulence model is in its LES mode (Smagorinsky-like subgrid scale model) in the regions of 

massive separation and in free stream regions containing much more isotropic grid cells. In DES, 
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there is only one single solution field and the transition between RANS and LES is seamless. 

Although DES was initially formulated for the Spalart-Allmaras model, it can also be implemented 

with other RANS models [25], by appropriately modifying the length scale which is explicitly or 

implicitly involved in the RANS model. 

DES approach, in its basic form, relies on geometry and computational mesh to define the 

distinct RANS and LES regions. As a result, proper grid generation is very important because a 

preliminary knowledge about precise flow structure is needed to correctly handle the RANS/LES 

transition position. Aside from grid generation, another challenge for the original DES is the problem 

of ñambiguousò parallel grid densities, which results in modeled-stress depletion (MSD) and grid-

induced separation (GIS) [26]. The ñambiguousò grid activates the DES limiter (which is solely 

determined by grid spacing) roughly in the upper two-thirds of the boundary layer and triggers the 

switch of turbulence model from RANS to LES mode unexpectedly, but is not fine enough to support 

LES content or resolved velocity fluctuations. This switch to LES erroneously reduces the eddy 

viscosity and therefore modeled Reynolds stress in the boundary layer, without corresponding 

restoration of resolved stress. This is referred to as modeled-stress depletion (MSD). The depleted 

stresses reduce the skin friction, which may lead to premature separation, referred to as grid-induced 

separation. Spalart et al. [26] devised the Delayed Detached-Eddy Simulation (DDES) to solve the 

MSD and grid-induced separation by redefining the DES length scale Ὠ,  so that it is a function of the 

wall distance and local flow characterizations such as the kinetic eddy viscosity, molecular viscosity 

and velocity gradients. 

Logarithmic-layer mismatch (LLM) is a feature common to most hybrid RANS/LES methods, 

and also to DES and DDES. LLM happens when the ñinnerò log-layer produced by RANS model 

does not match the log-layer produced by the LES model [27-29]. Nikitin et al. [27] observed LLM in 

an attempt of Spalart-Allmaras based WMLES (which essentially use DES formalism) to turbulent 

channel flows, Baggett [30], Piomelli et al. [31] discussed the topic in the same framework. LLM can 

result in an under-estimation of skin friction coefficient by 15-20% and over-estimation of the 

velocity gradient ὨὟȾὨώ by 65% at LES and RANS interface. The cause of LLM is the lack of 

resolved eddies in the interface region between RANS and LES mode. Since the total shear stress is 

only a function of wall distance, the under-estimation of resolved stress means the over-estimation of 

the modeled one, resulting in an increase in the mean velocity gradient with the corresponding eddy 

viscosity unaffected. By using stochastic forcing at the RANS/LES interface, Keating and Piomelli 

[32] significantly enhanced the resolved stresses in their calculation, thus effectively reduced the 
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LLM. Travin et al. [33] and Shur et al. [29] developed an empirical blending function and introduced 

a blended RANS-LES length scale dependent on it for a WMLES. (It is important to note that the 

term ñWMLESò in [29] does not have the same meaning as what was defined in the previous part, 

since the Menterôs SST equations here do not serve as a two layer model to provide wall shear stress 

to the LES part, but works like the RANS part of a hybrid LES/RANS method. As mentioned later, 

the WMLES and DDES are the two branches in IDDES model, each one provide a different way of 

defining the blended RANS-LES length scale which affects the source term of Ὧ equation in Menterôs 

SST model. Here term ñWMLESò is adopted just the same as what was in the original reference [29].) 

The empirical improvements to this model provide a great increase of the resolved turbulent activity 

near the wall and adjust the resolved logarithmic layer to the modeled one, thus resolving the issue of 

LLM. In an improved delayed DES (IDDES) method, Shur et al. [29] combine the pure DDES with 

the WMLES free of LLM, the activation of which branch depending on whether the simulation does 

or does not have inflow turbulent content. The IDDES method also completely removes the LLM for 

channel flows. 

 In Zonal DES, the user explicitly marks different regions as RANS or as DES (Deck 2005) 

[34]. Pape et al. [35] did a Zonal DES for a leading edge-stall airfoil in poststall conditions.  

 Hybrid LES/RANS simulations have become increasingly popular in the past few years, in 

which RANS equations are solved in the inner layer whereas the filtered equations are solved in the 

outer layer of a boundary layer. Unlike in DES methods where a DES length scale is defined to 

determine which model to use in a given grid point, hybrid LES/RANS methods use a blending 

function to bridge the RANS and LES branches. The blending function is actually used to merge the 

SGS and RANS eddy viscosities.  

In his simulation of a turbulent channel flow at high Reynolds number using a hybrid 

RANS/LES method, Hamba [36, 37] applied additional filtering to the velocity components in the 

wall-parallel planes near the RANS/LES interface to remove the logarithmic layer mismatch. 

Davidson and Peng [38] simulated a plane channel flow and a separated flow over 2D-hill in a 

channel with hybrid LES/RANS, where a Ὧ -model is used in the near wall region and a one 

equation SGS model is used in the remaining part of the flow. They also observed LLM in the 

channel flow, but better results were obtained for the separated flow due to the enhanced convection 

and turbulent diffusions across the LES/RANS interface. Davidson et al. [39] simulated channel flow 

using a hybrid LES/RANS method. By adding a source term to the momentum equations based on 
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velocity fluctuations taken from a DNS database, forcing was provided to the LES/RANS interface 

region and LLM was able to be removed.  

Edwards and his group [40-47] performed hybrid a series of LES/RANS simulations on 

shock/boundary-layer interactions, high speed mixing, as well as complex reactive flows in scramjet 

propulsion. They emphasized the importance of flow properties rather than the grid-related quantities 

and developed two major approaches to computing blending functions: Choiôs model and Giesekingôs 

model. In Choiôs model, the Taylor microscale which is determined by a pre-calibration procedure is 

used as the turbulence length scale upon which the blending function is dependent. Good results were 

obtained in their simulation of Mach 5 compression-corner interactions by Choiôs model [42]. The 

drawback of this model is it needs pre-calibration in order to find out a model constant and thus is 

problem specific. In Giesekingôs model, a case-by-case pre-calibration is not needed any more and 

the blending function is determined by the ratio of the outer layer turbulence length scale with inner 

layer length scale [43, 44]. The outer-layer length scale is estimated by using the resolved turbulence 

kinetic energy, ensemble-averaged modeled turbulence kinetic energy and turbulence frequency, and 

time-resolved frequency, while the inner layer scale is proportional to the wall distance. Calculations 

of flat-plate boundary layers over a wide range of Reynolds numbers indicated that this new model 

was able to provide mean-flow and second-moment statistics which were in good agreement with the 

experiments.  

Chen et al. [48-50] recently developed a constrained large-eddy simulation (CLES) method 

and applied it in the attached and detached wall-bounded turbulent flows. They proposed that the 

whole flow domain be simulated by large-eddy simulation while enforcing a Reynolds stress 

constraint on the subgrid scale (SGS) stress model in the inner layer. Either algebraic eddy-viscosity 

model or one-equation Spalart-Allmaras model was used to constrain the Reynolds stress in the inner 

layer. In this way, they improve the LES method by allowing the mean flow of the inner layer to 

satisfy the RANS solution while including the small-scale dynamics in the meanwhile. Computational 

results of mean velocity, turbulent stress and skin-friction coefficient for three-dimensional channel 

flow by CLES were in good agreement with the experiments. CLES also predicted more precisely the 

separation of flow past a circular cylinder compared with the pure dynamic Smagorinsky model 

(DSM) and DES using the same grid resolution. 
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1.2 Motivation of This Work  

As described in the last section, the new hybrid LES/RANS models recently developed at 

NCSU have done good jobs in predicting the flow properties in shock/boundary-layer interactions, 

complex reactive flows in scramjet propulsion, flat-plate boundary layers, etc [40-47]. To further test 

the performance of these models, RANS and LES/RANS simulations based on some specific model 

or its variant were conducted on the flow over airfoils under various stall status. The aim is to try to 

determine whether these models can provide reasonable prediction of flow features when the airfoil is 

near stall or under static and dynamic stall status. This study represents the first application of NCSU 

hybrid LES/RANS models to external aerodynamic flows.  

A simulation of flow over the A-Airfoil designed by Aérospatiale was selected as the case of 

near static stall for this study by using both RANS and hybrid RANS/LES methods. The near stall 

configuration of this case: the free-stream Mach number is 0.15, the Reynolds number based on a 

chord length of 0.6 m is ςȢρ ρπ, and the airfoil angle of attack (AoA) is 13.3°. The experimental 

data used for comparison in this work is based on ONERAôs measurements carried out on two 

different wind tunnels [51]. Extensive flow measurements are available for comparison, including 

skin friction, surface pressure distributions and velocity and Reynolds-stress profiles which are 

obtained using laser Doppler velocimetry measurements. Some more discussion on the features of 

flow over A-Airfoil near stall and previous simulation work will be presented in Section 1.3.   

Section 1.4 describes briefly why and how static stall and dynamic stall of an airfoil occur, as 

well as the basic features of such complex phenomena. Some previous works on static and dynamic 

stall by numerical simulations and experiments are also provided in that section. In this study, RANS 

and hybrid LES/RANS techniques recently developed at NCSU were used to study the subsonic flow 

past an NACA 0012 airfoil under static and dynamic stall conditions. The flow configuration of these 

numerical simulations is the same as the conditions of experiment carried out by Pruski [57]. In 

Pruskiôs experiment of both static and dynamic cases [57], the free-stream Mach number is ὓ πȢρ, 

chord Reynolds number is ὙὩ ρȢπ ρπ, where the airfoil chord is ὧ πȢτυ ά, and ὟÐ

συ άȾί is the free-stream velocity. For static stall case, the airfoil remains motionless and the angle 

of attack is fixed at 16.7°. For dynamic stall case, the airfoil pitches about its quarter-chord axis 

(aerodynamic center) with a mean angle of attack of 21° and amplitude of 10°. The reduced 

frequency of the pitching airfoil is Ὧ “ὪὧȾὟÐ πȢρ, where Ὢ ςȢυ Ὄᾀ is the pitching angular 

frequency. Experimental data includes phase-locked PIV velocity and Reynolds-stress measurements 

concentrated at the leading edge of the airfoil and extracted at the static stall angle of 16.7° [57] 
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(which is traversed during the upstroke and downstroke phases of the pitch cycle for the dynamic-stall 

experiments).  

 

1.3 Flow over Aérospatiale A-Airfoil Near Stall  

Flow around airfoil is considered as complex because transition and flow separation may 

happen depending on the angle of attack, Reynolds number and airfoil shape. There is almost no 

separation and the flow remains attached over the entire airfoil if the angle of attack is small. As the 

angle of attack is increased, a trailing edge separation may occur because the flow is not able to stand 

the pressure rise on suction side. As the angle increases further, the trailing edge separation spreads 

upwards and covers more of the airfoil surface, resulting in stall. In addition, a separation induced 

laminar-to-turbulent transition happens near leading edge. This is normally because the incoming 

laminar flow is decelerated and becomes unstable and forms laminar separation bubbles as it evolves 

downstream. Therefore, for our A-Airfoil static stall case, the development of boundary layer on the 

suction side is characterized by the following features: the strong adverse pressure gradient 

successively creates a laminar separation bubble near the leading edge, a turbulent reattachment 

happens somewhere a little downstream, and a turbulent separation zone shows up around the blunt 

trailing edge after fully developed turbulence. Although the experimental skin-friction data [51] is not 

resolved well enough to indicate the laminar separation bubble and turbulent reattachment, Wall-

resolved LES results by Mary and Sagaut [11]
 
and direct numerical simulation results by Alam and 

Sandham [52]
 
showed that such features should be present.  

Under LESFOIL project, Davidson [10] performed a wall-resolved LES on subsonic flow 

over A-Airfoil at the same flow configurations described above. They successfully captured the 

transition mechanism. However, since the mesh resolution was not refined enough near wall, they 

predicted a too large laminar separation bubbles, leading to a delayed transition and under-estimated 

lift force.  

 Kawai and Larson [53] performed investigation on the flow past A-Airfoil near stall 

condition using a wall-modelling LES technique which involves solving compressible equilibrium 

and non-equilibrium boundary layer equations. By considering the length scale behavior near a wall, 

they proposed a method to address the numerical and subgrid modeling errors in the first grid points 

off the wall, which leads to ñlogarithmic-layer mismatchò (LLM) problem. [22, 23] With LLM being 

removed in their WMLES, Kawai and Asada [53] used this method to successfully predict such 
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leading edge flow features as separation vortices induced by adverse pressure gradients, the 

breakdown of the laminar vortices, and turbulent reattachment.  

 

1.4 Static and Dynamic Stall Flow over Airfoil 

Stall of an airfoil is caused by massive separation of the flow and characterized by a sudden 

reduction in lift due to flow separation as the angle of attack increases and exceeds its critical angle of 

attack. Dynamic stall, on the other hand, is a non-linear aerodynamic effect occurring when airfoils 

rapidly change angle of attack (AoA). It refers to unsteady flow separation occurring on aerodynamic 

bodies, such as airfoils or wings, which are executing an unsteady pitching motion. The rapid change 

of angle of attack can cause a strong vortex to be shed off the airfoil leading edge and convect 

downstream; meanwhile, the lift increases as the leading edge vortex (LEV) containing high-velocity 

airflows travels downstream toward the trailing edge. However, the lift drops suddenly and 

dramatically as soon as the vortex passes behind the trailing edge and the airfoil is in normal stall [54]. 

Generally, the process and essential features of dynamic stall events can be described as following. 

Starting from the flow being fully attached on the airfoil, the flow-reversal first appears near 

the airfoil trailing edge when the static stall angle of attack is exceeded. As the angle of attack further 

increases, flow reversal spreads rapidly over much of the airfoil surface. At some point past the static 

stall angle of attack during airfoilôs upwards pitching in the dynamic process, a vortex forms near the 

leading edge. The leading edge vortex continues to grow until at a certain instant, it detaches from the 

airfoil surface and begins to convect downstream. As the suction-induced vortex moves over the 

surface, its size increases, resulting in further increases in lift and negative pitching moment. As the 

angle of attack further increases, the vortex leaves the rear of the airfoil, resulting in a peak value of 

negative pitching moment and a sudden loss of lift. The airfoil is now stalled and has an extensive 

amount of flow separation over its suction side surface. As a result, this leads to a hysteresis loop in 

lift, drag, and pitching moment curves with angle of attack. After a sufficient reduction in angle of 

attack following airfoilôs downwards pitching, the boundary layer forms again on airfoil surface, 

reattaching from the front to the rear [57]. This results in large hysteresis loops to develop in lift, drag, 

pitching moment curves versus airfoil angle of attack [58].   

 Therefore, when an airfoil experiences an unsteady increase in angle of attack and exceeds 

its static stall angle of attack, an increase in lift can be developed without noticeable change in lift-

curve slope. This means airfoil can work at higher angles of attack (greater than static stall angle of 

attack) without experiencing a dramatic loss of lift, or in other words, stall is delayed beyond its static 
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angle of attack. The stall delay effect is related to the leading edge vortex mentioned above, which 

forms, grows, convects downstream, and finally sheds off the trailing edge. The suction induced by 

the LEV motion strongly affects the pressure distribution, therefore profoundly changing airfoil lift, 

drag, and pitching moment from its static stall counterparts. The key parameters influencing dynamic 

stall includes Reynolds number, Mach number, reduced frequency or pitching rate, and mean pitching 

angle [55, 56].  

Flow over a rapid pitching airfoil is not the unique case where dynamic stall occurs. Actually 

this phenomenon widely happens to helicopter rotor blades, turbomachinery and wind turbines. For 

example, changes in angle of attack of helicopter rotors are predominantly caused by the sinusoidal 

variation in blade incidence imposed on the rotor as it moves around the azimuth.  Fortunately, we 

now know that the dynamic stall process on a helicopter blade may be experimentally reproduced on 

a pitching airfoil in a two-dimensional flow [56]. The universality of dynamic stall and the stall delay 

effect as well as the special flow characteristics makes this topic attractive. Researchers have long 

been investigating the phenomenon via both experimentation [57-63, 95-96] and numerical 

simulations [54, 64-66]. Some researchers also developed semi-empirical relations of oscillating thin 

airfoil theory to predict the forces and moment [54, 60]. 

The numerical simulations on dynamic stall phenomenon have mostly used two-dimensional 

RANS computations; both for incompressible and compressible flows. Just mention a few, Weber and 

Platzer [67] analyzed the dynamic stall behavior of the supercritical NLR 7301 airfoil with a 2D thin-

layer Navier-Stokes code, where the compressible Reynolds-averaged Navier-Stokes equations were 

solved with an upwind biased numerical scheme in combination with the Baldwin-Lomax or the 

Baldwin-Barth turbulence models. In their investigation of the dynamic stall onset with OA312 airfoil, 

Geissler and Haselmeyer [68] carried out numerical calculations based on the solution of the 

unsteady 2D-RANS-equations including a turbulence and transition model, aside from performing the 

experiments on a 2D-wing model. Shida and Kuwahara et al. [97] analyzed the flowfield around a 

NACA-0012 airfoil oscillating in pitch about its quarter chord by solving the two-dimensional 

compressible Navier-Stokes equations. 

There were also several three-dimensional simulations of dynamic stall flows in recent years. 

You and Bromby [69] performed a wall-resolved large-eddy simulation with a global-coefficient 

subgrid-scale turbulence model on turbulent flow over a pitching airfoil at realistic Reynolds and 

Mach numbers using an unstructured-grid. Their dynamic stall simulation showed the characteristics 

of flow separation and reattachment process which were qualitatively congruent with experimental 
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observations. By means of high-fidelity implicit large-eddy simulations (ILES), Visbal [70] analyzed 

the onset of unsteady separation and dynamic stall vortex formation over a constant-rate pitching SD 

7003 airfoil and NACA 0012 airfoil. In their cases, the free stream Mach number is 0.1 and chord 

Reynolds number is πȢυ ρπ, while the nominal constant pitching rate is 0.05. They observed that 

the process was initiated by the breakdown of a laminar separation bubble (LSB) within the boundary 

layer near leading edge. The breakdown of the laminar separation bubble occurred at some incidence 

as the airfoil pitching upwards and was followed by abrupt turbulence separation, after which a 

dynamic stall vortex (DSV) formed close to wall due to the turbulent boundary layer vorticity. By 

means of two- and three-dimensional numerical simulations, Martinat et al. [98] investigated NACA 

0012 dynamic stall at Reynolds number 10
5
 and 10

6
. Their study showed that downstroke phases of 

the pitching motion are subjected to strong three-dimensional turbulence effects along the span, 

whereas the flow is practically two-dimensional during the upstroke motion. Rodriguez et al. [99] 

performed direct numerical simulation on a NACA 0102 airfoil in full stall at a low-to-moderate 

chord Reynolds number 2Å υππππ, and found that the NACA 0012 exhibited a leading-edge / 

trailing-edge stall which causes the massive separation of the flow on the suction side of the airfoil at 

angle of attack = 12°. 

The objective of this thesis is to develop and apply new versions of the LES/RANS models 

developed at NCSU to airfoils near static stall and under dynamic stall. The remainder of the thesis is 

outlined as follows. Chapter 2 describes the governing equations, including Navier stokes equations 

(and other transport equations) in RANS and LES forms, as well as the details of various RANS and 

hybrid LES/RANS models used in this study. Chapter 3 presents numerical methods used in this 

study, specifically the finite volume discretization in its arbitrary Lagrangian-Eulerian (ALE) form for 

the incompressible subsonic flow with a moving mesh. Chapter 4 discusses the computational results 

of flow over Aérospatiale A-Airfoil near stall, with the flow configuration being the same as that in 

ONERAôs measurements [51]. The computational results of flow over NACA 0012 airfoil under 

static and dynamic stall are presented in Chapter 5 and Chapter 6 respectively, and the experiments by 

Pruski et al. are used for comparison [57].  Chapter 7 provides a summary of and some conclusions 

that can be drawn from this study, and some suggestions of future work.  
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Chapter 2 

Governing Equations 

 

  

2.1 Navier-Stokes Equations 

The Navier-Stokes equations are the basic equations applied to model the flow of a viscous, 

heat conducting flow. They consist of three momentum equations, one continuity equation and one 

energy equation. The momentum equations are derived from applying Newtonôs second law to fluid 

motion, while the fluid can be considered as a continuum. It is assumed that the flow is viscous: the 

stress in the fluid is the sum of the diffusive viscous term and pressure term. Continuity equation is 

actually the mass conservation equation, and energy equation describes the conservation of energy for 

fluid flow. While body forces and heat addition can be included, they are neglected for this work. 

Since this study dealt with the isothermal, low Mach number subsonic flow over airfoil with heat 

conduction being neglected, there is no need to solve the energy equation and it isnôt involved in the 

system of equations in this work. So the governing equations read in index notation as 
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Here †  is viscous stress and determined by Stokes Law for a Newtonian fluid, with viscosity ‘ being 

calculated by Sutherlandôs formula 
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where ‘  is the viscosity at reference temperature Ὕ , for air: Ὕ ςχσȢρυ ὑ, ‘ ρȢχρφ

ρπ ὯὫȾάϽί, and Ὓ ρρπȢτ ὑ. As mentioned, isothermal flow is dealt with in this study, and fluid 

temperature Ὕ remains constant σππ ὑ as it is in the freestream flow, so the molecular visocity ‘ is a 

constant  

   smkg Ö³= - /10846.1 5m       (2.4) 

In this work we assume that the ideal gas law holds: 

   RTp r=         (2.5) 

where Ὑ is a constant, representing the gas constant for air. 

 In computational fluid dynamics, it is often convenient for these equations to be written in so-

called conservative form: 
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The conservative variables vector Ὗᴆ are defined as:  
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The components of source term vector Ὓᴆ are all zero in this work: 
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and the flux vectors are 
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 Direct numerical simulation (DNS) is the numerical method that seeks to discretize and solve 

the Navier-Stokes equations directly. However, this method is too computationally expensive for 

most turbulent flows since very fine meshes and small time steps are required in order to resolve all 

the turbulent scales. This is not affordable so far for most of the practical flows in engineering. In the 

hybrid LES/RANS model used for this work, Reynolds-averaged form of Navier-Stokes equations are 

solved in the RANS section while the filtered Navier-Stokes equations are solved in the LES section.  

 

2.2 Reynolds-averaged Navier-Stokes Equations 

The Reynolds-averaged Navier-Stokes equations are time-averaged equations of motion for fluid flow. 

The basic idea behind the equations is Reynolds decomposition, an idea first proposed by Osborne 

Reynolds [71] in 1895 when he tried to decompose the velocity field into a time-averaged motion and 

a turbulent fluctuation. By Reynolds decomposition, an arbitrary instantaneous variable ‰ may be 

decomposed into its time-averaged (or mean) component (‰) and fluctuating component (‰ᴂ): 
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Reynolds-averaged Navier-Stokes (RANS) equations are derived by splitting the variables into these 

components and then averaging the instantaneous Navier-Stokes equations. Nevertheless, a mass 

weighted averaging called Favre-averaging is usually used for compressible flow where significant 

density fluctuations are involved, so as to make the averaged equations less complex. Favre-averaging 

can be described as 
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Since the low Mach number subsonic flow dealt with in this study was almost incompressible and 

didnôt experience significant density variations, actually Favre-average wasnôt needed. The normal 

RANS equations are 
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The averaged equations are not closed because the averaging process introduces several additional 

unknows without providing additional equations to compensate. In order to close the problem, the 

Boussinesq approximation is used to estimate the Reynolds stress '' ji uur  term. 
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The Boussinesq approximation introduces another unknown, the turbulent eddy viscosity ‘, through 

which the transfer of momentum caused by turbulent eddies is modeled. Various RANS turbulence 

models were developed to approximate this eddy viscosity in order to emulate the underlying physics 

of turbulence and their relation to mean flow properties. However, no universal RANS model has 

been found to be valid to all kinds of turbulent flow, although some individual models might work 

well in the specific flow circumstances they are designed for.  
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 A two-equation turbulence model developed by Menter [7] is used in this work, whereas 

Menterôs baseline (BSL) and shear stress transport (SST) models are adopted for turbulence closure.  

2.2.1 Menter BSL and SST Turbulence Closure 

 Menterôs model (both BSL and SST) [7] is used as a turbulence closure for the RANS 

simulations in this study. As a two-equation turbulence model, Menter BSL uses Wilcoxôs Ὧ  

model [6] near the wall and Ὧ ‐ model in the outer part of the boundary layer. This is achieved by 

transforming Ὧ ‐ equations into a Ὧ form and employing a blending function Ὂ to transition  

between the two. In this way, the ability of Ὧ model in modeling viscous wall-bounded flows  

may be preserved in the new model, and its disadvantage of being sensitive to freestream conditions 

is evaded by using the Ὧ ‐  model away from the wall. Therefore, the only difference between the 

transformed Ὧ ‐ model and the Ὧ model is the addition of a cross-diffusion term in the   

equation.   

 Original Ὧ :model  
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 Transformed Ὧ ‐ model:  
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Now, Eq. (2.19) and (2.20) are multiplied by blending function Ὂ and Eq. (2.21) and (2.22) are 

multiplied by ρ Ὂ  and the corresponding equations of each set are added together to give the new 

model:  
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where  
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For the Menter BSL model, 
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and the blending function Ὂ is given by  
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where ώ is the distance to the nearest surface.  

 

 

Table 2.1: Model constants for Menter BSL and SST model 

Model 

constant 

Menter BSL model Menter SST model 

inner Ὧ outer Ὧ  ‐ inner Ὧ outer Ὧ  ‐ 

„ 0.5 1.0 0.85 1.0 

„  0.5 0.856 0.5 0.856 

 0.0750 0.0828 0.0750 0.0828 

ᶻ 0.09 0.09 0.09 0.09 

 0.5532 0.4404 0.5532 0.4404 

ὥ ð ð 0.31 ð 
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For the Menter SST model, 
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where ɱ is the absolute value of the vorticity. Ὂ is given by 
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The model constants between the transformed Ὧ ‐ and Ὧ equations must be blended in the  

same way, with ‰  indicating an inner (Wilcox Ὧ ‰ value and (  indicating an outer (Ὧ ‐) value:  

   ( )2111 1 fff FF -+=                                 (2.34) 

The model constants (BSL and SST) for Ὧ ‐ and Wilcox Ὧ .can be found in Table 2.1   

 

2.3 Filtered Navier-Stokes Equations 

  In LES, the large scale three dimensional turbulent motions of a flow (or large eddies) are 

computed directly, while the small scale motions (or small eddies) are modeled. A cut-off scale Ў is 

established in order to separate the scales; the scale greater than it is called the filtered scale whereas 

the scale smaller than it is called the subgrid scale. The filtered Navier-Stokes equations are formed 

based on the realization that any discretization is essentially a spatial averaging that filters out scales 

that are smaller than such cut-off scale [72]. In practice, a filtering operation is used to decompose the 

velocity field into two quantities: the averaged ό called the resolvable-scale filtered velocity and the 

subgrid-scale (SGS) velocity όᴂ. The resolved part of turbulent flow field, or the resolvable-scale 

filtered velocity is defined as a convolution integral by [72] 

   
3( , ) ( ; ) ( , )i iu t G u t d= - Dñññx x x x x                        (2.35) 

where Ὃ is a filter function. The box filter, the Gaussian filter, and the sharp spectral filter are the 

three most common filters used in LES. After the filtering operation, the following decomposed form 

of velocity field is obtained  

   ( , ) ( , ) '( , )i i iu t u t u t= +x x x                         (2.36) 

and the cut-off scale Ў, which is also called filter width, is defined as the length scale of the mesh  



 

 

 

  20 

   ( )3/1
zyx DDD=D                              (2.37) 

Filtered Navier-Stokes equations, which are the governing equations for LES, can be 

obtained by applying the filter operations over the Navier-Stokes equations that governing the flow 

field. The filtered Navier-Stokes equations read 
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The filtered Navier-Stokes equations have similar forms as RANS equations, the main differences are 

the definition of modeled subgrid stress †  (instead of Reynolds stress †  in RANS) and pressure  
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   TRp r=                            (2.40) 

Here the subgrid scale (SGS) stress †  is modeled to represent the turbulent contribution of small 

scale motions which cannot be resolved by the LES mesh. Since SGS stress only represents a fraction 

of the total turbulent energy, the presence of very small eddies close to surface in a high Reynolds 

number flows demands a fine mesh to effectively apply LES to the near wall region. The mesh 

requirements for a near wall LES may even be close to that of DNS, therefore the practical 

applications of LES to those high Reynolds number wall flows are limited.      

 

2.3.1 LES Turbulence Closure 

 Subgrid scale (SGS) models of stress tensor †  are needed to close the filtered Navier-Stokes 

equations (2.38). With the definition of †  shown in (2.39), closure is achieved by determining the 

SGS turbulent eddy viscosity (‘ȟ ). In this work, the subgrid eddy viscosity is defined as in [73]   

   sgstsgst ,, rnm =                             (2.41) 

   ( ) 2/34/122/1

, D= qSCMsgstn ,  06.0=MC             (2.42) 

The subgrid kinetic energy in Eq. (2.42) is estimated by test-filtering the resolved-scaled velocity data:  
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where the  test filter is defined by 
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                     (2.44) 

It can be interpreted as a second-order approximation of ether a Gaussian filter or a top-hat filter [73]. 

The filter width is the cube root of the cell volume as in expression (2.37), and Ὓ is defined as the 

magnitude of vorticity.   

 

2.4 Hybrid LES/RANS models 

Recent efforts at NCSU have resulted in the development of a new class of hybrid large-eddy 

simulation/Reynolds-averaged Navier-Stokes turbulence closure methods suitable for high Reynolds 

number, turbulent flows.   The transition between a RANS component (used very near solid surfaces) 

and the LES component (used in the outer parts of developing turbulent boundary layers and in free 

shear layers) is facilitated by the action of a flow-dependent blending function, which modifies the 

eddy viscosity field as follows: 
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with the subgrid eddy viscosity specified by (2.42). Here ɜ is a time-dependent blending function that 

connects the RANS and LES branches. The blending function ɜ is generally designed to transition the 

model from RANS to LES approximately as the boundary layer shifts from its logarithmic to its 

wake-like structure.  As such, the RANS component acts as a wall-layer model for the majority of the 

flow, which is modeled as a large-eddy simulation.   

Therefore, the response of the hybrid LES/RANS models is dictated by the blending function 

ɜ, a time-dependent quantity that reaches a value of unity where an unsteady RANS response is 

desired and zero where an LES response is desired [43]. Two different strategies in determining the 

LES/RANS blending function were developed by previous efforts of Choi [42] and Gieseking [43, 44] 

to facilitate a proper transition between RANS and LES, which are detailed in the following sections.  

  

2.4.1 Choiôs model 
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 In Choiôs model [42], the blending function in (2.45) is based on the ratio of the wall distance 

Ὠ to a modeled form of the Taylor microscale: 
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where the Taylor microscale is defined as 

   wnc mCT /=                            (2.48) 

The constant ‰ is set to 2975599.2)98.0(tanh 1 =-
 to fix the balancing position (where 

– ρ) to ɜ πȢωω. The constant  is chosen to enforce the average RANS to LES transition 

(ɜ πȢωω position) for equilibrium boundary layers at the point where the wake law starts to deviate 

from the logarithmic law of the wall. To determine  for a particular inflow boundary layer, the 

following procedures is used. First, a prediction of the equilibrium boundary layer is obtained through 

a 2D RANS simulation by the same flow configurations. Then an initial estimate for the outer extent 

of the log layer is defined by finding the value of Ὠ  such that 
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The model constant  is then found by the equivalence Ὠ  , which arises from the use 

of inner layer scaling arguments for Ὧ and Specifically, in the logarithmic region, one has . 

όȾ‖Ὠὅ  , where ‖ is von Kármán constant, ὅ πȢπω, and ό is the friction velocity. Then 

substituting this into Eq. (2.47) and (2.48) in succession, one finds that 
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at the balancing position. This procedure requires free-stream information, the thermal state of the 

wall, and a target boundary-layer thickness, all of which are specific to a particular boundary layer. 

For the Aérospatiale A-airfoil case where Choiôs model was used, a RANS solution was used to 

provide this information, and the model constant was curve-fitted as a function of the distance from 
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airfoil stagnation point (two different curve-fitted functions were used for the upper and lower 

boundary layers respectively).  

  

2.4.2 Giesekingôs model 

 To remove the problem-specific calibration procedure required in Choiôs model, Gieseking 

[43, 44] developed a new LES/RANS model as an alternative form for the blending function G. The 

principal idea is that the location of the outer part of the logarithmic region, or the location where one 

might wish to shift the model response from RANS to LES, is related to the ratio of outer layer to the 

inner layer turbulent length scale. The inner layer turbulent length scale is proportional to the wall 

distance Ὠ, while the outer layer length scale information is implied by the summation of length scale 

determined from Ὧ model and a viscous length scale proportional to ὺȾSo the blending .  

function in Giesekingôs model takes the form 
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where constant ὅ ρυȢπ, and length scale ratio 
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In this expression, ὅ ρȢυ is a constant,  Ὧ is the ensemble-averaged modeled turbulence 

kinetic energy, Ὧ is the ensemble-averaged resolved turbulence kinetic energy, are  and  

instantaneous and ensemble-averaged modeled turbulence frequencies, and Ὠ is the distance to the 

nearest wall. The combination of instantaneous and ensemble-averaged data allows the RANS-to-

LES transition position ῲ ρȾς to fluctuate about a mean value that is a function of the local, 

ensemble-averaged state of the flow. As it is dependent on both inner-layer and outer-layer turbulence 

length scale information, this model is more capable of adjusting to departures from local equilibrium, 

and a problem-specific selection of a model constant is not required. The required ensemble averages 

are currently computed using an exponentially-weighted moving average: 
nnn AQAQQ +-= - )1(1
 

with t/tA D= . In Giesekingôs model, the time scale † has been defined as  

   ),,min( restt=t  restt 4<  
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      restt 3-= ,  restt 4²  
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t res                 (2.54) 

where L is a representative length scale (an airfoil chord length in the calculations presented in the 

next sections) and Ὗ  is the free-stream velocity. This particular form assumes that a statistically-

stationary turbulent flow will emerge after four residence times rest  (which may also be called a flow-

through time or characteristic time).  

 As shown in the computational results presented in the later sections, the ensemble averaging 

method to determine length scale ratio (and blending function) in Giesekingôs model works well for 

steady flow cases where a statistically stationary state can be reached with enough time iterations. 

However, for unsteady flows as in the dynamic stall case of NACA 0012 arifoil, the flow properties 

keep changing with time and only instantaneous quantities make sense. Actually no statistically 

stationery state exists for unsteady flows, therefore the ensemble-averaged values might not be able to 

reflect the outer layer length scale accurately at some instance in time; this makes it a problem in 

determining the blending function with such an ensemble averaging technique. In Section 2.4.4, one 

way of avoiding this issue is discussed.  

The aforementioned LES/RANS models (Choiôs and Giesekingôs) are designed for use with 

Menterôs BSL and SST models [7], which provides the RANS eddy viscosity field. The equations 

governing the turbulence kinetic energy and specific dissipation rate are not altered except that the 

blended eddy viscosity definition of (2.45) is used in the production and diffusion terms. We have 

used the baseline (BSL) version of Menterôs model in all of our prior LES/RANS applications. In this 

study, we use the SST (shear stress transport) variant to ensure proper coupling with the Menter-

Langtry transition model discussed later.    

 

2.4.3 Salazarôs fix to Giesekingôs model   

 Salazar [74] introduced a grid correction function in the definition of length scale ratio (2.52) 

so as to take grid resolution into consideration while determining the RANS to LES transition. With 

Salazarôs fix, the length scale ratio is redefined as 
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The inclusion of grid spacing ),,max(max zyx DDD=D  in determining the eddy viscosity 

blending function facilitates a different transition between LES and RANS by avoiding 

implementation of LES in those regions where the grid is too coarse to support LES. In another 

version of Salazarôs fix, the effect of intermittency adjustment g is also taken into account 
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w
g=             (2.56) 

where .are instantaneous and ensemble-averaged modeled turbulence specific dissipation rate  and  

The second version of Salazarôs fix wasnôt used in this study. 

 

2.4.4 Associate Blending Function with Concurrent RANS Solutions 

 In dynamic stall cases, unsteady flow is involved and the ensemble averaging method in 

calculating outer layer length scale described in Giesekingôs model might not be so appropriate any 

more since the flow properties keep changing all the time. In the investigation of NACA-0012 

dynamic stall case, we also tried some other approaches in determining the LES-to-RANS blending 

function in order to avoid the ensemble average problem for unsteady flows. One variant of the 

blending function is to redefine the outer layer length scale in (2.53) by replacing the ensemble-

averaged modeled turbulent kinetic energy Ὧ and specific dissipation rate with concurrent RANS  

solutions of these quantities,  
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The idea is that a totally independent two-dimensional RANS case (Menterôs SST model in 

this work) is implemented synchronically while running the hybrid LES/RANS case, by using the 

same mesh (in x and y dimensions), the same discretization, the same time step, as well as the same 

flow configurations and other relevant parameters. Ὧ  and   in (2.57) are the solutions of the 

independent simultaneous RANS case, rather than the solutions of Menterôs BSL (or SST) equations 

in the hybrid LES/RANS case. In this way, RANS information is directly used to provide part of the 

outer layer length scale so that ensemble-averaging is not necessary.  

 

2.4.5 IDDES Model   
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 The improved delayed detached eddy simulation (IDDES) [29] combines delayed detached 

eddy simulation with an improved hybrid RANS-LES model aimed at wall modelling in LES 

(WMLES), and switches between the two branches by a blending function. It is essentially a hybrid 

RANS-LES model that provides a flexible and convenient scale-resolving simulation for high 

Reynolds number flows. The SST-IDDES model used in this study is based on modifying the 

destruction term in the Ὧ equation of the Menterôs SST model (while (equation remain unchanged  
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where  Ὂ  is based on the RANS turbulent length scale and the LES grid length scales 
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The IDDES length scale ὰ  is the blending of that of the DDES branch and WMLES branch (not 

a direct blending here) 

   LESdRANSedIDDES lflffl )
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1()1(
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-++=               (2.60) 

where the blending function Ὢ is defined by 

   ( ){ }Bdtd fff ,1max
~

-=                (2.61) 

with ( )[ ]38tanh1 dtdt rf -= . Here ὶ  is related to delaying function, and Ὢ is an empirical blending 

function; both will be given later in defining the length scale of WMLES branch.  

The LES length scale ὰ   in (2.53) is defined by the subgrid length scale Ў  

   D= DESLES Cl                  (2.62) 

   [ ]{ }maxmax ,,,maxmin hhhCdC wnwww=D              (2.63) 

where ὅ πȢφρ is the fundamental empirical constant of DES, empirical constant ὅ πȢρυ, Ὠ  

is the wall distance, Ὤ  is the grid spacing in wall normal direction, and ),,max(max zyxh DDD= . 

 The length scale of DDES branch is 

   ( ){ }LESRANSdRANSDDES llfll --= ,0max              (2.64) 

where the delaying function ( )[ ]38tanh1 dd rf -= , and 
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 The length scale of WMLES branch involves two empirical blending functions Ὢ and Ὢ 

   RANSBRANSeBWMLES lflffl )1()1( --+=              (2.66) 

   ( ){ }0.1,9exp2min 2a-=Bf ,  max/25.0 hdw-=a            (2.67) 

A second empirical blending function Ὢ is aimed at preventing the excessive reduction of the 

RANS Reynolds stresses which has been observed in the vicinity of the RANS and LES interface 
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where ὧ ρȢψχ and ὧ υȢπ are additional model constants, and the quantities ὶ and ὶ  are the 

ñturbulentò and ñlaminarò analogues of ὶ in (2.65)  
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It is also worth noting that the term ñWMLESò in [29] does not have the same meaning as 

what was defined in Chapter 1, since the Menterôs SST equations here do not serve as a two layer 

model to provide wall shear stress to the LES part, but work similar to the RANS part in a hybrid 

LES/RANS method. As shown above, the WMLES and DDES are the two branches in IDDES model; 

each one provide a different way of defining the blended RANS-LES length scale which affects the 

source term of Ὧ equation in Menterôs SST model. Here term ñWMLESò is adopted just the same as 

what was in the original reference [29]. 

 

2.5  Menter-Langtryôs Transition Model 

Transition occurs through different mechanisms in different applications. In aerodynamic 

flows, transition occurs due to flow instability (Tollmien-Schlichting waves or crossflow instability); 

this is called natural transition [75]. In turbomachinery applications, the main transition mechanism is 

bypass transition [76] that high levels of turbulence in the freestream impose on the boundary layer. 



 

 

 

  28 

Another important mechanism is separation-induced transition [77], where a laminar boundary layer 

separates due to strong adverse pressure gradient, and transition develops within the separated shear 

layer. Historically, many of the transition models have been developed to depict the physics and 

mechanisms of the laminar to turbulent transition process, including Ὡ  method of Smith and 

Gamberoni [78], low-ὙὩ models [79], and empirical correlation models [80-82]. Most of these 

transition models are not CFD compatible because non-local operations are involved ï these are not 

convenient to apply for complicated geometries. Menter and Langtry [83] have developed a 

correlation-based transition model which is built strictly on local variables. This model is compatible 

with the requirements of a modern general purpose CFD code. The basic idea of Menter-Langtryôs 

transition model is that two additional transport equations, one for intermittency and one for a 

transition onset criterion expressed in terms of a momentum-thickness Reynolds number, be solved 

and will interact with the Menterôs SST turbulence model [7]. The transport equation for the 

intermittency  reads 

( ) ( )
ù
ù

ú

ø

é
é

ê

è

µ

µ

ö
ö

÷

õ

æ
æ

ç

å
+

µ

µ
+-=

µ

µ
+

µ

µ

jf

t

j

j

j xx
EPu

xt

g

s

m
mgrrg gg            (2.73) 

here, the transition production source term is defined as  

)1(][ 1

5.0

1 ggrg eonsetalength cFScFP -=                         (2.74) 

where Ὓ is the strain-rate magnitude. Ὂ  is an empirical correlation that controls the length of the 

transition region and is a  function of the transition momentum-thickness Reynolds number ὙὩ . 

Ὂ  controls the transition onset location. The destruction source term is defined as 

)1( 22 -W= ggrg eturba cFcE                         (2.75) 

where ɋ is the vorticity magnitude.  Ὂ  is used to disable the destruction source term outside of a 

laminar boundary layer or in the viscous sublayer. ὧ , ὧ , ὧ , ὧ , and „ are model constants.  

The transport equation for the transition momentum-thickness Reynolds number  ὙὩ  reads 
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where the source term  ὖ  is defined as 
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Here, ὸ is a time scale present for dimensional reasons, and  Ὂ  is a blending function.  ὙὩ is a 

local value of transition momentum-thickness Reynolds number calculated from the empirical 

correlations and is a function of a pressure gradient parameter ‗ and the turbulence intensity Ὕό.  „  

and  ὧ  are model constants. 

The transition model interacts with the SST turbulence model [7] as follows 
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where ὖ and Ὀ  are the original production and destruction terms for the SST model and Ὂ  is 

the original SST blending function. Note that the production term in the .equation is not modified   

Reference [83] gives more details about the Menter-Langtry transition model. As the Menter-Langtry 

model only affects the turbulence kinetic energy equation and as the constitutive equation for the 

eddy viscosity is not altered, the integration of the model into the LES/RANS framework requires no 

additional modifications.   

 

2.6 Arbitrary Lagrangian -Eulerian (ALE) Method  

The dynamic stall case of NACA0012 airfoil in this study involves the pitching motion of the 

airfoil, and consequently the moving meshes have to be employed to treat this case. One of the best 

approaches to deal with moving meshes (or coordinates) mathematically is the so called arbitrary 

Lagrangian-Eulerian (ALE) method.  

 The Lagrangian description and the Eulerian description are the two classical descriptions of 

motion usually used in the algorithms of continuum mechanics [84]. In Lagrangian algorithms each 

individual node of the computational mesh follows the associated material particle during motion, 

which allows an easy tracking of moving surfaces and interfaces between different materials. But this 

description has the weakness of inability to follow large distortion of the computational domain, so 

itôs mainly used in structural mechanics.  Eulerian algorithms are widely used in fluid dynamics. The 

computational mesh is fixed while the continuum moves with respect to the grid. Eulerian description 

can handle large distortion in the continuum easily but has difficulties in dealing with the moving 

surfaces. Arbitrary Lagrangian-Eulerian (ALE) description was developed to combine the best 
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features of both the Lagrangian and the Eulerian approaches. In the ALE description, the nodes of the 

computational mesh may be moved with the continuum as in Lagrangian fashion, or be held fixed as 

in Eulerian manner, or moved in some arbitrarily specified way.   

The integral form of ALE conservative equations can be derived using Reynolds transport 

theorem that is applied to an arbitrary volume ὠ whose boundary Ὓ ὠ moves with the mesh 

velocity v
C%

 [86]. ALE form reads 

 Mass:  ( )ññ =Ö+
µ

µ

tS
CV

CV dVncdV
t

0
CC

rr  

 Momentum:  ( ) ñññ ÖÐ=Ö+
µ

µ

tt VS
CV

CV dVdVncvdVv
t

srr
CCCCC

                        (2.81) 

where v
C

is the material velocity vector, and s
C

 denotes stress tensor, and c
C

 is the convective 

velocity vvc
C%CC
-= . The finite volume method was employed in this study to discretize the above 

integral forms of ALE conservative equations, which is detailed in the next section.  
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Chapter 3 

Numerical Methods 

 

3.1 Finite Volume Discretization 

In this study, the hybrid LES/RANS models are implemented into a finite volume Navier-Stokes 

solver that solves a low Mach number form of Navier-Stokes equations. The finite volume method 

(FVM) is actually a discretization technique to partial differential equations (PDEs). In a finite 

volume method, the domain is broken into discrete volumes (cells) and information is stored at cell 

centers (instead of cell nodes) to solve PDEs. This cell-centered information represents the averaged 

values of the entire cell volume, and the volume integral of the Navier-Stokes equations is as 

following 
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Using the Green-Gauss Theorem, the spatial volume integral can be rewritten as a surface integral 

over the cell faces  
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The first term in Equation (3.2) becomes the partial derivative of the conservative variable vector Ὗ 

with respect to time (as long as the cell volume does not change). In the second term, the surface 

integral can be broken up into the separate faces of the cells. These surface integrals are the function 

of cell-centered values on each side of the face, and represent the fluxes of conservative variables 

through the cell faces. For structured grid used in this work, there are six faces over which fluxes are 

calculated. Therefore, as long as the volume of the cell does not change, the sum of the time rate of 
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change of the cell averaged values and the fluxes of those quantities through the cell faces is equal to 

the source term S
C

 

 SGGFFEE
t

U
V kjikjikjikjikjikjiCV

CCCCCCC
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=++++++
µ

µ
+-+-+- 2/1,,2/1,,,2/1,,2/1,,,2/1,,2/1  (3.3) 

where  E
C

, F
C

, G
C

are fluxes through the cell interfaces, they are split into inviscid and viscous fluxes. 

The continuity and momentum equations have no source term, but the k , w equations in Menter 

SST turbulence model and the g, tqeR
~

 equations in Menter-Langtry transition model have non-zero 

source terms.  

 In this study, an arbitrary Lagrangian-Eulerian (ALE) approach is employed to deal with the 

moving mesh problem in which cell volume is prone to change. So the ALE integral form of Navier-

Stokes equation (3.2) becomes: 
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or 
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here v
C
Ĕ is the mesh moving velocity (actually the moving velocity of each face).   

Artificial compressibility method is used to solve the PDE system of the incompressible flow in this 

study, where a fake time derivative of pressure is introduced in the continuity equation, and pressure 

ὴ instead of density ” becomes one of the primitive variables. With this treatment, equation (3.5) can 

be discretized in an implicit formulation as below  
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Here the ὲ and ὲ ρ superscripts represent the current and next time level (time step) while the Ὧ 

superscript represents the current subiteration level, ὠ  is the cell volume. Ўὸ is the physical time step 

(for time accurate simulation of unsteady flow) while Ў† is the subiteration time step. 
V

RsC

C

µ

µ
 is the 
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Jacobian of the steady part of equation (3.5); ὖ is the preconditioning matrix introduced by artificial 

compressibility method which is defined in a later section. Fluxes in ALE form are also split into 

inviscid and viscous fluxes: invALEF ,

C
 and viscALEF ,

C
- . 

With finite volume method, various flux vector splitting schemes can be used for the 

reconstruction of these fluxes. In this work, inviscid fluxes are constructed with Edwardsôs Low-

Diffusion Flux Splitting Scheme (LDFSS) [100]. A second-order central differencing method is used 

to the reconstruction of the viscous fluxes.  

 

3.1.1 Flux Reconstruction 

 Edwardsôs Low-Diffusion Flux Splitting Scheme (LDFSS) as modified for incompressible 

flows in [100] is used for the construction of inviscid fluxes. This Van-Leer type upwind flux 

splitting method allows the information to propagate through the discretized space as it would in the 

real life physical flow. The inviscid part of the ALE fluxes are formulated as  

   ( )pc

ALEinvALE FpFUAF
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+= r,      (3.7) 

where ALEU  is the ALE contravariant velocity 
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here u
C

 and u
C
Ĕ are material velocity and mesh velocity respectively, and n

C
 is the outward normal 

vector for the face.  

In the above, cF
C

 is convective term and 
pF
C

 is pressure term  
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The convective fluxes at the face are then defined as 
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The scalar functions in equation (3.10) differ among Van Leer methods. In this study, a version of 

LDFSS method which is specialized for incompressible flow was implemented. The quantities in 

equation (3.10) are defined following [100] (some modifications was made for our ALE case): 
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is the ñnumerical speed of soundò, where 
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where refu  is a reference velocity of the same order as the freestream velocity.  
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where 
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and  
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The interface pressure is defined as 
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 Viscous flux reconstruction is realized by using a second order central differencing method 

about the cell interface. The total flux is the summation of the inviscid and viscous fluxes at each cell 

face.  

 

3.1.2 Higher Order Extension 

 The LDFSS scheme described in section 3.1.1 was extended to at least second-order spatial 

accuracy using the Piecewise-Parabolic Method (PPM) of Colella and Woodward [88]. As the name 

implies, PPM uses parabolae (instead of linear functions or constants) to interpolate so as to ñallow 

for a more accurate representation of smooth spatial gradientsò [89]. This method reduces to a fourth-

order central differencing scheme in the presence of sufficiently smooth data. However, a cell-by-cell 

limiting procedure is required to reduce the order of accuracy near local extrema for the purpose of 

preserving the schemeôs monotonicity.  

 As the first step of the basic PPM reconstruction, left- and right-states are set to 
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where ñὠò is the primitive-variable vector 
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which requires a seven-point stencil in each coordinate direction and yields a fourth-order central 

difference approximation on uniform meshes.  
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Monotonicity preservation is enforced by a cell-by-cell resetting of left and right states [88] through 

the following algorithm: 

   if 1)])(sgn[( 2/1,2/1, -=-- -+
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iL VVVV  then 

    i
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   else 
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    else if DCCC>  then 
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iL VVV 2/1,2/1, 23 +- -=  

    endif 

   endif 

 The first ñifò block resets the interpolation function to a constant if ὠ is a local maximum or 

minimum. The second ñifò block resets either the left-state value at interface 2/1+i  or the right-state 

value at interface 2/1-i  so that the interpolation parabola that connects states at the interfaces with 

the state at the cell center is monotonically increasing or decreasing. The consequence of this 

procedure is that the final left- and right-state values 
M

iRLV 2/1,/ -  are different from the averaged ones 

(
A

iRLV 2/1,/ - ). The amount of numerical dissipation added at a cell interface is proportional to the 

difference in left-and right-state values. 

  

3.2 Time Integration 

An implicit artificial compressibility method combined with a subiteration procedure is employed to 

obtain second-order temporal accuracy. A second-order time difference in ALE form is used in time 

to form the unsteady residual, Á: 
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while )( ,1 knUR +  consists of flux term (in ALE form) and source term 
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Here the ὲ and ὲ ρ superscripts represent the current and next time level (time step) while the Ὧ 

superscript represents the current subiteration level, ὠ  is the cell volume, and viscF
C

 is the viscous 

flux. For each time level, the solution is iterated in Ὧ to a desired convergence or number of 

subiterations. The primitive variable vector defined in (3.28) is updated at the subiteration level as 

follows for a single grid point:  
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In expression (3.31), Ўὸ is the physical time step (for time accurate simulation of unsteady flow) 

while Ў† is the subiteration time step, which is related to the eigenvalues of matrix )(1 nFP ALE

CC
Ö- and 
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the preset CFL number. Matrix ὖ is the preconditioning matrix introduced by artificial 

compressibility method, which is defined by (3.32) (shown in the previous page).  and Ὑ is the ideal 

gas constant for the air, and  reference velocity crefV , is defined same as (3.16).  

 Details on the calculation of the flux Jacobians ὃ Ὃ can be found in [101]. In our ALE 

form discretization, the contravariant velocity nu
CC
Ö that appears in these Jacobian expressions needs 

to be replaced by the ALE contravariant velocity nuu
CCC
Ö- )Ĕ( , where u

C
 and u

C
Ĕ are material velocity and 

grid velocity respectively. The implicit calculation of the system Jacobian matrix Ὀ in the Equation 

(3.31) is approximated by block incomplete Lower/Upper (ILU) algorithm.  
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and D
$

 is factorized to reduce error in the block ILU method 
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The off-plane components can be grouped as follows: 

   CBAL ++=         

   GFEU ++=                 (3.35) 

Then the equation (3.32) can be reduced using block ILU as follows: 

   knknnnn VUDDLD ,11,11 )
~
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~

()
~

( +++- -Á=D++                     (3.36) 

This algorithm was implemented by using a forward and backward sweep: 

 forward:  ( )2/1,1,112/1,1 )
~

( +++-++ D-Á-=D knnknnkn VLDV             (3.37) 

 backward:  
1,112/1,11,1 )

~
( ++-++++ D-D=D knnnknkn VUDVV               (3.38) 

And the primitive variables are updated as follows: 

   
1,1,11,1 +++++ D+= knknkn VVV                (3.39) 

 

3.3 Initialization and Boundary Conditions  

3.3.1 Initialization 

The LES/RANS simulations were initialized by first performing a 2D-RANS simulation on the same 

grid. Then the RANS solution was set as the initial values of the LES calculation. In this study no 
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velocity fluctuations were imposed on RANS solution, and no method for sustaining turbulence 

within the boundary layers was employed. 

The free-stream initialization for 2D-RANS (Menterôs SST) computation is as follows: 

   2)(5.1 lsuTuk ³=¤                 (3.40) 

   nw /¤¤=k                          (3.41) 

where the turbulence intensity Ὕό πȢπσ, velocity ό ό , and ’ is the kinematic viscosity of the 

air at temperature σππ ὑ.  

 If Menter-Langtryôs transition model [83] is activated and involved in the calculation, 2D-

RANS initialization is redefined as follows: 
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where ὧ is the chord length and ό  is the free stream velocity, and the initial value of momentum 

thickness Reynolds numbers ¤,eR
~

tq  is based on empirical correlations.  

 

3.3.2 Boundary Conditions 

 Periodic boundary conditions were applied to the spanwise extrema of the 3D airfoil mesh 

which has a finite span width. The following expression acts as an example of how periodic boundary 

conditions were applied: 

   ),,(),,( max kzkjiVkzjiV -=-                (3.47) 

where Ὧᾀ ranges from 0 to 2, while Ὧ  is the maximum number of cells in spanwise direction of 

the 3D airfoil mesh.  

 Non-slip wall boundary conditions are used at the airfoil surface. For inflow boundary, 

velocity and turbulence variables are fixed to be the same as those of the interior neighbor cell, while 

pressure is extrapolated from the interior cells. For outflow boudary, velocity and turbulence variables 

are extrapolated from interior, while pressure is fixed to free-stream values.  
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Chapter 4 

Simulations of Flow over Aérospatiale A-Airfoil Near Stall  

 

 

 

One task of this study is to numerically investigate the characteristics of turbulent flow over 

an Aérospatiale A-Airfoil near stall with RANS and hybrid RANS/LES methods recently developed 

at NCSU. This validation test case represents the first application of the NCSU hybrid LES/RANS 

(Choiôs and Giesekingôs) models for external aerodynamic flows.  

 

4.1 Case Description and Mesh Generation 

The A-Airfoil designed at Aérospatiale is a 0.6 m chord length single airfoil and was tested in 

two different wind tunnels at ONERA [51] over a wide range of Reynolds numbers, Mach numbers, 

and angles of incidence. Skin friction, surface pressure distribution and laser Doppler velocimetry 

(LDV) measurements of both velocity profiles and Reynolds stress components were carried out in 

the tests. In this study, the free-stream Mach number is 0.15, the Reynolds number based on a chord 

length of 0.6m is 2.1×10
6
, and the airfoil angle of attack is 13.3 degrees.  

To perform the hybrid LES/RANS simulations, a very fine three-dimensional C-type 

structured mesh was generated for a blunt trailing edge Aérospatiale A-Airfoil with Gridgen v15.6. 

Table 4.1 shows the mesh characteristics.  

Here c=0.6 m is chord length, æsmin and æsmax are the minimum and maximum cell spacings 

along streamwise direction of upper surface,  æn is the normal spacing of the first cell near solid wall 

(airfoil surface), and æz is the cell spacing along the spanwise direction. The upper and lower surfaces 

of the airfoil contain 2400 and 620 cells respectively along the streamwise direction. A denser mesh is 
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required over the airfoilôs upper surface because flow over the upper surface has more complex 

features such as laminar separation bubbles, laminar-to-turbulent transition, turbulent reattachment, 

and trailing edge separation. Finer streamwise mesh resolution was applied to the regions near leading 

edge (up to 0.25 chords) in order to better capture the laminar separation bubbles as well as the 

transition process. Additional mesh refinement was also applied to regions near the trailing edge as 

trailing-edge separation occurs here for the current angle of incidence. The span width is 0.02 chord 

width, within which 72 cells with same spanwise spacing are located. The reason why a relatively 

small aspect ratio (span width/chord length) was chosen for the A-Airfoil mesh is because the 

turbulent shear layer thickness and the separation region are small for this case.    

 

 

Table 4.1 characteristics of 3-D C-type Aérospatiale A-Airfoil mesh 

Dimensions Size x10-6 ҟǎmin/c ҟǎmax/c ҟƴκŎ ҟȊκŎ 
span width 
(x chord) 

3021 x 181 x 73 39.2 0.0002 0.001 0.5 x 10
-5
  0.00028 0.02 

 

 

An X-Y snapshot of the computational mesh, which has an extension of about 10 chords and 

contains about 39.2 million cells, is shown in Figure 4.1. The mesh was decomposed to 861 blocks 

for parallel computation.  

 

 

 

a) Computational domain   b) mesh around the airfoil 

Figure 4.1 Computational mesh of Aérospatiale A-Airfoil  
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4.2 RANS and Hybrid LES/RANS Solutions 

Both 2D RANS and 3D Hybrid LES/RANS simulations were conducted to investigate the 

flow over A-Airfoil under flow conditions described in the previous section. For two-dimensional 

RANS cases, the following three models were used for the simulation: Menterôs BSL model, 

Menterôs SST model, and Menterôs SST model with the Menter-Langtryôs transition model included. 

For three-dimensional hybrid LES/RANS cases, Choiôs model, Giesekingôs model, and Giesekingôs 

model with the inclusion of Menter-Langtryôs transition model were employed.  

In both the RANS and hybrid LES/RANS cases, the free stream velocity of the flow is 

ό υωȢσσ άȾί, the free stream pressure is ὴ ρȢπρσςυρπ ὔȾά , and the free stream 

temperature is Ὕ σππ ὑ. The RANS models utilized a 2D slice of the 3D grid used in the hybrid 

LES/RANS calculations. In the 2D RANS cases, steady RANS simulations were conducted, in other 

words, a non-time-accurate method was used for computations. In the 3D LES/RANS cases, time 

accurate computations were launched by starting with the 2D Menterôs SST model solution as initial 

conditions. Four characteristic times of initial running were required before starting to collect 

statistics, which were then collected over at least four characteristic times of advancement. In this 

Aérospatiale A-Airfoil case, one characteristic time (or flow through time) is about 0.01 seconds. 

Actually the statistics were collected in this way: quantities (”ȟόȟὺ, etc.) and combinations of those 

quantities (”όȟ”ὺȟ”όὺȟ etc.) were first averaged over time (starting after four characteristic times); 

and then the time-averaged data were averaged over the span to obtain a two-dimensional dataset. As 

shown in a later section, this (ensemble-averaged) statistical data was used to compute the mean 

velocity components, as well as the second order statistics, such as the Reynolds stress tensor. 

 

4.2.1 Pressure Coefficient and Skin-fric tion Coefficient 

Figures 4.2 and 4.3 show the mean pressure coefficient ὅ ςὴ ὴ Ⱦ”ό  and skin-

friction coefficient ὅ ς†Ⱦ”ό  distribution along the upper surface of the airfoil obtained by the 

RANS models. In the RANS computations, both Menterôs BSL and SST models under-predict the 

skin friction, whereas Menterôs SST with the Menter-Langtry transition model under-predicts skin-

friction on the front part and over-predicts it on the back part of the airfoil. The use of the Menter-

Langtry transition model leads to the growth of a laminar boundary layer near the leading edge that 

culminates in a laminar separation bubble extending from ὼȾὧ πȢρς to πȢρσ. The formation of a 

laminar separation bubble can also be seen through the small plateau pressure region in the mean 
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pressure coefficient profile. Turbulent reattachment occurs at about ὼȾὧ πȢρψ where the skin 

friction reaches its peak.  In contrast, the Menter BSL and SST models predict fully turbulent flow 

from the leading edge.  All of the three RANS models fail to predict the plateau pressure near the 

trailing edge compared with the experimental data, but Menterôs BSL and SST models do a better job 

than Menterôs SST model with the Menter-Langtry transition model in  ὅ  predictions over this 

region. 

 Figures 4.4 and 4.5 present skin-friction and surface pressure results for the three hybrid 

LES/RANS models tested ï the model of Choi, et al. [942] which requires pre-calculation of a model 

constant, the model of Gieseking, et al. [43, 44], and Giesekingôs model equipped with the Menter-

Langtry transition model [83]. Choiôs and Giesekingôs models under-predict the skin friction, whereas 

Menter-Langtry transition model under-predicts skin-friction on the front part of the airfoil and over-

predicts it on the back part of the airfoil. A large region of laminar flow is not present for either the 

Choi or Gieseking models but both show indications of a ónumericalô transition region. As in the 

RANS calculations, the use of the Menter-Langtry transition model leads to a large laminar region 

terminated by a laminar separation bubble.  Turbulent re-attachment occurs in this case as well, but as 

this is driven mostly by the growth of resolved fluctuations, the peak in skin friction is less than that 

predicted by the RANS model, and the skin friction level downstream of the peak is lower. Choiôs 

and Giesekingôs models successfully predict the pressure plateau near the trailing edge shown in the 

experimental data, but Giesekingôs model with transition model fails to do so. In the leading edge 

region, the predictions provided by Giesekingôs model with Menter-Langtry are in better agreement 

with the experimental pressure coefficient data than those of Choiôs or Giesekingôs models.  

 

4.2.2 Mean Velocity  

Figures 4.6 and 4.7 show comparisons of mean streamwise (tangential) velocity profiles by 

RANS models with experimental measurements at various axial stations located between ØȾÃ

πȢρͯ πȢωω. The profiles are expressed in a wall-normal coordinate system. Here Menterôs SST model 

gives the best streamwise velocity prediction, while Menterôs BSL model slightly over-predicts the 

velocity near the trailing edge, implying that trailing-edge separation is delayed somewhat. Menterôs 

SST including the transition model greatly over-predicts the streamwise velocity near the trailing 

edge, indicating that trailing-edge incipient separation is absent for this model.   

Similar results are indicated in Figures 4.8 and 4.9 for the hybrid LES/RANS models.  Here, 

Choiôs model provides the best predictions of the velocity field, with Giesekingôs model slightly 
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under-predicting the level of trailing-edge separation.  As in the RANS calculations, the use of the 

Menter-Langtry model promotes flow attachment to the surface near the trailing edge.  Comparing the 

results of the RANS and hybrid RANS/LES models, it can be stated that the hybrid models provide 

no great improvement in predictive capability, with the results of the Choi, et al. LES/RANS model 

being similar to those of the Menter SST RANS model and with the results of the Gieseking, et al. 

LES/RANS model being similar to those of the Menter BSL RANS model.  The Menter-Langtry 

transition model provides worse results when embedded within the LES/RANS framework, an effect 

probably traceable, as discussed next, to an over-prediction of near-surface turbulence intensity 

downstream of the peak skin-friction point.  
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Figure 4.2 Mean pressure coefficient distribution along the airfoil obtained by RANS model 

computation compared with experimental measurement 

 

Figure 4.3 Mean skin-friction coefficient distribution along the airfoil obtained by RANS 

model computation compared with experimental measurement 
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Figure 4.4 Mean pressure coefficient distribution along the airfoil obtained by hybrid 

LES/RANS model computation compared with experimental measurement 

 

Figure 4.5 Mean skin-friction coefficient distribution along the airfoil obtained by hybrid 

LES/RANS model computation compared with experimental measurement 
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Figure 4.6 Mean streamwise velocity profile as a function of normalized wall-normal distance obtained by 

RANS model computation; individual profiles are separated by a horizontal profile of 1.4. 

 

Figure 4.7 Mean streamwise velocity profile as a function of normalized wall-normal distance obtained by 

RANS model computation; individual profiles are separated by a horizontal profile of 1.4. 
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Figure 4.8 Mean streamwise velocity profile as a function of normalized wall-normal distance obtained by 

hybrid LES/RANS model computation; individual profiles are separated by a horizontal profile of 1.4. 

 

Figure 4.9 Mean streamwise velocity profile as a function of normalized wall-normal distance obtained by 

hybrid LES/RANS model computation; individual profiles are separated by a horizontal profile of 1.4. 
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4.2.3 RMS Velocity Fluctuations and Reynolds-averaged Shear Stress 

 For the RANS models, the Boussinesq assumption is utilized to determine the axial Reynolds 

stress component, which is then used to estimate the rms fluctuation intensity. This component is 

dominated by the turbulence kinetic energy. The Boussinesq assumption reads 
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where upper bar ñľò represents a time average. 

For the LES/RANS models, the axial Reynolds stress component is determined by ensemble-

averaging the filtered velocity data, starting after four characteristic times. The Reynolds stresses are 

calculated by    
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Here, the double bar ñò represents an ensemble averaging operation. As mentioned before, the 

process of ensemble-averaging consisted of two steps: the quantities were first averaged over time 

once data collection was started, and then the time-averaged data were averaged in spanwise direction. 

 The Reynolds stresses then need to be modified to align with the streamline direction (tangent 

to the airfoil surface),  

   
2 2

1 1 2 2 1 2' ' ' 'cos ' 'sin 2 ' 'cos sinu u u u u u u uq q q q= + +   (4.3) 

   
2 2

1 1 2 2 1 2' ' ' 'sin ' 'cos 2 ' 'cos sinv v u u u u u uq q q q= + -   (4.4) 

2 2

1 1 2 2 1 2' ' ' 'cos sin ' 'sin cos ' '(cos sin )u v u u u u u uq q q q q q=- + + -   (4.5) 

where — ÁÔÁÎ όȾό  is in the direction of streamlines. 

Streamwise velocity fluctuation ό όϳ όόȾό  profiles obtained by RANS 

and hybrid LES/RANS models are shown in Figures 4.10-4.11 and Figures 4.12-4.13, respectively. In 

RANS computations, from ὼȾὧ πȢσ to πȢχ, the results from Menterôs SST and BSL models are very 

close and in good agreement with the experimental data, whereas Menterôs SST with the transition 

model under-predicts the turbulence intensity initially as a result of the effect of the transition model. 

The location at which the rms value goes to zero along wall-normal directions is nearer to the wall for 

Menterôs SST with the transition model, which means that a thinner turbulent boundary layer is 

present. From ὼȾὧ πȢψςυ to πȢωω, the differences between numerical data and experimental 
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measurements are magnified, as all of the models under-predict the experimental rms streamwise 

velocity, which reaches values of nearly 20% near the trailing edge. However, Menterôs SST model 

still provides better prediction than Menterôs BSL model, whereas Menterôs SST with transition 

model still predicts a thinner turbulent boundary layer that is associated with the absence of trailing-

edge separation.  

In the hybrid RANS/LES computation, from ὼȾὧ πȢρ to πȢρυ, the rms streamwise velocity 

fluctuations are much smaller within the boundary layer when the transition model is included.  This 

is because in this region near leading edge, the flow remains laminar, whereas  the flow has already 

transitioned and has become turbulent in the solutions obtained using Choiôs and Giesekingôs 

LES/RANS models. From ὼȾὧ πȢσ to πȢυ, the effect of including the transition model is to enhance 

the near-surface axial velocity fluctuation intensity, relative to the other LES/RANS models.  This 

likely contributes to the under-prediction of trailing-edge separation mentioned earlier. From ὼȾὧ

πȢχ to πȢωω, all models again under-predict the rms streamwise velocity. Results from Choiôs model 

are in better agreement with the experimental data than those from Giesekingôs model, whereas 

Giesekingôs model with the Menter-Langtry transition model leads to a thinner boundary layer. This 

is not surprising, because from the previous mean streamwise velocity analysis, we know that the 

flow remains attached within the trailing edge region when the transition model is included. In 

general, the hybrid LES/RANS models provide some improvement in predictive capability for rms 

axial fluctuation intensity.  

The rms wall-normal fluctuation velocity ὺ Ⱦό ὺὺᴂȾό  profiles obtained by 

RANS and hybrid RANS/LES models are shown in Figures 4.14-4.15 and Figures 4.16-4.17. In 

RANS computations, from ὼȾὧ πȢσ to πȢυ, both Menterôs BSL and SST models over-predict the 

rms wall-normal velocity, whereas Menterôs SST with transition model over-predicts it in the near 

wall region but under-predicts it in the outer region. From ὼȾὧ πȢχ to πȢωω, both Menterôs SST and 

BSL models give good predictions for the rms wall-normal velocity. Compared with Menterôs BSL 

model, the SST model performs better in the near wall region but is inferior in the outer region. Again, 

Menterôs SST with transition model performs worse than the others.  

Trends exhibited in the LES/RANS calculations of the wall-normal velocity fluctuation 

generally mirror those discussed for the axial velocity fluctuation. Fluctuation growth is suppressed, 

as expected, near the leading edge when the transition model is used. Further downstream, agreement 

with experiment is good for both Choiôs and Giesekingôs LES/RANS models. Fluctuation levels in 
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the near wall region are similar among all models, and again, the LES/RANS models provide some 

improvement in predictive capability, relative to the RANS models.   

Similar trends are in evidence for the Reynolds shear stress όᴂὺᴂȾό  profiles, as shown 

in Figures 4.18-4.19 and 4.20-4.21. Here, the normalizing factor is the square of the velocity, which 

tends to minimize differences among the models. Interestingly, the use of the transition model in 

either RANS or LES/RANS calculations provides the best predictions of the Reynolds shear stress for 

stations up to ὼȾὧ πȢυ. Further downstream, the predictions are similar to the other fluctuating 

quantities in that the level of fluctuation intensity in the outer part of the separated shear layer is less 

than indicated in the experiment. Agreement with experiment improves nearer to the wall for all 

models, and again, a modest enhancement in accuracy is shown for LES/RANS versus RANS models. 

An iso-surface of swirl strength of solution obtained by Giesekingôs model without the 

inclusion of Menter-Langtryôs transition model, illustrating the formation of large turbulent eddies on 

the suction side of the airfoil, is illustrated in Figure 4.22. 

From the computational results shown above, the following conclusion can be drawn: 

simulations of flow over the Aérospatiale A-Airfoil show that the Menter BSL/SST RANS models, 

along with the LES/RANS models of Choi and Gieseking, accurately capture the velocity and 

Reynolds-stress fields associated with incipient trailing-edge separation. The inclusion of the Menter-

Langtry model enables the capturing of an initial region of laminar flow culminating in a laminar 

separation bubble, in accord with experimental results.  However, the transition model also results in 

a general thinning of the boundary layer downstream of the peak skin friction location and the 

elimination of incipient separation near the trailing edge. While mean-flow predictions are very 

similar, the LES/RANS models generally provide better predictions of the Reynolds-stress 

components than do the RANS models, which rely on the Boussinesq hypothesis.   
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Figure 4.10 Profile of the rms streamwise velocity fluctuations obtained by RANS model 

computation; individual profiles are separated by a horizontal profile of 0.3 

 

Figure 4.11 Profile of the rms streamwise velocity fluctuations obtained by RANS model 

computation; individual profiles are separated by a horizontal profile of 0.2 
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Figure 4.12 Profile of the rms streamwise velocity fluctuations obtained by hybrid LES/RANS model 

computation; individual profiles are separated by a horizontal profile of 0.3 

 

Figure 4.13 Profile of the rms streamwise velocity fluctuations obtained by hybrid LES/RANS model 

computation; individual profiles are separated by a horizontal profile of 0.2 
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Figure 4.14 Profile of the rms wall-normal velocity fluctuations obtained by RANS model 

computation; individual profiles are separated by a horizontal profile of 0.3 

 

Figure 4.15 Profile of the rms wall-normal velocity fluctuations obtained by RANS model 

computation; individual profiles are separated by a horizontal profile of 0.2 
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Figure 4.16 Profile of the rms wall-normal velocity fluctuations obtained by hybrid LES/RANS 

model computation; individual profiles are separated by a horizontal profile of 0.3 

 

Figure 4.17 Profile of the rms wall-normal velocity fluctuations obtained by hybrid LES/RANS 

model computation; individual profiles are separated by a horizontal profile of 0.2 
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Figure 4.18 Profile of the Reynolds-averaged shear stress obtained by RANS model 

computation; individual profiles are separated by a horizontal profile of 0.014 

 

Figure 4.19 Profile of the Reynolds-averaged shear stress obtained by RANS model 

computation; individual profiles are separated by a horizontal profile of 0.014 
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Figure 4.20 Profile of the Reynolds-averaged shear stress obtained by hybrid LES/RANS model 

computation; individual profiles are separated by a horizontal profile of 0.014 

 

Figure 4.21 Profile of the Reynolds-averaged shear stress obtained by hybrid LES/RANS model 

computation; individual profiles are separated by a horizontal profile of 0.014 
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Figure 4.22 Iso-surfaces of swirl strength (2000 s
-1
) illustrating development of eddy 

structures in airfoil boundary layer (near nose) 
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Chapter 5 

Simulations of Flow over NACA 0012 Airfoil Under Static 

Stall 

 

 

Chapter 5 discusses the computational results of static stall case of NACA 0012 airfoil. In 

this case, RANS and hybrid LES/RANS methods are used to study the flow past an NACA 0012 

airfoil under static stall conditions. A number of RANS and LES/RANS simulations were conducted 

on 2 types of meshes (O-type and C-type) to investigate the subsonic flow features of airfoil under 

static stall, particularly the leading edge flow structures, under a relatively high Reynolds number.   

 

5.1 Case Description and Mesh Generation  

Pruski et al. [57] experimentally investigated the leading edge flow structure of a static and 

dynamically pitching NACA 0012 at conditions representative of a realistic rotor in flight. Numerical 

simulations performed in this study are under the same configuration as the conditions in Pruskiôs 

experiments. In the static stall case, the airfoil angle of attack is fixed at 16.7°. The free-stream Mach 

number is 0.1, justifying the use of a weakly-compressible flow assumption. The airfoil angle of 

attack is relatively high (16.7°) so that the flow is in deep stall regime with a high Reynolds number 

based on chord being ὙὩ ρȢπ ρπ, in which airfoil chord is ὧ πȢτυ ά.  

In Pruskiôs experiment, phase-locked Particle Image Velocimetry (PIV) technique was 

employed to measure the instantaneous velocity/vorticity distribution and to provide the whole-field 

velocimetry data at the leading edge region [57]. Thus, mean and turbulence properties (mean 

velocity field and Reynolds stresses) can be obtained experimentally for both static and dynamically 

pitching cases. A total number around 700 image pairs were acquired for each test case, which was 
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sufficient to create statistically meaningful results in postprocessing. The origin of the coordinate 

system is located at the leading edge of the airfoil, with x axis taken to be along the free stream flow 

direction. 

   In this study, the flow configurations of numerical simulation cases were set the same as 

those in Pruskiôs experiments for both static and dynamic cases. Mean velocity field and Reynolds 

stresses distribution were calculated based on the simulation solution and compared with the 

experimental measurements from [57].  

 

 

a) O-type computational mesh domain  b) mesh around airfoil at AoA = 0° 

Figure 5.1 O-type computational mesh of NACA 0012 airfoil 

 

 

 

a) C-type computational mesh domain  b) mesh around airfoil at AoA = 16.7° 

Figure 5.2 C-type computational mesh of NACA 0012 airfoil  
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Figure 5.1 and 5.2 show the two types of mesh generated for the NACA 0012 airfoil flow in 

this numerical work: O-type and C-type mesh. Both types of mesh have a sharp trailing edge. Again 

the meshes were generated using Gridgen 15.6.  

Table 5.1 shows the characteristics of these two types of mesh respectively. 

 

 

Table 5.1 characteristics of 3-D O-type and C-type NACA 0012 mesh 

Mesh type Dimensions Size x10-6 ҟǎmin/c ҟǎmax/c ҟƴκŎ ҟȊκŎ 

O-type 
721 x 201 x 65 

or 721 x 201 x 129 
9.4 or 18.8 0.0006 0.006 5.0 x 10

-5
 

0.0033 

or 0.00165 

C-type 
1153 x 225 x 65 

or 1153 x 225 x 129 

16.8  

or 33.5 
0.0003 0.003 0. 16 x 10

-5
 

0.00165 

or 0.00082 
 

Mesh type 
span width 
(x chord) 

Mesh Extension 
(x chord) 

O-type 0.105 or 0.21 10 

C-type 0.105 or 0.21 25 

 

 

Here c=0.45 m is chord length, ҟǎmin and ҟǎmax are the minimum and maximum cell spacings 

along streamwise direction of upper surface, ҟƴ is the normal spacing of the first cell near solid wall 

(airfoil surface), and ҟȊ is the cell spacing along spanwise direction. For O-type mesh, the upper and 

lower airfoil surfaces contain 480 and 180 cells respectively along streamwise direction. For C-type 

mesh, the upper and lower airfoil surfaces contain 640 and 256 cells respectively along streamwise 

direction. For both type of meshes, a denser mesh is required over airfoil upper surface because flow 

over upper surface has more complex features such as leading separation bubbles and trailing edge 

separation. Finer streamwise direction mesh resolutions were applied to the regions near the leading 

edge and trailing edges where separation might occur. For the NACA 0012 cases, a thicker span 

width (aspect ratio=0.21 or 0.105) than in the Aérospatiale A-Airfoil case was used due to larger 

shear layer thickness and separation region.    

The O-type mesh was decomposed into 464 blocks or 464 x 2=928 blocks while the C-type 

mesh was decomposed into 384 x 2=768 blocks for parallel computation. Here ñx 2ò means that the 

mesh was split along the center line of the span so that each block had a span width of 0.105 chords 

and contains half of the spanwise cells. For both O-type and C-type meshes, no matter whether it was 

split or not, periodic boundary conditions were applied on the spanwise boundaries.  
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5.2 Static Stall Case at AoA=16.7°, Mach=0.1 

Both two-dimensional RANS (Menterôs SST model) and three-dimensional hybrid 

LES/RANS (including Giesekingôs model, Salazarôs fix to Giesekingôs model, and IDDES model) 

simulations were conducted to investigate the flow over NACA 0012 airfoil under static stall flow 

configurations described in the previous section. The 2D RANS simulations utilized a 2D slice of the 

3D grid used in the hybrid LES/RANS calculations. In 2D RANS cases, both unsteady and steady 

RANS simulations were conducted; in other words, both time-accurate and non-time-accurate 

methods were tried for computations. For each RANS case, the code ran at least 40 characteristic 

times (or flow-through time) before convergence was obtained. In the 3D hybrid LES/RANS cases, 

time-accurate computations were launched by starting with the unsteady 2D Menterôs SST model 

solution as the initial condition. A number of 3D LES/RANS cases were tried by using various 

models and meshes in order to investigate the effect of different models, mesh characteristics, etc. In 

each of these cases, at least 40 characteristic times of initial running were required to reach a 

statistically stationary state, after which data collection was started, which required at least another 40 

characteristic times of advancement. Similar to the Aérospatiale A-Airfoil case in last section, the 

computational variables (”ȟόȟὺȟὩὸὧȢ) and the combination of these variables (”όȟ”όόȟ”όὺȟὩὸὧȢ) 

were first averaged in time, and then averaged over the span. Data obtained after the time and span 

averaging operations were collected for later postprocessing in order to obtain the relevant flow 

properties, such as mean streamwise velocity, Reynolds-averaged shear stress, Reynolds streamwise 

normal stress and Reynolds wall normal stress. 

 

5.2.1 Experimental Data of Static Stall Case 

Experimental measurements [57] of static stall condition at 16.7° angle of attack are 

presented in Figure 5.3, where Parts (a-d) show the normalized streamwise velocity flow field, 

Reynolds-averaged shear stress, streamwise normal stress, and vertical wall normal stress. The 

experiment clearly indicates that the flow separates from the airfoil leading edge, and the mean value 

of separation point is located at x/c=0.04. Within the separation region, the maximum reversed 

velocity may reach up to πȢπυὟ . A relatively large expansion region may also be identified near the 

leading edge, as the approaching fluid accelerates around the leading edge from the stagnation point.  

The Reynolds stress contours show the presence of a detached free shear layer, and the peak values of 

the Reynolds-averaged normal and shear stresses are located within the separated shear layer. Figure 

5.3(b) shows the negative shear stress value, which is associated with positive streamwise (όȭ π) 
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and negative vertical (ὺȭ π) fluctuations and negative streamwise (όȭ π and positive vertical 

(ὺȭ π) fluctuations. It indicates the momentum exchange that takes place between the separated 

shear layer and outer inviscid flow and between the shear layer and inner recirculation region. The 

negative shear stress values are concentrated in the middle of the separated shear layer and are only 

present near the nose, while positive values of the Reynolds shear stress are present a little 

downstream within the shear layer that spreads noticeably and becomes wider with streamwise 

development. Figure 5.3(c, d) reveals that the normal stresses also spread along the shear layer with 

the streamwise development.  

 

 

 

Figure 5.3 Experimental measurements of time-averaged properties of the NACA 0012 airfoil at 

static angle of attack=16.7°. (a) Mean velocity όȾὟ , (b) Reynolds-averaged shear-stressόᴂὺᴂȾὟ , 

(c) Reynolds-averaged streamwise normal stress όᴂόᴂȾὟ , (d) Reynolds-averaged wall normal stress 

ὺᴂὺᴂȾὟ . 

 

 

5.2.2 Computational Results Obtained by O-type Mesh 

Figure 5.4 and 5.5 show the results obtained by 2D unsteady RANS calculations with O-type 

mesh using Menter SST with and without the Menter-Langtry transition model respectively. The 

solution obtained by a steady RANS calculation is not substantially different from that obtained by an 
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unsteady RANS calculation. As before, Reynolds-stress predictions are obtained by applying the 

Boussinesq assumptions for the RANS cases, see equation (4.1).  

Obviously an attached flow is predicted near leading edge in both RANS cases. The obvious 

trend evidenced in the comparisons is that the RANS models (integrated to steady-state) do not 

induce flow separation at the leading edge, leading to much higher velocities (the maximum 

streamwise velocity may reach up to ςȢυὟ ) away from the surface and Reynolds-stress distributions 

that are confined to the attached boundary layer.  

 Table 5.2 shows the relevant features of 3D hybrid LES/RANS simulations conducted in this 

study using an O-type mesh. The ñflow-through times finishedò column shows the number of flow-

through times that were run in a case, for example, ñ40+40ò means that 40 characteristic times of 

initial running were completed before starting to collect statistical data, then another 40 characteristic 

times of advancement were conducted to gather the relevant flow properties. Two hybrid LES/RANS 

cases using O-type meshes with different mesh resolutions in the spanwise direction were tried to 

compare the effect of mesh refinement. 

Figure 5.6 shows the results obtained by Case #1 in Table 5.4. Here the 3D O-type mesh has 

a span width of 0.21 m and contains 64 cells in the spanwise direction with a spanwise cell spacing of 

æz/c=0.0033. A 2D RANS solution obtained by Menter SST model was used as initial condition for 

3D LES/RANS calculation. 40+40 characteristic times were run for collecting statistical data, and 

Reynolds-stress predictions are obtained by ensemble-averaging the filtered velocity field in time and 

in the spanwise direction, as in equation (4.2). Unlike what has been done in the A-Airfoil case, the 

Reynolds stresses in this case do not require any modification to fit the coordinate transformation 

since normal and shear stresses are considered to be Cartesian in the experiment, with the x-axis 

being oriented with the streamwise flow from the wind tunnel, and the y-axis being normal to that.  

 

 

Table 5.2 relevant features of each hybrid LES/RANS case using O-type mesh 

Case # Characteristics of mesh used LES/RANS model Flow through times finished 

1 
0.21chords span width,  

64 cells in spanwidth direction 
Giesekingôs model 40+40 

2 
0.21chords span width,  

128 cells in spanwidth direction 
Giesekingôs model 40+40 
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Figure 5.4 RANS computational results of time-averaged properties of the NACA 0012 airfoil at 

static angle of attack=16.7Á by Menterôs SST model using O-type mesh.  

Parts (a-d) are the same as those in Figure 5.3 

 

 

 

Figure 5.5 RANS computational results of time-averaged properties of the NACA 0012 airfoil at 

static angle of attack=16.7Á by Menterôs SST model with Menter Langtryôs transition model using O-

type mesh.  Parts (a-d) are the same as those in Figure 5.3 
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Figure 5.6 Hybrid LES/RANS computational results of time-averaged properties of the NACA 0012 

airfoil at static angle of attack=16.7° by hybrid LES/RANS Case #1 (coarse mesh case) 

Parts (a-d) are the same as those in Figure 5.3 

 

 

 

 

Figure 5.7 Q-criterion isosurfaces (4x10
6
 s

-2
) for LES/RANS simulation of NACA 0012 at static stall 

angle=16.7° by hybrid LES/RANS Case #1 (coarse mesh case) 
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Figure 5.8 Hybrid LES/RANS computational results of time-averaged properties of the NACA 0012 

airfoil at static angle of attack=16.7° by hybrid LES/RANS Case #2 (fine mesh case) 

Parts (a-d) are the same as those in Figure 5.3 

 

 

In contrast to the RANS solutions, the LES/RANS model predicts a massively-separated flow 

characterized by a detached shear layer that overlies a large region of low-momentum fluid. Peak 

values of the Reynolds stresses are associated with this detached shear layer, rather than the near-

surface region. The experiment also indicates that the flow separates from the leading edge, and the 

measured velocity field compares well with that predicted by the LES/RANS models. Axial 

fluctuation intensities are in good agreement with experiment whereas predicted normal fluctuation 

intensities and Reynolds shear-stress levels are larger than indicated in the experiment. The separation 

response predicted by the LES/RANS model is not immediately captured. Rather, a region of trailing-

edge separation enlarges and moves upstream, initiating the formation of a leading-edge vortex.  

Instead of moving away from the surface, as is common for pitching airfoils, the leading-edge vortex 

stabilizes near the trailing edge. This induces the shear layer detachment indicated in the time-

averaged images and fixes the displacement angle.  

The Q-criterion iso-surfaces shown in Figure 5.7 clearly indicate the separation response, the 

growth of turbulent eddies in the detached shear layer, and the stabilized position of the leading-edge 

vortex.  Here Q-criterion is a local measure of excess rotation rate relative to strain rate. Q-criterion 
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identifies vortices as flow regions with positive second invariant of the velocity gradient tensor, and 

Q can be written as [102] 

  ( )22

2

1
SQ -W=                    (5.1) 

where W and Sare vorticity tensor and strain rate tensor (or skew-symmetric and symmetric part of 

the velocity gradient) respectively.  

However, as indicated by the Reynolds stress contours in Figure 5.8 and the Q-criterion iso-

surfaces in Figure 5.9, the Giesekingôs model using an O-type mesh with finer spanwise cell spacing  

(Case #2 in Table 5.2) predicts a more attached flow and much less stalled status of airfoil. Similar to 

the previous LES/RANS case, this case also completed 40 characteristic times of initial running to 

reach statistically stationary state, and another 40 characteristic times to collect data. In addition, the 

O-type mesh in this case also has the same span width as that in the case of Figure 5.6-5.7, but the 

spanwise cell spacing is only a half of that in the previous case with æz/c=0.00165 (so the mesh size 

in spanwise direction doubles). The phenomenon that a finer mesh resolution along spanwise 

direction ends up with a more attached flow when using the same LES/RANS model is also observed 

in the C-type mesh cases, and the reason will be discussed in a later section.   

 

 

 

Figure 5.9 Q-criterion isosurfaces (4x10
6
 s

-2
) for LES/RANS simulation of NACA 0012 at static stall 

angle=16.7° by hybrid LES/RANS Case #2 (fine mesh case) 
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5.2.3 Computational Results Obtained by C-type Mesh 

RANS and LES/RANS cases were also run with C-type mesh which has finer mesh 

resolution in streamwise direction and also a wider mesh extension in the x- and y- directions 

compared with the O-type mesh.  

Figure 5.10 shows the results obtained by 2D unsteady RANS calculations with C-type mesh 

by Menter SST model. Similar to the O-type mesh case, the 2D RANS model predicts an attached 

flow near leading edge again, which indicates that mesh refinement in streamwise direction and a 

larger mesh extension in x- and y- directions may not improve the RANS prediction.  

 

 

 

Figure 5.10 RANS computational results of time-averaged properties of the NACA 0012 airfoil at 

static angle of attack=16.7Á by Menterôs SST model using C-type mesh.  

Parts (a-d) are the same as those in Figure 5.3 

 

 

Three types of 3D C-type mesh were tried for hybrid LES/RANS computations. These 

meshes have the same ҟǎminΣ ҟǎmax, ҟƴ and mesh extension of C-type mesh as shown in Table 5.1, but 

also have some differences in the choices of span width ҟȊκŎ, cell number in spanwise direction and 

spanwise spacing æz/c as shown in table 5.3. The effect of span width and spanwise cell spacing of a 

mesh was investigated, and the results are shown and discussed next.  
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 Table 5.4 shows the relevant features of each 3D hybrid LES/RANS computational case tried 

in this study by using C-type mesh. Same as in Table 5.2, the number of flow-through times have 

been run in a case is shown in the ñflow-through times finishedò column. Five hybrid LES/RANS 

cases using C-type meshes were tried to compare the effect of the number of flow-through times 

being run, span width, mesh refinement, and Salazarôs fix. 

 

 

Table 5.3 characteristics of three types of 3-D C-type NACA 0012 mesh 

C-type 
mesh 

Dimensions Cells in spanwise direction ҟȊκŎ Span width (x chord) 

Mesh-A 1153 x 225 x 65 64 0.00165 0.105 

Mesh-B 1153 x 225 x 129 128 0.00082 0.105 

Mesh-C 1153 x 225 x 129 128 0.00165 0.21 

 

 

Table 5.4 relevant features of each hybrid LES/RANS case using C-type mesh 

Case # mesh used LES/RANS model Flow through times finished 

3 Mesh-A Giesekingôs model 80+80 

4 Mesh-A Giesekingôs model 40+40 

5 Mesh-A Salazarôs fix 40+40 

6 Mesh-C Giesekingôs model 40+40 

7 Mesh-B Giesekingôs model 80+80 

 

 

Figure 5.11 and 5.12 show the results obtained by 3D LES/RANS computations of Case #3 

and Case #4 in Table 5.4 respectively. The results in Figure 5.11 were obtained by initial running of 

80 flow-through times plus running another 80 flow-through times for collecting the statistics, while 

the results in Figure 5.12 were obtained by running 40 plus 40 flow-through times. Obviously the 

LES/RANS model again successfully predicts the separated flow at leading edge. The predicted mean 

velocity is in good agreement with the experimental measurements. However, the Reynolds shear 

stress and normal stresses are overestimated, especially in the middle region of the separated shear 

layer. Additionally, there is some unsteadiness in the Reynolds shear stress and wall normal stress for 

the incoming flow near stagnation point. As shown by the comparison of Figures 11 and 12, such 

overestimation of Reynolds stresses in the middle region of separated shear layer, as well as the 

overestimation of Reynolds stresses near stagnation point, can be somehow alleviated (but can not be 
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entirely removed) by running more flow-through times to allow a more statistically stationary 

solution to be reached. Generally Mesh-A with coarser cell spacing along spanwise direction and a 

small span width can provide an acceptable solution with Giesekingôs hybrid LES/RANS model.   

Figure 5.13 show the results obtained by Case #5 in Table 5.4. In this case, Salazarôs fix was 

implemented by employing equation (2.55), which took into account the grid resolution in 

determining the length-scale ratio and thus LES/RANS blending function. The mean streamwise 

velocity contour indicates that model with Salazarôs fix predicts an attached flow near leading edge, 

which mismatches the experiment.  

Figure 5.14 show the results obtained by Case #6 in Table 5.4, which uses the C-type Mesh-C 

in Table 5.3. Mesh-C has the same spanwise cell spacing as Mesh-A, but twice the span width. The 

results were obtained by initial running of 40 flow-through times plus running another 40 flow-

through times for collecting the statistics. Both mean streamwise velocity and Reynolds stresses are in 

very good agreement with the experiment. By running the same number of flow-through times, unlike 

Mesh-A, the solution by Mesh-C with the same coarse cell spacing but a larger span width does not 

have the problem of overestimation of Reynolds stresses in the middle region of shear layer and gets 

rid of the overestimation of Reynolds stresses near stagnation point. The case using Mesh-C also 

performed better in terms of Reynolds stress predictions compared with the hybrid LES/RANS case 

by O-mesh which has the same span width and spanwise cell spacing but a coarser streamwise 

spacing, this case is actually the best one among all cases that were conducted for the NACA 0012 

static stall simulation at angle of attack 16.7°.  

Figure 5.15 shows the results obtained by Case #7 in Table 5.4, which uses 3D C-type Mesh-

B in Table 5.3. Mesh-B has the same span width as Mesh-A, but only half of the spanwise cell 

spacing. The results were obtained by initial running of 80 flow-through times plus running another 

80 flow-through times for collecting the statistics. The mean streamwise velocity contour and 

Reynolds stresses contours indicates that computation using a finer mesh along spanwise direction  

predicts an attached flow near leading edge, which mismatches the experiment.  
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Figure 5.11 Hybrid LES/RANS computational results of time-averaged properties of the NACA 0012 

airfoil at static angle of attack=16.7° by hybrid LES/RANS Case #3 (coarse mesh resolution) 

Parts (a-d) are the same as those in Figure 5.3. 

 

 

 

Figure 5.12 Hybrid LES/RANS computational results of time-averaged properties of the NACA 0012 

airfoil at static angle of attack=16.7° by hybrid LES/RANS Case #4 (less running time) 

Parts (a-d) are the same as those in Figure 5.3. 
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Figure 5.13 Hybrid LES/RANS computational results of time-averaged properties of the NACA 0012 

airfoil at static angle of attack=16.7Á by hybrid LES/RANS Case #5 (Salazarôs fix) 

Parts (a-d) are the same as those in Figure 5.3. 

 

 

 

Figure 5.14 Hybrid LES/RANS computational results of time-averaged properties of the NACA 0012 

airfoil at static angle of attack=16.7° by hybrid LES/RANS Case #6 (0.21 chord span width) 

Parts (a-d) are the same as those in Figure 5.3. 
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Figure 5.15 Hybrid LES/RANS computational results of time-averaged properties of the NACA 0012 

airfoil at static angle of attack=16.7° by hybrid LES/RANS Case #7 (fine mesh resolution) 

Parts (a-d) are the same as those in Figure 5.3. 

 

Figures 5.16 through 5.19 show contours that emphasize the entire airfoil rather than just the 

leading edge for the above discussed cases. Parts (a-d) in each figure show the normalized streamwise 

velocity flow field, the ensemble averaged normalized eddy viscosity field, the ensemble averaged 

LES/RANS blending function field near leading edge, and the ensemble averaged LES/RASN 

blending function over the whole view. Figures 5.16-5.19 correspond to cases using C type Mesh-A, 

Mesh-C, Mesh-B (in table 5.3) by Giesekingôs model, and Mesh-A by Giesekingôs model with 

Salazarôs fix respectively. The mean streamwise velocity flow field and the ensemble averaged eddy 

viscosity (eddy viscosity calculated by equation (2.45) being averaged over time and span) field over 

the whole view clearly indicate that the flow is in deep stall for Mesh-A and Mesh-C cases using 

Giesekingôs model without the inclusion of Salazarôs fix, while the flow is attached and much less 

stalled for the cases by Mesh-B without Salazarôs fix and by Mesh-A with Salazarôs fix.  

It is also noticed that the eddy viscosity reaches fairly high values in the upper surface region 

near trailing edge for the two fully stalled cases (part (b) in Figures 5.16-5.17), which is a 

consequence of massive separation, while this high eddy viscosity values is not present in the same 

region for the two less stalled cases (part (b) in Figures 5.18-5.19).  
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The hybrid LES/RANS blending function in Parts (c-d) of Figures 5.16-5.19 represents 

whether and how much a RANS model or an LES model is utilized in that location. As equation (2.45) 

shows, the larger the value of blending function ɜ, the more share the RANS model has in 

determining the eddy viscosity. By taking a close look at the blending function field at Part (d) in 

Figures 5.16-5.19, it is easy to find out that a thicker RANS region is present near the upper wall of 

the airfoil for the first two cases (Figures 5.16-5.17), which provides a correct prediction for this static 

stall flow condition, while a thinner RANS layer is present over the upper airfoil surface for the two 

latter cases (Figures 5.18-5.19), which predict a more attached flow that disagrees with the 

experiment. The amount of RANS activity is related to the numerical solution and actually a 

consequence of it:  an attached flow solution tends to result in a thinner RANS layer, while a 

separated flow solution tends to result in a thicker RANS layer near wall.  

 

 

 

Figure 5.16 Hybrid LES/RANS computational results of time-averaged properties of the NACA 0012 

airfoil at static angle of attack=16.7° by hybrid LES/RANS Case #3 (coarse mesh resolution) 

(a) Mean velocity όȾὟ , (b) ensemble averaged normalized eddy viscosity, (c) ensemble averaged 

LES/RANS blending function near the leading edge, (d) ensemble averaged LES/RANS blending 

function over whole view 
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Figure 5.17 Hybrid LES/RANS computational results of time-averaged properties of the NACA 0012 

airfoil at static angle of attack=16.7° by hybrid LES/RANS Case #6 (0.21 chord span width) 

Parts (a-d) are the same as those in Figure 5.16. 

 

 

 

Figure 5.18 Hybrid LES/RANS computational results of time-averaged properties of the NACA 0012 

airfoil at static angle of attack=16.7° by hybrid LES/RANS Case #7 (fine mesh resolution) 

Parts (a-d) are the same as those in Figure 5.16. 
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Figure 5.19 Hybrid LES/RANS computational results of time-averaged properties of the NACA 0012 

airfoil at static angle of attack=16.7° by hybrid LES/RANS Case #5 (Salazarôs fix) 

Parts (a-d) are the same as those in Figure 5.16. 

 

 

So the problem remains why the fine mesh case (Case #7) ends up with a more attached flow 

compared with the experiment. In this case, the LES model is activated near leading edge, while the 

response with spanwise mesh resolution is related to the eddy structures that are resolved in the LES 

computation. Eddies will be better resolved on the finest mesh by a wall-resolved LES. In Case #7, 

the mesh is still too coarse relative to a wall-resolved LES, and the eddies that are captured might 

have more of the energy in the larger scales by this under-resolved LES. The cascade process that 

would produce smaller scale eddies that would take away from that energy is not well captured 

because of insufficient mesh resolution. In other words, an insufficiently resolved mesh for LES leads 

to eddies that are more energetic in the larger scales, since the cascade of energy to the smaller scales 

is disrupted due to insufficient resolution. Those largest eddies tend to promote flow attachment. So 

the net effect is an overly-energetic boundary layer being produced near the leading edge which 

resists and delays separation.  

In the coarse mesh cases (Cases #3 and #6), Giesekingôs model produces better results that 

correctly predict the massive separation. Eddies that are captured near the leading edge may be more 

2D and do not have the level of energy than the ones resolved on the finer mesh may process near the 
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wall. And then the RANS activity could be more dominant, and the RANS-induced dissipation of 

turbulent kinetic energy (TKE) might be more accurate, leading to less resistance to flow separation. 

These are conjectures explaining why coarse mesh cases produce better results than fine mesh case. 

One fact is that there is a balance between modeled TKE and resolved TKE when the model is 

working properly. The coarse mesh cases happen to meet this balance.     

By definition, the turbulent kinetic energy (TKE) is determined by the following expression 

  )''''''(
2

1
wwvvuuTKE ++=        (5.2) 

The Reynolds normal stresses '','','' wwvvuu  are determined by Boussinesq assumption for 

modeled TKE. In hybrid LES/RANS simulations, the calculation of modeled TKE is embedded in the 

main code and the ensemble-averaged value of modeled TKE could be directly outputted.    

For resolved TKE, the Reynolds normal stresses are calculated by  
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where rrrrrrr ,,,,,, wvuwwvvuu are the ensemble-averaged data. The ensemble-average process 

is the same as described in Chapter 4: the quantities were first averaged over time once data collection 

was started, and then the time-averaged data were averaged in spanwise direction.  

In Mesh-A case with Salazarôs fix (Case #5), as shown in Figure 5.19 (a) and Figure 5.22(a), 

again a too attached flow solution was obtained, and as a result, a thinner RANS layer occurs near 

upper wall of the airfoil, as shown in Figure 5.19 (d) and Figure 5.22(b). In this case, the thinner 

RANS region near wall is correlated to the excessive RANS region near leading edge as shown on 

Figure 5.19 (c). By including the effect of maximum grid resolution to the length scale ratio in 

equation (2.55), Salazarôs fix is responsible for the presence of this excessive RANS region near 

leading edge. Because the flow is separated near leading edge in real circumstance and turbulent 

eddies are large enough to support LES (as long as a proper mesh resolution is chosen) in the leading 

edge region, it is more favorable to have more LES rather than RANS activity in this region. However, 

in the case with Salazarôs fix, excessive RANS activity near nose results in an attached flow solution 

in this region, which disagrees with the experiment. By RANS model, eddies are completely 

suppressed near the leading edge and only start to grow when the limiting length scale is the modeled 

scale, not the grid scale. RANS model which is active near leading edge underestimates the modeled 
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TKE within boundary layer and ends up with an overly-energetic mean flow which resists separation. 

(This is also the reason why pure RANS model predicts an attached flow, as shown in Figures 5.4-5.5, 

5.10) The downstream computation is affected by the attached flow solution near leading edge, and 

also results in a more attached flow solution.  

It is also noticed that there exists a small leading edge separation region in the Case #7 (using 

Mesh-B with a fine spanwise resolution), which is present between x/c=0.01 to 0.04, as shown in 

Figure 5.15 (a) and Figure 5.22 (a). On the contrary, such leading edge separation is caused by high 

magnitude of turbulent kinetic energy (modeled TKE + resolved TKE) in this region predicted by the 

case #7, as shown in Figure 5.22 (c)-(d). High turbulent kinetic energy results in a less energetic mean 

flow within the boundary layer, which is more subject to separation. Further downstream, both 

modeled and resolved TKEs become much smaller, which corresponds to a more energetic mean flow 

that promotes the reattachment of the boundary layer. The small magnitude of both modeled and 

resolved TKEs remains in the wake region, so that the more energetic mean flow within the boundary 

layer also remains and resists to separation, as shown in Figure 22 (c-d).  

Similarly, in the Case #5 which uses Salazarôs fix, there is also a separation region within the 

upstream part of airfoil between x/c=0.10 to 0.18, as shown in Figure 5.23 (a). Again, the separation 

region is related to the less-energetic mean flow within the boundary layer caused by the high 

magnitude of turbulent kinetic energy, as indicated in Figure 5.23 (c). Actually modeled TKE is small 

and usually negligible relative to the resolved TKE. The small magnitude of resolved TKE presents 

downstream and in the wake region, resulting in a more energetic mean flown which promotes the 

reattachment of boundary layer and resistance to separation, as shown in Figure 5.23 (c).    
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Figure 5.20 Hybrid LES/RANS computational results of time-averaged properties of the NACA 0012 

airfoil at static angle of attack=16.7° by hybrid LES/RANS Case #3 (coarse mesh resolution) 

(a) Mean streamwise velocity όȾὟ , (b) ensemble averaged LES/RANS blending function, (c) 

ensemble averaged modeled turbulent kinetic energy, (d) resolved turbulent kinetic energy 
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Figure 5.21 Hybrid LES/RANS computational results of time-averaged properties of the NACA 0012 

airfoil at static angle of attack=16.7° by hybrid LES/RANS Case #6 (0.21 chord span width) 

Parts (a)-(d) are the same as those in Figure 5.20. 
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Figure 5.22 Hybrid LES/RANS computational results of time-averaged properties of the NACA 0012 

airfoil at static angle of attack=16.7° by hybrid LES/RANS Case #7 (fine mesh resolution) 

Parts (a)-(d) are the same as those in Figure 5.20. 
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Figure 5.23 Hybrid LES/RANS computational results of time-averaged properties of the NACA 0012 

airfoil at static angle of attack=16.7Á by hybrid LES/RANS Case #5 (Salazarôs fix) 

(a) Mean streamwise velocity όȾὟ , (b) ensemble averaged LES/RANS blending function,  

(c) ensemble averaged modeled turbulent kinetic energy 

 

(a

) 
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In Case #7 (fine spanwise mesh resolution), as shown in Figure 5.18 (d) and Figure 5.22 (b), 

a thinner RANS layer presents near upper wall of the airfoil, which is one of the consequences of 

incorrect prediction of an attached flow over airfoil. Such thinner RANS layer indicates that the the 

LES/RANS blending function is underestimated in the near wall region compared with Case #3 (on 

coarse mesh resolution). According to Giesekingôs model, the LES/RANS blending function is 

dependent on length scale ratio, as shown in equation (2.51), and a larger length scale ratio 

corresponds to a larger blending function value. On the other hand, as shown in equation (2.52) and 

(2.53), the length scale ratio is a function of the summation of ensemble averaged resolved turbulent 

kinetic energy (TKE) and ensemble averaged modeled turbulent kinetic energy (TKE), wall distance, 

as well as ensemble averaged turbulent specific dissipation rate. It is really the ratio of the summation 

of the two (resolved and modeled) TKEs and the specific dissipation rate that drives the length scale 

ratio and thus blending function maximum. Figures 5.24-5.25 Parts (a-d) show the ensemble averaged 

resolved TKE divided by the square of wall distance, ensemble averaged modeled TKE divided by 

the square of wall distance, ensemble averaged turbulent specific dissipation rate, and length scale 

ratio field for the Mesh-A and Mesh-B case respectively. The figures indicate that, compared with 

Case #3 which uses a mesh with coarse spanwise resolution (Mesh-A), in Case #7 which uses a mesh 

with fine spanwise resolution, both the resolved and modeled TKEs are enhanced near the wall within 

the upstream half part of the airfoil, and both experience an evident decrease near the wall for the 

downstream part of the airfoil. However, as shown in Figure 5.25 (c-d), the specific dissipation rate 

increases significantly near the wall for the upstream half part, which results in small values of the 

length scale ratio in this region. The specific dissipation rate does not exhibit a large drop near the 

wall for the downstream half part of the airfoil, and the small TKEs in this region are the main reason 

for the small values of the length scale ratio obtained within this part. As expected, the near-wall 

distribution of length scale ratio field in Figure 5.25 (d) is consistent with the blending function fields 

shown in Figure 5.18 (d) and Figure 5.22 (b). Similarly, in the Mesh-A case with a coarse spanwise 

resolution, the near wall distribution of length scale ratio field in Figures 5.24 (d) is also in agreement 

with the blending function fields shown in Figure 5.16 (d) and 5.22 (b).  
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Figure 5.24 Hybrid LES/RANS computational results of time-averaged properties of the NACA 0012 

airfoil at static angle of attack=16.7° by hybrid LES/RANS Case #3 (coarse mesh resolution)  

(a) ensemble averaged resolved TKE, (b) ensemble averaged modeled TKE, (c) ensemble averaged 

specific turbulent dissipation rate, (d) inner/outer layer length scale ratio. 

 

 

Figure 5.25 Hybrid LES/RANS computational results of time-averaged properties of the NACA 0012 

airfoil at static angle of attack=16.7° by hybrid LES/RANS Case #7 (fine mesh resolution)  

Parts (a-d) are the same as those in Figure 5.24 
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5.3 Static Stall Case at Mach=0.12  

To investigate the static stall effect at a different angle of attack, computational cases were 

also conducted at a higher Mach number condition. In this cases, the flow configurations are: Mach 

number ὓ πȢρς, chord Reynolds number ὙὩ ρȢς ρπ, and the freestream velocity ὟÐ

τς άȾί.  

The experimental data comes from the Glasgow dynamic stall database [103]. Figure 

5.26shows the normal force coefficient CN at various angles of attack for both the static and dynamic 

stall responses. For static stall case, the CN curve shows that the normal force coefficient increases 

linearly with the angle of attack from zero angle of attack at a gradient (ὨὅȾὨ) of about 0.1, and 

the gradient becomes a little smaller starting from around angle of attack=12°, which indicates the 

presence of trailing edge separation. The CN keeps increasing until it reaches the maximum value of 

1.35 at an angle of attack=14.5°. The airfoil will be in light stall and then deep stall if the angle of 

attack is increased further. Figure 5.26 shows that the normal force coefficient reaches its minimum 

value of 0.74 at an angle of attack around 17.5°, where the airfoil is in its deep stall condition.  

 

5.3.1 Computational Results at AoA=17.5°, Mach=0.12 

As shown in Figure 5.26, the NACA 0012 airfoil is in deep stall at AoA=17.5°, and the flow 

over airfoil should have fully separated from the leading edge. Computational cases were conducted 

at AoA=17.5° by three kinds of C-type mesh shown in Table 5.5 to compare again the effect of mesh 

refinement along spanwise direction. Here Mesh-C, Mesh-D and Mesh-E have the same span width, 

but the spanwise cell spacing in Mesh-D is only half of that in Mesh-C, while in Mesh-E it is twice of 

that in Mesh-C. Due to the unavailability of the experimental data of the mean velocity and Reynolds 

stresses for this flow configuration, only computational results of such flow features are shown below.  

 Table 5.6 shows the relevant features of each 3D hybrid LES/RANS computational case tried 

for Mach number 0.12 case by using C-type mesh. Same as in Table 5.2, the number of flow-through 

times that were run in a particular case is shown in the ñflow-through times finishedò column. In this 

case, fewer flow-through times were run for each LES/RANS case because the C-type meshes used in 

these cases have a larger span width compared with the meshes used in Mach 0.1 cases, which speeds 

reaching the statistically stationary state. (For the same spanwise resolution, the mesh with a larger 

span has more cells in the spanwise direction, which means more LES/RANS calculations have to be 

performed and it takes less time iterations to reach a reasonable solution. So a statistically stationary 

state is more easily to reach by using a mesh with more cells in spanwise direction, or larger span 
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width.) Three hybrid LES/RANS cases using C-type meshes were tried to compare the effect of mesh 

resolution along the spanwise direction for this Mach 0.12 case. 

 

 

 

Figure 5.26 Normal force coefficients for NACA 0012 airfoil at Mach number 0.12 case  

 

 

Table 5.5 characteristics of three 3-D C-type NACA 0012 meshes 

C-type 
mesh 

Dimensions Cells in spanwise direction ҟȊκŎ Span width (x chord) 

Mesh-C 1153 x 225 x 129 128 0.00165 0.21 

Mesh-D 1153 x 225 x 257 256 0.00082 0.21 

Mesh-E 1153 x 225 x 65 64 0.0033 0.21 

 

 

 Figures 5.27-5.30 show the computational results of mean streamwise velocity field and 

Reynolds stresses contour near leading edge by RANS, and LES/RANS Case #8, Case #9, Case #10 

(using Mesh-E, Mesh-C and Mesh-D respectively). Again the RANS model predicts an attached flow, 
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while LES/RANS model using Mesh-E and Mesh-C (Case #8 and Case #9) correctly predict massive 

separation near the leading edge, but LES/RANS model using Mesh-D (Case #10) predicts much less 

separation at leading edge region. The complete views of mean streamwise velocity field, eddy 

viscosity field and LES/RANS blending function field shown in Figures 5.31-5.33 further indicate 

Case #8 and Case #9 correctly predict the deep stall status of the NACA 0012 airfoil, while Case #10 

predicts more attached flow. Again in Case #8 on the coarsest mesh and Case #9 on the coarse mesh, 

a thicker RANS layer is present near upper airfoil surface due to the separated flow solution obtained, 

while in Case #10 on the fine mesh, a thinner RANS layer is present due to the more attached solution 

obtained. This is consistent with the corresponding static cases of Pruskiôs experiments.  

 

 

Table 5.6 relevant features of each LES/RANS case using C-type mesh for high Mach number case 

Case # 
airfoil  

angle of attack 
Mach number mesh used LES/RANS model 

Flow-through 
times finished 

8 17.5° 0.12 Mesh-E Giesekingôs model 20+20 

9 17.5° 0.12 Mesh-C Giesekingôs model 20+20 

10 17.5° 0.12 Mesh-D Giesekingôs model 20+20 

 

 

 The reason why Giesekingôs model on fine mesh (Mesh-D) in Case #10 produces an attached 

flow is same as that in Case #7. The flow is separated in the real-life case while the eddies are larger 

enough, so it is good to use LES model. However, the under-resolved LES fails to reproduce the 

cascade process in smaller scale eddies, and results in an overly-energetic boundary layer near leading 

edge which resists and delays flow separation. However, Cases #8 and #9 (on the coarsest and coarse 

mesh respectively) correctly predict the massive separated flow. In these two cases, the balance 

between modeled TKE and resolved TKE happen to be met so that the hybrid LES/RANS model is 

working more properly.  

The difference between Case #8 and Case #9 in the prediction of mean streamwise velocity, 

Reynolds stresses, blending function distribution is trivial and insignificant, but Case #8 with the 

coarsest spanwise cell spacing predicts a higher level of eddy viscosity in the region between airfoil 

upper surface and separated shear layer. This is understandable since the coarsest cell spacing results 

in lower level of resolved turbulent kinetic energy in that region, and thus more turbulence are 

modeled.  
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Figure 5.27 RANS computational results of time-averaged properties of the NACA 0012 airfoil at 

static angle of attack=17.5Á, Mach number 0.12 by Menterôs SST model using C-type mesh.  

Parts (a-d) are the same as those in Figure 5.3. 

 

 

 

Figure 5.28 Hybrid LES/RANS computational results of time-averaged properties of the NACA 0012 

airfoil at static angle of attack=17.5°, Mach number 0.12 by Case #9 (coarsest spanwise resolution)  

Parts (a-d) are the same as those in Figure 5.3 
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Figure 5.29 Hybrid LES/RANS computational results of time-averaged properties of the NACA 0012 

airfoil at static angle of attack=17.5°, Mach number 0.12 by Case #8 (coarse spanwise resolution)  

Parts (a-d) are the same as those in Figure 5.3 

 

 

 

Figure 5.30 Hybrid LES/RANS computational results of time-averaged properties of the NACA 0012 

airfoil at static angle of attack=17.5°, Mach number 0.12 by Case #10 (fine spanwise resolution) 

Parts (a-d) are the same as those in Figure 5.3 
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Figure 5.31 Hybrid LES/RANS computational results of time-averaged properties of the NACA 0012 

airfoil at static angle of attack=17.5°, Mach number 0.12 by Case #8 (coarsest spanwise resolution)  

Parts (a-d) are the same as those in Figure 5.14 

 

 

 

Figure 5.32 Hybrid LES/RANS computational results of time-averaged properties of the NACA 0012 

airfoil at static angle of attack=17.5°, Mach number 0.12 by Case #9 (coarse spanwise resolution) 

Parts (a-d) are the same as those in Figure 5.14 



 

 

 

  92 

 

Figure 5.33 Hybrid LES/RANS computational results of time-averaged properties of the NACA 0012 

airfoil at static angle of attack=17.5°, Mach number 0.12 by Case #10 (fine spanwise resolution) 

Parts (a-d) are the same as those in Figure 5.14 

 

 

 Figures 5.34-5.36 show the swirl strength contours for the static stall case with LES/RANS 

models using Mesh-E, Mesh-C and Mesh-D (Cases #8 through #10) respectively, which again clearly 

indicate the separation and stall level predicted by the two different meshes: Mesh-C predicts a 

massively separated and fully stalled flow while Mesh-D predicts a more or less attached and less 

stalled flow. Similar features are indicated in Figures 5.37-5.39 which show the isosurfaces of Q-

criterion for the three LES/RANS cases, although the solution by Case #10 provides more details on 

the 3D turbulent structures as expected. It can also be seen that in Case #9, the flow is separated 

promptly after the short leading edge laminar region. The response is different in the Case #10: the 

flow experiences turbulent reattachment at around x/c=0.05 after the laminar region and transition 

(laminar separation bubbles) region, then separates again at around x/c=0.4. The skin friction 

coefficient distribution shown on Figure 5.41 also demonstrates such flow characteristics.   

 The pressure coefficient and skin friction coefficient obtained by the RANS and LES/RANS 

simulations are shown on Figures 5.40-5.41. These indicate that RANS model predicts that the flow 

separates at x/c=0.35, Mesh-E and Mesh-C cases (Cases #8 and #9) predict that the flow separates 

from the leading edge at x/c=0.1 and x/c=0.05 respectively. The Mesh-D case (Case #10) predicts the 
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flow separates at around x/c=0.4. The separation points also confirm that the RANS model and the 

LES/RANS model using Mesh-D (Case #10) predict less stalled status of the airfoil. The pressure 

coefficient distributions predicted by Mesh-E and Mesh-C cases (Case #8 and Case #9) almost 

coincide with each other, and the skin friction coefficient distributions are also very close to each 

other. This demonstrates again that LES/RANS model comes up with very close solutions with these 

two meshes.  

 

 

 

Figure 5.34 swirl strength contour for static stall case with hybrid LES/RANS model by Mesh-E  

(coarsest mesh), Mach number=0.12, AoA=17.5° (Case #8) 

 

 

 

Figure 5.35 swirl strength contour for static stall case with hybrid LES/RANS model by Mesh-C  

(coarse mesh), Mach number=0.12, AoA=17.5° (Case #9) 

 

 

 

Figure 5.36 swirl strength contour for static stall case with hybrid LES/RANS model by Mesh-D  

(fine mesh), Mach number=0.12, AoA=17.5° (Case #10) 
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Figure 5.37 Q-criterion (8x10
6
 s

-2
) isosurfaces for static stall case with hybrid LES/RANS model by 

Mesh-E (coarsest mesh), Mach number=0.12, AoA=17.5° (Case #8) (left: by whole view, right: near 

nose) 

 

 

 

Figure 5.38 Q-criterion (8x10
6
 s

-2
) isosurfaces for static stall case with hybrid LES/RANS model by 

Mesh-C (coarse mesh), Mach number=0.12, AoA=17.5° (Case #9) (left: by whole view, right: near 

nose) 

 

 

 

Figure 5.39 Q-criterion (8x10
6
 s

-2
) isosurfaces for static stall case with hybrid LES/RANS model by 

Mesh-D (fine mesh), Mach number=0.12, AoA=17.5° (Case #10) (left: by whole view, right: near 

nose) 
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Figure 5.40 Pressure coefficient distribution for the static stall cases of Mach number=0.12, 

AoA=17.5° conditions 

 

 

Figure 5.41 Skin friction coefficient distribution for the static stall cases of Mach number=0.12, 

AoA=17.5° conditions 
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Since the experimental data of flow mean velocity and Reynolds stresses field are unavailable 

for this Mach number (M=0.12) case, the computational results were post-processed to calculate the 

normal force coefficient (as well as lift and drag coefficients) and compared with the experimental 

measurements extracted from Figure 5.24. In the post-processing, ensemble averaging operation was 

applied to the computational results of the relevant variables (pressure, velocity, etc.):  the variables 

were first averaged in time, and then averaged over airfoil span. The ensemble averaged pressure and 

velocity data were then used to calculate the mean pressure coefficient ὅ ςὴ ὴ Ⱦ”ό  and 

skin friction coefficient  ὅ ς†Ⱦ”ό  over the airfoil upper and lower surfaces. The lift and drag 

coefficients could be obtained by the line integral of pressure and skin friction coefficients along the 

entire airfoil surface, as shown below 

   ññ Ö+Ö= sdeCsdeCC yfxpL

CCCC
     

 (5.4) 

   ññ Ö+Ö-= sdeCsdeCC xfypD

CCCC
     (5.5) 

here ὅ is the lift coefficient and ὅ  is the drag coefficient; xe
C

 and ye
C

 are the unit vector in x- and y- 

axis direction respectively. Thus the normal force coefficient ὅ  can also be obtained, with  being 

the angle of attack 

   )sin()cos( aa DLN CCC +=       (5.6) 

 Table 5.7 shows the normal force coefficient, lift coefficient and drag coefficient obtained by 

the above three computational cases. RANS and Mesh-D LES/RANS cases significantly overestimate 

the value of normal force coefficient. This is not surprising because these two cases both predict a 

less stalled status for the NACA 0012 airfoil at angle of attack=17.5° and Mach number 0.12 

conditions. The normal force coefficients (as well as lift and drag coefficient) calculated by 

LES/RANS solutions of Mesh-C and Mesh-E cases are close to each other  and match the 

experimental data much better, but still too high and not accurate enough. The reason for such 

overestimation by Mesh-C and Mesh-E (with coarse and coarsest spanwise cell spacing) is because of 

the blockage effect of the wind tunnel wall in the experiments. Due to the wall blockage effect, the 

aerodynamic angle of attack in CFD simulations is usually chosen to be a little larger than the 

geometric angle of attack in the experiment, but this treatment was not performed in this work. 

Several factors, such as Mach number, angle of attack, the stall status, and the planform of the airfoil, 

would determine the increment of angle of attack used in CFD simulations from in experiments. If the 
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airfoil is just reaching its maximum lift and the stall is just beginning, typically a 0.5° angle of attack 

increment in CFD is required [35]. When the airfoil has already been in stall, a larger angle of attack  

increment in CFD simulation is required, with a deeper stall corresponds to a larger angle of attack 

increment. An aerodynamic angle of attack of 17.5° is actually corresponding to a smaller geometric 

angle of attack. As shown in Figure 2.54, the experimental measurement of normal force coefficient 

of NACA 0012 is about 0.93 in geometric angle of attack of 16°, with which the CFD results obtained 

by Mesh-C and Mesh-E are in good agreement, as shown in table 5.7.  

 The simulation of Mach number 0.12 cases confirm that fine mesh might result in worse 

computational solutions by hybrid LES/RANS model, and this could be used as a guide in determine 

the proper mesh resolution for the simulations of dynamic stall case.  

 

 

 Table 5.7 Normal force, lift, and Drag coefficient comparison by various methods 

Computational cases or 

Experiment 

Normal force coefficient 
(CN) 

Lift Coefficient 
(CL) 

Drag coefficient 
(CD) 

Experimental Data at geometric 

AoA=17.5° 
0.74   

Experimental Data at geometric 

AoA=16.0° 
0.93   

2D RANS 1.18 1.21 0.079
 

LES/RANS using Mesh-C 0.92 0.86 0.327 

LES/RANS using Mesh-D 1.14 1.17 0.092 

LES/RANS using Mesh-E 0.94 0.88 0.333 
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Chapter 6 

Simulations of Flow over NACA 0012 Airfoil Under 

Dynamic Stall 

 

Chapter 6 discusses the computational results of dynamic stall case of NACA 0012 airfoil. In 

this case, the flow configuration of RANS and hybrid LES/RANS simulations is the same as the 

conditions of dynamic stall experiment carried out by Pruski [57], where a sinusoidal waveform of 

the pitching airfoil was obtained by a proportional-integral derivative (PID) controller.  

 

 

 

Figure 6.1 Flow configuration of RANS and hybrid LES/RANS simulations of flow over a pitching 

NACA 0012 airfoil   
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Figure 6.1 shows the flow configuration of dynamic stall flow over a pitching NACA 0012 

airfoil. The airfoil pitches around its quarter chord (the aerodynamic center) with angle of attack 

following a sinusoidal waveform:  ςρρπίὭὲὸςρρπίὭὲς“Ὢὸ, in which the pitching 

frequency is Ὢ ςȢυ Ὄᾀ, or the reduced frequency is Ὧ “ὪὧȾὟÐ πȢρ, and ὟÐ συ άȾί is the 

free-stream velocity, chord Reynolds number is ὙὩ ρȢπ ρπ.  

Both two-dimensional RANS (Menterôs SST model with or without the inclusion of Menter-

Langtryôs transition model) and three-dimensional hybrid LES/RANS (Giesekingôs model, Salazarôs 

fix to Giesekingôs model, and IDDES model) simulations were conducted to investigate the flow over 

NACA 0012 airfoil under the above-mentioned flow conditions.  

The experimental measurements from Pruski et al. [57] and the computational results in this 

study are shown in the following sections.  

 

6.1 Experimental Data of Dynamic Stall Case 

Experimental data includes phase-locked PIV velocity and Reynolds-stress measurements 

concentrated at the leading edge of the airfoil [57] and extracted at the static stall angle of 16.7° 

(which is traversed during the upstroke and downstroke phases of the pitch cycle for the dynamic-stall 

experiments). Since the airfoil pitches around its quarter chord, the PIV system was phase locked with 

the airfoil motion, and a total number around 700 image pairs were acquired for each test case, which 

was sufficient to create statistically meaningful results in postprocessing. The origin of the coordinate 

system is located at the leading edge of the airfoil, with x axis taken to be along the free stream flow 

direction. 

Figure 6.2 shows the experimental results of the corresponding upstroke configuration. Here, 

the PIV technique samples data at Ŭ=16.7Á during the upstroke phase of the pitch cycle [57]. The flow 

is fully attached for the upstroke case. Because the shear-layer is attached to the airfoil surface, the 

fluid experiences a higher acceleration around the leading edge region than for the static case. Unlike 

the detached shear-layer in the static case, the attached shear-layer for the upstroke case does not act 

as an obstacle to flow acceleration. Therefore, the maximum velocity ratio may reach ςȢχυὟÐ. The 

attachment of the shear-layer can also be seen from the shear and normal stresses.   

Figure 6.6 shows the experimental results of the corresponding downstroke configuration 

[57]. The contour plots are similar to those for the static case. This is not surprising because stall has 

already happened and the flow has been separated near leading edge when the airfoil pitches 
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downward from a higher angle of attack. Similar to the static case, the Reynolds-averaged shear and 

normal stresses tend to be confined to within the separated shear-layer.  

 

6.2 RANS Computational Results 

The 2D RANS simulations utilized a 2D slice of the 3D meshes (both O-type and C-type 

meshes described in the section 5.1) used in the hybrid LES/RANS calculations. The Arbitrary 

Lagrangian ïEulerian (ALE) method using Menterôs SST models with and without the inclusion of 

Menter-Langtryôs transition model was implemented for the unsteady RANS simulations.   

For each RANS case, time integrations started from the airfoil angle of attack 16.7° during 

downstroke pitching, and the RANS static stall solution at this angle of attack was used as the initial 

condition. So the angle of attack of the airfoil in RANS (and LES/RANS) simulations actually 

follows the sinusoidal waveform a little different from that in the experiment: 

  ù
ú

ø
é
ê

è -
+-= )

10

7.1621
sin(sin1021 atwa      (6.1) 

Usually 11 pitching periods were completed and the flow fields at AoA=16.7° during both 

upstroke and downstroke pitches of the last 10 periods were used for calculation of mean velocity and 

Reynolds stresses. The computation at first period was discarded because about 10 flow through times 

(1 flow through time=0.013 seconds) was required in order to remove initial transients, while it took 

about 30 flow through times (0.4 seconds) for the airfoil to finish 1 pitching period.   

As before, the Reynolds stresses in 2D RANS cases were calculated using the Boussinesq 

assumption, as shown in equation (4.1). The Reynolds stresses were calculated and collected as the 

airfoil passed through 16.7° angle of attack during both upstroke and downstroke at each pitching 

cycle, then averaged over the number of pitching cycles.    

Figures 6.3-6.4 show that the prediction of each of the RANS models (Menterôs SST, 

Menterôs SST with transition model by O-type mesh) reveals the flow property of shear-layer 

attachment to the surface during upstroke pitching. In terms of streamwise velocity ratio, both models 

yield good agreement with the experimental data, but both slightly over-predict Reynolds-stress 

magnitudes within the attached shear layer. As indicated in the óA-Airfoilô simulations, the addition 

of the transition model leads to a thinner boundary layer. Figure 6.5 shows that Menterôs SST by C-

type mesh (which has finer streamwise resolution than O-type mesh) also correctly captures the flow 

feature of attached shear layer, with mean streamwise velocity in good agreement with the experiment 

and smaller Reynolds stress magnitude compared with solution obtained on the O-mesh.  
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Figure 6.2 Experimental measurements of time-averaged properties of NACA 0012 airfoil during 

upstroke pitching at angle of attack=16.7°.  

(a) Mean velocity όȾὟ , (b) Reynolds-averaged shear-stressόᴂὺᴂȾὟ , (c) Reynolds-averaged 

streamwise normal stress όᴂόᴂȾὟ , (d) Reynolds-averaged wall normal stress ὺᴂὺᴂȾὟ . 

 

 

Figure 6.3 Computational results of time-averaged properties of the NACA 0012 airfoil during 

upstroke at static angle of attack, Ŭ=16.7Á, by Menterôs SST model using O-type mesh 

Parts (a-d) are the same as those in Figure 6.2 
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Figure 6.4 Computational results of time-averaged properties of the NACA 0012 airfoil during 

upstroke at static angle of attack, Ŭ=16.7Á, by Menterôs SST with Menter-Langtry transition model 

using O-type mesh. Parts (a-d) are the same as those in Figure 6.2 

 

 

 

Figure 6.5 Computational results of time-averaged properties of the NACA 0012 airfoil during 

upstroke at static angle of attack, Ŭ=16.7Á, by Menterôs SST model using C-type mesh. Parts (a-d) are 

the same as those in Figure 6.2 
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Figure 6.6 Experimental measurements of time-averaged properties of NACA 0012 airfoil during 

downstroke pitching at angle of attack=16.7°.  

(a) Mean velocity όȾὟ , (b) Reynolds-averaged shear-stressόᴂὺᴂȾὟ , (c) Reynolds-averaged 

streamwise normal stress όᴂόᴂȾὟ , (d) Reynolds-averaged wall normal stress ὺᴂὺᴂȾὟ . 

 

 

Figure 6.7 Computational results of time-averaged properties of the NACA 0012 airfoil during 

downstroke at static angle of attack, Ŭ=16.7Á, by Menterôs SST model using O-type mesh. Parts (a-d) 

are the same as those in Figure 6.6 
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Figure 6.8 Computational results of time-averaged properties of the NACA 0012 airfoil during 

downstroke at static angle of attack, Ŭ=16.7Á, by Menterôs SST with Menter-Langtry transition model 

using O-type mesh. Parts (a-d) are the same as those in Figure 6.6 

 

 

 

Figure 6.9 Computational results of time-averaged properties of the NACA 0012 airfoil during 

downstroke at static angle of attack, Ŭ=16.7Á, by Menterôs SST model using C-type mesh. Parts (a-d) 

are the same as those in Figure 6.6 
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Figures 6.7-6.8 show that each of the RANS computations using O-mesh predicts the leading 

edge flow separation but not to the extent indicated in the experiment. Neither of the models provides 

good predictions of the Reynolds shear stress. Agreement with experiment for the Reynolds 

streamwise normal stresses is better, but the Reynolds wall normal stress is over-predicted. Figure 6.9 

shows that Menterôs SST by C-type mesh provided better predictions in terms of both streamwise 

velocity and Reynolds stresses, especially the Reynolds streamwise normal and wall normal stresses, 

but shear stresses is still over-predicted. The leading edge separation level is also in better agreement 

with the experiment. The RANS case using C-type mesh with finer resolution in streamwise direction 

and larger mesh extension yields better computational results in both upstroke and downstroke cases 

compared with RANS cases using O-type mesh.  

 

6.3 Reynolds Stresses Calculation in Hybrid LES/RANS Cases 

In the 3D LES/RANS dynamic stall simulations, a time accurate computation was used, and 

similar to the RANS cases with equation (6.1), the time iteration starts from airfoil angle of attack 

16.7° during its downstroke pitching. For the O-type mesh LES/RANS cases, the RANS solution by 

Menterôs SST model at the static stall angle of attack 16.7° during downstroke pitching of dynamic 

stall case is used as initial conditions; while for the C-type mesh LES/RANS cases, the static stall 

solution of previous corresponding 3D LES/RANS case by Giesekingôs model at the same angle of 

attack is used as initial conditions. The computational data for the dynamic stall cases was collected at 

the static-stall angle of 16.7° during both upstroke and downstroke of each pitching period (frame). 

The computational results then needed to be post-processed to obtain relevant flow properties such as 

mean streamwise velocity, Reynolds shear stresses and Reynolds normal stresses for the purpose of 

comparison with experiment. In Pruskiôs experiment [57], they collected 700 image pairs to enable 

calculation of phase-averaged turbulent statistics. However, it is unrealistic for CFD to run so many 

periods, given available computational resources and the need to conduct numerous tradeoff studies. 

In this study, typically 10 pitching periods were run for each hybrid LES/RANS case using O-type 

mesh, and data from the last 9 periods were collected and processed to obtain the relevant flow 

properties. For the LES/RANS cases using C-type mesh, usually less than 10 pitching periods were 

completed, and Reynolds stresses were calculated by using the second method described below for 

those cases running insufficient periods.  

   In hybrid LES/RANS cases, Reynolds stresses comprise two parts: the modeled part and the 

resolved part. The modeled part of Reynolds stresses is usually smaller in the LES implementation 
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region (where LES/RANS blending functions are small). The modeled Reynolds stresses calculation, 

which is again based on Boussinesq assumption, is embedded in the main code and could be directly 

outputted. However, post-processing of the instantaneous flow solution was needed to obtain the 

resolved Reynolds stresses. Two ways of calculating resolved Reynolds stresses were used in this 

work. The basic idea of both methods is similar to that used in ensemble-averaging the filtered 

velocity data as shown in equation (4.2), but a coordinate transformation wasnôt needed in this NACA 

0012 airfoil case.  

In the first method, the instantaneous quantities at static stall AoA=16.7° during upstroke or 

downtroke of each pitching period (frame) were first averaged over the spanwise direction, then the 

span-averaged velocity data at each frame was averaged over all frames and the Reynolds stresses 

calculated by 

  ( ) ><><>><<-><=- rrrrr //'' jijiji uuuuuu     (6.2) 

Here operations of  ñò and ñ< >ò represent spanwise average and frame average respectively. 

 In the second method for calculating Reynolds stresses, the Reynolds stress values for each 

frame were first calculated by using the span-averaged quantities, then those Reynolds stresses by 

frame were averaged over frames. Since a number of LES/RANS cases were run and some of them 

only completed a few pitching periods (3 or 4), the Reynolds stresses calculated by span-averaging 

each frame were used to compare with the experiments.     

  ( )rrrrr //'' jiji
I

ji uuuuuu -=-       (6.3) 

  ( ) >-=<- rrrrr //'' jijiji uuuuuu      (6.4) 

The difference of resolved Reynolds stresses calculated by the above two methods were not 

large if enough frames were used. The basic features of the flow at static stall angle during both 

upstroke and downstroke pitching, such as separation level, width of the separated shear layer, 

magnitude of the Reynolds stresses, were generally similar between the two methods. In addition, 

based on the computational results of existing LES/RANS cases, the Reynolds stresses calculated by 

the second method changed little frame by frame (except for the first frame) either. Therefore for 

most of the hybrid LES/RANS cases, the basic features of the flow during upstroke and downstroke 

could be represented and reflected by the Reynolds stress contours calculated by equation (6.3) at 

some typical frame. At the same time, the mean streamwise velocity didnôt change much frame by 

frame at static stall angle during either upstroke or downstroke pitching, and the mean streamwise 
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velocity contour at some typical frame qualitatively represents the averaged one over frames and 

reflects the separation level of the flow.  

 

6.4 Hybrid LES/RANS Computational Results by O-type Mesh 

 Giesekingôs LES/RANS model was implemented on three O-type meshes, the characteristics 

of which are shown on Table 6.1. Mesh-I and Mesh-II have the same span width, but Mesh-II has a 

finer resolution in spanwise direction; Mesh-III has only half the span width of the other two meshes 

and the same spanwise resolution as that of Mesh-II. The IDDES model was also implemented on O-

type Mesh-I, while Giesekingôs model with Salazarôs fix was implemented on Mesh-III. Therefore, a 

total of five LES/RANS cases run on O-type mesh are discussed here, and in the first four cases the 

Reynolds stresses were calculated by the above described first method and averaged over from 

second to 10
th
 frame, while in the last case (Salazarôs fix to Gieseking model), the Reynolds stresses 

was calculated by the second method with downstroke and upstroke pitching data from the 3
rd
 frame. 

Table 6.2 shows the relevant features in the running and post-processing of each hybrid LES/RANS 

case using O-type mesh.    

 

 

Table 6.1 characteristics of three 3-D O-type NACA 0012 meshes 

O-type 

mesh 
Dimensions Cells in spanwise direction ҟȊκŎ Span width (x chord) 

Mesh-I 721 x 201 x 65 64 0.0033 0.21 

Mesh-II  721 x 201 x 129 128 0.00165 0.21 

Mesh-III  721 x 201 x 65 64 0.00165 0.105 

 

 

Table 6.2 relevant features of each hybrid LES/RANS case using O-type mesh 

Case 

# 

Mesh 
used 

LES/RANS model 
Periods 
finished 

Method in calculating Reynolds stresses 

1 Mesh-I Giesekingôs model 10 Method 1, average over from 2 to 10 frames 

2 Mesh-II  Giesekingôs model 10 Method 1, average over from 2 to 10 frames 

3 Mesh-III  Giesekingôs model 10 Method 1, average over from 2 to 10 frames 

4 Mesh-I IDDES 10 Method 1, average over from 2 to 10 frames 

5 Mesh-III  Salazarôs fix 3 Method 2, use frame 3 data 
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Figures 6.10-6.14 show the upstroke response at the static stall angle of 16.7° obtained by the 

above mentioned five hybrid LES/RANS cases. Compared with the attached flow in experimental 

measurements shown in Figure 6.2, cases by Giesekingôs model on Mesh-I, Mesh-II, and Mesh-III 

(Cases #1, #2, and #3) all predict flow separation near the leading edge. Figures 6.10-6.12 indicate 

that Mesh-I case predicts the highest level of leading edge separation, and the flow reattachment 

occurs somewhere downstream (not shown in the figure), while Mesh-II and Mesh-III cases predict a 

smaller leading-edge separation, and the flow reattaches at around x/c=0.08. Therefore, this indicates 

that finer spanwise cell spacing, no matter whether the span width is 0.21 or 0.105 chords, results in 

less leading edge separation and better agreement with the experiment. Mesh-I has too coarse 

spanwise spacing that could not sufficiently resolve the small eddies near the leading edge, while 

Mesh-II and Mesh-III alleviates this problem to some degree. The leading edge separation predicted 

by the LES/RANS model doesnôt mean the airfoil at static angle of attack 16.7Á during upstroke 

pitching is in stall; actually the flow as a whole is attached to the airfoil surface. (This is not shown 

here, but will be shown in the results obtained by using C-type meshes.) The case using IDDES on 

Mesh-I (Case #4) also predicts less leading edge separation. In IDDES model, the LES 

implementation is delayed so that RANS model is implemented near the leading edge region more 

extensively, which is favorable since the effects that small eddies (in an actually attached flow) near 

the leading edge can be more accurately modeled by RANS rather than being resolved by LES using 

some coarser mesh. The case using Salazarôs fix on Mesh-III (Case #5) predicts even more attached 

flow; actually, the leading edge separation is delayed and the flow starts separating at around 

x/c=0.08. Similar to what happens in the static stall case, Salazarôs fix introduces more RANS model 

activity near the leading edge, which facilitates momentum transfer to the surface.            

 Figures 6.15-6.19 shows the downstroke responses at static stall angle of 16.7° obtained in 

the five LES/RANS cases. All the cases correctly predict the basic features that the flow is fully 

separated near leading edge and the airfoil is in deep stall. Also all the cases overestimate the 

magnitude of Reynolds stresses; this might be caused by the small number of frames (9 frames in the 

first 4 cases) to average over which when calculating the Reynolds stresses. The overestimation of 

Reynolds stresses could be reduced if more pitching periods were run and more statistics (frames of 

data) were available, as has been shown in the static stall cases. Taking a closer look, cases using 

Mesh-II and Mesh-III (Cases #2 and #3), and IDDES case using Mesh-I (Case #4) predicts more 

separation near the leading edge and a farther distance between the separated shear layer and airfoil 

surface, compared with the Mesh-I case (Case #1). As shown in Figures 6.16-6.17, Case #2 using 
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Mesh-II with a span width of 0.21 chords obtains a little better prediction for the Reynolds stresses 

compared with Case #3 using Mesh-III with a span width of 0.105 chords, especially for the Reynolds 

wall normal stress near the stagnation point, which indicates that a larger span width could reduce the 

error to some degree in the prediction of Reynolds stresses at static stall angle of attack during 

downstroke pitching. However, the flow features such as mean streanwise velocity and separation 

level are correctly predicted by both Case #2 and Case #3 which used meshes of different span width. 

Therefore, the comparison of downstroke (and upstroke) response of Case #2 and #3 indicates that the 

span width of mesh doesnôt affect the LES/RANS solution significantly. It is also noticed that the 

Salazarôs fix using Mesh-III (Case #5) predicts a closer distance between the separated shear layer 

and the airfoil surface, which indicates a less stalled status predicted by this case compared with the 

other four cases. The reason of less stall during downstroke predicted by Salazarôs fix is similar to 

what happens in the static stall cases by including Salazarôs fix in Giesekingôs model: more RANS 

model activity is introduced to the leading edge, inhibiting flow separation in a region where the 

resolved eddies may have been large enough to support the use of LES.  

  

 

 

Figure 6.10 Computational results of time-averaged properties of the NACA 0012 airfoil during 

upstroke at static angle of attack, Ŭ=16.7Á, by LES/RANS Case #1 (on Mesh-I with a coarse spanwise 

cell spacing). Parts (a-d) are the same as those in Figure 6.2 
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Figure 6.11 Computational results of time-averaged properties of the NACA 0012 airfoil during 

upstroke at static angle of attack, Ŭ=16.7Á, by LES/RANS Case #2 (on Mesh-II with a fine spanwise 

cell spacing). Parts (a-d) are the same as those in Figure 6.2 

 

 

 

Figure 6.12 Computational results of time-averaged properties of the NACA 0012 airfoil during 

upstroke at static angle of attack, Ŭ=16.7Á, by LES/RANS Case #3 (on Mesh-III with a fine spanwise 

cell spacing in a half span width). Parts (a-d) are the same as those in Figure 6.2 
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Figure 6.13 Computational results of time-averaged properties of the NACA 0012 airfoil during 

upstroke at static angle of attack, Ŭ=16.7Á, by LES/RANS Case #4 (IDDES case on Mesh-I).  

Parts (a-d) are the same as those in Figure 6.2 

 

 

 

Figure 6.14 Computational results of time-averaged properties of the NACA 0012 airfoil during 

upstroke at static angle of attack, Ŭ=16.7Á, by LES/RANS Case #5 (Salazarôs fix on Mesh-III). Parts 

(a-d) are the same as those in Figure 6.2 
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Figure 6.15 Computational results of time-averaged properties of the NACA 0012 airfoil during 

downstroke at static angle of attack, Ŭ=16.7Á, by LES/RANS Case #1 (on Mesh-I with a coarse 

spanwise cell spacing). Parts (a-d) are the same as those in Figure 6.6 

 

 

 

Figure 6.16 Computational results of time-averaged properties of the NACA 0012 airfoil during 

downstroke at static angle of attack, Ŭ=16.7Á, by LES/RANS Case #2 (on Mesh-II with a fine 

spanwise cell spacing). Parts (a-d) are the same as those in Figure 6.2 
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Figure 6.17 Computational results of time-averaged properties of the NACA 0012 airfoil during 

downstroke at static angle of attack, Ŭ=16.7Á, by LES/RANS Case #3 (on Mesh-III with a fine 

spanwise cell spacing in a half span width). Parts (a-d) are the same as those in Figure 6.6 

 

 

 

Figure 6.18 Computational results of time-averaged properties of the NACA 0012 airfoil during 

downstroke at static angle of attack, Ŭ=16.7Á, by LES/RANS Case #4 (IDDES case on Mesh-I). Parts 

(a-d) are the same as those in Figure 6.6 
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Figure 6.19 Computational results of time-averaged properties of the NACA 0012 airfoil during 

downstroke at static angle of attack, Ŭ=16.7Á, by LES/RANS Case #5 (Salazarôs fix on Mesh-III). 

Parts (a-d) are the same as those in Figure 6.6 

 

6.5 Hybrid LES/RANS Computational Results by C-type Mesh 

To further demonstrate the above observations obtained by O-type meshes, additional hybrid 

LES/RANS cases were run on the C-type meshes which have finer resolution in the streamwise 

direction. This sections show the hybrid LES/RANS computational results obtained by various 

models using C-type meshes. 

 The above O-type mesh cases show that different span widths of 0.21 and 0.105 chords does 

not affect the LES/RANS solution significantly. Therefore, in the following hybrid LES/RANS cases 

for dynamic stall, a small span width (0.105c) was chosen for 3D C-type meshes in the simulations in 

order to decrease computational costs. As shown in Table 5.1, compared with O-type mesh, the C-

type meshes have a finer streamwise resolution and bigger mesh size. In the following LES/RANS 

cases, C-type Mesh-A and Mesh-B are used in the simulations. The mesh characteristics are described 

in Table 6.3: Mesh-B has a finer spanwise cell spacing compared with Mesh-A. Generally less than 

10 pitching periods (sometimes only 3 pitching periods) were run for those cases to save time and 

computer resources. The insufficiency of frames for processing data makes it improper to calculate 

Reynolds stresses by the first method; therefore they were calculated using the second method by 

picking some typical frame in the cases that the number of frames is too few. Table 6.4 shows the 
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relevant features in the running and post-processing of each hybrid LES/RANS case using C-type 

meshes. Fortunately, as mentioned before, Reynolds stresses calculated with data of different frames 

using the second method do not deviate a lot from each other, the Reynolds stress contours calculated 

by this method and the velocity field could be used to qualitatively interpret the flow features and 

airfoil stall status. 

 

 

Table 6.3 characteristics of three types of 3-D C-type NACA 0012 mesh 

C-type 

mesh 
Dimensions Cells in spanwise direction ҟȊκŎ Span width (x chord) 

Mesh-A 1153 x 225 x 65 64 0.00165 0.105 

Mesh-B 1153 x 225 x 129 128 0.00082 0.105 

 

 

Table 6.4 relevant features of each hybrid LES/RANS case using C-type mesh 

Case 

# 

Mesh 
used 

LES/RANS model 
Periods 
finished 

Method in calculating Reynolds stresses 

6 Mesh-A Giesekingôs model 9 Method 1, average over from 2 to 9 frames 

7 Mesh-B Giesekingôs model 9 Method 1, average over from 2 to 9 frames 

8 Mesh-B Salazarôs fix 3 Method 2, use frame 3 data 

9 Mesh-A Salazarôs fix 6 Method 2, average over from 2 to 6 frames 

10 Mesh-A 
RANS and LES/RANS 

Combined case 
6 Method 2, average over from 2 to 6 frames 

 

 

6.5.1 upstroke response of C-type mesh cases (Cases #6, #7, #8) 

Computational results by hybrid LES/RANS cases using O-type meshes also show that the 

overestimation of leading edge separation during upstroke pitching can be reduced by refining the cell 

spacing along spanwise direction. Therefore, it is logical to further refine the spanwise cell spacing 

and investigate if the leading edge separation can be further reduced so that the computational results 

better match the experiment. Figures 6.20-6.21 show results of LES/RANS cases by Giesekingôs 

model using C-type Mesh-A and Mesh-B (Cases #6 and #7), where the spanwise cell spacing of C-

type Mesh-A is twice that of Mesh-B. Similar to O-type mesh cases, the mean streamwise velocity 

contour and Reynolds stress contours indicate that leading edge separation is present for both cases at 

static stall angle attack of 16.7° during upstroke pitching, and the coarser mesh (Mesh-A in Case #6) 
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results in more separation while the finer mesh (Mesh-B in Case #7) results in less leading edge 

separation. According to Pruskiôs experiment shown in Figure 6.2, leading edge separation shouldnôt 

be present at the static stall angle during upstroke pitching. The attached flow near leading edge 

during airfoil upstroke pitching is in its incipient stage, thus turbulent eddies are usually smaller and 

cannot be properly resolved by the mesh used in simulations (neither Mesh-A nor Mesh-B). However, 

as indicated by the hybrid LES/RANS blending function distribution shown in Figures 6.23-6.24 (c-

d), a region where LES is active is located near airfoil leading edge. The LES model is implemented 

in near nose region but the mesh resolution isnôt fine enough to support such implementation; in other 

words, the small eddies in this region cannot be sufficiently resolved by the 3D mesh while the 

subgrid model fails to provide enough modeled stress to compensate. Finer mesh resolution (as in 

Case #7) is favorable in the sense that more small eddies near leading edge can be resolved with LES 

model. This reduces the separation level as shown in Figures 6.20-6.21. In Case #6 (which uses 

Mesh-A with coarse mesh resolution) by Giesekingôs model, the flow separates at around x/c=0.01 

and reattaches at around x/c=0.14, while in Case #7 (which uses Mesh-B with fine mesh resolution) 

with Giesekingôs model, the flow separates at around x/c=0.02 and reattaches at around x/c=0.07. The 

mean streamwise velocity contour and Reynolds stress contours shown in Figure 6.22 indicates that 

Salazarôs fix delays leading edge separation by introducing more RANS model activity near the 

leading edge region as indicated by the blending function distribution shown in Figure 6.25 (c-d). As 

shown in equation (2.55), Salazarôs fix takes the grid resolution into consideration when determining 

the hybrid LES/RANS blending function in the calculation of length scale ratio and generates more 

RANS activity near the nose where the mesh resolution is not fine enough for a LES implementation. 

The RANS implementation is favorable for an attached flow near the airfoil leading edge; the small 

eddies reside in this region can be modeled by RANS method more accurately rather than being 

resolved by LES method with a mesh that is not fine enough to support it. However, in the Mesh-B 

case with Salazarôs fix (Case #8), the leading edge separation isnôt removed but postponed a little 

downstream. As indicated by the skin friction coefficient distribution in Figure 6.26, the flow 

separates at around x/c=0.11 and reattaches at around x/c=0.16.  

Although the unwanted leading edge separation is present during upstroke pitching in the 

above three LES/RANS cases, the mean streamwise velocity and eddy viscosity contours over whole 

view shown in Figures 6.23-6.25 (a-b) indicate that the flow is attached as a whole. In other words, all 

the three LES/RANS cases (Cases #6, #7, and #8) correctly predict that the airfoil is not in stall at 

static stall angle of 16.7° during upstroke pitching. As shown in Figures 6.23-6.25 (d), the LES model 
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is active throughout the majority of the boundary layer. This is favorable since the mesh resolution is 

now good enough to resolve the large eddies which dominate in the turbulent boundary layer. It can 

also be noticed that Case #6 (using a coarse mesh) in Figure 6.23 (a-b) predicates a thicker turbulent 

boundary layer, while Cases #7 and #8 (using a fine mesh) in Figures 6.24-6.25 (a-b) predict a 

relevantly thinner turbulent boundary layer. All the three cases also predict some level of trailing edge 

separation, as indicated by the skin friction distribution shown in Figure 6.26. The trailing edge 

separation starts at x/c=0.72, x/c=0.9, x/c=0.93, respectively, according to the predictions of the 

Mesh-A case, the Mesh-B case by Giesekingôs model, and the Mesh-B case with Salazarôs fix (Case 

#6, #7, and #8). The mean streamwise velocity contour in Figures 6.23-6.25 (a) also indicates the 

presence of trailing edge separation.  

The C-type Mesh-A used in Case #6 has the same span width and resolution along spanwise 

direction as the O-type Mesh-III used in Case #3, and the C-type Mesh-A has finer streamwise 

resolution and a large mesh extent than the O-type Mesh-III. As shown in Figure 6.12 and 6.21, the 

velocity contour and Reynolds stress contours indicate that Case #3 using an O-type mesh obtains 

better results than Case #6 using a C-type mesh since Case #3 predicts less separation near the leading 

edge.  

In summary, Giesekingôs model using Mesh-B (fine mesh) obtained the best prediction for 

the upstroke response at static stall angle of 16.7° among these three hybrid LES/RANS models.  
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Figure 6.20 Computational results of time-averaged properties of the NACA 0012 airfoil during 

upstroke at static angle of attack, Ŭ=16.7Á, by LES/RANS Case #6 (on Mesh-A with a coarse 

spanwise cell spacing). Parts (a-d) are the same as those in Figure 6.2 

 

 

 

Figure 6.21 Computational results of time-averaged properties of the NACA 0012 airfoil during 

upstroke at static angle of attack, Ŭ=16.7Á, by LES/RANS Case #7 (on Mesh-B with a fine spanwise 

cell spacing). Parts (a-d) are the same as those in Figure 6.2 
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Figure 6.22 Computational results of time-averaged properties of the NACA 0012 airfoil during 

upstroke at static angle of attack, Ŭ=16.7Á, by LES/RANS Case #8 (Salazarôs fix case on Mesh-B with 

a fine spanwise cell spacing). Parts (a-d) are the same as those in Figure 6.2 

 

 

Figure 6.23 Computational results of time-averaged properties of the NACA 0012 airfoil during 

upstroke at static angle of attack, Ŭ=16.7Á, by LES/RANS Case #6 (on Mesh-A with a coarse 

spanwise cell spacing). (a) Mean velocity όȾὟ , (b) normalized eddy viscosity, (c) LES/RANS 

blending function near the leading edge, (d) LES/RANS blending function 
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Figure 6.24 Computational results of time-averaged properties of the NACA 0012 airfoil during 

upstroke at static angle of attack, Ŭ=16.7Á, by LES/RANS Case #7 (on Mesh-B with a fine spanwise 

cell spacing). Parts (a-d) are the same as those in Figure 6.23 

 

 

 

Figure 6.25 Computational results of time-averaged properties of the NACA 0012 airfoil during 

upstroke at static angle of attack, Ŭ=16.7Á, by LES/RANS Case #8 (Salazarôs fix case on Mesh-B with 

a fine spanwise cell spacing). Parts (a-d) are the same as those in Figure 6.23 


