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ABSTRACT

The Fast Pole-Zero (ARMA) Recursive Least Squares Algo­
rithm is derived using geometric projections. The new algo­
rithm has a reduced number of computations compared to the
algorithm obtained using matrix methods. In particular two
inner products are eliminated. This is particularly impor­
tant in multiprocessor implementations of the algorithm.
The geometric approach provides insight and useful interpre­
tations of the various filters and residuals that form the
algorithm. Such insights are absent in the matrix deriva­
tion. Simulations verifying the performance of the algo­
rithm are presented where the poles and zeroes of an IIR
filter are estimated. The algorithm finds application in
echo cancellation and system identification.



1. Introduction

The Recursive Least Squares algorithm has been applied

to a wide range of adaptive filtering problems. In many of

these applications the system impulse response is estimated.

In these cases the RLS algorithm has the structure of

transversal filters and fast estimation schemes have been

derived for efficient solution of these problems. These

include the work by [1] and [2]. In the latter work the RLS

problem is formulated geometrically and using geometric pro­

jections efficient solutions are derived. The resulting

algorithms have fewer computations than the fast Kalman

algorithm derived in [3] and used in [1]. Furthermore, the

geometric approach provides insight into the interpretation

and significance of the various filters and quantities ori­

ginally encountered in [3],

Recently the RLS algorithm was applied to echo cancel­

lation using pole-zero modeling [4,5]. In this case the fast

Kalman algorithm derived in 3 is formulated to include the

echo in addition to the echo generation signal to estimate

the parameter vector containing the numerator and denomina­

tor coefficients of the echo path transfer function. In

other words the echo path is modeled as an ARMA (pole-zero)

process. The excellent performance of this algorithm in

achieving very rapid and extremely high echo cancellation

[6,4] has provided motivation for deriving a more effi-

cient and robust algorithm.



In this paper, the geometric approach used in

2

[ 7 , 8 ]

and [2] is extended to the derivation of a fast pole-zero

(ARMA) Recursive Least Squares algorithmo The work is also

an extension of the formulation presented in [3] where a

fast estimation scheme is developed using permutation

matrices. The pole-zero algorithm differs from the multi-

channel Fast Transversal Filter of [2] in that the order of

poles and zeroes can be independently and arbitrarily speci-

fied. However, the same efficiency in terms of the elimina-

tion of some vector inner products and other operations 1n

comparison with the fast Kalman algorithm are achieved as in

the case of the Fast Transversal Filtero

Also in this paper, an alternative derivation of the

projection

methods.

update formula is presented using matrix

2. Pole Zero Modeling

In the pole zero modeling of the linear system S, the

transfer function H(z) is written as,

Hence we can discrete time domain,

H(z) = y(z) =
ffiT i=L ·-1

1 + E a·z
· 1 11=

write in the

( 2 0 1 )

y( n ) =
i=M

E b r x I n-i i )
· 0 11=

i=L
I: a·y(n-i)

· 1 11=
( 2 .2)
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Define the vector (N=M+L), note that ",,, denotes the tran­

spose of a vector,

z Cn ) = Lx t n i x t n-a ) ... x(n-M)y(n-l} ... y(n-L)]' Nxl

and

( 2 • 3 )

w; = [aOa1 ••• aM-b1 ••• -bL1' (2.4)

Then we can write y(n) in vector notation as an inner pro­

duct,

, *y I n ) = z (n)W
- N

3. Geometric Projection Formulation

( 2 • 5 )

( 3 . 1 )

The solution to the RLS adaptive-filtering problem is

stated as any vector WN T for which,

T
~ (T) = L [d(t)+W z(t)]2

N t=O N,T-

is minimized. In the case of pole/zero modeling the desired

signal d(t)=y(t) the current system output sample.

Define the following vectors,

X
T

= [x(T)x(T-1) ••• x(O)O ••• OJ'. Jx1

Y
T

= [y(T-1)y(T-2) ••• y(O)O ••• O]' Jxl

( 3 02)

( 3 . 3 )

The above vectors group all measurements of x(n) and y(n-l)

up to time T into vectors. Define,

x = [x x l···xT M 1]M,T T T- - +

y = [y y l···YT L 1 J
L,T T T- - +

JxM

JxL

( 3 .4)

( 3 • 5 )
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( 3 .6)

ZN,T - [XM,T YL,T] JxN

Note that N=M+L. Furthermore define the vector,

z = [x y ] Jx2
T T T

which collects all measurements into a single vector.

( 3 .8)

Also

define the vector of desired response,

d = [d(T)d(T-l) ... d(O)O ... O]T
T

Hence the prediction error becomes,

( 3 .9)

£N,T = dT+ZN,TW~,T

From which,

(3.10)

~ t:
N,T N,T

(3.10)

In a vector space interpretation the minimizing solution is

the W that forms a linear combination of the input vec-
N,T

tors

z ,z l' ..• 'z (3.11)T T- T-N-l
which has a minimum distance from the desired response vec-

tor, dTu In the vector space t: is orthogonal to the sub-
N,T

space that spans all the linear combinations of the N most

vectors.inputrecent That is, e is orthogonal to the
N,T

column space of Z and thus satisfies,
N,T

Z~-i£N T = [0 0 ] for i=O, •.• ,N-l.,
In matrix notation this becomes,

(3.12)



z· ~ ==z' (d +Z W' ) ==
N,T N,T N,T T N,T N,T

The solution is,

5

(3.13)

W == -d' Z ( Z' Z ) -1 ( 3 • 14 )N,T T N,T N,T N,T

As pointed out in [2] if the sample autocorrelation matrix

is singular, a situation that always occurs when the

discrete time index T is less that N-l, then any generalized

inverse yields a solution to the RLS problem. We can write,

~ == [I-Z (Z' Z )-lz' ]d (3.15)
N,T N,T N,T N,T N,T T

Define the projection operators,

PZ == Z (Z' Z) -lZ'

and,

pi = I-P
Z

Hence,

t: = pi d
N,T N,T T

The matrix P projects vectors onto the subspace
N,T

by the columns of Z, i.e. the past observations.

(3.16)

(3.17)

(3.18)

spanned

The pro-

jection operator pi is its orthogonal complement and pro­
N,T

jects vectors onto a subspace that is orthogonal to the sub-

orthogonal

, the pred-

iction

predicted estimate d
T

In other words

is

= Pd.
N,T T

[ 2 ]

to the

An important property of the projection operator is the

idempotent property:



p2 = p
N,T N,T

We also define the quantity,

K = Z (Z' Z)-l
Z

6

(3.19)

(3.20)

From which using (3.14) we can write the optimum weights as,

acts on the subspace Z to yield the

WN,T = -d~KN,T

Therefore, U· K
Z

can

transformation which

be interpreted

(3.21)

[2] as the linear

closest approximation to U in the least-squares or minimum

distance sense. In other words U' K
Z

is a linear filter that

acts on the input vectors to estimate U. In our case

U = d .
T

Also, K can be interpreted as a generalized right
Z

inverse for Z:

Furthermore,

P K = K
Z Z Z

As in [7,9] and [2] we define the pinning vector,

(3.23)

0= [100.0.0]' Jxl . (3.24)

The pinning vector has the important property that its inner

product with the time vectors dT,E
N

and z yields the
,T, T

most recent sample:

o' zT = [ x ( n ) y ( n-1 ) ]' (3.26)
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a E: = E:(T)
N,T (3.27)

4. Filters for RLS Algorithm

We introduce the following filters for the pole/zero

RLS algorithm:

(4 .4)

(4 • 3 )

(4 • 2 )

(4 • 1 )

2x(N+2)

2x(N+2)

lxN

lxN

filters are the residuals obtained by

appropriately exciting these filters. First define

,

AN T = [12 -zTKN,T-1J,
,

BN T = [-zT-NKN T 12], ,

eN T = -0 KN,T,
,

WN T = -dTKN T, ,
Corresponding to these

z(T) = [x(T) x(T-l) ... x(T-M+l) y(T-l).o.y(T-L+l)] (4 .5)

,
~F~(T) = [x(T) y(T-l) ~ (T-l)] (4 .6)

~BZ(T) = [ z (T) x(T-M+l) y(T-L+l)] ( 4 .7)
-

The permutation matrices ~B and ~F were introduced in [ 3 ]

and have the important property that

~ ~ = 1

Now,

e (T) (T)
, I 2xl (4 .8)

= A rp Z = z (T)PN T-lo

N N,T F- - ,

- , ' I (4 .9)

rN(T) = BN,T-l~B~
(T) = z (T-N)PN,To 2xl

-
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7 (T) = l+C z(T) (4.10)
N N,T-

I
N

(T ) = (J' p I a (4.11)
N,T

l:N(T) = d' pi a (4.12)
T N,T

The above quantities can be interpreted as the filtered

residualso In particular (4.10) provides an interesting

interpretation for CN,T as the filter which when excited

forms the best estimate of the quantity one. The residual

being 7N(T)o In [7] the term IN(T) is seen to be the

cosine squared of the angle between z(T) and its projection

on the space ZN T-lo Hence as IN(T) approaches one the gap,
between the spaces closes. In other words it is a measure

of how much new information is providedo

We define the prediction residuals as,

e~(T) 2xl (4.13)

rP(T) = B ~ z (T)
N N,T-l B-

2xl (4.14)

(4.15)

Define the residual powers,

2x2 (4.16)

I I

PN(T) = BN,T~BZN,TZN,T~BBN,T 2x2 (4.17)

Or, using the idempotent property of the projection opera-

tors,



:: z' pi z
T N,T-l T
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(4.18)

Furthermore,

(4.19)

(4.20)

5. Projection Operator and Filter Updating

(4.21)

There are two types of projection operator updating

which for the case of the pole/zero RLS have to be dis-

tinguished. One involves order updating and the other

involves time updating. In order updating, the order of the

projection operator is increased by augmenting a new column

space as follows:

( 5 . 1 )

Or,

#(rZl r 1,1 rz' 1 ( 5 • 2 )
Pz,w = [Z wJtLWJLz wJ } 1.1

l J LW J
In case of order updating Z = Z and W :: zT-N- For timeN,T

updating W = u as will be shown. The projection update can

be shown to be [8] (also see appendix for a matrix deriva-

tion),

p
Z,W

Define,

( 5 • 3 )



v = p1w
z

Then,

p = P +P
Z,W Z V

The update for the orthogonal projection becomes,

For filter updating we note that,

r I 1
~Bt~' JKZ,W = IZ,W

Also,

PZ,wKz,w = KZ,W

Define,

KZ,W = KZ,W~B

and,

KW,Z = KW,ZrpF

Then substituting for Pz,w we obtain

K = P K + p Iw(Wi P IW) #w' (I - P ) K
Z,W Z Z,W Z Z Z Z,W

Or using (5.7),

KZ,W = (KZ 0 0) + P~W{W' P~W)#[-W' KZ I]

Similarly,

K = [0 0 K ]+pIW{W' pIW)#[I -W' K ]
W,Z Z Z Z Z e

10

( 5 • 5)

( 5 • 6)

( 5 • 7 )

( 5 .8)

(5.10)

(5.11)

(5.12)

(5.13)
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Summary of Projection and Filter Updating

Pz,w = [pz + P~w<w' P~W)#W' p~]

I I I I 'I 'I # ' ,
u Pz,wV = u PzV-<U PZW)(W PZW) (w PZV)

u' K = t u' K
Z

0 0] + (U· P IW) <W· P Ivl) # [-W' K I ]
Z,W Z Z Z

(5.1' )

(5.2' )

(5.3' )

KW,Z = KW,Zcpp

6. Derivation of Algorithm

,
-W KZ]

(5.4' )

(5.5' )

(5.6' )

( 5 • 7 • )

In the following derivation frequent use is made of the

definitions of the filters and residuals of section 4. The

derivation follows [2] closely.

First we derive the time updates for the forward and

backward prediction filters: use 5.3' with

w = o,U = Z ,2 = ZT N,T-l

eN(T)
AN,T-l = AN,T - I

N
(T- l ) [ O 0 CN,T-l]

(use 5.4' with U = zT_N'W = a,Z = ZN,T

( 6. 1 )
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( 6. 2 )

Order update by using with

-1
CN+1,T = [0 0 CN,T-l]-eN(T)oN (T)AN,T

Also using (5.3') and U=a,W=zT-N'Z=ZN,T'

( 6 • 3 )

( 6. 4 )

Close examination of (6.4) reveals that the last two

elements of clare equal to,
N+ ,T

~(T) = r~(T)p~l(T)

So we can write

CN+1,T = [CN,T 0 O]+~(T)BN,T

From (502') using U=V=zT,W=a,Z=ZN,T_l'

-1 '
0N(T)=oN(T-l)+eN(T)7N (T-1)eN(T)

Update PN(T) by using (5.2') with U=V=zT-N,W=a,Z=ZN,T'

(6.4' )

(6.5)

( 6 • 6)

To obtain the prediction errors post multiply (6.1) by

I I

~F~ (T) and (602) by ~B~ (T).

eP(T)=e (T)-e (T)1- 1(T-l)(1 (T-l)-l) =
N N N N N

e (T)
N

( 6 .8)
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To obtain the order update for 7 (T) use (5.2') with
N+l

W=z Z=Z U=V=aT-N' N,T-l' ,

(6.9)

Again in (5.2') let W=zT' Z=ZN T-l' U=V=u ,,

(6.10>

Define,

c = -1 (T) C
N+l,T 1 N+ 1 ~B N+1,T

(6.11)

(6.12)

(6.13)-1
CN+1,T = 7N+l(T)~FCN+l,T

Then from (6.3) substituting (6 0 1 ) and simplifying using

(6.11) we obtain,

-1
CN+l,T = [0 0 CN,T-l1-eN(T)aN (T)AN,T-l

-1
eN(T)aN (T)eN(T)[O 0 CN,T-l]

CN+l,T = [0 0 CN,T-l] -

-1 -1
eN(T)aN (T)AN,T_l[7N+l(T)-7N(T-l)]7 N (T-l)[ 0 0 CN,T-1l.

-1 -1 -1
CN+l,T = 7N+l(T)7N (T-1)[0 0 CN,T-1]-eN(T)aN (T)7N+l(T)AN,T-1

Using the definition (6.11) we obtain,

(6.14)
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Now from (6.11) through (6.13),

Substituting (6.2) into (6.4) we get,

rN(T)
CN+1,T = [eN TOO ]+~(T)BN T-l+~(T)y (T)[CN TOO]

, , N '

But J.L(T) = r' (T)p-l(T) • Hence, using (6.9) we get,
N N

(6016)

C
N+l,T = [CN,T 0 O]+~(T)BN,T-l

(6.17)

Simultaneous solution of (6.4) and (6.2) yields

Excite by ~B~ ,

y~~T(T) = [l+~(T)r~(T)]-l[Y~~l,T(T)-r~(T)p~l(T)r~(T)]

Substituting from (609) and simplifying,

(6.18)

(6.19)

Once C has been updated then the joint process
N,T

updates can be obtained:

t;P(T) = d(T)+W lZ(T) (6.20)N N,T- -

t: (T) = l;P(T)1 (T) (6.21)N N N

WN T = WN,T-l + f;N(T)CN,T
(6.22)

,



Summary Fast Pole/Zero Adaptive Filter
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1N+l(T)

Note that }L(T)

-.,

= eN is the last two elements of C
N+l N+l,T

[c 0 0 ] = C - ~(T)BN T-l
N,T N,T ,



Joint-Process Extension.

~P(T) = d(T) + W lZ(T)
N N,T- -

16
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7. Simulation Results

In this section the results of simulating the Fast

Pole-Zero Recursive Least Squares algorithm, derived and

summarized in the previous section, are presented. The

algorithm was programmed in C. To test the algorithm the

poles and zeroes of a 10th order elliptic bandpass digital

filter were estimated. The pole-zero distribution of the

filter is shown in figure 1. In figure 2 the estimated

poles and zeroes using the algorithm when a white Gaussian

noise sequence is used to excite the filter lS shown. Note

the close estimation of the pole and zero locations. Figure

3 shows the prediction error plotted in dB's against the

number of iterations. Note the rapid convergence of the

algorithm. Also the prediction error is more than 100 dB's

below the desired signal, an indication of the high degree

of accuracy achievable by pole-zero modeling in comparison

to impulse response modeling. In an echo cancellation

application this corresponds to a 100 dB echo return loss

enhancement. Where appropriate and as a measure of the

algorithm's performance the ratio of the power of the

desired signal over the power of the prediction error is

given in dB's. Ideally, in the absence of noise, this ratio

is very large. In all cases the first N iterations are dis-

carded.

The effect of zero overspecification is presented in

figures 4 and 5. In this case the number of zeroes was
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overspecified by 10 (M=20,L=lO)o The zeroes are distributed

around the origin and two of them cancel out two of the

poles. The rapid convergence and high degree of prediction

accuracy is again observed in figure 4 with a slight degra­

dation in comparison with no zero overspecification.

The interesting case of both pole and zero overspecifi­

cation is presented in figure 6 (M=20, L=20). Notice that

the extra poles and zeroes cancel each other out.

An important property of the algorithm is its ability

to predict the desired signal in the presence of noise. In

figure 7, the prediction error is plotted against the number

of iterations for the case where white Gaussian noise with

an rms value of 0.1 was added to the desired signal. Note

that the prediction error is uncorrelated in contrast to the

filtered and correlated desired signal. In other words the

desired signal has been eliminated from the prediction

error. In an echo cancellation application this corresponds

to the elimination of the echo even in the presence of

noise. The pole-zero distribution for this case is shown In

figure 8. Note that noise does effect the location of the

poles and zeroes. In fact, since the noise contaminates y(n)

which is used in the prediction of the desired signal a bias

is introduced in the estimation of the weight vector W
N,T
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8. Appendix

In this appendix the projection update is derived

directly from matrix methods. The projection obtained by

augmenting the column space W to Z is,

We must find an inverse such that,

rzz Z w1fAl A2 1 = Ilw' z W' W J LBIB2J

Or,

r I I

I ZZ Al +Z WB I
I I I

LW ZA1+W WB I

fINN
10
L N

This leads to four equations:

W ZA2 + W WB 2 = I pp

From (3),

, -1'
A2 = -(z Z) Z WB 2

Substituting into (4) and rearranging,

Hence,

( 1 )

( 2 )

( 3 )

( 4 )
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A 2 = -(Z' Z)-1 Z' W[WW' - w' Z(Z· Z)-1 Z' wJ-1

Similarly we obtain,

Substituting the inverse into the projection update and

after some algebra we obtain,

I 'I -1' I
PZ,W = Pz + PZW{W PZW) W Pz

Note that,

I
Pz = I- Pz

( 5 )

The above relationships could have been derived using the

generalized inverses. It is interesting to note that if we

define,

I
V = PZW

Then the projection update (5) can be written,

Pz W = Pz + Py,

( 6 )

( 7 )

In fact an alternative derivation of (5) is suggested by

(7). The vector Y represents that part of W that cannot be

estimated by the space spanned by the columns of Z. I t is

orthogonal to the sub space Z. Hence the projection opera­

tor that includes the subspace Z and W can be expressed as a

direct sum of the projection operator of the subspace Z Pz
and the projection operator Py of the subspace spanned by

y which is orthogonal to Z. Thus)

P . = P +P
Z,W Z V
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