NON-LINEAR EFFECTS OF HIGH TEMPERATURE ON THE VIBRATION
OF BEAMS WITH TIME DEPENDENT BOUNDARY CONDITIONS

K.S. ARAVAMUDAN

Department of Aeronautics & Astronautics,
Massachusetts Institute of Technology, Cambridge, Massachusetts, U.S.A.

P.N. MURTHY, N.G.R. IYENGAR

Department of Aeronautical Engineering,
Indian Institute of Technology, Kanpur, India

SUMMARY

In dealing with vibration problems of continuous systems, one generally encounters
situations where one or more boundaries are constrained to undergo displacements which
are varying with time. For example, a rod subjected at its end to varying external pressure
or a plate whose edge is supported by another structure which is oscillating. In such cases the
boundary conditions are not “stationary” and for this reason the solutions cannot be ob-
tained by classical methods, Further, if the system is operating in a high temperature environ-
ment as in the case of pressure vessels and nuclear reactors, the material behaviour is non-
Hookian. The material starts softening at high temperatures and the linear relation between
stress-strain is valid only for small strains. For a realistic analysis it is necessary to consider
the material behaviour to be non-linear. Mindlin et al. analyzed the response of a beam with
time dependent boundary conditions. However, the analysis is confined to linear elastic
material. Berry et al. gave a general solution for the response of a structure with non-homo-
gen boundary conditions.

The present work deals with the influence of non-linear material properties on the dyna-
mic response of beams whose boundaries are constrained to undergo displacements which
are varying with time.

The stress-strain relation for the material has been assumed to be of the type,

o = Ee—E*¢" @
which has been verified on many materials for the elastic as well as creep strains. The

governing equation for the transverse vibration of a uniform slender beam undergoing small
deformation can be written as

4 3, \2 /A2, \m=2 4 2, ,\m-1 2
a3 e
x t

ax°® ox? ax* \ox?

The problem has been attempted for four sets of boundary conditions. All other boundary
conditions are homogeneous except on displacement, which is given by (w/h) cos wt. Solu-
tions have been obtained by perturbation method in conjunction with a finite transform
technique and Galerkin’s method associated with a transformation suggested by Mindlin
and Berry. Response curves have been obtained for different boundary conditions for various
values of boundary displacements,

In the later part of the paper the study of the stability of the periodic solution obtained
above is made. The governing equation reduces to the well known Mathieu equation. The
solution of this equation shows that the transition curve separating the regions of stability
and instability is dependent on the magnitude of the forcing function.
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1. Introduction
Tn denling with vibration problems of continuous system, one quite often

encounters situctions vwhere one or more boundaries are constrainted in terms of displace~
ments or end noments, which are varying with time. Such is the case in a complex
stmcture vherc one element interacts with the other. Tor example, a plate whose edge

is supported by mother siructure which is oscillating or a rod subjected at its end to
varying exteranl pressure. In such cascs the boundary conditions are not "stationary"

and for this rccson the solutions cannot be obtained by techniques genexally used when the
boundary condi bions are stationary. TFurther, if the structure or the system is in a high
temperature enviromnent as in the case of pressure vessels, nuclear rcactors, bhe matcrial
behaviour is cssentially non hookean, The material starts softening with a gradual fall
in the elastic modulus with increase in temperabure, It was shown by Iyengar and Marthy [1]
in a study on bomns, that materinl non-linearity gives rise to soltening behaviour unlilke
structural non-linearity. Turther, creep phenomenon becomes important at thesc high
temperatures. l'or a realistic amalysis it is, therefore, necessary to consider the
material behaviour to be non-linear to obtain in the response of the system, Ilindlin and
Goodman [2] obtoined the response of a beam with time dependent boundary conditions,
However, the anal;sis is confined to linear elastic material, Berry and Naghdi [3] gave
a general solution for the response of a structure with nonhomogeneous boundary conditions.
The investigetion described here deals with the influence material non-lincarities on bhe
dynamic response of slender uniform beams whose boundaries are constrained to undergo
displacements which are varying with time. 'The analysis can be looked upon as a first
gtep towards a complete solution including bhe effects of hysteresis and creep, In the
later part of the paper a study of the stebility of the solmtion is made. Resultbs of the

investigation are presented in a graphical form for different boundary displacements,

2. Haterial Stress-Strain Law

Lxperiments have shovmn that for most materials that stress—strain relation is
nonlinear except for very cmall straing, This nonlinearity increases with increase in
temperature., TFollowing Ramberg-Osgood [4] , one can write the uniaxial stress-strain

relation as R

e =Pu * o (1)
where p, ¢ and R are constants depending on the meterial and temperature. In Ref. [51]
extension of thic law to include creep strain is described. The constants then become
functions of time in addition to temperature. In the study described in this paper, this

law has been modified and used in the following form :

o= E(T) € - E*(T) ™ (2)
It should be noted that neither relations (‘I) nor (2) include the hysteresis and crecp
effects, E ond T are material properties,

3., GBoverning liguation of lotion

In order to derive the equations of motion governing the transverse oscilla-

tions of a slender unifomm beam, the following assumptions are made.
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(i) The amplitudes of oscillations are small (of the order of half beam thickness).

(ii) Axial movements of the supports are allowed,
(iii) Shear deformation and rotatory inertia effects are neglected.

(iv) Demping snd hysteresis effects are neglected.

The equation of motion for transverse oscillation can be written as [6]

4 4 2
§ B} . 32u

BT 28 pertn 28 (02/0x ™ Lo 1) 5%/ 053 (02/9x2)™2 s AW L g 3)
ax? ax’ at?

Eq. (3) is a non-linear partial differential equation. It is rather difficult
if not impossible to obtain the solution of eq. (3) for any general value of tm' and,
therefore, il is necessary to consider diserete values of 'm!. Here the value of 'm! is
chosen as 3, The approach however, is quite general for any odd integral value of 'mt,

Introducing non-dimensional parameters,

V=Wh,£=x/lLand 6 = wt, [€)]

the equation govering the transverse motion of the beam reduces to

a?(a%v/aeh) + w? 97v/a0%-c [300%v/0eH) 2 atvyaet e (0% /6332 a2v/ae2] = o (5)
6 2
th) 2
where - L 3 and a“ = Lh—4
2001 2oL

The parasmeter € is of order 10-.3 y Which makes eq, (5) 'weakly non-linear!,

4. Boundary and Tnitinl conditions.

The problem has been attempted for four sets of boundary conditions, namely
(1) Simply supported-simply supported (ii) Clamped-clamped {iii) clamped-free and (iv)
olamped -simply supported. The equation and methods of obtaining solutions are valid for
any other type of boundory conditions, All the conditions on the boundary are homogeneous
except on displacement, which is given by (Vi/h) cos 6 ,

To reduce the complexity of Ghe problem, the initial conditions are chosen as
follows,

V(E,0) = £(E) and 3V/3t(E,0) = 0 (6)

If the boundary conditbions sare homogencous, then f(E) can be chosen ag the initial
deflected shape. In the present case, however, if has to satisfy the imposed bounlaxry
conditions on displaccient. For simplicity f.‘( E) is chosen as
Wo
FIE) = AX (E) + € —6(E) , W=¢e ¥ N

nn

where Xn( £€) iu ihc mode shape and G( E) takes care of the boundary conditions,
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5. Method of Analysis

Eq. (5) is the goveming equation for free vibration of the beam. However,
in view of the boundery conditions the problem can be locked upon as a forced vibration
problem. The results, therefore, are confined to the stesdy state response of the system,
Eq. (5) is a non-lirear partial differential equation anmd it is futile to seek
for closed form solutions. Hence approximate methods are used to study the behaviour of
the system in the neighbourhood of linear system. In this paper perturbation and Mindlin

Galerkin techniques have been used to solve the above equations. These two methods exe

used to serve as a mutual check in view of the lack of any experimental data.

5.1 Perturbation Technique

Perturbation techniques are based on the principle of tuilding up the final
solution from o simple basic solution which generally refers to & corresponding linear
problem, The displacement V(& ,9) as well as frequency

totic expansion in powers of

VE,0) = V (£,0) + €2 VI(£,0) + €° V,(5,8) + ... (8a)

w are represented by an asymp-

w(e) =wo+ew1+22 wy * eee (8b)

Substituting relations (8a) end (8b) into eq. (5) and the bourdary conditions end then
grouping the coefficients of different powers of e yields

v 2
6(0) H az ° + wi -a—‘é°= 0 (9a)
agd 30
2 3 2
a4v1 2 ;;Zv1 34V0 3V, 4 3o 5 3 Vo
eW 2= 2L =2 (0" 6 —]
agt 20 2t ag” 3 3E
%
[¢]
- Zwoml 902 (Ob)
4 2 o8y s 8%y, 8%
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a =t v T 7] Z 4 492 402
3 30 et ag 261 302 e
a 2 3
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+2—. 7t G
Y I T VA1 A"
2 a 2,
av , 3V 3
-2 L W 1 RIApRAPY = (9c)
w wl 1 a ova2
[} 302 Y Y 202

and so on for higher order e

The boundery conditions for eaoh order of € are

el 5 v (0,0 = V41,0 = 0 (10a)
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O V,(0,8) = V,(1,6) = T"cns 8 (10b)
e@® 5 v,00,0) = v,(1,0) = 0 (10¢)
2 2 3
37V, 37V, 9V,
and —1 (0,0 = —2(1,0) = —= (1,0) = 0 for i = 0,1,2  (10d)
352 BEZ 28
The initial conditions are
O 5 v E,m = X () Vo (6,00 = 0 (112)
W .
e® 5 vi0 - 3 6@ V5,0 = 0 (110)
e® 5 vye,0 =0 vy (5,00 = 0 (110)

Eqs. (9) are linear partial differential equations with constant coefficients
and can be solved as a sequence of linear differential equations with appropriate boundary
and initial conditions. It is observed that the linear operator on Vi's same as on the
generating solution and equations corresponding to higher order of € are inhomogeneous
form of the basic eqiation and if are they are subjected to same type of boundery conditi-
ons, then the higher order equations will have a nontrivial periodic solution if and only
if the inhomogeneous part of them are orthogonal to all the solutions of the adjoint homo=
geneous equation [7] .+ This oondition is used to determine mi's . However, the eq.
(9b) is assooiated with a nonhomogeneous boundary condition. Since the operator is gelf
adjoint a finite transform technique may be employed to eliminete the nonhomogenity in the
boundary condition [8] , The transformation is defined as

V(a0 = 1 V(E,0) X (6) de (12)
0

where xn( €) is defined in the domain of the space variable and satisfies the homogeneous
boundary conditions, Detailed steps of analysis for a simply supported beam is given in
Ref, [6] ,

5.2 Mindlin-Galerkin Technique

The Galerkin technique in its usual form cannot be applied directly as the
space variable has to satisfy time dependent boundery oconditions. However, the boundary
conditions are linear and henoe the transfomstion of the type

V(E,8) = V(5,8) + g G(L) cos 6 (13)

may be used to homogenize the nonhomogeneous bounlary conditions., Choice of a function
X( €), which satisfies both geometric and natural boundary conditions and application of
Galerkin's technique leads to an ordinary nonlinear differential equation in terms of (e ).
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" Yo 1 5 4y 2 1,2
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1 1.2
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fL X d
0
Mo 1 i 2 2
= [ [361Y(aM° + 6(6'™M)7 "] X, (§) df
0
Ag . (19)
[ X2 4
0
where o,'s are eigenvalues of the functions,
The initial conditions are transfommed to
1
HORERY| xi(o) (20)

4]

T (0)

2q. (14) 1is solved by Fouriex expansion method, wherein the non-linear terms

are expended in terms of a fourier serieu using the basic linecer solution. Replacement of

non-linear terms in the form of e series and collection of coefficient of like terms yield
a frequenoy amplitude relation., Ref, [G] gives the isteiled caloulation for a simply

supported beam.

6. Stability of Periodic Solutions

To investicate the stability of the colutiorn, we sonfine oursclves to the
owiinary differenticl equation derived using Mindlin-Galerkin's approach, A small veria-
tion 1 from the periodic state of equilibrium To is considered, The variabtional

equation for 1 oan be written as
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€
(=]
ot

2
. 2- 2 -
+ mg u-ef EO A sm(3-m) Ay m] cos” B u=0 (21
m=

Substituting 26 = ¢ the above equation may be reduced to Mathieu's equation as

dzﬁ/dq‘;z + (8+vecos ) u=0 (22)
where
2
5=z lup 0§y c"G-m AT/ (23)
m=0
and 2 ,
veglpe (L om @

For en equation of this type, the criteria for stability are

bt v/2 (25)

Y Ll

6_>_7r-\)/2

where in equality sign indicates the trensition from stable to unstable zone., Substitution

of values for 8 and v in relation (25) and further simplification leads to follewing
expressions

2

m 2-m
e ) Ap € (B-my A} <
m=0

A
OgN
)
€

(26)

il
3 © m 2-m 2
7€ Z Ay € (B-m) AgTT 2w

T. Numerical Results end Discussion

Influence of material non=linearity as & consequence of high bemperstures on the
dynamc responuse of hecms have been studied for various end conditions by perturbation end
Mindlin-Gelerkin approach, Numerical caloulabions are done on IDM 7044 Computer, Tig. 1,
shows the plot of non-dimensional amplitude versus non-=dimensional frequenocy for varlous end
conditions for the fundamental mode. It is evident from the figure that the influence of
material non-linearity on the response is of the soffening type. The effeot is maximm for
the clamped-clamped beam and least for the clamped-free beam,

The above results were obtained by the perturbation technique. Evaluation of
higher order terms get more complex, Resulbs have been computed upto 0(:2), and 1t vas

observed that the convergence was fairly rapid., The ratio of the third term bto the seoond
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term for the frequency, in the case of simply supported beam Was of the omler of 0.0062,
This ratio, however, increases with the increase in forcing function.

Calerkin's method with one term approximation gave results which are very
close to those obtained by perturbation method, Iig. 2 shows the results for a olamped=-
simply supported beam by both the methods, Both the methods are powerful in the semse
that they have the ability to converge to exact solution. It is however, felt that for
higher mode czlculations, Galerkin's approach may be better in view of the case of compu—~
tation.

Fig . 3 chows the plot of response curve for a olamped=free beam along with
regions of stability; The solution.of the Eq. (21) shows that the trensition curve
seperating the regions of stability and instability are dependent on the magnitude of the
forcing function., It may be of interest to note that in the usual problems of forced
vibrations such a phenomenon is seldom observed.

Tig . 4 shows the influenoce of support excitation on the mode shapes for
different end conditions. It may be observed that a supprort excitation does not result
in a rigid body displacement, but ohanges the amplitude to a considerable extent. This

changes has to be considered for the determination of frequency.
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