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Numerical solution of structure integral equation theories for 
two-dimensional fluid mixtures 

By M. KINOSHITA 

Research Section of Nuclear Chemical Engineering, Institute of Atomic Energy, 
Kyoto University, Uji, Kyoto 611, Japan 

and F. LADO 

Department of Physics, North Carolina State University, Raleigh, 
NC 27695-8202, USA 

(Received 6 April 1994; revised version accepted 6 June 1994) 

A robust and efficient numerical method for solving the structure integral 
equation theories of two-dimensional (2D) fluid mixtures has been developed. 
It is a hybrid of the Newton-Raphson (NR) and Picard iterations. The Jacobian 
matrix is calculated analytically. With crude initial estimates, converged solu- 
tions are obtained in about 10-20 total NR iterations. The integral equations 
for 2D fluid mixtures with an arbitrary number of components can now be 
solved in practice. To illustrate the method, we have solved the Percus-Yevick 
equation for a binary hard-disc mixture which was previously treated with 
Monte Carlo simulation. 

I. Introduction 

Two-dimensional (2D) fluids have attracted attention as interesting model 
systems for various surface problems, such as monolayers of amphiphilic molecules 
on water [1], intercalation compounds [2] and monolayers of rare-gas mixtures 
adsorbed on a substrate [3]. For  these studies, just as for those on three-dimensional 
(3D) fluids, the structure integral equation theories will offer a reliable approach. It 
may be noted, however, that while 2D systems are computationally less demanding 
then 3D ones in computer simulations, the opposite is true when the integral equation 
theories are used [4]. 

It has been shown that a 2D fluid is considerably more structured than its 3D 
counterpart [5]. This implies that numerical methods can be less stable. Further, the 
forward and back Hankel transforms needed in the solutions [4] are much more 
time-consuming than the fast Fourier transform. It is thus very desirable that the 
number of iterations in a numerical solution be kept as small as possible, making 
development of stable and eff• methods even more important for 2D fluids than 
for 3D ones. 

Robust and very efficient methods [6-9]  have been developed recently for solving 
numerically the nonlinear integral equation theories for 3D fluids, and they have 
been demonstrated for a wide range of problems. For  2D fluids, however, such 
numerical methods have not been investigated, although Pospisil and Malijevsky 
[-10~ have recently used an efficient algorithm for systems with circular symmetry in 
connection with their study of hard spheres near a hard cylinder of infinite length. 
No studies have been reported for 2D fluid mixtures. 

The present article reports the development of a robust and efficient numerical 
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352 M. Kinoshita and F, Lado 

method for solving integral equation theories for 2D fluid mixtures. It is a hybrid of 
Newton-Raphson (NR) and Picard iterations which is obtained by extending to 
mixtures the procedure devised by Lado [4], and adapting to 2D fluids the algorithm 
developed by Labik et  al. [8]. For the NR iteration, the Jacobian matrix is calculated 
analytically. As an application of the method, a solution is obtained for the 
Percus-Yevick (PY) equation for a binary hard-disc mixture which was previously 
treated with Monte Carlo (MC) simulation [3]. 

2. Numerical method 

Experience with 3D fluids has shown that the hybrid algorithms [6-9] utilizing 
advantageous aspects of both the NR and Picard methods are the most efficient 
among reported methods. In particular, as long as bulk fluids are treated and the 
pair interactions are not angular dependent, the method developed by Labik et al. 
[8] (referred to here as the LMV method) appears to be the most attractive one. In 
this article, we adapt the LMV method to 2D fluid mixtures. The total number of 
components is arbitrary and denoted by NC. 

The closure equation is given as 

c., i = f(?.,i), (1 a) 

Y.,i = h..~ -- c.,~, (lb) 

where c. (r)  and h.(r)  are the direct and total correlation functions for pair 
n (n = 1 . . . . .  NP; NP is the total number of distinct pairs and given by NP = 
(NC + 1)NC/2), and c.,~ and h..z denote values of the functions at point 
r~(i = ! . . . .  , N --  1). Two popular approximations, the PY and the hypernetted chain 
(HNC), are expressed as 

and 

f ( 7 . , i )  = [exp (--flu..i) - 1][~.,i + 1], 

f ( ? . , i )  = exp ( - f l u . , i  + Y..i) - 7 . . i -  1, 

(2) 

(3) 

respectively, where u.(r)  is the pair potential and/~ has the usual meaning. 
Linearizing the closure equation [8] yields 

0 0 0 = - ~.,i), Cn, i Cn, i "~- ~)n,i(~n,i  (4) 

qS~ = (df/dT.,~)~.,,= r (5) 

The forward Hankel transform [4] of equation (4) is 

N - 1  

~.,~ c.,j + (4rc/K 2) ~ q5~ - 7~ 2, (6 a) 
i = 1  

N - 1  

g . , j =  (4~/K 2) ~ C.,zJo(2j21/2N)/{Jl(2i)}  2, (6b) 
i = 1  

where Jm(x) is the Bessel function of the first kind of order m, 21 . . . . .  2 n are the first 
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lntegral equations of  2D fluid mixtures 353 

N positive roots  of Jo(x) = 0, and K = 2NS (r~ = ~,i/2NS and rNS = 1 ; NS is a sufficiently 
large integer). ~/., ~ is given as the back Hankel  t ransform I-4], 

N - 1  

~.,, = {1/(~g~)} y~ f.,doG~,/;@/{J~(;O} ~, (7) 
k = l  

where R = 2N/2NS. Substituting equation (7) into equat ion (6 a) yields 

N - 1  
~ 0  ~..~ c.,~ + y~ ~..j,(%.~ ::o = - ~.,~), (8)  

k = l  

N - 1  

G,ja = {4/(KR) 2} Z 
i = 1  

cb ~ ~ Jo(2~ 2,/2N)JO()@~/2U)/{J~ ()~k)J~ (2~)} 2. (9) 

The  Orns te in -Zern ike  (OZ) equation is expressed by 

%. = F ( e ~ , j  . . . . .  eNP,j)' (10 )  

Here, the following functions are to be reduced to zero, 

c e . .  = '7.,j - ~;~,j, (11  a) 

f'.,j = F(al , j  . . . . .  asp,j), (11 b) 

where 5.,~ is given by equation (8). Then, 

= 8n,  ra f j ,  l - -  (O~fn , j /OC~n, j ) f fm,  fl ,  (12) 

where 8 denotes Kronecker ' s  delta, and we have used equat ion (8) for deriving 
0G./0~m,,. 

The i terat ion proceeds as follows. 

(1) Give the initial estimate o y . , i ( n = l  . . . .  , N P ;  i =  1 , . . . , N - I ) ,  and obtain 
~~ = 1 . . . . .  N P ; j  = 1 . . . . .  N -- 1) by the forward Hankel  transform. 

-o by the forward Hankel  (2) Calculate c o from the closure equation,  and obtain c,,j n, i 

transform. Also, calculate o q~,,~(n = 1 , . . . , N P ;  i =  1 , . . . ,  N -  1) from equation 
(5). 

(3) Calculate (~.,ik(n = 1 , . . . ,  N P ;  j, k = 1 . . . . .  M) from equat ion (9). 
(4) Fixing ~o ~o ?.,M+I . . . . .  G,N-I (n  = 1 . . . . .  NP) ,  obtain converged ?.,1 . . . .  , ~.,M by the 

NR method.  More  details are given below. 
(5) Calculate 7,,,~+1 . . . . .  ~.,N-1 from equat ion (10) where ~.,j are replaced by 

C,~ = 1 , . . . ,  NP ;  j = M + 1 . . . . .  N - 1). 
(6) Set p o j : =  ~,,j(n = 1 , . . . ,  N P ; j  = 1 . . . . .  N - 1). Obta in  7~ by the back Hankel  

t ransform and return to step (2). 

The NR iterat ion in step (4) is performed to find the M x N P  variables, p., ~ . . . . .  ~.,M, 
which make  M x N P  functions, ~ . , j ,  almost  exactly zero. The elements of the 
Jacobian matr ix  are given by equat ion (12). The partial  derivatives O~;'.,j/3G~,j can be 

obtained as explained in the appendix. We note  that  the calculation of C.,jk is needed 
only for j ,k = 1 . . . . .  M. The starting guesses are ~..~ = ,7~ 
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354 M. Kinoshita and F. Lado 

Thus, the iterative loop comprises two subloops: the inner loop of the NR 
iteration and the outer loop of the Picard iteration. The two subloops are considered 
converged once 

and 

NP M 

EIN : 2 2 [~. , j ] / (M x NP) < /;IN (13) 
n = l  j = l  

NP N -  1 

eOOT: 2 Z 
n = l  j + M + I  

I(~.,j - 7 , , ,YT .d l / { (N '~  " --  M - 1) x NP} < /;OUT (14) 

are satisfied, respectively. 
N and NS must be sufficiently large (e.g. N = 500 and NS = 50). The set of values, 

2i(i = 1 . . . .  , N - 1), Jo(.)~k)~i/)~N) (k, i  = 1 . . . . .  N -  1) and Jl()~i) (i = 1 . . . .  , N -  1), 
can be calculated readily [11] and is used as part  of the input data. For  mixtures of 
hard-disc potential systems, care must be taken because the points r~ are not equally 
spaced [4]. We note, however, that the points are ' ahnos t '  equally spaced and the 
following treatment is sufficient. The diameter for each component  is specified by 
giving an even integer N I ( I  = 1 . . . . .  NC). One of the components,  component  1, is 
chosen as the reference and N1 is set to NS. Then, the diameter of component  I, 
a J a  1, is equal to 2i/21. The diameter of a distinct pair a H / a l ( a l s  = (a l  + as)~2) is 
set to )~Nij/}vl where NIJ  = ( N I  + N J)~2. Here, as an example is a set of values for 
binary mixtures: N = 500, N1 = NS = 50, N2 = 40, a 2 / a l  = 0"7990 and a12 /a  1 = 

0"8995. The relation, a l z  = ( a l  + a2)/2, is satisfied. On the other hand, a z / a  ~ is not 
exactly equal to N 2 / N 1 ,  but this causes no serious problem because these two 
parameters are ' a lmos t '  exactly equal (the discrepancy in the above example is only 

-0 .13% and this is comparable with the error of the numerical treatment). 

3. Numerical examples 

The efficiency of the proposed numerical method will now be demonstrated. The 
tolerances/;IN and eou T are set at 10-3 and 10-5, respectively. At least one iteration 
is performed in the ifmer loop regardless of the value of/;IN. When the outer loop is 
converged,/;IN is also smaller than 10-5. There is no need to calculate the Jacobian 
matrix at every step [7, 9]. In the present study, the calculation of the matrix is 
skipped when /;IN is smaller than 10 -2. N, NS and M were set at 500, 50 and 30, 
respectively. 

Table 1. Convergence properties of the proposed numerical method (NC = 1). p is the 
number density, a is the hard-disc diameter in cases 1 and 2. In cases 3-5, the pair 
potential is given by u(r) = 4e[(a/r) 12 - ( a / r ) 6 ] .  

PY HNC 
Case pa 2 1~(fie) Lov  T LIN Lout LIN 

1 0"5 4 8 5 11 
2 0'7 6 11 11 18 
3 0"7 1'2 7 13 8 16 
4 0'7 0'9 10 16 8 14 
5 0"7 0-7 17 24 10 17 
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Integral equations of  2D fluid mixtures 355 

Table 2. Convergence properties of the proposed numerical method for ternary hard disc 
mixtures (NC = 3) combined with the PY theory. Pl and cr~ denote the number density 
and the hard disc diameter of component I, respectively. The diameter ratios are 
a2/al = 0-7990 and cr3/cr 1 = 1"2010. 

Case p~ ff2 Pe ~rZl P3 a2 LovT LlN 

6 0"25 0'15 0'10 6 10 
7 0"25 0'25 0"25 10 16 
8 0"50 0"30 0"10 t5 21 

Numerical  calculations were first performed for five cases as summarized in table 
1. Hard discs are treated in cases 1 and 2, and Lennard-Jones potential systems are 
tested in cases 3-5. The ideal gas was taken as the initial estimate in cases 1 3. The 
initial estimate in the other cases was the converged result obtained at the nearest 
higher value of 1/(/~). L~N and Lou T denote the number of total iterations needed in 
the inner and outer loops, respectively. It is worthwhile to note that the converged 
result was obtained readily for hard discs combined with H N C  theory even at 
p0.2 = 0-9. At this density the fluid is highly structured, and the first, second and third 
peak values of g(r) (the pair correlation function) are 11.6, 2-86 and 1.76, respectively. 
The converged result was never obtained by the conventional numerical method [4]. 
We also note that  as many as 1200 iterations were needed in another study [2]. Our 
conclusion is that  the proposed numerical method is much more robust and efficient 
than the conventional Picard method. 

In table 2, three cases of ternary hard-disc mixtures (NC = 3) are treated with 
PY theory. N1, N2 and N3 were set at 50, 40 and 60, respectively. Then, 
0"2/0" 1 : 0'7990, 0.3/0.1 : 1"2010, 0.12 : 0-8995, 0.13 = 1"1005 and 0.23 : l ' 0 0 0 0 .  T h e  

initial estimate was the ideal gas. It  should be noted that the total packing fraction 
is considerably elevated in case 8. Nevertheless, it was easy to achieve convergence. 
The convergence properties are thus very good even for multicomponent systems. 

4. PY result for binary hard disc mixtures 

Barrat et al. [3] reported MC simulation data for binary hard-disc mixtures. We 
solve the PY equation for these systems and compare the result with their MC data. 
To our knowledge, this is the first time that an integral equation theory is solved for 
2D fluid mixtures. The thermodynamic condition chosen was the following: ~ = 
al/0. z = 0,7, x = 0.546 and ~ = 0.55, where 0.i, x and q are the hard-disc diameter of 
component  I, mole fraction of component  2 and the total packing fraction, 
respectively. N1 and N2 were set at 42 and 60, respectively. Then, ~ = 0.6988 (the 
discrepancy is only ~ - 0 . 1 7 % )  and 0.~2 = 0.8494. With M = 30 and the initial 
estimate of the ideal gas, Lou T and L]N were only 9 and 14, respectively. 

The direct correlation and partial pair correlation functions calculated from PY 
theory are shown in figures 1 and 2, respectively. It  is interesting that the qualitative 
aspects of cls(r) observed in figure 1 are the same as those in the first figure of [3] 
that were obtained from the scaling theory. Each glj(r) in figure 2 has a shoulder on 
the small-r side of the second peak. Since the numerical data for gls(r) from the MC 
simulation are not available, we cannot plot the data in figure 2. Comparing gH(r) 
in figure 2 with the plot given in the fourth figure of [3], however, we may conclude 
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Figure 1. 
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Direct correlation functions cjj(r) calculated from the PY theory for a binary 
hard-disc mixture. 
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Integral equations of 2D fluid mixtures 357 

Figure 2. 

C~ 

0 

, ~ , , i , , , , i , , ~ , i ~ ~ , , 

0 1 2 ,3 4 

c//o- 2 

Partial pair correlation functions gu(r), plotted as g~(r), 1 + g~2(r) and 2 + gz2(r), 
calculated from PY theory for a binary hard-disc mixture. 
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358 M. Kinoshita and F. Lado 

that the PY result agrees well with the MC result. The reduced pressure calculated 
from PY theory coupled with the virial equation is 4.31 which is in close agreement 
with the MC value 4"55. 

5. Conclusion 

An efficient method has been developed for numerical solution of structure 
integral equation theories for 2D fluid mixtures. It is a hybrid of the NR and Picard 
iterations. The elements of the Jacobian matrix are calculated analytically. Its 
robustness and high efficiency has been demonstrated by numerical experiments. The 
integral equations for 2D fluid mixtures with an arbitrary number of components 
can now be solved in practice. 

We have solved the PY equation for a binary hard-disc mixture which was 
previously treated by MC simulation [3]. It appears that the PY result is in close 
agreement with the MC data. 

The present work was carried out while M. Kinoshita was benefiting from the 
hospitality of the Department of Physics at North Carolina State University as a 
research fellow sponsored by the Ministry of Education, Science and Culture of 
Japan. 

Appendix 

Calculation of partial derivatives, 0~'.,~/0~,.,~ 

It is convenient to express the OZ equation in the following matrix form, 

Yj = (Yj + cj)pcj, (A 1) 

where ~j is a symmetrical matrix whose (I, J) element is ~ j , j  (I,J = 1 . . . . .  NC; 
N P  = (NC + 1)NC/2), cj is also a symmetrical matrix whose (I, J) element is ?1J, j, 
and p is a diagonal matrix whose diagonal elements are number densities of 
components Pl. The relations among ~'.,j(n = 1 . . . . .  NP) and ~s,j  or those among 
?'.,~ and c~s,~ are straightforward. For NC = 2, for example, N P  = 3 and ~ , j  = Y~I,~, 
•2,j = ))12,j  = ~)21,j a n d  ~)3,j = Y22,j'-' I t  f o l l o w s  that 

yj = c~peiQ- j- 1, (A 2a) 

Qj = I - pc j, (A 2b) 

where I is the identity matrix and Q71 is the inverse matrix of Q~. It can be shown that 

dyj = (dcj)pcjQf 1 + (c~ + 7j)p(dc~)Qf 1. (A 3) 

Then, analytical expressions for the partial derivatives are obtained as follows: 

O~)tlJ, j/OCKK,j = ~I, KPK Z (Cj)KL(QJ- I)Lj 
L 

+ (Q + 7j)IKPK(Q]- 1)K J, (A 4) 
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Integral equations of 2D fluid mixtures 359 

~ ' . , /~ , .~ , j  = ~,,Kp~ ~ (cj)LM(Q; 1)M~ 
M 

Jr" ~I, LPK Z (Cj)KM(Q; 1)Mj 
M 

+ % + ~}),,~PK(O; 1),j 
! --i + (Q + Yj)lzPL(Qj )x J, for K r L, (A 5) 

where (Cj)KL, for example, denotes the (K, L) element of the matrix c~. Equations 
(A 2), (A 4) and (A 5) allow us to calculate analytically the partial derivatives, 
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