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CHAPT#R I
1. The expectation of a random variable x, which takes the values
X)5 Xpyeee,X, With probabilities Pys Ppseesy B, 18 defined as E(x) =

PXy* PoXpteeot p X . When x is a continuous variate in the range (a,b), then
b .

E(x) =j xplx)x,

a
vhere p(x) is the frequency density. It is easy to see that

(1) E(cx) = cE(x)
(11) EB(x +y) = E(x) + E(y)
(111) E(clyl oY, toauat cnyn)= clE(yl) + c2E(y2) Foaee + an(yn).

If E(x) = m, then V(x) is defined as E(x-m)e. Hence V(x) = E(xe) - m2, or

E(x%) = V(x) + {B(x)} 2

2. ILet B(x) = m, E(y) = m,
V(x) = 0‘32_, Viy) = '?2

then the correlation between x and ¥y is defined by the equation
B {0 o) (- mp)j= P I1L T = Covlxy, xp)
This gives us
B(x,x 2) - mm, = j'.n:rl Q’e = Cov (x;, x,)
When X, and X, are not correlated, /) = 0, and in this case
E(xlxe) mm, = E(x )E(x )
3. Let us now calculate
2
V(clxl *ogX, ..+ cnxn), given that V(xl) = c’l, ceey V(xn) =
and correla,tlon betwoen x; and x fl 5

Let E(xl) =y oeesy E(xn) =m , then
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, 2
v( C X O Xt . +cnxn) =E {_(°1x1+°2x2+‘ .. +cnxn) - (clml+c2p2+. . .cnmn)}

=°§E(xl'm1)2+°§E (xe-m2)2+. . +°§E (xn'mn)2

+2c102E(xl-m1) (xa-m2)+. .o
2 2.2 _2 : ~ e
=0, (p *¢, o“e +...+2c102;f312 5”1 Tptenn
n
= I c,c s Ta-
1,31 1°) P13 91 Yy

In partiaulaer if Xy5 Xy «0:5 X, Ere independent variates then

2 2 2
Q‘2+.-.+Cn C_}‘n.

| 2 2.2
V(clxl+c2x2+. ..+cnxn) =y Jyte,

If further Xqs Xps eevs Xy have the same veriance 0‘2, then
' 2 2 2
V(clxl+c2x2+. . .+cnxn) = (cl+c2+. L) O
k., Again let us calculate the covariance of

¥ = 01X #0,X h b0 X,

end y' = c]'_xlﬂ:' Xt 0K

272 ' "mmn

then proceeding as before

1}

Cov(y,y') = Cov {clx +C, X+ . o HC X,

1 v 1 }
1¥C5%0 n¥nr  C1X1FCAXote .. HO X )

' 2 t 2 { . e~
©)8y Og*..-topen Gp+lejepscyety) P12 T3 Tt

n
L cie! p,, O, O
1,300 13 13 91 9

In particular, if X1y Xy5 erey X, oYE independent, then

Cov( CyXy¥C Xt te

\] ] 1
. Xyr  O1XpFCIX e utolX )

= o ol 8 - v 8
= C1%) Uty Uptesoteop U_n
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and if further the variances of the x's are equal, then the covariance is

(cl i+c202+...+c c')c;‘2
5. Dependence, independence and orthogonality of linear functions.
- In order to deal effectively with problems of linear estima-
tion and tests of linear hypotheses, we shall find it convenient to intro-
duce the notions of dependence and independence, and orthogonality of
linear functions énd vectors,
Consider the linear functions

Y1 = 2yl+3y2+y3
Y2 = yl-d-yg-f-y3
Y. =

5 = byy 57,4375

Given Yi =5, Yé = 7, what i8 the value of Y3? The clever student will
notice that 23 = Yl+22é 8o that its value must be 19, without going into
the question of the actual values of Y11 Jps yz. If, however, given

Ii = 5, Yé =7, I went you to find the value of
LI
Y hyl+5y2+hy3

then 1t is obvious that the value of Y' camnot be calculated simply by
knowing the values of Yl and Y 09 but depends on the actual values of

TR LY, yB. We, therefore, say that Y3 is depogdant on Yl and Yz, but
Y' is not dependent on Y. and Y

1
In general, if

Y = ey elyz*"'*anlyn‘

Y +e..H8

2 = 81o¥1F 85075 n29n

«o s s e L]

Yk = alkyl+a2ky2+...+ahkyh

~then: Y = f&yl+ oVt st lgyn will be said to be dependent on
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YI’YQ’ ceey Yk if we cen find constants, bl’ 'b2, ceey bk such that

Y = b)Y #b ¥yt b Yy (identically)

The null function
oyl+oy2+. . +O¥,

1s always dependent on Yl’ Y, YRRy Y since we may take bl, b2, cony bk
to be zero.
The linear functions

Yl, Y ’bo-, Yr

may be said to be independent 1if none dopends on the rest. The necessary
and sufficiont condition for this is that it is impossidle to find bl, b2,
vees B (not all zero) such that

by Y, 4D Y +eu#b ¥ = 0 (identically)

Consider the two linear functions

I

Y= clyl+02y2+. . .+cny n
t o L 4 V 1 !
X = C1¥yteo¥otesete v,

of independent random variatos Yys Fps sees Tp with a common variance O’E..
Then

Cov(Y,Y') = (cl 13005 e et c') o'
- If the covarianco is to vanish,

! =
cqy l+c2c2+...+c cn =0

In this case Y and Y' are said to be orthosonal to each other.

6. Dependonce end indopendence of vectors.
' Any n-plet of numbers, e.g. :
(a'l’ , too,a) Or(»( [,oob’ Z)
is called a vector and is usua.lly denoted by a Greek symbol, Thus we may
write



oL = (a.l, 82, ...’A an), A= (11’ ja’ teey ln)
The addition of vectors is defincd by
o+ A= (a.l-i- Ay 8ot Loyeen, an-f- ln)
- )h = (" 11’ - 1(2,.,0, - ln)
% - A= (5‘1' jl’ 8y Lps eres o= 4p)

Multiplication by a number ¢ is defined by

ce = (c 19 COpy waey can)
The relation o = A would moan,

=/

2, soay a": j

8 = £&’ 8. n° “n

2
Thus if
oy = (aggs Bpp5 oves 8y)

oty = (8‘12’ 8gps sees a.na)

see e sew coe

Qk = (a:lk, aoek, seny a.nk)
then the rolation
bla l+'b2 of2+. . +bm-;xm = A
would mean that

bi8 D8y ote et ay, =

bla21+b2a22+. . ‘+bma2m = ja

ete.,
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Voectors arc very closely connoctod with lincar functions and linocar
oquations. Thas, if thoro is a linear function

a.lyl+a2y2+. oty
then we say that its coofficient voctor is o .

Coofficient Voctor . Linocar Function

@ = (ag, ay.e.,0y) Yy = 8y ieTpt e oy

A = (by, byyeeesd ) Y, = byyy byt oon by
Null vector 0 = (0, 0, ..., O) Full function O = Oy +0y,+...+0y

&- = = v 1

tE Sum = ¥, +Y, (al+bl)yl~)@,2+b2)y2+...

+(a.n+'bn)yn

C.ce _ .

ch = ca.ly1+ca2y2+. . 'manyn

Thus if oporations of addition or multiplication with numbers arc

_ porformed on linoar functions, the coofficiont vectors also undergo the

same oporastion.

Coofficient Voctor : Linocar Function
b1 Y,
%2 2
Xp Y

Oy Xy ¥CpBln*e..tcy &y

- .t s v i

clYl+c.2Y2+. .e +ck Yk

In dofining the dependence and independenco of voctors » we keoep to this
correspondence. Thus, if -
Coofficiont Vector Lincar Function

%y = (81358550 050p) b Rl DA RS EASEIR LN
oy = (a1ps80ps0eespp) Tp = 897y 48T te o ¥8 T,
oty = (alk’a‘ak""’ank) A Y, = TR LRI SLOPPEL I

and | |
A= (:[1: /.2"'“: ‘!k) Y = Ilyl"‘ 2y2+...+ !kyk
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then A is said to be dependenf on Os Olpgeeey Oy provided we can find

constants bl, ba,. ey bk such that

kzbl'a1+Ab2a2+

..., +b 0'

k.

You would notice that in this case the linear function Y with coefficient

vector A is also dependent on the linear functions Yl’ Ye, ceey Yk with

coefficient vectors oy, '012, vevy Oy

The vectors
none depends on the rest,

is that it is impossible to find bl,'b

+b, &, +

by Oy + b, Gy

The set of all vectors dependent;

on Qyy Ny eevs Ny is called
vector space generated by o 17

A gy wees Xye
If the generating set is in-

dgpendent it may be called the

basis of the vector space.

a 1’ 02, L N ] , ur
The necessary and sufficient condition for this

may be said to be independent if

ps e B (not all zeros), such that

cer FD X, F 0 (null vector)

The set of all linear functions
dependent on Yl, Y2, cooy Yk consti-
tutes the linear set generated by
Yl’ Yei L , Yk.

If the generating set is independent
it may be called the basis of the

lincer set.

I will now give you some of the well known rosults relating to voctor spaces
and linear sets, the proofs for most of which are pretiy obvious.

1. The vector space generated by
a set of vectors Ofgs Aoy eeeyly
romeins unchanged if
(a) &, is roplaced by ¢, &
where ¢, £0
(v) O, is replaced by & + OtJ
where (1 # J)
Combining (2) end (b) we mey ro-

i

'pla.ce e 1 by

21 Onl+. oo, O
if o, #£ 0

"(c) If the null vector happens
to appear in the generating sect
it 1s dropped.

+.'.+c

i kYx

1. the lincar set generated by a sot

of lineg.r functions Yl, Y2, veey Y
romains unchanged if
(a) Y, is roplaced by c,Y,
where o, #0 ’
(b) Y, is replaced by Y, + YJ
where (i # J)
Combining (&) and (b) we may roplaco
Yi by '
¥y * C¥p * eee oy
if o, #£ 0.
(¢) If the null function happens
to be in the set, it is dropped.
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2. For any voctor spacc V thore
oxists a number r such that 1t is
possible to choosc r indopondont
voctors in V, but not moro. Any
r indopendont vectors form a
badls of V. This numbor is
callod the rank of the voctor

gpaco.

3. If we consider vectors with
n coordinates, then there cannot
exist more than n independent
vectors. Hence every vector
space must have rank < n, Tho
vector space consisting of all
vectors with n coordinates has

- the rank n.

INSTITUTE OF STATISTICS
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2. Por any linear sot thoro cxists a
numbor r, such that it ie possible to
choose r independont lincar functions
in tho sot, but not moro, The lincer
set can be encrated by any r linecar
functions bolonging to the set. r is
said to be the number of dogreos of
freedom carried by the functions of
the sét.
3., If wo consider linear functions of
n veriates Iys Tps coes Jpo there can-
not exist more than n independent ‘
linear functions, Hence the degroces
of freedom carried by any linear set
The linear set of all linear
functions of Yys Jpr »o0s Iy has n
degrees of freedom.

% n,

The notion of the rank of a vector space, or the degrees of freedom
belonging to a linear set is also comnected with the rank of a matrix,

Thus, if
the rank of the vector space
generated by

xy = (a1 815005 8p)

O = (ayps 8ppseees 8p5)

L LN ] LN 1 L 2 LA ]

ok = (alk, aek’ soey ank) :

the number of degrees of freedom car-
ried by the linear sot generated by

=¥ togm¥p t e togn

Yé = a12y1 + a22y2 + iee + anzyé

LR ] s e e - LN LR

T = 8Ty FOndp toeee Y E,T

is r, then r is also the rank of the matrik,

291 %3 By

a a

12

22 L] &a

n2

3 * 80 LN LR +o00

S P2k

. e a‘

nk

i.e. r is the order of the largest non-vanishing partial determinant.
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We may summarize this as follows:

Number of degrees of freedom carried by a set of linear functions
= Rank of the vector space of the coefficient vectors.

= Rank of the matrix of the coefficients.

7. Orthogonality of Vectora,
Consider n independent random variates Yy ye, ooy Ip with a common
variance ()‘ then we have seen that if

Yl = cl 1 + °2‘V2 see -lcnyn

Ay

1 ]
Y2 = clyl 2y2+ ees HC y
_then

Cov (Yl Y)a(cc +0202+...+cc')0“

Here the coefficient vectors are
7= (cys Cos soes °n)
| 7= (cg, Cls eeey ) |
We define the scalar product of » end Y’ as
= t
(27'7'2) 0101 * Cptlp * e oty
For ( 7.7 )= €] * Cp * «eo + c Ve somotimes use the notation 7

‘Note that the sum of the two vectors is a vector, dut their scaelar product
is a pure number, We can now write:

cov(Y,, ) = ( 7. 77) o®
V) = (X705 yR ol

Ir Yl and Y, are uncorrelated, i. e. when

¢ +0C3 + «eu + ol = ( 7.7) =0
we have already called Y, and Y, orthogonal In this case we also call

Y/ end )7 orthogonal. Thus the condition for the orthogonality of two
vecors is that the sum of the products of the corresponding coefficients
vanishes. |
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The following theorem about orthogonal vectors and orthogonal linear

functions may be stated:

1, If the vector 4 is orthogonaif

each of the vectors Oys G

coey Oty then 4 1is orthogonal

to all vectors dependent on Oy
Qpy eee Oy i,e, to all vectors

of the vecotr space V generated

by O‘l’, oy seey Oipe In this

case we gay that ﬁ is orthogonal

to V.

2.

r (consisting of voctors with n

coordinates) then all vectors .

orthogonal to V constitute a vector'

‘\-—-/m—\\\
@e V! of rank (n-r), ) Thus

e Pt e e

"Renk V + Rank V! = n
V! 18 said to be the complete
Likewise,
V is also the complete orthogonal

Given a vector space V of rank

orthogonal space to V.

space to V?,

1. If the linear function Y is ortho-
gonal to (uncorrelated with)

Yl, Y preres Ym, then it is orthogonal
to (uncorrelated with) all linear
functions depending on Yl, Yoeee P2 S
i. e. to the functions of the linear

set gonerated by LT Y, pyeees Yoo

2, Givon a set of linear functions
wit}@ dogrees of freedom, all linear
functions orthogonal to the linear
functions of the set, form a linear

- got with degroes of froedom

(considering linecar functions with

n variates.)

The randcm variates Yys Yps eves ¥, Way themsolves bo regardcd as con-

stituting the vector

"( = (Yl) 3’2, arey Yn)

and the linecar function Y = ey + Co¥pt ese + 0 on B2 be written as
(7. 7 ) vhere y = (eqs 02, esss © )« Yith this notetion
v(r. 7 ) = (r7) g% = 9" 0,2

Cov {(77), (77) = (y7') O°°
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Consider now a system of homogonoous linear oquations to be solved. We

shall first take a simple exgmple.

| Equations Coofficient vectors

| Oyy + by, +8y; - 16y, - 125,=0| 0|0 | (0, 4 8, -16, -12) = o

3¥y 2y - 5y - 1Ty - 35 =0 (-3 |53 | (32 <5, (1T, 3= X,
by, + 2y, - 8y3 - 20y, - 255 =0 -4 |-3 | (4, 2, -8, -20, -2) = Ay
- Wy - Ty + 1y +8y5 =0 1-1}-1 | (1,-3, -T, 13, 8) = &,
Oy = J-2y5+ by, +3y55 =0 010 (0, -1, -2 4 3)
3%y + 0%y - Wy = ), +3Wy =0:-3 -3 | (3, 0,9, -9, 3)
kyy + 0y, - 12y - 125, + byg = 0 -k 1-3 | (4, 0, -12, -12, b)
T+, - Yym Ty - ¥5=0 E#l -1 | (1, o, -1, 1, -1)
oy, - ¥, - oys + by, +395=0 L0 10| (0, -1, -2, 4 3)
-3y + 0y, + 3y + 37, + V=0 11 |1 (-1, 0, 3 3, -1)
03y + Oy, + Oy; + Oy + 035 = O of1y¢ (0,0, 0,0 0, 0)
Oy) + 0y, +2y; + by - 255 = 0 ?'o o} (0,0, 2, k4 -2)

0y - T+ Oy, + 8y4’+ J5 =0 0 (o, -1, o, 8, 1)= g%l
-y) + Oy, + 055 - 3y, + 255 = O 1 (-1, 0, 0, -3, 2)= eé
Oy, + Oy, + 0:9-3 + 0y, + Oy5 =0 0 (¢, o, 0, o0, 0)
Oy; + Oy, - V5 - 27, * Vs = 0 0 (Q, 0, -1, -2, 1) = @5

Hence

yl = "3yh + QY5

Vo = 8y, + 75

#

) I3 -th + s

the general solution of the equation is

(-3 +om, 84/ +m, -2/ +m, £, m)
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‘or the vector space gonorated by
7y = (-3, 8, -2, 1, 0)
7,=(21, 1,0, 1)

Right hand side of the picturc shows us how to obtain tho basis of a vector
space V, and to dotermine the rank. Tho voctors ultimately left arec inde-
pendent. Tho connection botween the rank of vector spaces and matrices

also becomc obvious,

The left hand side tecaches us how td solve a system of lincar homogencous
equations, and obtain the baeis of the vector space campletely orthogonal
to V. The relation ' '

Rank V + Rank V' = n

is also oxomplified.

This may be expressed by saying that the rank of the vector space of solutions
and the rank of the voctor space of coefficient vectors, add up to n. :

9. Non-homogeneous Equations

Next lot us consider non-homogoneous equetions. Suppose we consider
tho seme equations, but the right hand sides are now 0, -3, -4, -1, Then
the result is ultimatoly obtained as

yp =3, * 5 -1
Vo =8y + 3

y5 = ayh"' ys

The general solution 1s now given by

(«.34+em+1, 8{+m -24+m}, mor jh"’m?’e "’73'

where

73 = ("1: 0, 0, O, O)

For the general non-homogeneous linear equations,
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‘//i‘ a’llyl + 5'2132 + aes + a.nlyn - aol
V// a. y. + a 2y2 +* eee + aheyn = a02

L N ¢0 e [N ] et e -

Gy tBomlp t e T YN = B

/2 ’z':‘(,"‘.; 1IN
all aal . anl | all : a'21 see anl 5.01
A= a Q.22 ves an2 and A = .8'12 | a22 N ana aoe
84m  Zom *** Zmm Bqp Oy eee B B

then Rank A = Rank A.

If, however, the system is to be solvable, whenever a null vector
appears on the right hand side, a zeoro m;;ear on the left hand side,
othkerwise there will be Wﬁ{my. (Make clear by conmsidering the
example when the right hand side numbers are O, -3, -3, -1.) Hence the
necesgary and sufficient condition for the solvability of the system is
that

| Rank A = Rorik
or the rank of the vector space of the coefficients vector of the homogeneous
portion does not increase by the adjunction of a new coordinate corresponding

to the non-homogenocous portion, to each vector.

10, Projections.

The length of the vector . ot = (a.l, 8py vees ‘an) is dofinecd to be

-

T

NZ v
Then the square of the length = ( a.a ) = 2. If wo confine the coordinates
to real numbers only, then it is seen that the length cannot vanish unless the
voctor is null. Since the vanishing of the length is the condition of sclf-
orthogonality, we may say that a vector camnot be self-orthogonal unless it
is null,

A voctor with unit length is uswelly called a unit vector. A vector can
always be converted into a unit vector by suitable multiplication with a
constant, eo. g., if
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ol = (a,l, 8py seey a,n)
thon ¢ & = (ca,, cay, «ooy can) is a unit vector if we take

1

cC =

J(_ai + ag+...+ aﬁ)

T shall now give you a fow thoorems on the orthogonality of vectors, and

 their connection with independence.,
with real cor_lsta.nts as coefficients.

(1) Ir Oyy Ggseesy O BFC
mutually orthogonal non-null vectors,
they form an independent set.
Cor. Theore cammot exist more than
n mutually orthogonal vectors (with
n coordinates).
(2) , If O(l, 02’0' .y Q-m and- ﬁl"
,32,..., A proxe two sets of indep-
ondent vectors such that any o i is
orthogonal to any A 5 thon the sot
X gpeeesy Xpy Aysebpyss is an
independent set.

Proof of (1). If possible let

+C. &

G ¥ TG %2

lo:

o o C O‘:

i

It must be remombered that we are dealing

(1) If Yy, Y,y.ee, Y avo mutually
orthogonal non-null linear functions,
they form an indopendent set.

Cor. There cannot exist more than n
mutually or'bhogonal linear functions
with n variates. ' '
(2) If Yy, Y,peee, Yy and Yy, Y7y
cesy 1f m?® 2Y° two sets of indepen-
dont lincar functions such that any
Yi is orthogonal to any Y}, then the

Set Yl, Yz’not, Ym Yl’ Y ’ soey Ym'

1s an independent set.

+ 00 * C =0
* n %n

e ai»(clotl+02 Gyt eee + O an) =

n
=0

0 (1 =1, 2, «ooy, 1)

which shows that there cammot exist a relation Cy X3y + s « 2+...+cn & = 0

in which the ¢'s are not all zero.
Proof of (2). If possible let

10y X Gy AgF s Oy ap+dy Ay +d, Bt v By =0
or putting
A+ u=20
But Au =0
2 2

Co (N + p)2

= N+ 0 o=
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This tmptfes = A\ = O, =0 or c1 = czz cae = cms & d,1=¢,2=,,,=dm' = 0

Honce tho result,

(3) If o is a non-null vector and
y is any vector, then wo con uniquely |
express y in the fornm

v=A1 v

where /32 is orthogonal to o , and

/3113 dopendent on o,1,e, /313 cow,

The vectors B, and /92 are sald

to be the components of y along and
orthogonal to o . f«)l may de said
to be the projection of y on o .

(4) 1r /91, PBoseees A, oTe any

syste;n of mutually orthogonal non-

null vectors, then any vector y can

be uniquely exprossed in the form
rv= B+ fin

where (4 depends on B1s Foreses

V-4 n &8 8., i8 orthogonal to thgm.

v

(3) 1t Y , 18 a non-null linear func-
tion and Y is any linecar functiodn,
wo can always oxpress Y uniquely
in the form |
Y=Y +Y,

1 2

where Y, 1s orthogonal to Y and Y,

'1s dependent on Y . (Thus Y is

uniquely decomposed into two parts,
one dependent on Yo and perfectly
correlated with it, and onc ortho-
gonal to Yo and therefore complete-
ly uncorrelated with it),

(&) 1f Yy, Ypyeee, Y, are any
system of mutually orthogonal non-
null linear functions, then any
lincar function Y can be uniquely
expressed in the form

T=Y+ Ym+1
where Y' dopends on Yl, Y2 PRRTYS
and Ym +1 is orthogonal to then.

Prbof of (3). Suppose y = /51 + ’62 where A4 17 ,62 satisfy the abovo

properties then, /91 =¢cx o+ Thus
Yy =c& + /.92
B (007)3000.2 or cs-g-gt—:-g—)-
. (o« y) (o- %)

Conversely if /:71 and ﬁa are as above, they satisfy the required

properties., Hence the rosult.

Proof of (4), Suppose y = 4+ SBrsye VHOTE /9 end 4 .. satisfy the

above properties, then
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ﬁ .=clﬂl+°2/92+"' +°mﬁm

er=o ooty Pt g

. . )
o ﬁiy) = 01/5?' or ¢, = L A 27 s 1=21,2, ooy, m
‘ | A
(4. y) . .
RN /9127 ﬂ1+(/,’227)/52+"'+<ﬂm27) ,
ﬁl fl’l ) /gm
(A7) ( A

ﬂm#1=7'

' )
- /6

ﬂ l.‘o

A A &

Conversely if ﬂ and ﬂm-&-l are as above, they satisfy tho required

‘properties. Hence the result.

(5) Given a vector space V of rank
r, we can always choos¢e r mutually

orthogonal vectors s ﬂe, cory

(5) Given a linecar set of functions
with r degrecs of freoedom, we can
always choosc r mutually orthogonal

ﬂr forning a basis of V. linear functions Y;, Y5,..s, Y!

1’ 2 r
Ir 0/1, Oy ey Oy is a basis vhich gencratec the set.
of V, then this choice can always be If Y, Yy eeey ¥, are inde-

pendent linear functions gencrating
the set, then the cholce can always

nade in such a way that ,,9 N deponds
only on the first i vectors of the
be medo in such a way that Yi de-
pends only on Yl, YQ’ esey Yi'

We can alweys find n nutually

basis Ayy Py seey Ay
Cor., Wo can always find n nutually Cor.

orthogonal vectors (with n-coordinates). orthogonal linear functions with n

variates.

Proof of (5). Let a basis of V bo @y gy eeey o,. Now we cen
express o, in the form
o = Ay + Ay |
whero /61 depends on &, and /‘92 is orthogonal to ozl(cf Thooren 3). Since
/51 =c&, so A, dopomds on &, and &.,. Also /32 131 orthogomal to /3.
Wo replace o, by ,51 and of, by /92. Now wo can oxpross :

Ws = ¢y 31+ /0 */’5
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vhere - /Ql, ,42, /33 are mutua}.ly orthogonal. ﬂ 3 depends on O1s Gny Oye

We replace a3 by /5’ 3°

Continuing this process we get r mutually orthogonal vectors /31 ,
/92, ees A lying inV and formi§g a ba.sisA of V. Clearly £, depends

On dl’ Gl’e, vsey OLi.

(6) Given a vector space V of rank
r, and any vector 7, then we ca.n
uniquely oxpress y in the form

7= &+ /f
vhere « lies inV, and 4 is
orthogonal to V.,

The vectors o and '/é' are
called the components of y lying in
and orthogonal to V. o may be
called the projection of y on V,
Cloarly /3 is the projection of y
on V', the space completely ortho-
gonal to V.

Cor.

P ol 4P

(6) Given a linear set with r 4.f.,
then any linecar function Y can be
Uniquely expressed in the form

Y= Yl + Y2 whore Yl belongs to the
set, and Y2 is orthogonal to the

functions of the sotb.
Yl and Y2 nay be called the
compononts of Y lying in and ortho-

gonal to the set.

-

Cor.
v(¥) = v(¥) + V(¥,)

Proof of (6). From Theorem 5, we canfind a basis A,, Z,,..., /gr
of V such that 4 12 /Zor sees /r aro orthogonal. The result follows from

Theorem 4.

(7) Let V, be a sub-space of the
vector space V. Let & be the pro-
Jection of y on V, and &, the pro-
Joction of oL on Vl. Then o q is

also the proJection of 7 on Vl'

Proof of (7).

(7) Let the linear set Ll be a sub-
get of tho linear set L, and let Y
be the component of the linear func-
tion Y lying in I and let Yl be the
component of Yo lying in Ll, then

Y1 is the component of Y lying in Ll

7= &«+/5 where /3 is orthogonal to V, and thus to Vy
ac..-_- ot /3 ,6_.& vhere /51 is orthogonal to Vl
R AR (I, +/3’ l) where /5‘ +/1 1s orthogonal to V,.

Hence oy must be the proJection of 7 on Vl'
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CHAPTER II

1. Consider n independent random variates or observables

' Tys Tps vees Iy {1.1)

with a common variance o 2, whose expectations are linear functions with
known coefficients of m unknown parameters Pys» Pps seey Ppe Thus

B(yy) = apypy + 8oy + on +aymy A
¥
' !
B(yp) = aypy * eppy + .00 +oymy Y (1.2)
i .
L ] 7 e e *s e s e * e Z
Blyp) = agpy + a0, + o0 +apmy J
" A linear function
Y=oy + 0¥, + eee + O ¥, (1.3)
of Jys ¥ps ++0s ¥, Will be called an unbiased lincar es'tiimate of “the
function il . . ' ) ' (1.t
H= £ypy + BBy * oo + ARy 1.k)
of the parameters, if
' B(Y) = II : ‘

independently of the parameters. Now
E(Y) = clE(yl) + °2E(y2) I an(yn)
= ooy +opy) *+ .o +opan)py

+ (cla‘le + 0ol +oaee + cnan2)p2
+ LR N ] LR I ] L I LI 2
+(cgayy v ogay 4o+ cnam)p (1.5)

Thus a necessary and sufficient condition for Y to be an unbiased linear
estimate of I is

G189y * Gy * .es tCpE = Xl

Ola.le+028.22+..- +Cnan2 )
RN e *ve ee s (116)

C18ym * Cofppy * eer t OB = A

]
X,
S
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A linear function H of the parameters, is said to be estimable if there
exists a linear function Y of the variates » Walch is an unbiased linear osti-
mate of Il. In this case there must exist C1s Cpy o+ C Satisfying (1.6).
Hence we get: | ‘ |

. _ ~
Theorem (1). The parametric func@ion O= fp, + ,(721)2 e+ g0
is estimable if and only if the matrices

v

/ ’ , ¢
/P et fm /%1 %1 v 8 A2
2 | %
/ Bp G v Gpp ; 12 %22 *r 2 2 g;‘(1.7)
A= ce e e ese cee }andz-—" “ see co s se s e ‘
im Byttt O ’/ . \alm o eee B n/
Y ! . A

have the same rank.
Corollery. - If the rank of A is m, then every parametric function is

estimable.
Proof: Renk A 2 Renk A, but Rank K cannot exceed m since it has m rows.

Hence Rank A = Rank A.
- The column vectors in the equation of expectation may be denoted by

oy = (a’ll’a'el""’a‘ml)’ o6 o= (a12’8'22""’8“m2)"“’ K = (alm’a‘a’m""’a'nm)

and we may. dénote the observables by the vector

0= (T T e ¥
which may be called the observation vector. The 6qua.tion of expectation can
then be simply written as | ‘

E(v) =2y oy Py op *+ oo By oy (1.8)

The lineé.r function Y can then be written
Y=(y- &7) wvhere ¥ = (cl,.ce, seey cn) is the coefficient vector

CE(Y) = ¥ Yo ) =p(y o) + o0 0ea) + oo+ p (o) (1.9)

~ which is the result (1.5) in a compact form.

‘2. When [l = ’€lpl + £ oPp + aee + £ P 18 estimable, there will exist in
general an infinity of solutions for (1.6), so that an infinity of unbiased
linear cstimatos of [I is possible. Out of these we have to pick out the
one whose variénce is the least. This may be called tho best unbiased
lincar estimate. Bofore proceeding to this, we shall cstablish the notions
of error and estimation spaces. ‘
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A linear funoction Y = ¢y + Co¥p + ees + oV, may be said to

belong to 'error! if E(Y) =0
independently of the paramoters. '
Honce for Y to belong to error

(7’_'@(‘)"0; »(7‘0(2)80,..., (7-0(m)'*0 (201)

Thus the coefficient vector ¥ of Y 1lies in the vector space vVt com-
pletely orthogonal to the vector space V generated by the vectors
12 Ok ps +ees x e Wemay cell V' the error space. The spece

V 1is called the 'estimation' space for a reason which will presently

appear,
Theorem (2). If ] = ,?1 py + /(’2 Py + een + "7m p, 18 any estis

mable parametric function, then there exists a unique linear function

Y, whose coefficient vector 7, = ( 10 # ***3 Cpg ) lies in the
estimation space and for which
E (YO) = II
This function Y~ 1is the best estimate of II
Since I is estimable » there exists a linear function
Y=(cly1+cey2+0'- +cnyn)=(7'7)
such that E (Y) =IF . Now let Y o= (0305 Cops +ov s Cno )
and T = ( cTsels «on s ch) be the components of y along and
orthogonal to V, Then y = 75+ 7T '
= _ f 3 ¢
T= oy + ey, + oo Cn¥n)= (01071 *opg¥a*e o 4o T ) Hof Fyted ypte.cf 7))
o II=E(Y) =E (Yo ) since E (Y' ) = 0 as it belongs to error.
This shows that there exists a linesr function Yo whose expec-

tation is II , and whose coefficient vector lies in the estima.tion
space. If possible let there exist another such function Yé , with

).

coefficient vector 7l = (c;to 2 €l s eee ot

Then the expectation of the linear function
- f ' - ot - ;
(o0 = ofo ) 7y * opg = oy ) Wp + wee # (o, = ) 3y

with coefficient vector 7, - 7(‘)‘ is zero. Hence 7 _ - 73 belonge
%o error and is orthogonal to V. But it lies in V. This is impossible
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- 1 = = * = L . -
unless 75" 7o 0 or 75 7, i, e. Yb Yb This proves the uniquencss
of Yo. i :
Also, V(Y) = ¢2¥% = 7B(y 2 + 9'®) = W(xv) + V(")

. V(YB) < V(Y)

the equality holding whon and only when y' = 0, 1. e. whon Y coincides with Yo'

This completes our prodof.
Corollery. Between the estimable parametric functions, and their bost

estimates therec is a (1, 1) correspondence such %hat if Yl’ Yé""’Yk are

. the best cstimates of_Hl, HQ’ ooy s thon Y = bin + b2Y2 + eee + kak

y 4 + o= ]
is the bost estimate of I b1£5 + b2H2 + . +.bkmk‘
Proof: Clearly, E(Y) = II, and since the coofficiont vectors of

Yl""’ Y} lie in the estimation spaces, the same is true for the coefficient

vector of Y.

3. The previous theorem may be put in a slightly different form:
Ile=(o<l'Y?)’ Yez(me‘\"}), es ey Ym=(°(mo\?)

and | = ,Plpl + foPp e+ ‘[mpm is an estimable parametric function,

there exists one and only one linear function of the form.

Y o=q¥, +a ¥, + ...+ (3.1)

for which E(Yo) =11 . This linear function is the best estimate of .
To actually dotermine the best estimate we have to find the q's. Now

B(Y)) = qlE(O<l-\7) + qQE(ore-)?) + e+ qu(ocm-y) =

Honce using (1.9) we have

ql( 0(1“1) + 9.2(0(2'0(1) + e + qm( qm'“l) = 11
G (& g o) + gy orpop) + eee + o rorp) = 5

e (3.2)
Glotyog) + (o o) +oe vl o) = £y

Solving (3.2) for the q's and substituting in (3.1), wo got the best estinmate.



Page 22
We shall now prove the following fundamental theorem: '
Theorem: If II= P 1P + ,;/Qpe + ..+ fmpm is an estimable parametric func-
tion, then its best estimate is obtained by substituting for the p's in Il y
any solution of the normsl equations

Y

pl( i‘zl' yl) +p2( fx'l'(,\'g) + .. +Pm( dl'am) = (0(1‘)?) 1

(ot praty) + Bl prixp) *+ oo + (X i) = (g ) = X

: : : : L (3.3)

pplorpron) + o (o x,) + oo v (A pory) = (ot 37 "y

Let B, B,, ..., B, be any solution of (3.3). Substitute these in (3.3),
multiply by 9, 9ps -++, 9, and add. Using (3.2) we get

- -, A. ’
Ao+ Ay v+ BB = g (o )+l 2~)7) + ...
+ qm(a(m.s?) = best estimate.

Corollary: It should be noted that the lefthend side in (3.3) is
simply the expectation of the right hand side. Since any estimating function ‘
is of the form (3.1), it follows that any estimable peremetric function must
be a linear combination of the paranietric functions occuring on the left side

of (3.3).

4. Markoff's Theorem
If II= jlpl + fepe + ...+ jmpm lg estimable, then its best estimate
is obtained by substituting for the p's those values which minimize the sum

of squares of the deviations of the observations from expectation, i,e, the
sum of squares,

2 2
sz = (yl‘anpl'alepa““‘almp )"+ (yz'aelpl'aezpe'“'."azmpm) Foees

* (¥p-81Py -8, 5P~ - -2 p)
;&g ) ( _ e |
2-3p; T TMa V1811 Pr oo e Ay By) -84 (Vpm8y Py -8y - By D ) -
nt (=81 Py -8 5P, ""anmpm)

Hence equating the partial differential coefficilents with respect to
pl, pe, cesy p to zero we get
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(o(i'dl)Pl + (qi'“a)PQ + o0 * (d i'o(m)Pm= (di‘\?)

. : i=1,2, ..., n
which are ldentical with the normal equation (3.3) already deduced. Hence
the thoorem. ‘ '

5. Variance of the Best Estimate ‘
We have soen that the best esgtimate depends on the linear function
v Yi = ( i"?) in all cases. We therefore start with writing down the

variances ahd covariances of these.

_Cov{(oci.»?), (o(J-?)}= (o(i-o(J) °

Bost ostimate of = = §,p, + f,py + ... + f b is

Y = ql("‘l"?) r (o ym) +o. +qm(o<'m-7)

where the q's satisfy (3.2).

v(Y,) = [Q?_( oqy-gq) + -or * qz( o AKy) + 2000 atp) + etc,]cre =

ol fa{aleyon) * plo okt g lot o)}

tap gl xpecy) * gl paxghtieet q (o pray))
Fow e e e . ’ v e e e |
o qm{ql( K ) * Bl rotphtes et qm(. o(m-a(n)}]
= ( ,qul + fo8 * oo + P _a) o vhore the a's satisfy (3.2).

Suppose a solution of the normal equations (3.3) is
’ Py = Cp ¥y + 0¥, + on + 0¥

Py = Cpp¥y + Cpp¥p + wvn + Cpp ¥

esp 2 esece aesese

x ‘ pm--clel +_(;ﬂ21{2 + oo +CmYn
) then a solution of (3.2) would be
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Q =Cpy £y +Cp Fp+ oo + 0 Ay

3
Q= Cpy f 1 +Cpp H g+ v + 0y

4 =Cpy £ *Cpp fo* o + O d p

A o, )
Then Y(Yo) = o2 (ii 74014
We can therefore express V(Yb) in these forns

2 2 : |
V(Y,) = o Tqaguy = o (y £+ 9 Fo+ vy )=
. |
=0T fy 040, (5.2)

To obtain the coefficients C 13 Fisher has suggested the following procefiure:
(Cy4s Cpys -»s C mi) is a solution of the auxiliary cquations obtained from
the normel equations by putting the right-hand side zero except in the i-th
equation where it is put 1. )

6. Exanple
Let Yys Tos <o2 Ip be the values of the dependent variate corresponding
to the dependent veriate Xys Xpp covs Xpo If we want to find the li‘near
regression we may take
yi=a+b(xi -X) + 51'
whore x = (X, + 2y, + oo+ x )/n, end ¢, is a randon veriate with meen zero.

Then the equations of expectation are

E(yl) = a.+ b(xl -X)
E(ya) = a + b(x2 - -JE)
E(yn) = a + b(xn - X)

Then the estimation space is gonerated by
als (l, l, seey l), q2=(xl“x-, Ia-.x‘,..-, xn"-x.)
. ’ . -2
(‘xlO(l) = n, O(l'agsoy (0(20'2) =Z(xi-x) ]

Yl = ( o(l"?) = n_y‘) Y2 = (‘9(2’?) = zyi(xi.-i)
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The normal equations are

, : 1 ' 1 _
(ofjronla Hlotropdb =¥ ora=2v, 12 "n» Cp=0
1, 1
(o 1 Xo)a + (Xpxo)b =Y b = sty C 0, C,, = —
1X2 2%/ = %o S, 02 2 2L 2 a0
Hoence
£y, (x,-X)
i aé‘;, \=M1i2
: 2(x, ~X)
2 2
Loyt T A e
n *? . =2
(%, -x)
i
0/2; ﬁﬁeksum of squarepdpq52§§3§§ to a single degree of frceden
Tho quantity |
)2 2 2
g2 . (clyl T oyt et Oy, i Y ' (y-2)
2 2 2 2 2 2 2
€] + 05 * uu + o €] *Cp t s +Op ¥

is called the sun of squares, corresponding to the single degree of freedon

carried by the linear function
Y=oy +o0, *+ een +oy = (7 -7)

Now 5 o
E(Ya) = V(Y) +-{E(Y)} = (ci + cg ool + cﬁ) 0-2 + {E(Y}}

J i 2
B(s?) = Cr_z . (E(Y) - 0_2 + 50
2 2 2 n
Cl + 02 + ... +¢C

where §§ is obtained fron S2 by substituting for thé observations their

expectations. Hence Sg is an eossontially positive quantity.
If Y belongs to crror, we say that the degree of freedon carried by it

belongs to crror. In that casc

E(Sa) = o2

Thus the expectation of the 8.s. corresponding to any linear function

which caries a d.f. belonging to orror is always cr2

Let o¢ be the projection of fhe observation vector ¥, on the
coefficient vocotr 7 of ¥. We shall show that s.s. corresponding to Y, is the
squarc of the length of & , 1. e. o 2
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N = o+ (3 where = ¢y, and 3 is orthogonal to y.
e (v = (ye) = oy

.o‘ c = (Y;‘n)

Ve o= LILQL s ¥
¥

. 2 .

v e O = x_'g
Y

8. The sum of squares corresponding to a set of k degrees of

freedom
~Consider a linear set of functions with k d.f. We can always
find k mutually orthogonal linear functions, Y.

1°?
to the set. If Si, ciey, Si are the corresponding s.s. then the s,

cesy Yk belonging

S. corresponding to the k d.f. carried by the functions of the set

2 2

+Sz+ooa+sk

is defined as 2 -
. ST =3

10 |

It will in general be possible to choose Y, ..., ¥ 1n an
infinity of ways, For our definition to be unambiguous, we must
show that it is independent of any particular choice.

Let ¥y, =+, 7y D6 the coeff. vectors of Y;, ..., Y., and let
~ be the projection of m on the vector space Z generated by Yis o

Yy Let X = C1¥7 + Co¥g + eee + Cpip
then Civy is also the projection of 1M on Yo We thus have
. 2 2 2 2 Ql 2
&=a1+0no +qk > 8 =.Xl+o-o +O\k=sl+o¢o +Dk=s

Hence the s.s. defined before 1s the square of the projection of n

on the vector space Z and is theorefore unique, | ‘
Cor. 1. E(SZ) = k02 + Si _

where Si is the quantity obtained froﬁ Sg, by replacing the obser=

vations by their expectations. In particular if the k d.f. belong

to error, E(S°) = ko“. '

s® = Sz/k is defined as the mean square for the k d.f. in

question., '

E(sz) = o° 4+ Sz/k = o® + si
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Corollary 2. It is clear that if there are two linear sets carrying kl
and_k2 d.f., such that the functions of the first set are orthogonal to the
functions of the second set, and if Si and Sg are the s.8. corresponding to
those kl and k2 d.f. then the s.s. corresponding to the kl + ke degrees of
freedom carried by the two sets taken together is given by 82 = Si + Sg.

In general, if k d.f. are partitioned into mutually orthogonal sets of
kl, kny veey kk d.f., the sum of squares Se, belonging to theék déf' can aéso
be partitionsd into the corresponding orthogonal components Sl, Se, veay Sk'

The sum of squares corresponding to n degrees of freedom carried by all

the linear functions of the observations is v 2 = yi + yg + us * yi.

We have seen that there is a (1.1) corre;pondence botweem estimable
paremetric functions and their best estimates, such that if k of the para-
metric functions are independent then k of the best estimates are independent.
Thus if k d.f. are cafried by a linear set of paramectric functions, then
their best estimates will carry k d.f, These k d.f, ere spoken of as either
belonging to the parametric functions or the estimates, but the corresponding

B.8, is always calculated from the best estimatos.

9. Analytical formula for the sum of squares belonging to any number of
a.f.

Lot Yl’ Y2, ceey Yk be k lincar functions given by

Ty = Cpa¥y + Cp¥p + een Cnlyn
Yp = Cyo¥y *+ COpglp + eve + Oy

ot e see eee (901)
Y = Oy + C¥p + eee + Cpp ¥y

not necessarily orthogonal to one anothor. To find the s.s. corrosponding to
these, we have to find the square of the projection of ¥, on the vector
space gencrated by AT, 7é, cees Yy Let this projoction bo

o, = tlyl + t272 + o4 tkyk

then »7 = tlyl + t272 + .. + tkyk + /3 whero eis orthogonal to 7197050 ¢y
‘Hence the t's are determined by '

b (7y07)) F 8 (r7n) +ees + H (g m) = (roy )
6 (757 7y) + b (7 7) +eee + 4 () = (90 )

e » (9.2)
b (ne7y) + 50 7) + e F 5 (ren) = e )

o -






