Proceedings of the 1991 Winter Simulation Conference
Barry L. Nelson, W. David Kelton, Gordon M. Clark (eds.)

SIMULATION WITH SIMNET II

Hamdy A. Taha

SimTec,
P.O.Box 3492
Fayetteville, AR 72702

ABSTRACT

SIMNET II is a network-based
discrete simulation language that uti-
lizes only four nodes: a source, a
queue, a facility, and an auxiliary.
Routing of transactions among the four
nodes is effected by executing special
assignments along the branches linking
the nodes. SIMNET II offers powerful
computational capabilities at a level
equal to FORTRAN, thus eliminating the
need for using external FORTRAN or C
inserts as in other languages. The
special assignments of SIMNET II also
allow the modeler to exercise complete
control over the internal characteris-
tics of the nodes during execution.
The system is totally interactive and
is available in totally compatible
version for the mainframe, mini, and
micro computers.

1 SIMNET II DESIGN APPROACH

The design of SIMNET II is based
on the observation that discrete simu-
lation deals primarily with queueing
systems. Within this framework, SIMNET
ITI utilizes three suggestive nodes: a
source from which transactions arrive,
a queue where transactions may wait,
and a facility where transactions are
served. A fourth node, call auxiliary,
is added to enhance the modeling capa-
bilities of the language.

Nodes in SIMNET II are linked by
branches that specify the path to be
taken by each transaction. As transac-
tions traverse branches, they execute
special assignments that control the
flow anywhere in the network and also
allow the modeler to change the charac-
teristics of the different nodes during
execution. The use of special assign-
ments in place of special blocks (as in
other languages) is conceptually supe-
rior because these assignments are
directly amenable for use within SIMNET
II conditional IF-THEN-ELSE-ENDIF and

132

Inc.

loop FOR-NEXT statements.

SIMNET II also allows the use of
scarce resources that are shared among
facilities. Logic switches are de-
signed to control the flow of transac-
tions out of queue nodes.

Repetitive segments are modeled
in SIMNET II using PROCedures (or PROC-
s). This capability allows the indexing
of all the nodes, resources, and swit-
ches of the models. PROCs simplifies
the modeling of repetitive segments
through the use of a generic code that
is manipulated internally by the SIMNET
IT processor to provide the correct
representation of the original system.

SIMNET II allows the inclusion of
run-dependent initial data in the mod-
el. This capability allows the user to
execute different runs with different
initial data in a single simulation
session.

The SIMNET II system utilizes
special READ/WRITE statements that
allow the user to link the input and
output of the model to formatted and
unformatted external files. Such mod-
eling facility allows the model to be
totally driven by data stored in exter-
nal files. This capability is enhanced
by the fact that parameters such as the
number of parallel servers in a facili-
ty, the maximum capacity of a queue,
and the initial level of a resource can
be declared as variables, which subse-
quently can be read from an external

file.

Figure 1 depicts the symbolic
representation of the SIMNET II four
nodes. Each node includes a number of
compartments that house the information
of the nodes. Each information element
is placed in one of several positional
fields associated with the node state-
ments as follows:

node_identifier;field 1;field_2;...;field_m:

The node_identifier consists of a user-
defined name followed by *S, *Q, *F, *A

Simulation with SIMNET II

to designate the type of the node as a
source, queue, facility, and auxiliary.

= O

SOURCE QUEUE
FACILITY AUXILIARY
Figure 1

Figure 2 provides the SIMNET II
model for a 3-server queueing model.
Transactions arrive from source ARVL
every EX(5) minutes (exponential with
mean 5 minutes). Arriving transactions
may wait in queue LINE, if necessary.
Service is performed in facility CLRKS
where the service time is EX(10) min-
utes. After the service is completed,
the transaction is TERMinated. Termi-
nation occurs by using the last fields
of facility CLRKS.

$PROJECT; node1.dat;2 April 1990;Nancy Sloan:
$DIMENSION;ENTITY(10):

$BEGIN:
arvl *S;EX(5): larrivals
line *Q: Iwait in line

clrks *F;;EX(10);3;GOTO-TERM: Iserved by one
! of 3 clerks
$END:
$RUN-LENGTH=480:
$TRACE=30-35:
$RUNS=1:

$STOP:

'run model for 480 minutes
Itrace from 30 to 35
I for one run only

Figure 2
2 SIMNET II BRANCHES

SIMNET II uses 7 types of branc-
hes to link nodes:

Always (A).

Select (S).

Conditional (C).

Probabilistic (P).

Dependent (D).

Exclusive (E).

Last choice (L).
Each type branch routes transactions
among nodes in a specific manner. For
example, an A-branch will always link
two nodes together, whereas a C-branch
will link nodes only when the branch
conditions are satisfied.

As transactions traverse a
branch, they can execute two types of
assignments: arithmetic and special.

133

The first type effects changes in the
model's arithmetic variables and the
second type performs the important
modeling function of controlling the
flow of other transactions anywhere in
the network.

2.1 Arithmetic Assignments

In SIMNET II, user-defined vari-
ables can be nonsubscripted or in the
form of single- and double-subscripted
arrays. The subscripted variables are
dimensioned using the S$DIMENSION sta-
tement. The nonsubscripted variables
are simply defined directly as they are
used in the assignments. The following
example illustrates the use of both
types of variables:

$DIMENSION; sample(20), table(10,2):
sum=sum+(sample(J)-1)*table(K+L,J):

SIMNET II allows the use of the
conditional statement IF-THEN-ELSE-
ENDIF and the loop construct FOR-NEXT.
The following example illustrates the
use of these statements:

1F,sum=k, THEN,

FOR,i=1,T0,n,DO,
IF,i=3,THEN,LOOP=CONTINUE ,ENDIF,
sample(i)=sample(i)**2,

NEXT,

ELSE,
sum=sum+1,
ENDIF

The assignment LOOP=CONTINUE is
used to skip to the end of the FOR-NEXT
loop. A companion assignment LOOP=-
BREAK can be used to cancel the remain-
der of the loop altogether.

2.2 Special Assignments

SIMNET 1II special assignments
assume the simple form A=B, where A
represents the result of implementing
an action B. These assignments are
designed to control the flow of trans-
actions anywhere in the network. Their
modeling power is enhanced by the fact
that they can be implemented within the
context of IF-ENDIF and FOR-NEXT state-
ments. As an illustration, consider
the following statement:

IF,COUNT(NN)=100, THEN, SUSPEND=SS ,ENDIF

The statement deals with two nodes
named NN and SS, where SS is a source
node. The statement stipulates that if
100 transactions have passed through
node NN, then source SS must stop cre-

134

ations instantly.

SIMNET II provides special as-
signments for the following cases:

File manipulations.

Source and queue control.

Attributes control.

Statistical variables collection.

External files READ/WRITE capa-

bility.

File manipulation assignments
play the crucial role of moving trans-
actions among files (queues and facil-
ities). For example, the assignment
1(Q2)=J(Ql) will move the J ordered
transaction from queue Q1 and place it
in the 1th position in queue Q2. Some
of the remaining assignments are de-
scribed below.

3 CONTROL OF QUEUE NODE PARAMETERS

A powerful feature of SIMNET II
is that it allows the modeler to change
the basic parameters of the queue node
during the course of execution of the
SIMNET II model. The SIMNET II model
initially specifies the queue's maximum
capacity, accumulation condition, and
discipline. The information content of
these fields may be changed dynamically
during the course of the simulation by
using the following three special as-
signments:

CAP (queue name)=expression

ACCUM(queue name)=(expression)

(attribute rule)

DISCIPLINE (queue name)=queue dis-

cipline

Any SIMNET II mathematical ex-
pression may be used where indicated in
the assignments.

Related assignments that control
the operation of a source include

SUSPEND=source name

RESUME=source name
These two assignments, when executed
during the course of the simulation,
will suspend and resume creations from
a source instantly.

4 READ/WRITE CAPABILITY

SIMNET II allows the modeler to
link to external file through the use
of the following READ and WRITE special
assignments:

READ(#,d,p)=("(f)",a1,a2,...,an)
WRITE(#,d,p)=("(f)",al1,a2,...,an)

where,

= FORTRAN unit number in the
range (0,5,15-99)

Taha

d = disk drive (micro version
only)

p = file path (micro version on-
ly)

f = optional image FORTRAN real
format (F’,E,h and G descriptors
only) ai = i'" READ/WRITE element,
i=1,2, ..., n

An example of the use of the READ
statement is

READ(22)=("(f6.0,f6.3)" ,N,SCORE)

In this statement the input file is
connected to unit 22 and the elements N
and SCORE are read according to the
format (£6.0,f6.3). It is important to
point out that the parameters # and ai
of the READ/WRITE statement can be any
legitimate mathematical expression.
For example, the unit number may be
expressed as I+J**2 and ai may be given
as SAMPLE(I+2*J) for the READ statement
or A(2)**J for the WRITE statement.

The READ (and WRITE) statements
may be used any time during the execu-
tion of the SIMNET II model. However,
the statement offers a special capa-
bility that allows the modeler to
change the initial parameters of nodes
and resources at the start of each run.
This means that the model can be driven
totally from an external file. Such
node parameters include number of par-
allel servers in a facility, queue
capacity, source limits, and resource
initial levels.

5 PROCS

PROCedures (or PROCs) in SIMNET
II deal with the modeling of repetitive
segments in a compact and efficient
way. A PROC provides a generic code
that is manipulated internally by the
processor to provide the correct repre-
sentation of the simulated system.
Actually the use of PROCs is more than
just a convenience in producing a code.
Situations arise in simulation where it
will be next to impossible to represent
a system properly without the capabili-
ty of the PROC. Typical among these
situations is job-shop scheduling.

A PROC starts with the statement
*PROC(L-U), where L and U are positive
integers that define the PROC's range
gf applicability. Repetitive nodes
inside the PROC are represented by a
user-selected base-name followed by a
blind index(). For example, consider
the following statements:

Simulation with SIMNET II

*PROC(1-3):
SS() *S;EX(2):

The PROC range (1-3) automatically
specifies the indices of all its blind
indexed nodes. This means that SS()
inside the PROC stands as a generic
representation of SS(1), SS(2), and
Ss(3).

A PROC may include nonindexed
nodes as well. This means that nodes
inside a PROC can be regular or blind-
indexed only. Explicitly indexed
nodes, such as QQ(1l) *Q:, are not al-
lowed in the definition of nodes inside
a PROC.

Figure 3 provides an illustration
of the use of PROCs in SIMNET II. Tran-
sactions leaving a single source SS are
assigned to three production lines
according to the probabilities .3, .5,
and .2. Figure 3 shows that the prob-
abilistic direct transfer is used to
route the transaction. Specifically
the source statement

SS *S;EX(1);*QQ(1)/.3,00(2)/.5,Q0(3)/.2:

will orient created transactions in the
desired manner.

$PROJECT; proc3.dat;4/8/91;Taha:
SDIMENSION;ENTITY(60):

$BEGIN:
*PROC(1-3):
ss *S;EX(1);*qq(1)/.3,9q(2)/.5,99(3)/.2:
qq() *a:
ff() *F;;EX(2);*TERM:
*ENDPROC:
$END:
$RUN-LENGTH=100:
$STOP:
Figure 3

6 GATHERING STATISTICAL OBSERVATIONS

The nature of the simulation
experiment poses statistical difficul-
ties because, by the nature of simula-
tion, successive observations are not
independent. The effect of observation
dependence is more prominent during the
transient or warm-up period of simula-
tion that occurs at the early stages of
the simulation.

The adverse effect of observation
dependence and transient conditions can
be dampened in simulation experiments
by following two general rules:

(a) Truncating the transient pe-

riod.

(b) Defining individual observa-

tions as batch averages.

Batch averages can be determined in the
simulation experiment using two meth-

135

ods:

(a) The subinterval method.

(b) The replication method.

SIMNET II allows for the inter-
active estimation of the transient
period wusing interactive graphics.
Following the estimation of the tran-
sient period, the modeler can instruct
SIMNET II to disregard the statistics
collected during that period and to
collect the final global summary based
on either the subinterval or the rep-
lication method.

7 SUMMARY

This paper has presented an out-
line of the SIMNET II simulation lan-
guage. The four-node structure of the
language makes it particularly easy to
use. The use of the special assign-
ments together with the conditional and
loop constructs gives SIMNET II a supe-
rior modeling capability. Also, the
fact that all the parameters of the
SIMNET II model can be defined from an
external file through the use of the
READ statement allows greater flexibil-
ity in the execution of the simulation
model.

REFERENCES

Taha,H.A. (1988), Simulation Modeling
and SIMNET, Prentice-Hall, Englewood

Cliffs, NJ.

Taha,H.A. (1990), Simulation with SIM-
NET II, SimTec, Inc., Fayetteville,
Arkansas.

AUTHOR BIOGRAPHY

HAMDY A. TAHA is President of SimTec,
Inc. and Professor of Industrial Engi-
neering at the University of Arkansas.
He holds a BS degree in Electrical
Engineering (Alexandria University,
1958), MS degree in Industrial Engi-
neering (Stanford University, 1961),
and Ph.D. degree in Industrial Engi-
neering (Arizona State University,
1964). He is the developer of the
SIMNET simulation 1language and the
author of four books in Operations
Research and Simulation. His most
recent book is Simulation Modeling and
SIMNET, Prentice-Hall, 1988. His con-
sulting experience is focused on the
application of Operations Research and
Simulation to the o0il industry. He has
worked on consulting projects in the
U.S., Mexico, and the Middle East.
(501) 575-756-6146 FAX (501) 575-7446
e-mail HT27009@UAFSYSB.uark.edu

