
ABSTRACT

NIGUSSIE, THEODROS. Design Obfuscation through Smart Partitioning and 3D Integration.
(Under the direction of Paul Franzon.)

In this study, we describe a design and fabrication experiment that has been performed

to investigate a methodology for assessing the security of ASICs fabricated in a split-

manufacturing process based on 3DIC technologies. The purpose of this process is to

protect critical IP from reverse engineering if an adversary obtains either the fabricated

wafers or their GDS. A number of 3DIC based fabrication alternatives were evaluated and

one selected for this experiment. Several designs, from the trivial to the complex were

used for the study. A self-test module was embedded in each design to facilitate the post-

fabrication testing. Various obfuscation techniques that include camouflage in the form

of function and look up table hiding and insertion of redundant logic in order to confuse

potential attackers were applied. We also used the trusted interconnect layers to hide en-

ablement keys for design functions. Smart partitioning was implemented for each design in

an attempt to conceal vital functions. We introduced metrics that are based on number of

connection possibilities (Cp) and depth of partitioning (Pdepth) to measure the obfuscation

strength. The results show that it could take greater than 1060 years to reconstruct the netlist

using brute-force attack. Currently, the wafers are undergoing fabrication.

We also investigated power, performance and area (PPA) benefit of hybrid bonding

in a different 3DIC project that was focused on PPA optimization. The optimization flow

developed in the process resulted in up to 22% and 11% improvement (over 2D) in power

and area respectively. The flow can be integrated into the obfuscation design flow to deliver

a more optimized design.
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CHAPTER

1

INTRODUCTION

The current trend in integrated circuit(IC) development �ow that involves geographically

distributed supply chain for manufacturing chips has become a growing security concern

[1]. This work deals with protecting digital designs from security exposure in the fabrication

stage of IC development life cycle. In an un-trusted fabrication the potential attacker will

have access to the design layout which they will use to extract the gate level netlist for

reverse engineering, insertion of malicious circuitry or intellectual property(IP) theft. As

building a trusted fabrication in an advanced technology node is a daunting task, it has

been proposed to split the fabrication [2]. This involves building part of the wafer in an

un-trusted fabrication and �nish it in a secured facility. Previous research [2][3][4][5] was

conducted to split the processing at lower level metal stack. In this work, we propose the

usage of three-dimensional integrated circuit(3DIC) packaging lines for the secure portion
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of the design. The study builds upon a feasibility research previously completed at North

Carolina State University [6].

1.1 Dissertation Overview

The motivation for this study is discussed in Section 1.3. Section 1.4 provides a review of

3DIC packaging technologies. Section 1.5 covers a survey of the state-of-the-art for securing

designs. Chapter 2 describes the overview of the technical approach and designs used

for the obfuscation experiment. In Chapter 3, we present our smart partitioning �ow and

obfuscation metrics. An overview of our 3DIC design �ow is included in Chapter 4. Chapter

5 discusses analysis results for various partitioning schemes and bonding pitch. In Chapter

6, we present a separate work on the power,performance and area(PPA) bene�t of advanced

hybrid bonding technology. The optimization techniques developed during this work can

be used to optimize obfuscated designs. Finally, the conclusions and possible directions

for future work are included in Chapter 7.

1.2 Abbreviations

2D Two-Dimensional

2.5D Two-and-a-Half-Dimensional

3D Three-Dimensional

3DIC Three-Dimensional Integrated Circuit

AES Advanced Encryption Standard

ASIC Application-Speci�c Integrated Circuit

BEOL Back End Of Line
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CAD Computer-Aided Design

CMOS Complementary Metal Oxide Semiconductor

CNN Convolutional Neural Network

CSA Carry Select Adder

DARPA Defense Advanced Research Projects Agency

DBI Direct Bond Interconnect

DOD Department Of Defense

DRC Design Rule Check

EDA Electronic Design Automation

FEOL Front End Of Line

FF Flip-Flop

FFT Fast Fourier Transform

FPGA Field-Programmable Gate Array

FSM Finite State Machine

GDS Graphic Design System

HTM Hierarchical Temporal Memory

IC Integrated Circuit

INV Inverter

I / O Input / Output

IP Intellectual Property

3



ISA Instruction Set Architecture

LFSR Linear Feedback Shift Register

LUT Lookup Table

LVS Layout Versus Schematic

NAND Not AND

NOR Not OR

PCB Print Circuit Board

PE Processing Engine

PPA Power,Performance,Area

RISC Reduced Instruction Set Architecture

ROM Read Only Memory

RTL Register Transfer Level

SAT Satis�ability

S-box Substitution box

SIMD Single Instruction Multiple Data

SLP Super Low Power

SPEF Standard Parasitic Exchange Format

STM Self Test Module

SRAM Static Random Access Memory

SoC System-on-Chip
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TCB Thermo-Compression Bonding

TSV Through-Silicon Via

VCD Value Core Dump

VLSI Very Large Scale Integration

XOR Exclusive OR
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1.3 Motivation

The integrity of vital military systems of the US depends on the Department of Defense

(DOD) managing risks to the security and supply of microelectronic components [7]. There-

fore, DOD must provide speci�c protection from potential threats based on the vitality

of the component. Because of the threats and need for leveraging leading-edge fabrica-

tion technologies which are available in global multinational �rms, DOD is considering

a technology-based approach to securing its microelectronics supply chain [8]. Defense

Advanced Research Projects Agency (DARPA), who is sponsoring our work, is taking the

lead for carefully examining the available security options to help DOD securely access

commercial fabrication sources as shown in Figure 1.1.

Figure 1.1 DARPA led effort to acquire advanced microelectronics fabrication services [8][9]
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1.3.1 Potential Threats

Manufacturing chips at un-trusted fabrication places expose the design to potential attack-

ers who may be able to reverse engineer the design. Successful reconstruction of the original

netlist could expose the design for cloning, trojan insertion, IP piracy and counterfeits.

1.3.1.1 Reverse Engineering

Reverse Engineering is a process of extracting the details of the hardware. This involves

identifying the design components and information on how they are connected to each

other through destructive or non-destructive methods [9][10]. If security exposure occurs in

fabrication houses, non-destructive methods can be employed to reveal the design details

as the Graphic Design System (GDS) �les can be accessed. Using the GDS, the potential

attacker can extract the transistor / gate level netlist as illustrated in Figure 1.2 with little

effort.

Figure 1.2 Reverse Engineering –Layout to Schematic

1.3.1.2 Cloning

Reverse engineering of a design can give the adversary access to evaluate the capability of

the design. This will give the adversary unfair advantage to a technology without spending
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the prohibitive research and development costs to deliver the IP. What happened during

world war II can be a good example for this. An American B-29 bomber was captured,

reverse-engineered and cloned by the former Soviet Union Tupolev Tu-4 bomber [11]. The

con�guration of the two bombers are almost the same with the exception of the engines

and cannons.

1.3.1.3 Trojan Insertion

These include malicious design changes to cause malfunction,create backdoors in the

design to leak secret information and / or compromise the reliability of the design [12].

Hardware Trojans have caused security concerns to military systems and �nancial systems.

They were used as “kill switches" and backdoors in foreign military weapon systems [13].

According to US military and intelligence executives, the dangers coming from hardware

Trojans embedded in a chip are one of the most severe threats the nation faces in the event

of war [14]. However, it should be mentioned that detection of these Trojans is not an easy

task for various reasons. First, the complexity of modern chips make the detection of small

changes in the design extremely dif�cult. Tests used to detect process defects cannot ensure

the detection of Trojans as these tests are generated for a Trojan-free design. Such factors

make the detection of Trojans in a complex chip a daunting task.

Many different Trojans have been developed over the years by researchers. Figure 1.3

shows one of these generic models for combinational and sequential Trojans [15]. The

trigger condition is an n-bit value at internal nodes, which is assumed to be rare enough to

evade normal functional testing. The payload is de�ned as a node that is inverted when the

Trojan is activated. One can make the Trojan harder to detect by employing a sequential

Trojan that requires the rare event to repeat 2 million times before the Trojan gets activated

and inverts the payload node.The sequential state machine is considered in its simplest

form to be a counter, and the effect of the output on the payload is considered to be an

XOR function to have maximal impact.
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Figure 1.3 Combinational and sequential Trojan models [1]

1.3.1.4 Counterfeits

Counterfeit chips can be sold as original units if the attacker can create a copy that has a

similar appearance or features as the original. When these counterfeit chips are bought by

military units, they could compromise national security [16].

1.3.1.5 IP Piracy

Untrusted foundry can fabricate illegal copy of the GDSII �les to sell them as hard IP. The

foundry can also fabricate more chips than authorized at a very small additional cost,and

sell the copies to the black market under different brand name [17].

1.3.1.6 Side Channel Attacks

Side-channel attacks are non-invasive type of attacks which are based on device's power

consumption, electromagnetic radiation or computation time [1][18]. These attacks can be

done on a chip to extract secret information stored in it. Power analysis are mainly used to

extract the secret key of cryptographic systems. For example, this analysis has been used to

successfully break the Advanced Encryption Standard (AES) in few minutes [19].

Power consumption of a given device are primarily driven by the dynamic power and

leakage power. The leakage power does not provide much information about the operation

of the device because it is dissipated when the design is not in the active state. However,
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dynamic power is directly related to the functional operation of the device. For example ,

the dynamic power of an inverter circuit is related to the switching activities of the input

and output as shown in Figure 1.4.

Figure 1.4 Dynamic power of an inverter [1]
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Suppose Pij be the power consumption as the output value of the inverter changes from

i to j where i,j 2 [0, 1]. P01 and P10 are much greater than P 00 and P11 since there is charging

and discharging of the capacitor at the output node. Therefore, based on this characteristic,

an adversary can estimate the status of the output or input by measuring the power of an

inverter [20]. If the input of an inverter originates from a secret key, the power side-channel

leakage gives an adversary a clue about the secret key.
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1.4 3DIC

As our proposed solution involves 3DIC packaging, we would like to provide a review on

3DIC and the associated bonding technologies.

3DIC refers to a stack consisting of two or more layers of IC that are vertically bonded

and interconnected with through- silicon-via (TSV), micro-bumps or �ne-pitch copper-to-

copper bonding [21][22] as shown Figure 1.5.

D i e 1

D i e 2

Figure 1.5 3D Stack

3D integration offers new dimension for performance growth as geometrical scaling

predicted by Moore's Law is only producing diminishing return. Also, 3D technology enables

heterogeneous integration by which disparate chips(for example memory and processor)

that were fabricated with different semiconductor process nodes can be integrated into one

chip with a compact form factor,low latency and high bandwidth interconnect. The newly

emerging bene�t of 3DIC technology which is the subject of this work is that it provides

opportunity to obfuscate designs by hiding part of the circuitry into a trusted tier that is

fabricated in a trusted foundry.

12



1.4.1 3D Stacks

3D integration of silicon layers can be formed in many ways including chip-to-chip,chip-

to-wafer and wafer-to-wafer stacking. The chip-to-chip bonding process allows each die to

be bonded together via wire bond to form the 3DIC [23] as shown in Figure 1.6.

Figure 1.6 Stacked die with wire-bond interconnection [23]

In a chip-to-wafer stack, individual chips are stacked on top of un-diced chips on a

wafer. Similar to the chip-to-chip bonding, this allows known-good-chips from differently

sized wafers to be bonded together as the chips may be individually tested. The wafer-to-

wafer bonding stacks full wafers which are vertically interconnected using any of the wafer

bonding techniques discussed in the later sections.

1.4.2 Types of Bonding Techniques

1.4.2.1 Dielectric-to-dielectric

Dielectric-to-dielectric bonding uses silicon oxide of Benzocyclobutene (BCB) polymer

to achieve mechanical bond [21].The electrical connection is made by the inter-wafer via

after wafer-to-wafer alignment and bonding as shown in Figure 1.7. The viscosity of the

BCB polymer compensates surface planarity and particle contamination. This bonding

approach is desirable for heterogeneous integration of different technologies and when

�ne interconnect pitch is not required.
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Figure 1.7 Dielectric-to-dielectric wafer bonding [21]

1.4.2.2 Copper-to-copper

Figure 1.8 indicates copper-to-copper bonding where both electrical and mechanical bonds

are achieved at the same time [21]. This bonding approach is superior to solder-based bonds

in that �ner pitch can be attained using copper-to-copper bonding. Also, the fact that copper

has better thermal and electrical conductivities make the technique a better approach.

Figure 1.8 Copper-to-copper wafer bonding [21]

Thermo-compression bonding (TCB) is an implementation of copper-to-copper bond-

ing [21]. In this bonding technique, both thermal( � 300-400°C) and mechanical pressure( � 200

kPa) are applied to hold the two wafers together while the thin �lms of the copper bond to

form a connected layer. Currently, with this technique, 40 � m pitch interconnect density

can be achieved.
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1.4.2.3 Hybrid Bonding

Hybrid bonding shown in Figure 1.9 provides bonding interface that includes both di-

electric and copper bonding [21]. The dielectric bonding provides the overall mechanical

strength of the bonding while the copper bonding offers the electrical connection. It is to be

noted that this bonding technique has strict requirements for surface planarity and copper

contamination in the dielectric layer due to misalignment. The bonding temperature for

this technique is even lower than that of the TCB due to the need to reduce thermal stress

due to coef�cient of thermal expansion (CTE) mismatch of the oxide and copper in the

stack.

Figure 1.9 Hybrid wafer bonding [21]

Ziptronix developed the implementation of this hybrid technology which is known as

Direct Bond Interconnect (DBI) [21]. With improved placement and alignment tools, DBI is

scalable to sub-micron( < 1 � m) level allowing a very high interconnect density.

DBI technology has been utilized in CMOS image sensors as applying hybrid bonding

provides lower cost, improved speed and lower power consumption. This approach has

increasingly shown to be better than Microbumps and TCB technologies which require

expensive and time-consuming under �ll between chips [24].

15



1.5 State-of-the-art

Good summaries of the research state for techniques to protect a design against reverse

engineering of mask level data can be found in [1][25][26]. Some of these schemes involve

adding new states to the �nite state machine (FSM) or overall state sequence and then

requiring a soft key to unlock the FSM to permit only the valid state sequence [27][28].

Rajendran et al studied logic-based obfuscation techniques [29] which deals with locking

the logic by inserting gates that will be controlled by encryption key. Circuit camou�aging

where the functionality of the logic is different from the way it appears is discussed here

[30]. There are also proposals about obfuscating the ISA of a processor [25][31][32][33].

Others have proposed adding a 3D crypto-processor to a chip stack to provide security

functions. The Split manufacturing technique, in which the design is split into two separate

fabrications early in the metal stack as shown in Figure 1.10, and the secure fabrication of

the BEOL layers has been studied in the literature. This led to several publications including

[2][3][4][5]. Xie et. al. [34] investigated 2.5DIC based obfuscation.

Figure 1.10 Split process at lower level metal stack
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1.5.1 FSM Locking

In this obfuscation technique, the state transition function of a sequential circuit is modi�ed

by adding a small FSM [27]. The new FSM shares a subset of the primary inputs of the circuit

including the clock and reset signals. Initially, the FSM is reset to its initial state which will

force the circuit to be in its obfuscated mode. The circuit operates in the normal mode

only when it receives N speci�c input patterns in sequence. Figure 1.11 shows the state

diagram of an example FSM where P0 - > P1 -> P2 is the correct initialization sequence.

Similar solution was also explored previously [28].

Figure 1.11 Modi�cation of state transition function for FSM obfuscation [27]

The limitation with this approach is that size of input space must be large in order to

make brute-force attacks infeasible. And increasing the size will cause area, power and

delay overhead.
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1.5.2 Logic Encryption

This obfuscation method hides the functionality of the design by inserting additional gates

that are controlled by keys. The keys applied to the encrypted logic have to be veri�ed to

ensure the correct functionality is maintained [29].

Figure 1.12 shows an example circuit with K1 and K2 as encryption keys. There are also

functional inputs designated by I1-I6. An attacker can sensitize key-bits K1 and K2 to the

outputs O1 and O2 by applying input pattern 100000. The design will output the correct

result only when the correct keys(K1 =0 and K2=1) are applied. In all other cases, wrong

output will be produced.

Figure 1.12 (a) Original circuit. (b) Circuit using two key-gates K1 and K2 [29]

The design is encrypted to hide the functionality before the layout of the design is sent

to the untrusted fabrication. After the fabrication, the owner of the design can activate the

design by applying the valid encryption key which will be stored in a memory that cannot

be accessed by an attacker.

Logic encryption scheme is expected to prevent threats like piracy and hardware Trojans.

This can be accomplished as the foundry does not have the secret keys to clone or overpro-

duce the IC . Being unable to decrypt the design, potential attackers will be discouraged
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from analyzing the structural behaviour of the design to insert Trojans at a desired place.

One limitation of this technique is scalability which may cause large overhead for larger

designs. Also, SAT based attacks have been able to de-obfuscate locked designs.

1.5.3 IC Camou�aging

The use of camou�aged standard cells has been proposed in this publication [30]. Layouts

appear to be the same whether they implement a NAND, NOR or XOR functions. This is

accomplished through dummy contacts in the dielectric layer. Some of the contacts go all

the way to the metal layer while the rest are cut off. For a reverse engineer who looks at

these gates from the top, the contacts look the same. This will result in causing confusion

to the attacker thereby preventing the reconstruction of the netlist created by these gates.

The downside of this technique is that it suffers from large area overhead especially

if signi�cant number of gates are camou�aged. Also, SAT solvers showed these can be

de-camou�aged quickly. For example, the logic block shown in Figure 1.13 can easily be

resolved by VLSI testing-based attack [25].

(a) (b)

Figure 1.13 (a) A con�gurable CMOS cell layout with 19 contacts. (b) An example logic block with
two camou�aged gates C1 and C2 [30]
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1.5.4 Split Manufacturing

Split manufacturing partitions the design into untrusted and trusted parts enabling the

owner of the design to take advantage of advanced semiconductor fabrications which are

available overseas without fully exposing the design [3].

1.5.4.1 Split at Mx

Imeson et.al. proposed [2] a variant on this that pushes the split further into the back end

and thus could use 3DIC bonding techniques as described in Figure 1.14(a).

Rajendran et.al. [5] proposed split fabrication after M3 as shown in Figure 1.14(b). In this

case, transistors and lower metal layers are fabricated at untrusted fab while the BEOL layers

which only consist the top metal layers will be processed at a trusted fab. After fabrication,

the two wafers will be aligned to bond together.

Figure 1.14 Split fabrication options [3] (a) Split-3D (b) Split after M3 (c) Split after M1
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Both of the above methods will expose at least some of the connections between the

cells hiding the remaining ones in the hidden layers. The attacker in the untrusted foundry

can infer the hidden connections to apply attack vectors on the design.

Also, these techniques invoke large area and power penalties as most of the nets will

be pushed into the added wiring layers.The alignment of these wafers is not an easy task

especially when advanced technology nodes are used as the metal layers will have very

small pitch.

Vaidyanathan et. al. [3] came up with splitting the design after M1 as shown in Figure

1.14(c). The active devices and Metal1 are processed at untrusted fabrication plant with

advanced technology nodes while the rest of the metal layers will complete the processing

at a trusted place. The schematic diagram of an example logic block for a full layout versus

for a layout processed until M1 is shown in Figure 1.15. It can be observed that the layout

that the untrusted fabrication will receive is a sea of unconnected gates. This will make the

reverse-engineering effort much more dif�cult if not impossible. However, the fact that

the placement algorithms in modern electronic design automation (EDA) tools will keep

cells that are connected physically close to each other can give a clue to potential attacker.

Also, as mentioned before, alignment at advanced nodes will even be more dif�cult as the

partitioning is done at the metal layer with the smallest pitch.

1.5.4.2 2.5D split fabrication

The design �ow proposed by Xie et.al. [34] involves partitioning the gate level netlist into

two sub-netlists which will complete layout and fabrication separately. Then, the two chips

will be integrated using 2.5DIC technology which enables standalone chips to be placed

face-down and connected through interconnect wires in an interposer as shown in Figure

1.16.

The limitation with this approach is that increase in wire length will cause power-

performance issue specially when large number of wires are to be partitioned to provide
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Figure 1.15 Reverse engineering exposure [3] (a) Full layout sent to untrusted foundry (b) Layout
till M1 sent to untrusted foundry

security.

Figure 1.16 2.5D Split Fabrication [34]
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CHAPTER

2

TECHNICAL APPROACH AND DESIGNS

FOR OBFUSCATION

2.1 Technical Approach

2.1.1 Overview

The goal of this research is to demonstrate the feasibility of 3DIC technology-based trusted

chip fabrication using an un-trusted CMOS source and a trusted 3D integration. This

includes splitting the design netlist into three portions and stacking them using 3DIC

technologies. The two portions are fabricated in un-trusted CMOS fabrication, in this

case Global Foundries, whereas the third portion which will only contain the interconnect
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wires will be manufactured in a trusted fabrication, in this case NHanced Semiconductors.

As partitioning every wire in a given design netlist will cause signi�cant area, power and

performance overhead, we intend to split only selected wires in critical IP or functions in

such a way that the reverse engineering effort is hindered. In this respect, we will employ

“smart partitioning" methodology. The success rate of the smart partitioning tool in breaking

up logic cones and making them unrecognizable can also serve as a metric for securing

the design. We will also reinforce the obfuscation effort by applying techniques, some

already discussed in the literature, that will include modifying the design netlist to hide key

information or confuse the reverse engineer.

We included the diagram shown in Figure 2.1 to describe the concept of the proposed

approach. The 2D netlist in Figure 2.1(a) will be partitioned into two in such a way that the

area for the splits is balanced. Then, the partitioned netlists shown in Figure 2.1(b) will be

placed and routed separately to be fabricated in an un-trusted CMOS fabrication plant.

After the fabrication in un-trusted fabrication is complete, the wafers will be shipped to a

trusted fabrication for adding the wiring layers to each of the CMOS wafers. This creates a

two-wafer stack that can be integrated using key 3D enabling technology, speci�cally the

Ziptronix DBI [35] hybrid bonding process. This bonding permits wafers to be aligned and

bonded with tight metal pitches.

Figure 2.1 Proposed approach (a) original netlist (b) partitioned netlist (c) partitioned layout (d)
extend BEOL on two wafers in secure fabrication and bond
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The hybrid bonding process can be conducted at a 4 � m pitch and has potential for

future scaling to tighter pitches, including submicron. The key to obfuscation is that without

access to the “trusted wiring layer", a potential adversary will not know the composite netlist,

even if the adversary has access to the CMOS netlists. In Figure 2.1(d), it can be seen that a

wire from the CMOS1 chip entering the trusted wiring layer at bot1 and leaving at a different

XY location to the CMOS2 chip at top1. This will ensure that the design is obfuscated through

securely implemented and fabricated wiring layers even if the adversary might have access

to the individual CMOS chips. Note, obfuscation would be increased if the second CMOS

tier was made in a separate CMOS fabrication, but that possibility will be left as future work.

The ability to obfuscate logic is illustrated in Figure 2.2. The original netlist is shown

in Figure 2.2(a) , while Figure 2.2(b) shows the netlist after partitioning. However, what

the adversary sees is shown in Figure 2.2(c). There are an exponentially large number of

possible connections between the two CMOS tiers that the adversary can see, especially

when logic from other groups of nets are reachable.

Figure 2.2 Simple Illustration of how 3D partitioning obfuscates logic functionality

Figure 2.3 shows the full manufacturing �ow for the proposed wafer fabrication process.

CMOS Wafer2 is a �ipped version of CMOS Wafer1. The backside of Wafer2 will be thinned

and wet-etched to create connections to I / O pads.
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Figure 2.3 Full manufacturing �ow

The choice of the above fabrication �ow was made after evaluating several alternatives.

The criteria used for the selections was based on the expectation that it could maximize

the amount of trusted routing as it would permit both horizontal and vertical partitioning.

Also, the DBI process is reduced to one step unlike the other options that have two steps.

Table 2.1 shows a summary of the fabrication alternatives and option C is the one selected

for this work.
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Table 2.1 3DIC Fabrication Alternatives

Option Description Pros Cons Cost Schedule Risk

A Three tier stack
(original proposal)

Improved SWAP
over 2D

Routability As quoted As dis-
cussed

Low

B A with tighter wiring
in wiring only tier

Improved routabil-
ity over A (provides
more obfuscation)

As quoted Same as A Low

C Two tier stack
(CMOS plus wiring,
CMOS)

Improved routabil-
ity over B (provides
more obfuscation)

As quoted 4 months
longer
than A

Low

D CMOS + trusted
wiring as BEOL (fab
stops at top metal)

Least fab complex-
ity

Lower SWAP
over 3D at
same node

As quoted 4 months
longer
than A

Lowest

E Option from above
with normal wafers
from fab

No special fab re-
quest

Requires
wafer polish
of unneeded
layers

As quoted >6 months
longer
than A

Low, but
some exper-
imentation
might be
needed

F Tech demonstrator
only – go away from
28 nm to 130 or 180
nm

Demonstrates ma-
jor risk elements

Not a full
demonstra-
tion

Saves consid-
erable funds
depending
on details

Same as A Low

G Reconstituted
Wafers with any
option above

Can use die from
MPW Wafers not
needed

Around as
quoted (de-
pending on
details)

>6 months
longer
than A

Medium,
but experi-
mentation
needed
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It should be mentioned that the split manufacturing approach will be augmented with

netlist level obfuscation, FSM, inserting redundant logic, masking lookup table, extending

look up table, hiding ISA,etc.

2.1.1.1 Interconnect Layers

We are using buildup of �ve extra layers on each CMOS wafer to interconnect the design

splits. The CMOS wafers complete the untrusted fabrication process at IB layer. Additional

four routing layers and a bonding layer will be added to each CMOS wafer at NHanced

Semiconductors. Figure 2.4(a) displays the full interconnect layer stack. The layout after

routing is shown in Figure 2.4(b).

(a) (b)

Figure 2.4 (a) Interconnect layer stack (b) Layout (top view)

Interconnect wires routing program was written to route 2 � m X 2 � m wires with 2 � m

spacing from TOP_M1 to BOT_M1. TOP_M1 interfaces with IB pads of the top CMOS wafer.

Similarly, BOT_M1 interfaces with IB layer pads of the bottom CMOS wafer.

Algorithm (1) shows details of the routing �ow. The routing starts with creating a list of

28



start points as top bumps at TOP_M1. The number of bumps is determined by the size of

the design splits. Once the list is created, the top pads will then be randomly shuf�ed before

the start of the routing. The routing will be constrained in such a way that the maximum x

and y delta between the top and bottom bumps will be less than or equal to 28 � m. This

results in suf�cient randomization with minimal impact to power and performance due to

wire delay.

Algorithm 1: Interconnect routing �ow
Result: Randomized routing

1 Create list of route start points (TopBumps at TOP_M1);
2 Randomly shuf�e TopBumps ;
3 for i  1 to num(TopBumps) do
4 if max_� X � 28 � m & max _� Y � 28 � m then
5 randomly search possible path ;
6 route net segments down to BOT_M1 ;
7 end
8 end

Figure 2.5 illustrates how the interconnect wires between top and bottom chips may look

like after routing at a routing ef�ciency of 45%. This is because we are allowing routing in x-y

directions as well as z direction. Only 9% of the routing resulted in becoming straight thru(z-

direction only) while 91% of the routing is done in x,y and z directions which tremendously

enabled the obfuscation effort.

Figure 2.5 Illustration of interconnect wires
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2.1.2 Novelty

To the best of our knowledge, the approach in the proposed solution is novel and there

has not been a published paper on similar obfuscation effort. Also, this is the �rst split

manufacturing based obfuscation technique to employ the DBI technology for bonding

design splits. The experiment includes netlist level obfuscation (most are discussed in the

literature) as additional layers of defense. One of the designs used in this work contains

10x larger number of gates than designs analyzed and discussed in published papers. The

complexity level of the designs analyzed in the study also adds to the novelty of the work.

2.1.3 Contributions

This study contributed a body of work that includes application of obfuscation techniques

on identi�ed target functions and gates of the netlist. There has also been innovative

work with respect to the partitioning �ow. The �ow involves adopting smart partitioning

techniques on selected designs. Along with the partitioning, obfuscation metrics were also

developed.

Moreover, this work resulted in innovating a 3D physical design �ow that includes

scripts for optimal assignment of bonding locations and merging parasitics of the design

splits.

In addition to implementing the AES and Aho-Corasick algorithms in RTL, a self test

module was created for each of the six designs. The test modules will serve as quick func-

tionality check and for debug of the hardware.

All physical design steps such as DRC, LVS checks and timing veri�cation were also

completed for each of the designs for a successful tapeout.

Outside the “Obfuscation project", a 3DIC optimization �ow was also developed that

resulted in signi�cant PPA improvement for 3D over 2D.
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2.2 Designs for Obfuscation

We selected designs that are of different sizes and representation of application areas. The

list includes a small �nite state machine that can be used to control a 4-way traf�c light,a

16-bit wide carry select adder, implementation of Aho-Corasick [36] algorithm for string

matching, implementation of advance encryption standard (AES) [37], a single-instruction-

multiple data (SIMD) processor [38][39], and implementation of hierarchical temporal

memory (HTM) algorithm [40][41].

A self-testing engine that will check the functionality of the design was implemented

for each of the designs. The test is based on predetermined patterns that will be generated

using a pseudo-random number generator. The test result from a given design will be

compared against stored results before a pass / fail result is available at an output pin. We

also inserted scan chains in the design that will be used for debug purposes.

For each design, a key step is to decide what aspect of the design one wishes to obfuscate.

This in turn determines where the partitioning is focused. It is not possible to split every

net, or even a majority of them. In addition, prior work has shown that blind partitions can

easily be reverse engineered to discover design function. Therefore, identifying the target

modules or blocks of logic is critical for smart partitioning of the netlist using the available

resources without impact to area, speed and power.

In the following sections, we will discuss the speci�cs of the designs and the obfuscation

techniques applied to them. It should be mentioned that the synthesis and place and route

work for the designs was completed using 28 nm CMOS SLP technology node. Synopsys

Design Compiler (DC) and Integrated Circuit Compiler (ICC) tools were used for synthesis

and physical design respectively.
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2.2.1 Simple FSM

2.2.1.1 Design Characteristics

The Simple FSM design is a small �nite state machine that simulates a 4-way traf�c light

controller. The state diagram for the FSM is shown in Figure 2.6. Upon reset, the state

machine is initialized to the starting state while outputting red signal to all traf�c ways.

S0

r e s e t

S1 S2

S3

S4S5

S6S7

S8S9

S10

S11
D = T c

1111

D = 5T c

D < 5T c,4111 D = T c

2111

D = T c

1111

D = 5T c
D < 5T c,1411

D = T c

1211

D = T c
1111

D = 5T c

D < 5T c,1141

D = T c

1121D = T c

1111

D = 5T c

D < 5T c,1114

D = T c

1112

Figure 2.6 Simple FSM state diagram

State transitioning is triggered when the clock cycle count reaches a pre-determined

value. In the case of green-to-yellow transition, �ve clock cycles have to pass before any

transition occurs. However, all other transitions happen after a clock cycle. The FSM outputs

a 12 bit signal while it is in the “current" state. These 12 bits are represented in octal form

in the state diagrams. In this representation, “4" stands for green, “2" for yellow and “1" for

red light. For example, state S1 outputs 4111. Each octal bit stands for each traf�c way. In
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this case, “4" stands for green for one of the ways and “111" is for red signals for all other

three ways. Also, S2 outputs 2111. Here, “2" stands for yellow for one of the directions.

The 2D post-place and route area,power and speed parameters are summarized in Table

2.2.

Table 2.2 FSM - Area, power and speed data(after place and route)

# Signal Core-Area Power Tclk Slack@
# Cells Nets (� m 2) (� W ) (nS) 0.8 V, 25 °C (nS)

262 627 400 36.7 5 +3.22

2.2.1.2 Self Test Module

A self test module (STM) is implemented to evaluate the FSM design after fabrication. The

STM which is included in the design as shown in Figure 2.7 also has its own small FSM to

conduct the test and comparator logic to match the output of the main FSM module with

expected values.

The top level design that contains the STM and FSM modules interfaces with the outside

world through seven I / O ports. These include: “clk" for clock, “reset" for resetting the

registers to a known value, “test_se" for scan enable, “test_si" for scanning in bit patterns,

“bist_start" to start the self test, “bist_result" for outputting the self-test result and scanning

out bit patterns and “bist_done" for outputting a pulse signal that the self-test completed

the test cycle.

We limited the number of I / Os in this design in order not to exceed the budgeted silicon

area for the obfuscation project. The �ip-�ops in the design were made to be scannable to

enable scan-based test.
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Figure 2.7 Block diagram for Simple FSM design and Self Test Module(STM)

2.2.1.3 Simulation

The simulation of the simple fsm design was done in functional and scan modes as shown

in Figure 2.8 and Figure 2.9 respectively.

In functional mode, the test_se pin will be set at 0 as shown in Figure 2.8. Then, the

small FSM and the comparator logic in the STM work together to compare functionality

for each state of the main FSM. The result will be scanned out through the bist_result pin.

The bist_done output pin will generate a pulse of one clock cycle when the self-testing

has completed. If a correct match is found for each of the 12 states, then the waveform for

bist_result and bist_done pins will look like the one shown in Figure 2.8.

Figure 2.8 Functional mode
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In the scan mode, test_se will be set to 1 and any bit patterns can be scanned in through

test_si pin to propagate through the scan �ops before they are scanned out via bist_result

pin for observation. If there is no defect in the scan chain, the scanned out bit patterns will

look like the bist_result waveform shown in Figure 2.9.

Figure 2.9 Scan mode

2.2.1.4 Obfuscation Technique

We inserted a 3 bit counter in the Simple FSM design to confuse the number of states in the

design. A subset of the additional logic is depicted in Figure 2.10.

Figure 2.10 Inserting Redundant logic
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The insertion point of the redundant logic was carefully selected in order not to affect

functionality of the design and the critical path.

2.2.2 Aho Corasick

2.2.2.1 Design Characteristics

We included a design that implements the Aho-Corasick algorithm [36] for string matching

application. The implementation includes a �nite state machine (FSM) and ROM to serve as

a dictionary of 16 words that will be used to match with input words. The FSM has 24 states

as shown in the state diagram in Figure 2.11. The stored dictionary words have varying

character lengths ranging from one to four characters. As the state diagram in the �gure

indicates, depending on the entered input word, the FSM steps through different states to

output the matching word when a match is found. If and when the FSM reaches the states

shaded in blue colors, a match is found and the matching word is output and a transition

back to S0 occurs to continue matching new set of input words. The gray shaded states are

intermediate states where no matching word has been found yet.

Table 2.3 summarizes the 2D post-place and route area,power and speed parameters.

Table 2.3 Aho-Corasick - Area, power and speed data(after place and route)

# Signal Core-Area Power Tclk Slack@
# Cells Nets (� m 2) (� W ) (nS) 0.8 V, 25 °C (nS)

365 1233 625 42.5 5 +1.82
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Figure 2.11 State diagram for Aho-Corasick implementation
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2.2.2.2 Self Test Module

This design also includes STM as shown in Figure 2.12. The STM contains FSM for test

sequencing and control, a ROM to store select input words and comparator logic to output

a pulse signal through the bist_result pin when there is a match. Similar to the Simple FSM

design discussed in the previous section, this also has seven I / Os that will be used to access

the design for test operations.
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Figure 2.12 Aho-Corasick implementation for string matching

2.2.2.3 Simulation

Test of this design will also be done in both functional and scan modes as shown in Figure

2.13 and Figure 2.14 respectively.

In functional mode, the test_se pin will be set to 0 and bist_start pin will be set to 1

to kick off the self test as shown in Figure 2.13. Following this, the FSM in the STM will

coordinate the reading of 16 input words from the ROM sequentially. Also, the comparator

logic in the same module will conduct matching of the inputs against the dictionary words
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in the Dictionary ROM. In the event the input words are found in the Dictionary ROM, then

a pulse signal is output at the bist_result port. The bist_done output pin will go high when

the self-testing has completed. If the design is defect free, a correct match should produce

�ve pulse signals at the times shown in the waveform for T clk= 5 nS.

Figure 2.13 Functional mode (T clk = 5 nS)

In the scan mode, test_se and bist_start will be set to 1 and before scanning in bit

patterns through test_si pin. The bits will propagate through the scan �ops before they are

scanned out via bist_result pin for observation. If there is no defect in the scan chain, the

scanned out bit patterns will look like the bist_result waveform shown in Figure 2.14.

Figure 2.14 Scan mode(Tclk = 5 nS)

2.2.2.4 Obfuscation Technique

The main targets for obfuscation are the matching logic and the 24 word lookup table. The

matching block which uses XOR gates was replaced by a mix of universal gates (NAND in

this case) and full adder cells with carry-in and carry-out bits as shown in Figure 2.15(a)

and (b).

Full adders are placed on tier1 and tier2 in such a way that the carry in / out of one adder
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Figure 2.15 Camou�aging "matching" logic (a) Original netlist , (b) representation using simple
gates (INV and NAND) (c) Modi�ed netlist with full adders

in a tier appears to be connected to carry out / in of another adder on the other tier. In

actuality, the carry in bits of all the adders are tied to “1" as depicted in Figure 2.15(c) so as

to make the adder operate as a simple comparator. The carry-out wires will be left �oating

(not connected) in the interposer. Also, the lookup table was partitioned so that it will be

harder to determine the combination of nets that will expose the contents of the table.

2.2.3 Adder

2.2.3.1 Design Characteristics

The adder used in this project is a 16-bit carry select adder. It contains four 4-bit carry-select

adders organized as portrayed in Figure 2.16

The 2D post-place and route area, power and speed parameters are summarized in

Table 2.4.

Table 2.4 Adder - Area, power and speed data(after place and route)

# Signal Core-Area Power Tclk Slack@
# Cells Nets (� m 2) (� W ) (nS) 0.8 V, 25 °C (nS)

486 751 900 54.4 5 +2.32

40



Figure 2.16 16-bit carry select adder

2.2.3.2 Self Test Module

This design also includes STM as shown in Figure 2.17. The STM contains FSM for test

sequencing and control, two Linear Feedback Shift Registers (LFSRs) that will generate 16

bit inputs for the adder circuit and comparator logic to output a pulse signal through the

bist_result pin when there is a match.
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Figure 2.17 16 bit carry-select adder implementation
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2.2.3.3 Simulation

Similar to the other designs,test of this design will also be done in both functional and scan

modes as depicted in Figure 2.18 and Figure 2.19 respectively.

In functional mode, the test_se pin will be set to 0 and bist_start pin will be set to 1 to

start the self test as shown in Figure 2.18. Following this, the FSM in the STM will coordinate

the generation of two sixteen bit numbers from the linear shift feedback register (LFSR).

These numbers will be input to the adder and the result will be compared with the expected

value. If there is a match,the result will be output through the bist_result port in the manner

shown in the waveform.

Figure 2.18 Functional mode(T clk = 5 nS)

Since a bit-by-bit comparison is done for the output, the pulse on the bist_result pin

will have a high value or “1" for 17 clock cycles(i.e.,16 clock cycles for the sum and one clock

cycle for carry out) when there is a correct match. The bist_done output pin will go high

whenever a single operation of addition is complete. The pulse signal on the bist_done

output pin will be high seven times for one clock cycle as we are applying seven pair of

random inputs for the functional test.

In the scan mode, test_se and bist_start will be set to “1" and before scanning in bit

patterns through test_si pin. The bits will propagate through the scan �ops before they are

scanned out via bist_result pin for observation after a number of clock cycle delays. If there

is no defect in the scan chain, the scanned out bit patterns will look like the bist_result

waveform shown in Figure 2.19.
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Figure 2.19 Scan mode(Tclk = 10 nS)

2.2.3.4 Obfuscation Technique

We targeted to hide the width of the adder by partitioning across the carry chain. This will

make the 16 bit adder look like two 8 bit adders.

2.2.4 AES

2.2.4.1 Design Characteristics

AES is a type of a symmetric block cipher that can process data blocks of 128 bits, using

cipher keys 128, 192, and 256 bits long [37]. In the hardware implementation, only the

encryption engine with key length of 128 bits is used. The implementation includes two

major logic blocks, encipher and key expander logic as well as a ROM for storing S-box

lookup table as shown in Figure 2.20.

Table 2.5 summarizes the 2D post-place and route area,power and speed parameters.

Table 2.5 AES - Area, power and speed data(after place and route)

# Signal Core-Area Power Tclk Slack@
# Cells Nets (� m 2) (� W ) (nS) 0.8 V, 25 °C (nS)

19,572 36,531 36,908 1,160 11 +3.0
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Figure 2.20 AES:Encryption algorithm implementation

2.2.4.2 Self Test Module

The design also includes STM which contains FSM for sequencing the test,two 128 bit

random number generators for generating the input word and cipher key, and a comparator

logic for matching the results of the AES engine with expected values as displayed in Figure

2.20.

2.2.4.3 Simulation

This design was also simulated in both functional and scan modes as depicted in Figure

2.21 and Figure 2.22 respectively.

In functional mode, the test_se pin will be set to “0" and bist_start pin will be set to “1"

to start the self test as shown in Figure 2.21. Then, the FSM in the STM will coordinate the

generation of two 128 bit numbers (for input word and cipher key) from the linear shift
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feedback register (LFSR). These numbers will be input to the AES engine to be processed in

the key expander and encipher blocks. After several clock cycles, the encrypted word will

be available as output. This output will be compared with expected value stored in the STM.

If there is a match, a pulse signal with one clock cycle will be available at the bist_result pin

as shown in the waveform. This test is conducted �ve times with different set of input word

and keys. Therefore, in the case of correct match,�ve pulse signals should be generated at

the bist_result pin in line with the simulated waveform. The bist_done output pin will go

high to signal the completion of the functional test after the self test is complete for all �ve

test patterns.

Figure 2.21 Functional mode(Tclk =11nS)

In the scan mode, test_se and bist_start will be set to “1" and before scanning in bit

patterns through test_si pin. The bits will propagate through the scan �ops before they are

scanned out via bist_result pin for observation after a number of clock cycle delays. If there

is no defect in the scan chain, the scanned out bit patterns will look like the bist_result

waveform shown in Figure 2.22.

Figure 2.22 Scan mode(Tclk = 11 nS)
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2.2.4.4 Obfuscation Technique

The crypto-logic functions of the algorithm utilize large number of two input and three

input XOR gates. We intend to hide the dominant signature by synthesizing the logic using

universal gates and adder cells. The S-box is a unique block in the AES design. As this is

a publicly available lookup table (LUT), unless it is obscured, it will be easier to identify

the algorithm based on the content of the LUT. Therefore, the size of the LUT was changed

from 256 x 8 to 512 x 16 similar to the way the 4 x 4 LUT was changed to 8 x 8 LUT as

illustrated in Figure 2.23. Also, the contents are scrambled in such a way that it will be

harder to reconstruct the contents of the S-box. The extra bits in the LUT were connected

to redundant logic that includes adders. All logic that is connected to the S-box is also

partitioned to obscure the design further.

Figure 2.23 Modifying lookup table (LUT) and logic (a) Original LUT and logic , (b) Modi�ed
LUT-doubled rows and columns, scrambled content of LUT and added redundant logic
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2.2.5 SIMD

2.2.5.1 Design Characteristics

This represents a type of parallel processor that will operate with single instruction and

multiple data streams [38][39]. The same instruction is executed by multiple execution

units using different data streams. SIMD processors employ data-level parallelism by which

same operation is applied to multiple data in parallel. There is single instruction memory

and control processor which fetches and sends the instruction to the subsequent piplelined

stages. The components of the SIMD are displayed in Figure 2.24. In this implementation,

the SIMD has four execution units.

The 2D post-place and route area,power and speed parameters summarized in Table

2.6.

Table 2.6 SIMD - Area, power and speed data(after place and route)

# Signal Core-Area Power Tclk Slack@
# Cells Nets (� m 2) (� W ) (nS) 0.8 V, 25 °C (nS)

99,307 107,097 213,254 3,750 11 +0.115

2.2.5.2 Self Test Module

As shown in Figure 2.24 , this design also includes STM which contains FSM for sequencing

the test,instruction and data ROMs for storing instruction and data and a comparator

logic for matching the results of the SIMD output with expected values. The instruction

and data that are stored in ROMs are created in such a way that an 8-point fast fourier

transform (FFT) algorithm can be executed. The SIMD unit in the block diagram shows

a decryptor logic which is mainly an XOR based hash logic that will help to decrypt the
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instruction before it goes to the decode unit. A 48 bit key is used to serve as decryption key.

The “obfuscation technique" section discusses how this block is obfuscated.

2.2.5.3 Simulation

The simualtion of the SIMD was also done in both functional and scan modes.

In functional mode, the test_se pin will be set to 0 as shown in Figure 2.25. Then, the

instructions stored in the ROMs of the STM will be fetched by the SIMD to start the 8-point

FFT operation. If a correct match is found between the output of the SIMD and the expected

values then a pulse signal with a duration of 4 clock cycles will be output on the bist_result

pin. There will be a total of 8 pulses each representing a single output. Once the tests are

complete, the bist_done signal will show a pulse of one clock cycle duration as shown in

the waveform.

Figure 2.25 Functional mode(T clk = 11 nS)

In the scan mode, test_se will be set to “1", and a number of bit patterns will be scanned

in through test_si pin as shown in Figure 2.26. If there is no defect in the design, the correct

bit pattern will be scanned out at the pin named as bist_start_int. This pin-out is not directly

connected to an I / O pad.

Figure 2.26 Scan mode(Tclk = 2 nS)
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2.2.5.4 Obfuscation Technique

We targeted the ISA for obfuscation. The SIMD has 48 bit long instruction set which includes

the Opcodes, source and destination registers. The obfuscation strategy involves storing

encrypted instruction in memory and decrypting the instruction in the decode stage of the

pipeline using a 48 bit long encryption key hidden in the interposer wires as illustrated in

Figure 2.27. The key wires are tied to power and ground depending on their binary values.

Then extensive partitioning is applied to the decode logic including the decryption block

to make it very hard to reconstruct the ISA.

Figure 2.27 ISA Obfuscation (a) Original unencrypted instruction , (b) Encrypted instruction with
decryptor logic in the Decode stage (c) Illustration of partitioned decryptor and decode logic
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2.2.6 HTM

2.2.6.1 Design Characteristics

The implementation of hierarchical temporal memory (HTM) is the largest design utilized

in this work. HTM is one of the cortical algorithms and it is time-based learning algorithm

which stores and recalls spatial and temporal patterns [40][41]. It contains a central con-

troller unit that directs and receives signals to and from the processing engines(PE1 and

PE2) as shown in Figure 2.28. Each PE has spatial and temporal units. The main task of the

spatial pooler is to encode input data into a sparse data representation with �xed sparsity

[41]. The temporal pooler is primarily engaged in learning sequences and making predic-

tions. These two units use comparison functions very extensively unlike the logic blocks in

other neural networks such as the convolutional neural network (CNN) which are heavy on

summation. Also,this design is rich in hierarchical FSMs due to the nature of the algorithm.

The 2D post-place and route area,power and speed parameters are summarized in Table

2.7.

.

Table 2.7 HTM - Area, power and speed data(after place and route)

# Signal Core-Area Power Tclk Slack@
# Cells Nets (� m 2) (� W ) (nS) 0.8 V, 25 °C (nS)

814,855 783,415 1,266,086 33,800 11 +0.21

2.2.6.2 Self Test Module

The design also includes STM which has FSM for sequencing the test, a ROM for hosting

the input vectors and comparator logic for matching results with expected values. As shown
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in Figure 2.28, the main addition to the STM of this design is the inclusion of additional

scan-in and scan-out pins in the I / Os because the design uses large number of FFs. Scan-in

ports include test_si1 through test_si5 while bist_result and test_so2 through test_so5 are

used as scan-out ports.

2.2.6.3 Simulation

Both functional and scan modes of testing are adopted for the design.

In functional mode, the test_se pin will be set to “0" as shown in Figure 2.29 and the

tests stored in the ROM of the STM will be executed in the HTM module. Upon successful

run, the result will match the expected value to output a pulse signal of one clock cycle

duration along the bist_result pin. As a sign of completion of the self-test, the bist_done

output pin will go from 0 to 1 as shown in the waveform.

Figure 2.29 Functional mode (T clk = 11 ns)

In the scan mode, test_se will be set to “1", and a number of bit patterns will be scanned

in through the scan-in pins; that is, test_si1 through test_si5 as shown in Figure 2.30. If

there is no defect in the design, the correct bit pattern will be scanned out at the output

pins named as bist_result and test_so2 through test_so5 pins at the times shown in the

waveform for a T clk = 2 nS.

2.2.6.4 Obfuscation Technique

The hierarchical FSMs in spatial and temporal blocks were targeted to hide the hierarchical

feature of the algorithm. Also, the XOR's in comparators were replaced by a mix of universal

gates and adders whose carry bits are controlled in the interposer to function as compara-

53



Figure 2.30 Scan mode (Tclk = 2 nS)

tors. This change is intended to confuse the HTM implementation with that of CNN or

other neural networks that have extensive summation blocks than comparators.
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2.2.7 Summary

In Table 2.8, the designs, the obfuscation goal and the obfuscation techniques used in this

work are summarized. The designs range from small FSM to large complex customized

accelerators.

Table 2.8 Designs and Obfuscation Techniques

Design What is obfuscated? Obfuscation Technique

Simple FSM State transition table Insert redundant logic
Partition next state logic

Aho-Corasick Matching logic Camou�age comparison
Lookup table Partition carry and sums

Use simple gates

Adder Width Partition the Carry chain

AES Engine Crypto logic Camou�age crypto logic
Sbox Partition carry and sums

Control logic Extend size of Sbox
Scramble Sbox
Use simple gates

SIMD ISA ISA encoding key
Partition decode logic
Use simple gates

HTM Algorithm FSM obfuscation
Camou�age comparison
Partition carry and sums
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CHAPTER

3

SMART PARTITIONING AND

OBFUSCATION METRICS

3.1 Smart Partitioning

3.1.1 Background

We would like to discuss our legacy partitioning �ow before we delve into smart partitioning.

The �ow shown in Figure 3.1 was used for other 3D based projects in the past. It worked

well for splitting design netlists in spite of its limitations for obfuscation work.

One of the limitations in the legacy �ow is that it only works for �at netlists. The hierarchy

in the synthesized netlist has to be removed for the �ow to go smoothly. Flattening the
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Figure 3.1 Legacy partitioning �ow

57



netlist of the entire design will take away the �exibility of applying targeted partitioning on

a module or set of modules that contain the critical IP we seek to hide. This will be more

important especially in large designs that hierarchically contain thousands of modules.

Limiting the partitioning of cells to a speci�c set of target modules help minimize the

number of partitioned nets. This will be a factor in determining the silicon area of the splits

as we will discuss later. The other limitation with the legacy �ow is that it is not suited for

obfuscating design netlists. In the �ow, hMETIS [42], a publicly available circuit partitioning

tool, is used for partitioning the netlist. While hMETIS is good for partitioning designs to

balance areas between tiers, the partitioning is mostly done blindly without taking into

account functions or logic blocks that need to be hidden.

Figure 3.2 shows a portion of state decode logic of an FSM after hMETIS partitioning

is applied. As indicated in the logic diagram, there are about six logic paths between the

input and output that were not partitioned. This is undesirable as the intact logic cone will

expose key details of the FSM to the reverse engineer. Thus, the above shortcomings in the

legacy �ow called for a smarter partitioning �ow.

Figure 3.2 Legacy partitioning result for FSM logic
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3.1.2 Smart Partitioning Flow

The �ow shown in Figure 3.3 will address the limitations highlighted above. It includes a

2-pass synthesis approach that works with hierarchical netlists. The initial synthesis will

be done on the RTL of the design. Then, obfuscation techniques discussed in the previous

section will be applied to modify the netlist. This involves intentionally altering the cell

composition of targeted modules of a given design to help hide key information from the

attacker. Then, the modi�ed netlist will be re-synthesized keeping the hierarchy. After that,

a parsing code will be used to analyze the hierarchical netlist and identify the list of modules

in the design. Finally, depending on whether a module is targeted for obfuscation or not,

the netlist will go through partitioning routines before modules or cells are assigned to tier1

or tier2. This process will repeat for each module until all modules are assigned. The next

sections discuss the partitioning routines.

3.1.2.1 Partitioning for Obfuscation

Candidate modules for obfuscation go through this routine to complete the partitioning.

The goal is to ensure that cells are partitioned so that recreating the original netlist is dif�cult.

This will involve identifying the cells and the connecting nets in the logic. The idea is to

separate the logic gates in consecutive stages of a logic cone and assign them to different

tiers. Algorithm (2) details how this is done for any logic block. The �ow will also ensure

balancing the number of cells on the tiers.
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Figure 3.3 Smart partitioning �ow
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Algorithm 2: Partitioning for Obfuscation

1 Input: A �le containing a list of nets and list of cells connected by each net -
net_cells;

2 Output: Tier1_Cells, Tier2_Cells;
3 N  num(net_cells);
4 for i  1 to N do
5 D  DriverCell(net_cells [i]);
6 R  ReceiverCell(net_cells[i]);
7 for j  1 to num(R) do
8 if R[j] =2 [Tier1 [ Tier2] then
9 assign cell to Tier1 or Tier2 based on the value of i;

10 else if R[j] 2 [Tier1 ] then
11 Tier1Flag  1;
12 else if R[j] 2 [Tier2 ] then
13 Tier2Flag  1;
14 else
15 if j== num(R) then
16 go to driver cell;
17 else
18 continue loop;
19 end
20 end
21 end
22 if D =2 [Tier1 [ Tier2] & Tier1Flag== 0 & Tier2Flag == 0 then
23 assign cell to Tier1 or Tier2 based on the value of i;
24 else if D =2 [Tier2 ] & Tier1Flag== 1 & Tier2Flag == 0 then
25 assign cell to Tier2;
26 reset_Tier1Flag;
27 else if D =2 [Tier1 ] & Tier1Flag== 0 & Tier2Flag == 1 then
28 assign cell to Tier1;
29 reset_Tier2Flag;
30 else
31 reset_Tier1Flag;
32 reset_Tier2Flag;
33 end
34 end

Algorithm (2) uses a �le containing a list of nets and cells connected by the nets as

an input. The output of the algorithm would be two lists containing cells assigned to the

respective tiers. Line 3 of the algorithm computes the number of nets. Lines 4 - 34 identify
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the driver and receiver cells for each net and assign the cells to the tiers. More speci�cally,

line 5 and line 6 extract the driver and receiver cells respectively. Lines 7 - 21 parse the

receiver cell list. Line 8 checks whether a receiver cell was already assigned to the tiers. If

the receiver cell was assigned to none of the tiers, then the cell would be assigned to tier1 if

“i" is even or tier2 if “i" is odd as shown in line 9. If the receiver cell was already assigned to

tier1, then the �ag for tier1 would be set as shown in line 11. Whereas if the receiver cell

was already assigned to tier2, then the �ag for tier2 would be set as shown in line 13. Line

15 checks if the last of the receiver cells has been assigned. If false, the inner loop would

continue. However, if true, then the inner loop (for receiver cells) would complete and the

outer loop would continue to line 22. Similarly, if the driver cell was not assigned to the

tiers and none of the �ags were set to 1, then assign cell to tier1 if “i" is even or tier2 if “i"

is odd as shown in line 23. Whereas, if the cell was not assigned to tier2 and the �ag for

tier1 was set to 1 and �ag for tier2 was set to 0, then the cell would be assigned to tier2 and

the �ag for tier1 will be reset to 0 as shown in lines 25 and 26. However, if the cell was not

assigned to tier1 and the �ag for tier2 was set to 1 and �ag for tier1 was set to 0, then the

cell would be assigned to tier1 and the �ag for tier2 will be reset to 0 as shown in lines 28

and 29. Finally, both tier1 and tier2 �ags will be reset to 0 as shown in lines 31 and 32 before

the outer loop continues to the next net.
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We applied the �ow on the previously mentioned state decode logic. The result shown

in Figure 3.4 indicates that the logic block is partitioned effectively and there is no un-

partitioned path in the logic cone.

Figure 3.4 Smart partitioning result for FSM logic

3.1.2.2 Partitioning for area balancing and minimizing cut

Modules that are not part of the obfuscation plan will undergo a 2-pass partitioning before

they are assigned to the tiers. The �rst pass will assign modules in such a way that the area

between the tiers is balanced as detailed in Algorithm (3). The input to this algorithm is

a �le containing a list of modules and the area for each module. Line 3 of the algorithm

computes the total number of modules from the mod_area list. Line 4 orders the list in

descending order based on area. Then, lines 5 - 13 will assign the modules to tier1_initial

and tier2_initial lists in a loop, if the conditions on lines 6 an 8 are met.

The second pass partitioning, which is described in Algorithm (4), will be based on
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the output of the �rst-pass analysis in order to �nd a �nal assignment that will result in

minimum number of cuts between the tiers. Also, the number of nets between modules

of different tiers are used in the analysis. This algorithm was inspired by Keringhan-Lin's

algorithm [44] and we added area balancing feature to it. The analysis is done in loops

which will involve swapping modules between tiers as shown in line 7. If the area difference

between the two tiers is within 10%, then the inner loop will complete with temporary

lists of modules for each tier. Then, as shown in line 13, the net count between modules of

different tiers will be computed. After that, the assignment that resulted in minimum net

count between tiers will be the �nal assignment. Minimizing the number of nets crossing

the tiers is essential as it will help reduce the number of required vertical connections to

complete the 3D assembly.

Algorithm 3: Partition for Area Balance

1 Input: A �le containing a list of modules and their area � mod_area;
2 Output: tier1_initial, tier2_initial;
3 N  num(mod_area);
4 mod_area_descend  reverse(mod_area); / *order list in descending order for area * / ;
5 for i  1 to N do
6 if tier1_area < tier2_area then
7 tier1_initial  mod_area_descend[n][0];
8 tier1_area  tier1_area + mod_area_descend[n][1] ;
9 else

10 tier2_initial  mod_area_descend[n][0];
11 tier2_area  tier2_area + mod_area_descend[n][1] ;
12 end
13 end
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Algorithm 4: Partition for Minimum Cut

1 Input: tier1_initial, tier2_initial,number of nets between modules of different tiers;
2 Output: tier1_�nal, tier2_�nal;
3 N1  number of modules in tier1;
4 N2  number of modules in tier2;
5 for i  1 to N1 do
6 for j  1 to N2 do
7 swap(tier1_initial [i], tier2_initial [j]);
8 if area_difference[i] < 0.1 then
9 tier1_tmp2  tier1_initial;

10 tier2_tmp2  tier2_initial;
11 end
12 end
13 Compute net count between modules of different tiers;
14 if min(net_count) then
15 tier1_�nal  tier1_tmp2;
16 tier2_�nal  tier2_tmp2;
17 end
18 end
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3.2 Obfuscation Metrics

The success of the obfuscation work is measured by the number of connection possibilities

(Cp) of the tiers and how well we are able to hide the dominant signature in the cell compo-

sition of the netlist. Also, the success rate of our smart partitioning tool in breaking up logic

cones can be used as a good metric.

3.2.1 Connection Possibiity

This deals with the number of connection possibilities (C p)that have to be tested before

�nding the correct combination to reconstruct the design netlist. These connections are

made between bonding pins of different tiers as illustrated in Figure 3.5 and Figure 3.7.

For example, Figure 3.5 shows bonding pin B 1 in Tier1 is connected to any of the N

bonding pins in tier2. The next bonding pin B 2 can be connected to any of the N-1 bonding

pins in tier2, etc.

Figure 3.5 Vertical connection - Global connectivity
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Based on this, Cp for N bonding pins in tier1 can be expressed as:

C p = (N ) � (N � 1) � (N � 2) � .. � (1) = N ! (3.1)

However, in practice, physical proximity is critical to reduce wire length and optimize

power and performance. Therefore, tier1 pins are connected to tier2 pins that are in the

same neighborhood as shown in Figure 3.7.

Figure 3.6 Vertical connection - Neighborhood connectivity

The number of pins in a given neighborhood (N r) is determined based on these fac-

tors:level of obfuscation needed for a given design, impact to power and performance that

can be tolerated and routing ef�ciency. As N r value gets larger, the level of obfuscation

will be better at the expense of reduced routing ef�ciency and larger impact to power and

performance. The value of C p for this case can be calculated as:

C p =
nY

i =1

(Nr !)i

= (Nr !)n ; w he r e n =
N

Nr

(3.2)
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In this work,wires are routed in a randomized manner from a bonding point in one

tier to the other within 28 � m radius in X-Y plane. Using a 4 � m DBI technology, this will

connect a maximum of 101 bonding pins in a neighborhood (N r) at 45% routing ef�ciency.

This approach is chosen in order to provide good level of obfuscation without drastically

affecting power and performance.

Table 6.3 shows a comparison of C p and “Time to Evaluate" for different N r values using

brute-force attack. For the sake of illustration, it is assumed that 1000 GPUs @ 2G�ops speed

are deployed to work in parallel in order to �nd the correct netlist by trying all connection

possibilities. Also,it is assumed N =Nr for this example. As summarized in the table, C p for

larger N r values can take very long time to test all connection possibilities.

Table 3.1 Estimated “Time to Evaluate"

Nr Cp = (Nr !)1 T ime t o E va l ua t e
10 3.6X 106 1.8 � S
20 2.4X 1018 338 hr s
30 2.6X 1032 1012 y e a r s
101 10160 10140 y e a r s

Though it has not been implemented in this work, it is also possible to further maximize

Cp by adopting horizontal partitioning in which cells of the same tier are allowed to be

connected through the interconnect layer. In this scheme, bonding pins can be connected

both vertically and horizontally as shown in Figure 3.7.

As illustrated in the diagram, bonding pin B 4 can be connected to 2N-1 bonding pins,

B3 can be connected to 2N-3 pins,etc. In this case, C p can be expressed as:
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Figure 3.7 Vertical and Horizontal connection

C p = (2N � 1)� (2N � 3)� (2N � 5).. � (1)

=
(2N � 1) � (2N � 2) � (2N � 3) � (2N � 4) � (2N � 5)..

(2N � 2) � (2N � 4) � (2N � 6)..

=
(2N � 1)!

2(N � 1) � (N � 1)!

C p =
� (2N )

2(N � 1) � � (N )

(3.3)
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This will result in even greater number of connection possibilities compared to the

vertical only connection as depicted in Figure 3.9.

Figure 3.8 Comparison chart for equations (3.1) and (3.3)

3.2.2 Cell Composition

The types and composition of gates in a netlist can reveal key information about functions

in a design. Jaga et al also discuss this in their work [44]. Therefore, any effort to hide or

muddle the cell composition can serve as a measure of security. In this study, we examined

the design netlist to identify dominant gates, such as XORs in crypto-logic or matching

functions, that can easily expose functions. For example, Figure 3.9 shows gate distribution

for Aho-Corasick implementation which is one of the designs used in this work. The XNOR

gate appears to be dominant over the others. In fact, it is �ve times larger than the average

number of all other gates combined. If this dominance is not obscured, it will be very easy

for the potential attacker to discover the type and bit-width of the main function of the

design without even inspecting how the gates are connected.

One of the ways this easy revelation can be avoided is by converting all XNORs to
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Figure 3.9 Cell distribution for Aho-Corasick implementation

universal NAND or NOR gates and applying extensive partitioning. This will force the

attackers to depend on the connectivity of the gates thereby slowing down the reverse

engineering process.This approach can have impact on performance,power and area (PPA)

due to the usage of gates not optimized for a given operation. Also, the need for deep

partitioning may require the expansion of the silicon area to support additional bonding

pins. Therefore, this approach should be applied judiciously. The other approach is to

only convert some of the XNORs to curb the dominance.This should result in hiding the

bit-width of the comparator with minimal impact to PPA.

For either of the approaches, the level of gate obfuscation (G obf ) can be measured by

considering how much the obvious clues are hidden in the netlist. This is achieved by

minimizing the quantity (Q) of XNOR gates(or more generally any complex gate targeted

for obfuscation) with respect to the quantity of the most dominant gate in the netlist as

described in (3.4).

Gobf = 1 �
Q complex-gate

Qmost-dominant-gate
(3.4)

Gobf values are bound betweeen 0 and 1. G obf will be 1 if all of the complex-gates are con-
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verted to universal gates and it will be 0 if no change has been made to the netlist. Typically,

keeping Qcomplex-gate � average (Qother-gates ) will help in hiding the dominant signature.

It is worth noting that the modi�cation of the netlist has to be done in conjunction with

extensive partitioning to hinder the discovery of the functions. The effect of the partitioning

is discussed in the next section.

3.2.3 Partitioning Depth

This obfuscation metric is based on the success rate of the partitioning tool to break up logic

cones so that reconstruction of the netlist will not be easy. Figure 3.10 shows an example

logic block for a full adder circuit which we will use to illustrate how this metric can be used.

We refer the metric as Partitioning Depth (P depth ) from here on. The analysis of this metric

starts with identifying the logic paths that form the logic block. In the example, there are

multiple logic paths including one of the longest paths that is indicated by the dashed line

which stretches from B to Z through G2-G3-G6-G7-G8 gates. For simple logic block shown

in the �gure, it is easy to do the path analysis manually. However, for more complex logic

that may involve hundreds or thousands of cells, the logic paths can be extracted in an

automated manner using the proposed Algorithm (2).

A

B

C Z

G1

G2

G3

G4

G5

G6

G7

G8

n1

n2 n3

n4

n5

n6

n7

n8

Figure 3.10 Logic block for a Full Adder circuit

Once the paths have been identi�ed, the partitioning information will be used to calcu-
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Algorithm 5: Identify logic paths and partitioning information
Result: Bit-String representation for each logic path

1 Input_Fanout  Extract fanouts for each input port;
2 Output_Fanin  Extract fanins for each output port;
3 for i  1 to num(InputPort) do
4 Parse Input Fanout and Output Fanin;
5 G  Gates in a logic path (between input and output port);
6 for j  1 to num(G) do
7 if G[j] 2 Tier1 then
8 B_str[j]  0 // assign 0 to bit-string list;
9 else if G[j] 2 Tier2 then

10 B_str[j]  1 // assign 1 to bit-string list;
11 end
12 end
13 end

late the Pdepth value. There are two ways we can measure the P depth for a given netlist.

The more straight forward approach is based on the number of intact(un-partitioned)

paths before and after partitioning. Suppose Npa t h _AP represent the number of intact paths

after partitioning and Npa t h _BP represent the number of intact paths before partitioning.

The depth of partitioning can be expressed as:

Pdepth = 1 �
Npa t h _AP

Npa t h _BP
(3.5)

If at least one net is cut in all of the logic paths, Npa t h _AP = 0 and Pdepth = 1 which is

the maximum possible value. On the other hand, if none of the paths are partitioned then

Npa t h _AP = Npa t h _BP . This will result in P depth = 0 representing no attempt was done to

obfuscate the logic block. Accordingly, one can generalize 0 < Pdepth < 1 for any number of

partitioning done on the logic.

One of the limitations of this approach is that it does not take into account the obfus-

cation bene�t of having multiple cuts in a given logic path. For example, the P depth value

is the same whether only n3 is cut or n3,n6 and n7 are cut along the dashed line path in

Figure 3.10. This results in understated measurement when we have multiple cuts. On
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the contrary, the approach can also overstate the metric. For example, if the logic block

shown in Figure 3.10 is cut at the inputs of gate G8,all logic paths connecting the inputs to

the output are partitioned as they all go through gate G8. This leaves no intact path and

will give P depth =1, which represents strong obfuscation. However, in practice, only G8 is

assigned to a different tier and the rest of the logic structure remains intact providing only

minimal obfuscation. Depending on where the partitioning occurs, this approach could

give a rather misleading result.

Therefore, a more granular approach of measuring P depth is explored. In this approach,

the partitioning of any net in any of the logic paths will be accounted for in the calculation

of the obfuscation metric.

Let us consider a logic path that connects input C to output Z through G4-G7-G8 gates.

For example, if net n4 is partitioned, G4 can be assigned to tier1 and G7 and G8 can be

assigned to tier2. Assuming tier1 and tier2 gates will have binary values of 0 and 1 respec-

tively, the bit-string representation(B str-also de�ned in Algorithm (2)) for this path will be

011. Going from the input to the output there is only one transition(0 � >1 or 1� >0), but the

maximum number of possible transitions is 2(010) if both nets n4 and n7 are partitioned.

This will result in P depth value of 0.5 as the number of transitions is only half of the maximum

possible. This can be generalized for a bit-string representation of X number of gates in a

logic path as follows:

Pdepth l og i c _pa t h =

P X � 1
i =1 Bs t r [X � i ] � Bs t r [X � i � 1]

X � 1
(3.6)

If there are Y number of logic paths in a netlist targeted for partitioning, the P depth value

will be the average of the P depth values for the individual logic paths.

Pdepth =

P Y
j =1 Pdepth l og i c _pa t h [ j ]

Y
(3.7)
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The Pdepth values range between 0 and 1. Table 3.2 contains P depth values for various par-

titioning cases for the logic block shown in Figure 3.10. Case-I stands for the un-partitioned

logic block. P depth = 0 in this case suggesting no obfuscation is provided for the logic block.

In Case-II, nets n2 and n3 are cut to assign gate G3 to tier2 while keeping the rest of the logic

in tier1. Case-III also deals with a partitioned netlist in such a way that gates G3 and G7

are assigned to tier2 and the rest of the gates are assigned to tier1. The nets cut in this case

include n2,n3,n6 and n7. The partitioning in Case-IV builds up on Case-III and adds gate

G5 to tier2 netlist. This will expand the list of split nets to n2,n3,n4,n5,n6,n7 and n8. Case-V

represents a scenario in which all nets connecting the gates are cut. P depth will assume the

maximum value as maximum effort is needed to re-assemble the logic block.

Table 3.2 Pdepth values for different partitioning cases

C a s e-I C a s e-I I C a s e-I I I C a s e-I V C a s e-V
Pdepth 0.0 0.12 0.61 0.88 1.0

In summary, it is observed that the P depth value dramatically increases as more nets are

cut complicating the reverse engineering work. Thus, this metric can be used to measure

the level of obfuscation for a given design netlist.
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CHAPTER

4

3DIC DESIGN FLOW

The design �ow for the tape-out begins with synthesized netlist to 28 nm CMOS SLP cell

library as shown in the diagram in Figure 4.1. In the following sections, we will go over few

of the key steps in the �ow that were not already discussed in this document.

4.1 Obfuscation Technique

The obfuscation techniques covered in Chapter 2 are implemented in the �ow. Depending

on what techniques are used for a given design, the process of applying the techniques

can vary. For example, if we are only aiming to replace complex gates (such as adders or

XORs) by universal gates(such as NAND or NOR), we can simply use the "set_dont_use"

command of the EDA tool to restrict the cells to be used for the re-synthesis of the netlist.
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Figure 4.1 Design �ow 1

77



4.2 Assigning DBI locations to I / O ports

After partitioning of the nets is complete,the next step is to assign DBI bonds to the I / O ports

(partitioned nets) of the individual tiers. The process of assigning DBI bonds involves initial

place and route of one of the tiers (for example, tier1). This will provide the XY location of

the cells/ pins that are driving / receiving signals to / from the other tier. Then, the nearest

available bonding location (based on minimum Euclidean distance) will be assigned to the

partitioned nets as shown in Algorithm(6). This is to keep the wire delay between cells on

opposite (top and bottom) side of the interposer as minimum as possible. Once we created

the I / O port map for tier1 in this manner, we will then generate I / O port map for tier2 using

tier1's port map.

Algorithm 6: DBI location assignment
Result: Pin Assignment

1 for i  1 to num_ports do
2 pin_xy  Extract pin location for driver and receiver cells;
3 for i  1 to num_ports do
4 for j  1 to num_DBIs do
5 compute minimum Eucledean distance;
6 if min_distance then
7 pin_xy [i]  bump_xy [j] ;
8 end
9 end

10 end
11 end

4.3 Clock Tree Synthesis

A 3D clock distribution with �ip-�ops (FFs) in either tier will be employed in this work

unlike previous work where the clock tree synthesis was done on only one tier because the

partitioning keeps all of the FFs on one tier. We removed that constraint in this work and

adopted the approach discussed in [45] [46] where two separate clock trees are synthesized

for each tier. The clock input is oriented at the midpoint of the two tiers as shown in Figure
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4.2. The clock tree synthesis can be revisited if timing analysis for the complete design

shows setup or hold issue. If the top and bottom wafers are fabricated at different process

corners ( fast-slow or slow-fast ), our �ow should still handle this difference since hold issues

are �xed at the fast corner and setup issues are resolved at the slow corner.

C LKi n

T i e r 1

T i e r 2

Figure 4.2 Clock tree synthesis for 3D assembly
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4.4 Merging Netlist and Parasitics for Parametric Analysis

This step is critical for timing and power analysis. After the individual tiers have completed

place and route, the netlist for the individual tiers are combined to create a top level

wrapper. Also, the parasitics for the tiers are merged in such a way that the interfacing ports

are connected as nets (wires). The SPEF �les which contain the parasitics should also be

modi�ed to create a top level wrapper that matches with the port and wire de�nitions of

the netlist wrapper.

Power analysis involves using the switching activity from Verilog simulation of the

design. The VCD (value core dump) �le along with the netlist and parasitics �les will be

read into primetime for power analysis. If the results of timing and power analysis are not as

expected, the �ow will go back to the synthesis step in order to make the relevant changes.

4.5 Final Design Layout for Tapeout

We have included the �nal layouts for selected designs. Figures 4.3 and Figure 4.4 show the

tier1 and tier2 chips of the Simple FSM and AES designs respectively. There is an overlay

of four layers of wiring-only stack for each of the layouts. As can be seen in the �gures,the

patterns of the bonding pins is identical between the two chips to facilitate the face-to-face

connection.
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