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Abstract

This paper provides a unified modeling framework for ferroelectric, ferromagnetic and ferroelastic materials
operating in hysteretic and nonlinear regimes. Whereas the physical mechanisms which produce hysteresis and
constitutive nonlinearities in these materials differ at the microscopic level, shared energy relations can be derived
at the lattice, or mesoscopic, scale. This yields a class of models which are appropriate for homogeneous, single
crystal compounds. Stochastic homogenization techniques are then employed to construct macroscopic models
suitable for nonhomogeneous, polycrystalline compounds with variable effective fields or stresses. This unified
methodology for quantifying hysteresis and constitutive nonlinearities for a broad class of ferroic compounds
facilitates both material characterization and subsequent model-based control design. Attributes of the models
are illustrated through comparison with piezoceramic, magnetostrictive and thin film SMA data.
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1. Introduction

Hysteresis and constitutive nonlinearities are an inherent property of ferroelectric, ferromagnetic and ferroe-
lastic compounds under a wide range of operating frequencies and drive regimes as illustrated by quasistatic
PZT5A, Terfenol-D and thin film SMA data in Figure 1. For certain applications, these nonlinear effects can be
minimized through low drive operation or feedback mechanisms. In other cases, however, hysteresis and nonlin-
ear dynamics are unavoidable and must be accommodated for accurate material characterization and subsequent
model-based control design. For example, hysteresis inherent to the piezoceramic nanopositioning elements em-
ployed in all present atomic force microscope (AFM) designs can be mitigated at low frequencies through PID
or robust feedback control laws [4, 5, 13]. However, at the high scan rates required for real-time product di-
agnostics or monitoring cellular processes, noise to signal ratios preclude the sole use of feedback control laws
to mitigate hysteresis, and control designs utilizing model-based inverse compensators are under investigation
[18]. Furthermore, for many applications utilizing SMA, maximal hysteresis is desired to optimize damping since
energy dissipation is proportional to the area of the hysteresis loop. Hence, for civil applications in which SMA
tendons are utilized to attenuate earthquake vibrations in buildings, operation in highly hysteretic pseudoelas-
tic regimes is required. This necessitates the development of unified models which characterize hysteresis and
constitutive nonlinearities in a manner which facilitates subsequent transducer design and model-based control
implementation.
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Figure 1. Hysteresis and constitutive nonlinearities exhibited by various ferroic compounds. (a) PZT5A data
from [17], (b) Terfenol-D data from [6], and (c) thin-film SMA data from [8].

In this paper, we construct a hierarchy of unified models based on energy relations developed at the lattice
level in combination with stochastic homogenization techniques to obtain macroscopic constitutive relations.
In the first step of the development, Helmholtz and Gibbs energy relations are derived at the lattice level and
combined with evolution laws to quantify the local average polarization, magnetization and strain in ferroelectric,
ferromagnetic and ferroelastic compounds. These relations model hysteresis and nonlinear constitutive properties
of homogeneous, single crystal compounds. The effects of material nonhomogeneities, polycrystallinity, and
variable effective fields or stresses are subsequently incorporated through stochastic homogenization techniques
to obtain macroscopic constitutive relations appropriate for bulk or thin film compounds. While developed in
the context of piezoceramic, magnetostrictive and shape memory compounds, the methodology is sufficiently
general to encompass a broad range of ferroic materials.

This methodology complements certain existing energy-based and phenomenological techniques used to de-
velop unified hysteresis models for ferroic compounds. The models in [16] employ energy relations pertaining to
the domain structure of ferroic compounds to characterize hysteresis and constitutive nonlinearities. A second
unified approach for quantifying the hysteretic and nonlinear behavior of certain active materials was developed
by Soukhojak and Chiang [22]. Based on phenomenological principles, this approach provides a rheological model
quantifying the time and frequency-dependent behavior of a variety of ferroic compounds. Finally, Preisach mod-
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els have been employed to characterize hysteresis in a wide range of materials due their generality and broad
mathematical basis [1, 2, 3, 7, 9, 12]. The strengths and limitations of Preisach models for smart material appli-
cations, as well as an energy formulation for Preisach models based on the theory developed here, are summarized
in [19].

Energy relations and local average polarization, magnetization and strain relations at the lattice level are
developed in Section 2 and macroscopic models, developed through stochastic homogenization techniques, are pre-
sented in Section 3. Attributes of the unified models are illustrated through comparison with PZT5A, Terfenol-D
and thin film SMA data in Section 4.

2. Mesoscopic Models

2.1. Piezoceramic Materials

As detailed in [20, 21], consideration of statistical mechanics principles for fixed temperature regimes yields
the piecewise quadratic Helmholtz relation

ψ(P ) =




1
2η(P + PR)2 , P ≤ −PI

1
2η(P − PR)2 , P ≥ PI

1
2η(PI − PR)

(
P 2

PI
− PR

)
, |P | < PI

(1)

where PI and PR respectively denote the positive inflection point and polarization at which the minimum of ψ
occurs. From the potential energy relation UE = −p ·E, for a dipole p in a field E, it follows that an expression
for the Gibbs energy is

G = ψ − EP. (2)

The behavior of G for an increasing field and the resulting local average polarization P are depicted in Figure 2.
To characterize P , it is necessary to quantify the fractions x+ and x− of dipoles respectively having positive

and negative orientations, and the likelihoods p+− and p−+ of switching form a positive to negative orientation
or vice versa. This is accomplished through consideration of the Boltzmann relation

µ(G) = Ce−GV/kT (3)

which quantifies the probability of achieving an energy level G on a lattice volume V . The constant C is chosen
to guarantee integration to unity over all admissible inputs and k denotes Boltzmann’s constant.

By observing that the average polarization values due to positively and negatively oriented dipoles have the
general formulations

〈P+〉 =
∫ ∞

PI

Pµ(G) dP , 〈P−〉 =
∫ −PI

−∞
Pµ(G) dP, (4)

it follows that

〈P+〉 =

∫ ∞

PI

Pe−G(E,P,T )V/kT dP∫ ∞

PI

e−G(E,P,T )V/kT dP

, 〈P−〉 =

∫ −PI

−∞
Pe−G(E,P )V/kT dP∫ −PI

−∞
e−G(E,P )V/kT dP

. (5)

It is illustrated in [21] that the use of the inflection point PI , rather than the equilibrium value P0, can be
justified either from energy principles or asymptotic analysis. Similarly, the likelihoods p+− and p−+ are given
by

p+− =

√
kT

2πmV 2/3

e−G(E,PI ,T )V/kT∫ ∞

PI

e−G(E,P,T )V/kT dP

p−+ =

√
kT

2πmV 2/3

e−G(E,−PI ,T )V/kT∫ −PI

−∞
e−G(E,P,T )V/kT dP

(6)
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Figure 2. (a) Helmholtz energy ψ and Gibbs energy G for increasing field E. (b) Dependence of the local
polarization P on the field E at the lattice level.

where m denotes the mass of the lattice volume V . The first term in the right hand side of each expression
quantifies the frequency at which jumps are attempted.

The evolution of dipole fractions is quantified by the differential equations

ẋ+ = −p+−x+ + p−+x−

ẋ− = −p−+x− + p+−x+

(7)

which can be simplified to
ẋ+ = −p+−x+ + p−+(1 − x+) (8)

through the identity x+ + x− = 1. With the dipole fractions, transition likelihoods and average polarization
values thus defined, the average local polarization at the lattice level is given by

P = x+ 〈P+〉 + x− 〈P−〉 . (9)

It is demonstrated in [21] that for operating regimes in which relaxation effects are negligible, asymptotic
analysis can be employed to reduce (9) to the algebraic relations

[P (E;Ec, ξ)](t) =




[P (E;Ec, ξ)](0) , τ(t) = ∅
E
η − PR , τ(t) 6= ∅ and E(max τ(t)) = −Ec

E
η + PR , τ(t) 6= ∅ and E(max τ(t)) = Ec

(10)

where

[P (E;Ec, ξ)](0) =




E
η − PR , E(0) ≤ −Ec

ξ , −Ec < E(0) < Ec

E
η + PR , E(0) ≥ Ec

denotes the initial dipole orientation and transition times are designated as

τ(t) = {t ∈ (0, Tf ] |E(t) = −Ec or E(t) = Ec} .

For single crystal materials which are isotropic, homogeneous, and exhibit uniform effective fields, the relations
(9) or (10) hold throughout the compound and hence provide a macroscopic model quantifying the hysteretic
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and nonlinear relation between the input field and bulk polarization P . For general compounds, the stochastic
homogenization techniques described in Section 3 must be combined with (9) or (10) to obtain macroscopic
constitutive relations.

2.2. Magnetostrictive Materials

Under the assumption that magnetic moments have two preferred orientations, it is illustrated in [15] that
an appropriate expression for the Helmholtz energy, for fixed temperature regimes, is

ψ(M) =




1
2η(M + MR)2 , M ≤ −MI

1
2η(M − MR)2 , M ≥ MI

1
2η(MI − MR)

(
M2

MI
− MR

)
, |M | < MI

(11)

where MI and MR denote the inflection point and local remanence magnetization. Since the magnetostatic
energy is given by E = µ0MH, where µ0 is the magnetic permeability, the Gibbs energy can be expressed as

G = ψ − HM (12)

by incorporating µ0 in ψ. Comparison of the ferromagnetic Helmholtz and Gibbs relations (11) and (12) with
their ferroelectric analogues (1) and (2) reveals that they are identical if one equates H with E and M with P .

The development of local average magnetization relations is analogous to that for ferroelectric materials
and is detailed in [15]. For regimes in which thermally activated relaxation is significant, the local average
magnetization is given by

M = x+ 〈M+〉 + x− 〈M−〉 (13)

where x+ and x− satisfy the differential equations (7) or (8), and 〈M+〉 and 〈M−〉 are given by

〈M+〉 =

∫ ∞

MI

Me−G(H,M)V/kT dM∫ ∞

MI

e−G(H,M)V/kT dM
, 〈M−〉 =

∫ −MI

−∞
Me−G(H,M)V/kT dM∫ −MI

−∞
e−G(H,M)V/kT dM

. (14)

For regimes in which thermally activated relaxation is negligible, asymptotic analysis yields the algebraic
relation

[M(H;Hc, ξ)](t) =




[M(H;Hc, ξ)](0) , τ(t) = ∅
H
η − MR , τ(t) 6= ∅ and H(max τ(t)) = −Hc

H
η + MR , τ(t) 6= ∅ and H(max τ(t)) = Hc

(15)

where [M(H;Hc, ξ)](0) denotes the initial moment orientation and transition points are specified by

τ(t) = {t ∈ (0, Tf ] |H(t) = −Hc or H(t) = Hc} .

Employing notation used for Preisach models [19], the initial moment orientation is specified by

[M(H;Hc, ξ)](0) =




H
η − MR , H(0) ≤ −Hc

ξ , −Hc < H(0) < Hc

H
η + MR , H(0) ≥ Hc .

The local average relations (13) or (15) quantify the hysteretic relation between H and M for single crystal,
homogeneous compounds, and they provide a kernel for the stochastic homogenization techniques in Section 3
for characterizing nonhomogeneous, polycrystalline materials.
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2.3. Shape Memory Alloys

The quasiplastic and pseudoelastic behavior inherent to shape memory compounds is due to phase transi-
tions at the lattice, or mesoscopic, level between the high temperature austenite phase A and low temperature
martensite variants. In this discussion, we focus on applications, such as NiTi wires, characterized by uniaxial
loads and hence we focus on the martensite twins M+ and M−. Following the theory developed in [8, 11, 14],
we treat a lattice volume V as the fundamental element in the model. We subsequently let xA, x+ and x−
respectively denote the volume fractions of A,M+ and M− layers in the SMA. The phase fractions necessarily
satisfy the conservation relation

xA + x+ + x− = 1 (16)

over all time.
To model the transition from stability of martensite variants at low temperatures to stability of the austenite

phase at high temperatures, we consider the C1 Helmholtz energy relation

ψ(ε, T ) =




EM

2
(ε + εT )2 , ε ≤ −εM (T )

−E0(T )
2

(ε + ε0(T ))2 + ψ0(T ) , −εM (T ) < ε < −εA(T )

EA

2
ε2 + ∆β(T ) , |ε| ≤ εA(T )

−E0(T )
2

(ε − ε0(T ))2 + ψ0(T ) , εA(T ) < ε < εM (T )

EM

2
(ε − εT )2 , ε ≥ εM (T ) .

(17)

Here ε denotes the shear strain in the layer, εM is the stress-free equilibrium strain for martensite, and EM , EA

respectively denote the linear elastic moduli for martensite and austenite. The temperature-dependent inflection
points εM (T ) and εA(T ) delineate the transition from concave parabolae, which represent unstable states, to
convex regions, which represent stable austenite and martensite phase. The austenite minimum has the height
∆β(T ) detailed in [8].

To incorporate the effects of an applied stress σ, we consider the Gibbs energy relation

G = ψ − σε. (18)

As with the analogous ferroelectric Gibbs relation (2) and ferromagnetic relation (12), the inclusion of the work
term has the effect of distorting the energy landscape in the direction of the applied force. In the absence of
thermally activated relaxation, stable equilibria are computed by enforcing the necessary condition ∂G

∂ε = 0. To
incorporate thermal activation, we consider the Boltzmann probability µ(G), given by (3), which balances the
elastic energy GV over a reference volume V with the thermal energy kT .

As detailed in [8, 14], the evolution of phase fractions, in the presence of thermal activation, is governed by
the rate laws

ẋ−(t) = pA−xA(t) − p−x−(t)

ẋ+(t) = pA+xA(t) − p+x+(t)

ẋA(t) = p−x−(t) − pA−xA(t) + p+x+(t) − pA+xA(t)

(19)

which can be reduced to
ẋ−(t) = −(p− + pA−)x−(t) − pA−x+(t) + pA−

ẋ+(t) = −(p+ + pA+)x+(t) − pA+x−(t) + pA+

(20)

through the conservation relation (16). The likelihoods pA± that austenite will transform to M±, as well as the
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likelihoods p± that M± will transform either to austenite or the other martensite variant, are given by

pA±(σ, T ) =

√
kT

2πmV 2/3

e−G(±εA,σ,T )V/kT∫ εA

−εA
e−G(ε,σ,T )V/kT dε

p±(σ, T ) =

√
kT

2πmV 2/3

e−G(±εM ,σ,T )V/kT∫ ±∞
±εM

e−G(ε,σ,T )V/kT dε

(21)

The evolution laws (19) and likelihoods (21) can be compared with their ferroelectric and ferromagnetic coun-
terparts in (6) - (8).

To compute the local average strain for the reference volume, we make the assumption that thermal strains
are small compared to mechanical strains and include only the latter component. As discussed in [8], this
assumption is valid for bulk materials but may need to be modified for certain SMA thin film geometries. Under
this assumption, the local average strains are given by

ε = 〈ε−〉x− + 〈ε+〉x+ + 〈εA〉xA (22)

where the expected strains due to M± and A variants are given by

〈ε−〉 =
∫ −εM

−∞
εµ(G(ε, σ, T )) dε

〈ε+〉 =
∫ ∞

εM

εµ(G(ε, σ, T )) dε

〈εA〉 =
∫ εA

−εA

εµ(G(ε, σ, T )) dε.

(23)

The probability µ(G) of obtaining the energy G is specified by the Boltzmann relation (3).
Because phase transitions in shape memory alloys can be driven by temperature, it is also necessary to quantify

the temperature as a function of applied current I, convection to surrounding media, and heat transduction during
phase transitions. As detailed in [8, 11, 14], a balance of energy yields the differential equation

c̄(t)Ṫ (t) = −hcΩ(T − TE(t)) −
∑
α

hαẋα + J(t) (24)

where c̄(t) =
∑

α cαxα(t) quantifies the average, phase-dependent specific heat. The first term on the right hand
side quantifies the exchange of heat with surrounding media. Here hc,Ω and TE respectively denote a convection
coefficient, the SMA surface to volume ratio, and the temperature of the surrounding environment. The second
right hand side term quantifies the latent heats of phase transitions where hα denotes specific enthalpies (see
[8, 14] for details regarding the formulation of hα). Finally, the expression

J(t) = ρ̄e(t)
I2(t)
ζ2

, (25)

where ρ̄e(t) and ζ2 respectively denote the average, phase-dependent electrical resistivity and SMA cross-sectional
area, quantifies heat generation via Joule heating due to an applied current I(t).

In combination, the coupled dynamic relations (22) and (24) characterize both stress driven and thermally
activated strains at the lattice level in shape memory compounds. For homogeneous, single crystal compounds
with constant effective stresses, these relations apply throughout the material and hence provide macroscopic
relations quantifying the constitutive behavior of the material. The extensions required to characterize the
constitutive nonlinearities and hysteresis inherent to nonhomogeneous, polycrystalline SMA compounds are
addressed in the next section.
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3. Macroscopic Models for Polycrystalline Compounds

The ferroic models in Section 2 were derived at the lattice level and hence are mesoscopic in nature. For single
crystal, homogeneous compounds, these relations hold uniformly throughout the material and hence can be used
to model the macroscopic constitutive behavior of the materials. Stochastic homogenization techniques used to
extend this theory to nonhomogeneous polycrystalline compounds with variable effective fields are summarized
in this section.

We consider first the construction of macroscopic models for ferroelectric compounds. As detailed in [20, 21],
variations in the lattice can be incorporated by assuming that local coercive fields Ec are manifestations of an
underlying lognormal distribution with density

f(Ec) = c1e
−[ln(Ec/Ec)/2c]2 , (26)

to enforce the requirement that Ec ≥ 0, whereas variable effective fields are assumed to be normally distributed
about the applied field with the density

f̃(Ee) = c2e
−(E−Ee)2/b. (27)

The macroscopic polarization model combines the densities (26) and (27) to yield

[P (E)](t) = C

∫ ∞

0

∫ ∞

−∞
[P (Ee + E,Ec, ξ)](t)e−E2

e/be−[ln(Ec/Ec)/2c]2dEedEc (28)

where P is specified by (9) or (10) and ξ denotes the initial distribution of dipoles. Details regarding the
approximation of the integrals and implementation of the model are provided in [20, 21].

The development of a macroscopic magnetization model follows in an analogous manner. In this case, we
assume that magnetic coercive and effective fields can be characterized by the densities

f(Hc) = c1e
−[ln(Hc/Hc)/2c]2

f̃(He) = c2e
−(H−He)2/b.

(29)

Alternatively, one can employ a truncated normal distribution to characterize variations in Hc as considered in
[15]. The resulting macroscopic magnetization is quantified by the relation

[M(H)](t) = C

∫ ∞

0

∫ ∞

−∞
[M(He + H,Hc, ξ)](t)e−H2

e /be−[ln(Hc/Hc)/2c]2dHedHc (30)

where the kernel M is given by (13) or (15).
To extend the local average strain relation (22) to nonhomogeneous, polycrystalline ferroelastic compounds,

we consider variations in the relative stress

δ(T ) = σA(T ) − σM (T ) (31)

as well as variations in the effective stress σe. Under the assumption that δ and σe are lognormally and normally
distributed, this yields the macroscopic relation

[ε(σ, T )](t) = C

∫ ∞

0

∫ ∞

−∞
[ε(σe + σ, δ, ξ)](t)e−σ2

e/be−[ln(δ/δ)/2c]2dσedδ (32)

quantifying the strains due to input stresses and evolving temperatures.
A comparison of the ferroelectric model (28), ferromagnetic model (30) and ferroelastic model (32) reveals

that all are comprised of coercive, relative and effective fields and stresses. The piecewise quadratic relations
used to quantify the Helmholtz and Gibbs energies at the lattice level also yield highly analogous expressions
for the local average polarization P , magnetization M , and strain ε subsequently employed to construct the
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macroscopic relations (28), (30) and (32). In combination, this produces a unified modeling methodology for
characterizing hysteresis and constitutive nonlinearities in a broad range of ferroelectric, ferromagnetic and
ferroelastic compounds.

4. Experimental Validation

To illustrate the performance of the unified modeling methodology, we consider the characterization of hys-
teresis and constitutive nonlinearities in PZT5A, Terfenol-D, and thin film SMA. In all cases, quasistatic drive
conditions were employed to minimize rate dependencies in the PZT and SMA and eddy current losses in the
Terfenol-D.

4.1. Experimental Validation for PZT5A

To illustrate the performance and prediction capabilities of the ferroelectric model, we consider the charac-
terization of hysteresis and constitutive nonlinearities for a rectangular 1.7 cm × 0.635 cm × 0.0381 cm PZT5A
wafer. The data was collected at 0.2 Hz for an input field having a maximum value of 2.36 × 106 V/m. We
note that this field corresponds to a maximum input voltage of 600 V with the field and voltage related by the
approximate expression E = V/t where t = 3.81 × 10−4 m denotes the thickness of the wafer.

The parameters in the model were estimated through a least squares fit to the data yielding the values
PR = 0.04 C/m2, Ec = 0.866010 × 106 V/m, η = 9.5 × 108, c = 0.4272 V2/m2, b = 1.9754 × 1011 V2/m2

and C = 7.9926 × 10−12. The model fit obtained with these values is compared with the experimental data in
Figure 3. It is observed that the model accurately characterizes the observed hysteresis and saturation effects for
this compound. Furthermore, with composite Gaussian quadrature routines used to approximate the integrals
in (28), the algorithm is highly efficient to implement with full characterization requiring on the order of seconds
on a workstation. Finally, examples illustrating the predictive capabilities of the model for PZT5H and PZT4
compounds as well as numerical examples illustrating that the model guarantees closure of biased minor loops
can be found in [21].

4.2. Experimental Validation for Terfenol-D

To illustrate the performance of the magnetization model, we consider the characterization of the H-M
relation measured in a Terfenol-D transducer of the type depicted in Figure 4a. Details regarding the transducer
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Figure 3. Model fit to 600 V data from a rectangular PZT5A wafer.

9



����������������������������������
����������������������������������
����������������������������������

����������������������������������
����������������������������������
����������������������������������

����������������������������������
����������������������������������
����������������������������������

����������������������������������
����������������������������������
����������������������������������

�����������������������������������������
�����������������������������������������
�����������������������������������������
�����������������������������������������

��
��
��
��
��
��

��
��
��
��
��
��

�������������������������������
�������������������������������
�������������������������������
�������������������������������

�������������������������������
�������������������������������
�������������������������������
�������������������������������

�������������������������������
�������������������������������
�������������������������������
�������������������������������

�������������������������������
�������������������������������
�������������������������������
�������������������������������

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��

Spring
Washer

Compression
Bolt

Wound Wire Solenoid

Direction of
Rod Motion

End Mass

Terfenol−D  Rod

Permanent Magnet

(a)

−1 −0.5 0 0.5 1

x 10
5

−6

−4

−2

0

2

4

6
x 10

5

Field (A/m)

M
ag

ne
tiz

at
io

n 
(A

/m
)

Data 
Model

(b)
Figure 4. (a) Prototypical Terfenol-D transducer. (b) Experimental data (– – –) from [6] and model response
(——).

construction and manner through which the experimental data was collected are provided in [6]. We consider
here data collected at 1 Hz with a prestress of 1 ksi (6.9 MPa). Two input levels yields the moderate and high
drive level magnetization data plotted in Figure 4b.

As detailed in [15], a least squares fit to the high drive level data was used to obtain the parameter values
MR = 3.7 × 104 A/m, η = 14, Hc = 300 A/m, b = 1 × 108 A2/m2, b̄ = 8 × 108 A2/m2, C = 2.52 × 10−8. We
note that a truncated normal distribution was employed to model the coercive field distribution rather than the
lognormal density (29). The resulting model fit at the high drive level and model prediction at the moderate drive
level are plotted with the data in Figure 4b. It is observed that the model accurately quantifies the coercive,
remanent, and saturation behavior of the H-M relation. The primary discrepancy between the model prediction
and data occurs at low field levels were the data exhibits a change in concavity which is typically attributed to
crystalline anisotropies inherent to Terfenol-D. However, the general accuracy provided by the model is sufficient
for material characterization, device design, and model-based control design.

4.3. Experimental Validation for SMA

The final example illustrates the characterization of a 8 µm thick NiTi film constructed at the UCLA Active
Materials Laboratory. Details regarding the experimental conditions, parameter estimation, and implementation
of the model can be found in [8, 23].

The model (32) with the parameter values EM = 14.0 GPa, EA = 22.4 GPa, εT = 0.0233, τ = 1.7 ms,
ρ = 6450 kg m−3, cV A = cV M = 837.3 J kg−1 K−1, λA = 11.0 × 10−6 K−1 and λM = 6.6 × 10−6 K−1 is
compared with quasistatic superelastic hysteresis data in Figure 5. It is observed that the model accurately
quantifies both the leading curve and the asymmetric unloading curve as the stress is released. This provides an
initial demonstration of the accuracy and efficiency of the model for characterizing SMA thin films.

5. Concluding Remarks

The theory presented here provides a unified methodology for quantifying hysteresis and constitutive nonlin-
earities inherent to a broad range of ferroic compounds including ferroelectric, ferromagnetic and ferroelastic ma-
terials. In the first step of the development, Helmholtz and Gibbs energy relations are combined with Boltzmann
theory to provide lattice level, or mesoscopic, models which can be used to quantify hysteresis in homogeneous,
single crystal compounds. Stochastic homogenization techniques are then employed to construct macroscopic
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Figure 5. Experimental thin film NiTi data and model fit provided by (32).

models which incorporate the effects of polycrystallinity, material nonhomogeneities, and nonuniform effective
fields.

Due to its generality, it is not surprising that the methodology bears certain similarities to Preisach models
and it is illustrated in [19] that the free energy framework actually provides an energy basis for Preisach models.
However, there are two important differences between the Preisach theory and that presented here. First, the
free energy theory provides models having a small number of parameters, many of which can be estimated
using physical properties of the data. This is in contrast to Preisach models which can have a large number
of nonphysical parameters. Secondly, frequency and temperature effects are incorporated in the basis for the
present model as compared with the necessity of utilizing vector-valued densities or parameters in Preisach
models. Both properties augment the efficiency of the free energy framework for material characterization and
subsequent model-based control design.
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