
ABSTRACT 

HAFIZ, FAEZA. Stochastic Optimization of Energy Management for Residential Systems with 

Distributed Energy Resources (Under the direction of Dr. Iqbal Husain and Dr. David Lubkeman). 

 

This dissertation presents energy management and capacity sizing strategies for residential 

and community based distributed systems with PV-panel, energy storage, and plug-in electric 

vehicle (PEV). It also includes demand response (DR) along with the energy management of the 

PV- storage hybrid unit and PEV storages to help the grid for distribution service restoration (DSR) 

following a natural disaster.   

For residential systems, PV panels and energy storage integration requires proper sizing 

for homeowners to get adequate economic benefits. In this research, a PV-panel and storage sizing 

method following deterministic energy management based on dynamic programming (DP) and net 

present value (NPV) has been developed. A method of load variance control is also considered to 

help the electricity service providers to avoid “duck-belly” curve type problems. As DP faces the 

‘curse of dimensionality’ problem, dynamic programming successive algorithm (DPSA) is applied 

in this work.  

Load and solar generation always deviate from the forecasted values in the real scenario. 

Uncertainty consideration and correlation between them need to be considered for energy 

management of the storage devices in the PV-storage hybrid unit and the PEV. In this research, 

multi-stage stochastic models are formulated with the objective of daily electricity purchase cost 

minimization including solar generation and load demand uncertainties. These models are solved 

with stochastic dual dynamic programming (SDDP).  After consideration of standalone control of 

the PV-storage and PEV-storage units for a residential application, a novel coordinated energy 

management method is formulated in this work. For this method, both the load and solar generation 



uncertainties and correlation between them are considered for optimal charge/discharge scheduling 

of PV-storage and PEV-storage to minimize the daily electricity purchase cost.  

From the literature review, it has been found that a central storage is favorable instead of 

individual energy storage for a solar deployed community. However, the issues of location and the 

ownership of the central energy storage were not considered. In this work, a novel framework for 

central energy management of storages in a solar integrated community is proposed to avoid the 

issues. In this proposed framework, individual energy storages are controlled through a shared 

energy management (SEM) strategy where uncertainties of load and solar generation are 

considered.  

With the energy management of the storage devices, DR is also included to improve the 

grid resiliency. In this research, DR is applied for DSR using the microgrid concept. With the help 

of three-step optimization method, the proposed framework helps the grid to restore power. This 

proposed method also helps to find out the optimal location for applying DR based control in a 

distribution system. 

To implement the SDDP based optimal strategy in a real-time system, this research also 

focuses on an online based energy management algorithm for PV-storage hybrid unit control at 

the residential level. Deep learning method is used for load and solar forecasting with rolling 

horizon to reduce the variance. The forecasted values are applied to obtain the optimal decision 

from SDDP considering uncertainties after a certain interval. Utilizing this optimal decision, a 

rule-based method is developed to obtain the dynamic energy storage charge/discharge command.  
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CHAPTER 1 

PV Generation and Energy Storage in Power System 

 

1.1. Solar Generation Deployment and Challenges to the Grid 

There is an overarching effort around the world to integrate more renewable generation 

sources, such as hydro, solar, wind, geothermal, and wave energy resources, into the power system 

to meet the increased global demand for energy. Among these renewable resources, solar 

photovoltaic (PV) generation has gained much popularity due to the rapid cost reduction of PV 

panels, easier accessibility, and reduction of carbon emissions. Rapid cost-reduction of PV over 

the last decade has made utility-scale PV installations commercially viable and this trend is 

expected to continue in the long term. According to the Solar Energy Industry Association (SEIA), 

2,227 MW rooftop solar was installed in 2017 in the U.S. Based on the research from the National 

Renewable Energy Laboratory (NREL), rooftop solar could produce almost 40% of our required 

electricity usage.  Figure 1.1 presents the additional part of electricity sales that could be met 

with rooftop solar electricity.  It illustrates that 26 states saw an increase of more than 10%, 

a further 16 states saw an increase of 0-10%. Estimates for just 4 states fell or remained the 

same [1]. The research report stated that there are over 8 billion square meters of suitable roofs in 

the USA. It is possible to generate about 1,400 TWh of electricity each year and two-thirds of this 

amount would come from small residential buildings. But excess generation on a distribution 

feeder from such installation has severe consequences for the existing infrastructure. The 

conventional distribution network and protection system are not capable of handling power 

flowing upstream from distributed generation resources. As the penetration level of such 

distributed generation sources grows, the conventional unidirectional distribution system is 
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expected to face quite a number of operational, structural and service challenges, which are 

elaborated in the following subsections. 

 

Figure 1.1. Potential change of rooftop solar from the year 2008 – 2016 [1]. 

 

1.1.1. Impacts on System Operation 

(i) Voltage variability  

 For steady-state operation, typically voltage regulation at different points of the 

distribution network is achieved with the help of coordination among existing voltage regulators 

and by switching capacitor banks. However, PV output is directly impacted by solar irradiance. 

Due to changing weather conditions and variable cloud shadows, PV generation introduces huge 

variability in distribution feeders which consequently makes the task complex for voltage 

regulation [2], [3], [4].  

(ii) Harmonics injection 

To interface the DC output of PV to the AC grid, power electronic converters are used in 

current control mode. Typical solar inverters are switched at few kHz to tens of kHz which 

essentially injects a finite amount of switching harmonics into the grid. Moreover, these inverters 
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may also inject near-synchronous, e.g. 3rd or 5th , harmonics. In the worst case, they may lead to 

harmonic resonances at higher but sub-switching frequencies, i.e. up to a few kHz. These generated 

harmonics deteriorates power quality, reliability, and robustness of the system [5]. High level of 

harmonics injection may even disrupt the stable operation of the whole system [6].  

(iii) Loss of system inertia 

PV generation is non-dispatchable and it also does not provide inertial response to the grid 

like a conventional synchronous generator. Therefore, a higher level of PV penetration essentially 

implies a loss of system inertia. In [7], the impact of reduced inertia due to high PV penetration on 

the steady-state and transient stability of power system was addressed. The presence of solar PV 

generation also affects the wide-area behavior of a system, i.e. intra-area and inter-area modes of 

oscillation [8].  

(iv) Phase imbalance 

Most residential PV installations are interfaced with single phase [9]. Variability among 

the generation of different units as well as the imperfect distribution of such generation resources 

among different phases may lead to voltage imbalance among phases[10].  

(v) Increased line loss 

 Distributed PV generation brings the source closer to the load, seemingly which should 

reduce the line losses. However, reverse power flowing upstream due to excess PV generation may 

offset the loss-reduction or even increase the loss [11]. 

1.1.2. Impacts on the Power System Structure  

The introduction of large-scale photovoltaic power generation converts the distribution 

grid from traditional single-supply grid to multiport grid. It changes the direction of the fault 

current that can affect the feeder protection system. It may lead to malfunction of circuit breakers, 
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loss of selectivity of the fuse, change in the operating characteristics of relay protection, loss of 

ability to quickly restore transient faults of automatic recloser, and impact on the inverter or other 

equipments of the photovoltaic grid-connected system  [12], [13]. 

1.1.3. Impacts on Services 

(i) Introduction of “Duck-belly” curve 

PV generation reaches its peak at midday, whereas total demand is the lowest at that time. 

As a result, electricity demand drops that constitutes the belly of the so-called “duck curve”, e.g. 

CAISO duck curve shown in Figure 1.2.  In the late afternoon, most working people head back 

home. A steep ramp-up in electricity demand starts then and extends till evening. Moreover, PV 

generation drops rapidly as the sun goes down. This opposite trend in generation and demand, 

makes the situation exceedingly difficult for the electricity service providers to maintain stability 

by increasing the power output of dispatchable generation sources at a very rapid rate [14]. 

Although curtailment of PV generation offers a relatively simple solution, the sub-optimal 

operation of PV fails to leverage the full potential of PV generation [15]. 

(ii) Impact on ramp-rate limited generation sources 

Fast and frequent variation of PV output due to transient cloud shadows lead to 

uncertainties in supply and demand side, which pose new challenges for utilities and system 

operators. The presence of variable solar generation can cause coal or natural gas-fired plants to 

turn on and off more often or to change their output levels more frequently. This frequent change 

may lead to increased wear-and-tear of the units and decrease in efficiency, particularly from 

thermal stresses on equipment [16]. 
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Figure 1.2. CAISO Duck-Curve [14]. 

 

1.2. Storage Deployment: A friend to the Smart Grid 

The issues discussed earlier starts to arise if PV penetration level scaled up above a specific 

level. To avoid these issues, restricting new PV installation and curtailment of PV generation from 

installed units are probable solution. If the penetration level of PV rises above certain level, 

curtailment of PV generation becomes mandatory for the utility companies to maintain grid 

reliability and supply-demand balance [17]. This curtailment reduces the acceptance and 

popularity of PV installation. Therefore, raising PV penetration level without generation-

curtailment as well as without compromising reliable grid operation necessitates energy storage 

technology to play a grid-friendly role. 

Recent deployment of energy storage in power system has drawn a lot of attention due to 

the introduction of distributed energy resources in the system. Rapid reduction of production costs 

of lithium-ion battery technology leads to the increased utilization of storage which is shown in 

Figure 1.3 (a) based on the battery surveys by Bloomberg new energy finance [18].  According to 

Navigant Research, the expectation of residential and community storage deployment will reach 

14,000 MW within the year of 2024 in U.S.A, which is shown in Figure 1.3 (b). Energy storages 
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are considered to be integrated at the generation, transmission, distribution, and residential levels, 

shown in Figure 1.3 (c), to address different problems. The application of energy storage to solve 

different problems at the three different levels of the power system are discussed below. 

 
 

(a) (b) 
Generation

Storage

Transmission Distribution Load

Storage Storage Storage

 

(c) 

Figure 1.3.  (a) Decrease of storage production cost [18], (b) storage deployment in different 

levels of power system, and (c) Predicted Energy storage growth in U.S.A in different levels 

(source: Navigant Research). 

 

(i) Generation Level 

- To integrate renewable energy based power plant into the system, storage plays a 

significant role. Since most renewable energy resources are non-dispatchable, energy 

storage can help to maintain grid transient stability by providing the required amount of 

power and absorbing excess generated power [19].  

- Base-load generation plants in a system are required to provide fixed outputs. If they fail 

to provide these fixed outputs, then standby generators need to fire up to maintain the 
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balance of the grid. However, storage systems based on battery offer a higher ramp-rate 

which can improve the frequency regulation during transients and black-start [20], [21].  

- Hourly charge/discharge schedule of the battery can resolve unit commitment problem for 

short-term [22], [23].  

- To stabilize the electricity market price, energy storage can help utility companies by 

maintaining optimal operation point and reduce the usage of fossil fuel-based power plants 

[24].  

- Energy storage reduces the need for peak generation for the sudden ramp of “duck-curve”. 

It can help to avoid the unnecessary cost burdens to the utility companies [25] and improve 

ancillary services by reducing penalties to the generation companies [26].  

(ii) Transmission and Distribution Level 

- Instead of upgrading the overall power transmission and distribution system to 

accommodate more distributed energy resources, energy storage deployment can benefit 

utilities or independent system operators to reduce electricity delivery-related cost [27].  

- Voltage violation due to the integration of renewable energy in power grids can be 

regulated with the help of energy storage [28]. 

- Inclusion of an energy storage system can be a solution for providing inertial response and 

primary frequency regulation for large-scale integration of renewable energy sources in 

power system [29].  

- Congestion in transmission systems occurs when the demand for transmission capacity 

exceeds the transmission network capability. Congested transmission lines may lead to a 

violation of network security limits. To avoid transmission system congestion, energy 

storage might be a helpful solution based on [30].  
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(iii) Community and Household Level 

- At the load level, storage can be used to provide backup if the grid connection is lost.  

- Energy storage can reduce the costs of electricity bill for the customer by using the stored 

energy during peak hours and absorbing the energy during off-peak hours [31].   

- Energy storage allows a market-driven electricity dispatch, fostering prosumers to secure 

their benefits and creates a cost-sharing scheme in the power system [32], [33]. 

- Community storage can be used in the microgrid for load smoothing and peak shaving [34], 

[35], [36].   

1.3. Existing Solutions for Optimal Control and Sizing of Storage 

For optimal control and storage sizing, a comprehensive literature review of the current 

research on energy storage gives us motivation and guidelines for research on energy storage 

integration into the power system. The existing optimal control and sizing methods can be divided 

into three major methods, which are discussed in the following subsections. 

1.3.1. Analytical Methods 

The analytical methods were based on historical load and solar demand curves or on statistical 

data analysis [35], [37], [38]. It was used generally for the determination of the optimal size of the 

energy storage in order to balance between load and renewable energy generation [39], [40].  This 

method did not consider any constraint. In [41], the authors considered that charging power for 

energy storage is the difference between PV output and load. Energy storage discharge is 

commanded to cover the consumption when the PV production is not available for the islanded 

grid. In a subsequent step, to store the difference between PV output and load, optimal energy 

storage capacity was calculated. In [42], the size of energy storage for backup supply was 
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determined based on the outage duration statistics and targeted reliability level. For the chosen 

level of peak shaving, energy storage size was obtained from real load data in [43].  

1.3.2. Quantitative Methods   

Quantitative methods emphasize objective measurement through mathematical 

formulation of a problem and using computational techniques. The quantitative methods applied 

in the existing literature are discussed below.   

(i) Linear Programming (LP)  

In [44], sequential Monte Carlo simulation was used to create reliable data and then LP 

was considered for distributed generation and energy storage dispatch to determine feasible power 

flow. To improve unit commitment problem for an isolated system with additional pumped storage 

and system dynamics constraints, the authors in [45] used LP methods. Mixed integer LP (MILP) 

was used to solve PV panel and storage sizing problem in [46]. Simulation time was divided into 

two off-peak and peak periods in [47]. During the off-peak period, storage was stated as load and 

it releases available energy during peak hour. For a distribution system including PV generation, 

storage size was optimized based on LP to keep voltage constraints within predefined limits in 

[48]. The main disadvantage of this method is the need for problem linearization, which may cause 

the loss of some problem characteristics. Additionally, this method requires the use of a specific 

mathematical solver.  

(ii) Convex Optimization 

System cost minimization based on convex optimization approaches have been reported in 

the literature for smart grid residential users equipped with local solar PV power generation and 

energy storages [49], [50]. The authors did not consider the uncertainty in PV generation. Mixed 

integer second-order cone programming (SOCP) formulation was used to solve multi-objective 
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optimization in [50], where energy storage investment cost and weighted operational costs were 

minimized.  The results suggested that for a distribution system with highly distributed energy 

resources, network operation could be controlled with the placement of a few optimally sized 

energy storages. The disadvantage of this method is that it is only applicable to nonlinear objective 

functions. 

(iii) Dynamic Programming (DP):  

Dynamic programming was applied to maximize fuel-cost savings and benefits due to 

energy pricing differences between peak and off-peak periods. In [51], [52] and [53], this method 

was considered for optimal storage capacity sizing and charge-discharge pattern control. The 

advantage of DP is that it is applicable to all of the optimization problems (LP and Convex 

problems) and ensures global optimality. The main drawback of DP is the need to discretize the 

system states into steps. 

  (iv) Stochastic Programming (SP) 

A SP method that minimizes energy storage investment and network operational cost, has 

been reported in [54]. The algorithm solves DC lossless optimal power flow (OPF) to determine 

energy storage size, location, and optimal dispatch. For stochastic cases, the discretization of the 

state space and the different stochastic scenario representations contribute to the ‘curse of 

dimensionality’ [55], [56]  and to the intractability of real-sized models. 

(v) Approximate Dynamic Programming (ADP) 

 ADP is a broad umbrella of modeling and algorithmic strategies to solve problems which 

are large, complex and stochastic. It is most often presented as a method for overcoming the classic 

‘curse of dimensionality’ in Stochastic Dynamic Programming (SDP) problem. To minimize the 
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cost of electricity purchase, ADP is utilized in [57] and [58]. The main disadvantages of these 

methods are the high data storage requirement and computation time to calculate the optimal path.  

1.3.3. Heuristic Methods 

Heuristic methods are considered for nonlinear objective functions or constraints. They are 

applied to the optimization problems where quantifying the solution could be difficult. These 

methods require long computation time because they need to run the program for numerous 

iterations until the optimal solution is achieved. Different types of heuristic methods were used in 

literature for optimal sizing of storage, which are discussed below. 

Genetic Algorithm (GA): GA and sequential quadratic programming (SQP) were used in 

[59] to find the optimal size and location of distributed generators, energy storages, and capacitors 

in a distribution system considering reactive energy market. GA was used for optimal size and 

location of units and OPF was solved with SQP to determine optimal dispatch.  

Particle swarm optimization (PSO): PSO based simulation was applied to determine 

optimal capacity of wind generators and battery in a smart household in [60]. Fuzzy based PSO 

was used in [61] to minimize energy storage cost, power loss, and electricity procurement cost in 

a distribution system.  

1.4. PV Generation and Energy Storage at Residential Level 

Above discussed methods were employed for different levels of the power system. One of 

the primary concerns of this research is to consider energy management of storage at residential 

level. From the literature review, it is found out that different controlling methods of energy storage 

for different objectives in residential level were considered [62], [63]. The control of PV-panel 

and storage were discussed in [56] where the probabilistic method was applied based on the 

historical data of load to minimize the back feeding of energy. For this work, a rule-based control 
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strategy is applied and stochastic nature of solar or demand is not considered. In [50], a near-

optimal storage control algorithm was developed by solving a convex optimization problem at the 

beginning of each day to control the PV-storage hybrid unit. Reinforcement learning technique 

was used then to determine the amount of residue energy in the energy storage module at the end 

of each day in a billing period. This method requires a huge memory and computation resource to 

go through the algorithm. To prevent overvoltage issue, active power curtailment of roof-top grid-

connected PV was considered in [17] where no storage deployment was considered. None of these 

works considered to control the energy storage for load variance or to reduce the electricity 

purchase cost daily for optimal sizing problem of PV-panel and storage considering the impact of 

changeable parameters like the cost of storage and ToU rate. 

1.5. Plug-in Electric Vehicle (PEV): Introduction to a New Source of Storage 

Similar to the PV, the impact of PEV loads on the existing power grids have drawn a lot of 

attention recently due to its low carbon emission criteria [64]. The statistics based on Navigant 

research, which is depicted in Figure 1.4, shows that the popularity of PEV in the USA is increasing 

day by day. Based on [65], uncoordinated PEV charging in residential level will significantly 

increase the peak load that will affect the electricity distribution structure. The aggregated PEV 

charging load curve in residential level for level 1 and level 2 charging [66], is expected to be like 

Figure 1.5. Thus, the increase in this new storage in the power system can be taken advantage of to 

have a positive impact on the power system. 

PEVs have bidirectional power converters which allow them not only to act as load but also 

as generators. Therefore, the vehicle-to-grid (V2G) power flow option can be used to help improve 

the efficiency and reliability of the grid [67], [68].  It aids to reduce the overall cost of energy usage 

and carbon emissions [69]. However, to achieve these goals, the charging/discharging strategy of 
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the PEVs needs to be optimally controlled. The uncoordinated charging on distribution networks 

may cause unnecessary power losses, voltage deviation, and load variance. Coordinated charging 

strategies can help to mitigate these negative impacts [70], [71]. In [72], estimation of the distributed 

algorithm (EDA) is applied to maintain voltage constraint in the grid and lower the cost of charging 

of large scale of PEV in the parking deck. Other works also have considered the energy management 

of PEVs to control fuel consumption [73] and cost-effective charging strategy in charging station 

[74]  which is based on PSO and DP.  

 
 

Figure 1.4. Annual global EV sales in U.S.A. 

(Source: Navigant Research). 

Figure 1.5. Expected aggregated electricity 

load for PEV in a typical weekday in California 

by the year 2025 [66]. 

 

PEVs are also used to solve some issues that occur due to the penetration of renewable 

energy resources. To mitigate the voltage rise in a distribution network with a high penetration level 

of PV resources due to the reverse power flow and to compensate the voltage drop resulting from 

the peak load, a combined method using the battery energy management of PEVs and the active 

power curtailment of PV arrays is proposed in [75]. An optimization model for determining the 

optimal mix of solar-based distributed generation and storage units, and optimal charging prices for 

PEVs without violating power system constraints is presented in [76]. These works did not consider 

the uncertainty of PV generation and load profiles that occur due to changes in weather and owners’ 
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usage [77]. In [78], the non-Gaussian uncertainty of wind power and PEV uncertainty are 

considered and a hierarchical stochastic control scheme for the coordination of PEV charging and 

wind power in a microgrid is presented to achieve the power balance between supply and demand 

in the microgrid. Majority of these existing research and solutions are based on distributed 

networks. Most of them require large communication system for coordination and huge 

computational resources. However, if a coordination in a smart household system is maintained 

through a simple and decentralized local control, then many of these issues can be resolved.    

1.5.1. PEV at Residential Level  

In [79], the control of PEV and home energy scheduling was considered jointly to minimize 

the electricity cost considering users comfort preferences. In this work, the problem is simplified 

to solve through LP method. The uncertainty in load demand is handled with model predictive 

control (MPC) over time horizon. In [80], optimal charging strategy for a household with two 

PEVs was developed to reduce load variance in a household. In [81], the optimization-based 

scheme was defined to manage household load outages in the presence of PEV. In [82], charging 

the storage through DP is applied to reduce the electricity purchase cost. In this work, vehicle to 

grid electricity flow was developed considering the impact of the lifetime of PEV storage. None 

of these works showed the charging/discharging schedule of PEV considering load demand 

uncertainties.    

1.5.2. Coordinated Control of PV-Storage Hybrid Unit and PEV-Storage 

Based on [83], PV-based storage and PEV deployed household are expected to increase 

within the next decade. Both types of storage devices can be utilized using a coordinated control 

algorithm at the residential level. The coordinated control of the two storage devices can be used 

to provide benefits to the customer giving them independence. From customers’ perspective, when 
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these two storages are used in a household, they can be coordinated optimally to enhance the proper 

utilization of the system resources. But to properly control the storage devices based on ToU rates, 

the PV generation and the household electricity demand are required to be known beforehand. In 

[84], PEV control to utilize solar generation in residential level was proposed to reduce electricity 

purchase cost. But PEV might not be present in the day-time during solar generation. Thus, energy 

storage is required to utilize solar generation.  In [85], coordinated control of PEV and PV-panel 

energy storage was considered to reduce electricity purchase cost, load shift, and peak shaving.  

These works did not consider the uncertainties of PV generation and load profile which is 

discussed in [77]. These uncertainties occur due to changes in weather and owners’ usage patterns. 

In [86], uncertainty of PEV mobility was included to utilize generated solar energy to reduce 

electricity purchase. In [87], variability of renewable generation and load demand were considered 

to minimize the operation cost for large-scale energy scheduling problem. This research was 

conducted to control PEV fleet. But it requires an extensive and effective communication system 

to implement. There are also privacy and preference concerns of owners. In [88], it was shown 

that both the load demand and solar generation change due to the variation of weather and they are 

correlated with each other. Thus, it is necessary to consider the stochasticity of PV generation and 

electricity demand and the correlation between them in order to have a better formulation of the 

problem. The coordination between the PV based storage and PEV storage is also necessary if 

both of them are present in household to improve the solar generation usage and reduce the 

electricity purchase cost. These two storages are preferred to be controlled from residential level 

where there is no issue like privacy and preference violation or effective communication system. 
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1.6. Energy Sharing in a Community    

Energy sharing at the community level has also gained attention recently. The significance 

of community storage in microgrid for load smoothing and peak shaving based on model predictive 

control for ToU rate and hourly basis with the help of community storage was discussed in [34]. 

A two-level hierarchical optimization method for microgrid community to minimize operational 

costs in a smart grid environment was proposed in [89] based on deterministic load and renewable 

generation. A modified auction based joint energy storage ownership scheme was suggested for a 

number of residential units to determine the fraction of their energy storage capacity that they want 

to share with the community in order to assist them in storing electricity considering the auction 

price [90] for short period of time. A dynamic non-cooperative repeated game with Pareto efficient 

pure strategies was adopted in [91] considering a decentralized approach to determine optimal 

energy trading amounts for the next day among the users who allowed to utilize their surplus 

energy from their owned PV generation with the grid and the community energy storage device. 

To overcome the shortcoming of an unbalanced allocation of one-phase photovoltaic (PV) units, 

a dynamic mitigation approach using community energy storage was proposed in [92]. A 

charge/discharge control strategy was developed that will continuously balance and dynamically 

adjust the power exchange with the grid in real time, and mitigate the neutral current and neutral 

voltage rise. In [93], an online algorithm based on the Lyapunov optimization was proposed for 

energy sharing among residents in a cooperative community by exploiting the dynamics of 

electricity price, and then the charging and discharging behaviors of energy storages are 

determined. A revenue division algorithm based on the Nash bargaining theory was also performed 

to fairly share the revenue among residents. In [94], capacity allocation from a central storage was 

considered for some time interval based on the aggregator-defined price. These studies did not 
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consider the energy storage sizing of the community storage which was obtained in  [95]. In [96], 

a central community energy storage sizing method was proposed to help the distribution system 

operators to maintain distribution network’s reliability and flexibility. In [97], the remaining power 

curve associated with the local generation and the uncertainties related to PV output and load 

consumption was considered to get rid of overvoltage problem. But these works did not include 

the uncertainty on PV generation and load demand and the comparison between the individual and 

community-owned storage. To optimally size the storage device taking into account the 

uncertainty introduced by wind power forecast errors, a two-stage stochastic programming was 

employed in [98], [99]. The uncertainty on renewable generation was considered in these works, 

but demand uncertainty was not considered. All of these methods considered centralized 

community storage for which we need to accommodate someplace. There is also a question about 

the ownership of the storage. The consideration of sharing storages of the houses in a community 

can resolve this issue. The impact on the sizing for shared storage case on the residential level is 

also an important factor to consider.  

1.7. Demand Response: A Potential Option for Distribution Service Restoration  

Demand response (DR) program in residential systems is considered as another potential 

option for grid modernization now-a-days. In DR, sensors can perceive peak load and utilize 

automatic switches to reduce the possibility of overload and power failure as shown in Figure 1.6. 

Advanced metering infrastructure expands the range of time-rate and direct load control (DLC) 

based DR program. Smart home energy management (HEM) can also make it easier for consumers 

to alter their behavior and reduce peak period consumption by controlling the smart appliances such 

as PV-storage hybrid unit, PEVs, air conditioners, washer-dryers etc. Generally, DR is utilized to 
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save costs for electricity service providers through reductions in peak demand and the ability to 

defer construction of new power plants and power delivery systems.  

 

Figure 1.6. Peak shaving and valley filling through DR. 

 

DR can serve various objectives which were reported in [100]. An intelligent DR based 

residential load management system was proposed in [101] for consumers to attain a reduction in 

electricity bill and maintain the total load under maximum demand limit by scheduling controllable 

appliances. A price-based DR of aggregated thermostatically controlled load for load frequency 

control was suggested in [102]. In [103] and [104], DR and battery storage coordination for load 

smoothing service and reduction of electricity purchase based on time of use rate were considered, 

respectively. Similarly, social welfare maximization problem was considered in [105] by dynamic 

coordination between economic dispatch and DR considering the battery energy storage systems 

and renewable energy resources. Dynamic energy balancing cost model to handle unit commitment 

and DR were presented in [106]. DLC and load shedding were proposed to minimize the power 

outage in sudden grid load changes to reduce the peak-to-average load ratio [107]. These works did 

not consider the integration of distribution grid topology with DR which were proposed in [108] 

and [109]. In [110], a framework was proposed to use DR to provide capacity release in distribution 
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system for reliability and risk implications. But none of these works considered to include DR with 

PV- storage hybrid unit and PEV control to improve the grid resiliency during natural disasters. 

Grid resiliency is an essential feature for future smart distribution systems [111]. Many 

methods have been proposed to improve the resilience metrics by reconfiguration of the power 

system, and improvement of preparation for distribution service restoration (DSR). In the literature, 

most of the studies considered to maximize load pickup, minimize outage duration, and minimize 

number of operations for switches. Some literature suggested to utilize synchrophasors [112], 

network reconfiguration [113], [110], inclusion of distributed energy storages [114], control of 

synchronous machine modes [115], load curtailment [116] and using emergency mobile generators 

[117] during restoration to serve these purposes. Microgrids formation by leveraging distributed 

generators (DG) during restoration process are also considered in several works  [118], [119], [120]. 

In [121], a multi-time step model that can generate switching sequences for switches is introduced. 

However, these existing works in the literature did not consider the contribution of demand response 

(DR) to facilitate the restoration procedure.  

1.8. Real-time Energy Management in Hybrid Residential System 

To develop an effective and realistic way of PV-storage hybrid unit management, load and 

solar generation need to be forecasted as precisely as possible. Effective scheduling of storage will 

be possible with precise forecast [122]. Over or underestimation of load and solar generation can 

cause wrong optimization strategy [123]. In recent year, load and solar generation forecast area is 

focused on utilization of neural networks. Several machine learning algorithms such as Support 

Vector Machine (SVM) [124], Decision Trees [125], Artificial Neural Network (ANN) was used 

by the researchers for electricity demand forecasting. Neural network based tools suffer from 

various issues like slow learning rate, over-fitting, deciding optimal hyper-parameters value etc. 
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To get rid of these problems deep learning based hybrid model to forecast electricity demand were 

proposed in [126] and [127]. In [127], the load profiles were clustered through K-means algorithm 

based on seasons. It did not consider the impact of holidays and weekdays that changes the load 

pattern. It is very important for us to consider these features for effective energy management. On 

the other hand, different appliance patterns were considered as features in [126] which requires 

high memory and a lot of time for calculation.  

For real-time storage management design, some works considered the uncertainties of the 

solar generation and formulated the problem with as a Markov Decision Process (MDP) and solved 

it by DP [49]. Chance-constrained stochastic optimization was proposed to improve economic gain 

for a PV-based power plant in [128]. But most of the works have not considered load and solar 

generation uncertainties together which are considered in [129]. Though in [129], the correlation 

between the uncertain parameters was not considered which is important according to [130].  For 

real-time storage control, Lyapunov optimization technique was employed in [131], [132]. These 

works relied on asymptotic analysis (i.e., infinite time horizon), whereas our problem is based on 

the finite setting algorithm for a day. In [133], an online algorithm was proposed considering the 

finite horizon, but it did not consider the expected future costs. Expected future costs are important 

to reduce electricity consumption cost at finite receding horizon to obtain the optimal strategy, 

which was mentioned in [128]. In [134] and [135], real-time energy management problem for a 

system with two cooperative microgrids and a single microgrid system were considered to 

minimize total energy cost. In these works, the forecasted profiles were considered as fixed value 

during optimization which is not realistic.  In [87], a two-stage stochastic model was considered 

which was solved through Benders’ decomposition method. But to deploy this method in real-time 
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control strategy directly, challenges like available solar energy remain unused or unnecessary 

discharge of energy storage can be faced.  

1.9. Research Motivation and Proposed Solutions 

 Based on the above-discussed limitations, the following research objectives are focused in 

this dissertation: 

From the owner’s point of view, minimizing the cost of the overall system is the most 

important objective. Most of the works emphasized only on the sizing of the storage. But the 

optimal size of the storage-panel combination based on the household demand can optimize the 

overall system. For designing the storage-panel combination, DP based control strategy for a smart 

house that includes solar energy generation with storage is proposed in this dissertation. DP is used 

to achieve maximum savings in terms of electricity purchased from the grid by controlling the 

storage with different combinations of PV panel sizes and storage capacities. This control strategy 

is applied to load profiles of different seasons considering a different time of use (ToU) rate 

structures. The DP based results are then used to calculate net present value (NPV) and determine 

the optimal PV panel size and storage capacity combination while considering the investment cost 

for corresponding panel and storage [136]. NPV with respect to the lifetime of PV panel and 

storage is utilized in this research to calculate the optimal size of a PV-storage hybrid system [137].  

From electricity service provider’s point of view, load regulation is an important parameter 

to get rid of the ‘duck-belly curve’. Rather than considering the complex centralized control from 

utility companies which requires obtaining the information of load demand from the overall system 

for each time period, PV panel-storage and PEV can be coordinated to balance the household load 

locally. As DP faces ‘curse of dimensionality’ problem, dynamic programming successive 
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algorithm (DPSA) for load regulation of a smart household including PV panel with storage and 

PEV is applied for this multi-dimensional problem [138].  

In the real world, PV generation and load demand cannot be exactly same as the forecasted 

value due to the variation in weather and users’ preferences. Thus, a control strategy is established 

for a smart house that includes PV – storage hybrid unit to minimize the electricity purchase cost 

from the grid while considering the uncertainty in solar PV production [139]. In this control 

strategy, stochastic dual dynamic programming (SDDP) algorithm applied is applied in the context 

of stochastic PV generation. Since SDDP does not require a discretization of the state and decision 

spaces, it solves the challenge of ‘curse of dimensionality’ in SDP. SDDP constructs a piecewise 

linear approximation of the future cost function using Benders’ cuts that do not require the 

algorithm to discretize the state and decision spaces. As a result, it requires less computation time 

and memory [140]. Similar to the PV uncertainty, SDDP algorithm is applied to create a control 

strategy for charging/discharging profile of the PEV storage considering electricity demand 

uncertainty for minimizing the household daily electricity purchase costs [141]. In [142], it is 

shown that both the load demand and solar generation change due to the variation of weather and 

they are correlated with each other. Thus, it is necessary to consider the stochasticity of PV 

generation and electricity demand and the correlation between them in order to have a better 

representation of the problem. Also, coordination between the PV based storage and PEV storage 

is analyzed in this dissertation rather than controlling them individually in a smart home [143].  

Energy storage devices may not always be the economical solution for individual 

households due to their current cost. However, shared utilization of energy storage may present a 

robust alternative that can potentially add substantial benefits to the community as a whole. Shared 

energy management (SEM) not only brings economic benefits to the users but also helps to 
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improve peak shavings and PV usage compared to a system with individual PV/storage devices. 

Thus, on the next stage of this work, the benefits of SEM considering the uncertainties both on 

load demand and PV generation are analyzed. NPVs are also evaluated for energy storage capacity 

sizing for each house in a community [144]. 

Through DR program, smart appliances like PV – storage hybrid unit, PEV, air 

conditioners, washer-dryers can be controlled. In this dissertation, DR is considered to restore 

loads on the unbalanced distribution feeders using multi-time step dynamic optimization model 

and utilization of microgrid concept with the presence of DGs after a major disaster. Since 

generation resources can be limited after a major disaster, DR can play an important role to 

increase the number of customers served, and/or an increase in the total amount of load restored. 

An integrated optimization framework to coordinate individual operation of flexible residential 

appliances and the DSR process is presented in this dissertation. Operational optimization models 

for residential DR and distribution grid restoration considering the interdependent and 

intertemporal coupling between DR and DSR is developed  [145]. The effectiveness of the 

proposed method is also conducted in this research. 

To utilize the SDDP based control algorithm for real-time energy management, an 

integrated framework is proposed in this dissertation. This proposed integrated system considers 

load and solar forecast in rolling horizon through deep learning to reduce the variability 

consideration and computational complexity for stochastic optimization process.  Receding 

horizon based stochastic optimization is performed utilizing these forecasts. An optimal decision 

from performed SDDP is then exploited through a rule-based control algorithm. It helps to obtain 

the optimization strategy in realistic manner [146]. The real-time rule-based control is less 
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complex to achieve in practical implementation. This method ensures proper usage of solar energy 

and reduces back-feeding power to the grid.   

1.10. Dissertation Outline 

In Chapter 2, control of PV -storage hybrid unit is presented using DP algorithm with the 

aim of minimizing the overall cost of daily household load demand. Then the net present value 

(NPV) is calculated and used for optimal PV-panel and storage sizing while taking into account 

the household load at different seasons and ToU rate of electricity price. Load leveling of a 

residential household by means of coordinated control between solar PV system storage and 

vehicle battery storage is also discussed in this chapter. DPSA is explained to obtain the optimal 

charging strategies by minimizing the overall load variance of the daily household load demand.  

Chapter 3 is divided into four parts. In the first part, problem formulation for energy 

management of PV panel and storage device is presented considering the stochastic nature of PV 

generation. The SDDP algorithm is demonstrated for stochastic optimization. Optimal 

charge/discharge scheduling of PEV is described to minimize the electricity purchase cost of the 

owner in the second part of the chapter. A multi-stage stochastic optimization model is developed 

for scheduling to improve on this decision-making process under demand uncertainty. After that, 

problem formulation of the coordinated control between the PV-storage hybrid unit and PEV for 

a hybrid household considering load demand and PV generation uncertainties is stated. Finally, 

benefits of SEM for a community is analyzed. SDDP algorithm to minimize the combined 

community electricity purchase cost is applied by representing the problem in a multi-stage 

stochastic optimization approach.  The net present value (NPV) calculation is also presented to 

obtain the optimal capacity sizing of the storage.  



 

25 

 

Chapter 4 demonstrates that service restoration can be significantly improved by leveraging 

the flexibility provided by the inclusion of DR. A framework is illustrated by considering 

integrated control of household level flexible appliances so that the load demand at the distribution 

grid can be varied to improve the service restoration process. The overall framework of the 

proposed system is described as a three-step method considering three optimization problems: 1) 

To calculate feasible controllable range of aggregated load of each bus, 2) to determine candidate 

buses to perform DR and target load demand, and 3) to maintain the load level in each house 

through HEM during the restoration process considering uncertainties in load and solar generation 

sequentially. The optimization problems are formulated as linear programming, mixed-integer 

linear programming, and SDDP models, which are presented in this chapter.  

In Chapter 5, an integrated architecture is presented where day-ahead load and solar 

generation forecasting is performed in rolling horizon to predict the day-a-head load demand and 

solar generation, then to use these forecasted profiles to optimize the electricity purchase cost per 

day through SDDP in receding horizon and to use  the solution with rule-based control to 

implement a realistic control for household system composed of a PV – storage hybrid unit.  
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CHAPTER 2 

Deterministic Model Based Energy Management Method at Residential Level 
 

 

2.1. Introduction 

Residential consumers are integrating solar generation as a source of clean energy with the 

goal of reducing their monthly energy cost while maximizing their investment return. As a result, 

PV energy is emerging as one of the most effective alternative energy options in a smart household. 

However, an important aspect of solar power generation is that it does not necessarily align with 

the household load demand. In other words, the generated peak PV power cannot be consumed by 

the customer effectively during the daytime and the evening peak load demand cannot be solely 

met by the solar resources since solar generation is reduced during this time. To overcome this, 

energy storage can be added in a hybrid unit to maximize solar power usage. Adding the battery 

storage option can potentially reduce the household electricity purchase cost from the grid, and in 

addition, preserve the value of solar PV installations in an evolving policy and regulatory 

environment. But storage and PV panel comes at a premium cost. Similarly, ToU rates offered by 

different utility companies are also needed to be analyzed. An optimal control strategy based on 

ToU rate will impact on savings on electricity purchase that helps us to determine whether it is 

profitable to invest in particular panel-storage size combination or not.  In the first part of this 

chapter, a deterministic model-based method for energy management and finding a suitable 

combination of the battery storage with the PV generation to gain optimal benefit from the overall 

system are analyzed.  

On the second part of this chapter, a deterministic model based energy management method 

for load regulation in residential level is discussed. Inclusion of PEV is considered along with the 

PV -storage hybrid unit in a smart residence. To avoid the problem like ‘duck-belly curve’, 



 

27 

 

curtailment of PV generation is a solution that at the cost of underutilization of the solar PV panels.  

Instead of curtailing this solar generation from household, regulation of electricity demand by 

controlling a storage along with the PV-panel offers an attractive alternative solution. Similarly, 

when PEV returns to the household, they are plugged into the system to be charged that also worsen 

the situation of ‘duck-belly curve’. Improving the grid infrastructure would be a necessity to supply 

such loads. Instead of charging PEV during the high demand period, PEVs can be charged during 

the low demand period to make the load demand as much smooth as possible. Vehicle-to-grid 

(V2G) power flow option can be used to help improve the reliability of the grid. If a PEV is capable 

of delivering power to the household, then it may discharge in times of higher demand. As DP faces 

‘curse of dimensionality’ problem, dynamic programming successive algorithm (DPSA) for load 

regulation of a smart household including PV panel with storage and PEV is presented for this 

multi-dimensional problem [138].  

2.2. PV-Panel and Energy Storage Sizing 

A household with power flow direction is shown in Figure 2.1.  PV panels, battery storage 

and other loads are connected to the household with bidirectional power flow. The electric grid is 

connected to the system which can accommodate unidirectional power flow. Thus, the grid can 

only deliver power to the household. Forecasted data is required for optimal energy management 

of the storage; both the PV generation and load forecasting data are dependent on weather. Day-

Ahead scheduling is performed to determine the scheduling of the power flow of PV. The 

forecasted PV and load demand data for a 24-hour period are provided as the input to an 

optimization algorithm, which computes the optimal state of charge (SOC) strategy of the battery 

storage considering its constraints.  
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Figure 2.1. Household system. 

 

2.2.1. Deterministic Model Development  

To minimize the overall daily electricity purchase cost, the objective function is 

formulated as: 

J = min∑[(Pt− (PPV,t+ Pc,t)) Ct]

T

k=1

 (2.1) 

Given that 

−Pc,min ≤ Pc,t ≤ Pc,max  (2.2) 

where J represents the objective cost function to be minimized, Ct  is the ToU cost at time t, Pt is 

considered as the day-ahead household demand, PPV,t is solar power, and Pc,t is the operating power 

of the charger for storage at time t. Pc,t is positive while the storage is being charged and negative 

when it is being discharged within the given limits. For the SOC calculation of the storage, it is 

required to know whether it is charging or discharging. The sign function sgn is used to represent 

the charging/discharging scenarios, and the SOCt of the PV storage is calculated based on the 

power flow as shown below: 

sgnt = {
1   (P𝑐,t ≥ 0)

−1  (P𝑐,t < 0)
} (2.3) 

SOCt = 

{
 
 

 
 Eb,initial+PC,t(𝜂𝑐)t

sgn
∆t

Qb
 ; t = 1

SOCt−1 + 
PC,t (𝜂𝑐)t

sgn
∆t

Qb
; t = 2 − T

}
 
 

 
 

 (2.4) 

SOCmin ≤ SOCt ≤ SOCmax (2.5) 
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Here Eb,initial  is the initial charge of the battery, 𝜂𝑐 is the efficiency of the charger, and 

Qb  is the total capacity of the battery. Since storage lifetime is considered for calculating NPV, 

storage degradation costs due to charging and discharging are not included in the objective 

function. 

The problem is based on the following assumptions: 

Assumption 1: The grid can only deliver power to the household. There is no back feeding 

of energy to the grid and no net metering compensation is provided. 

Assumption 2: The storage can be charged from PV generation and it discharges only to 

deliver power to the household. 

Among the available options, DP ensures reaching the globally optimal path by considering 

all of the possible paths whereas the other methods may not be able to find global optimal paths 

for certain cases. Furthermore, the algorithm is not dependent on the objective function whether it 

is linear or non-linear. DP is an optimal control tool used for solving a complex problem by 

breaking it down into sub-problems. The method uses Richard Bellman’s principle and ensures 

global optimality [55]. DP is based on Hamilton-Bellman-Jacobi (HBJ) equation. For the system 

of Figure 2.2, the HBJ model can be written as: 

𝐽 (t + 1, SOCi(t + 1)) =  min
SOC(t+1,SOCi)

{
c (SOCi(t), SOCj(t + 1))  

+J (t, SOCj(t))
} (2.6) 

 

In (2.6), 𝐽 (t + 1, SOCi(t + 1)) is the optimal value obtained from the previous stage for 

SOCi(t). c (SOCi(t), SOCj(t + 1)) is the cost of transitioning from state SOCi at time t to SOCj at 

time t + 1. The set 𝑆𝑂𝐶 (t + 1, SOCi(t + 1)) defines the set of all feasible reachable points at time 
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t + 1 on SOCj from the current state t.  𝐽 (t + 1, SOCi(t + 1)) is the optimal value function to go 

from time step t to next time t + 1 at SOCj point. Therefore, the optimal point is SOCi(t + 1) 

among all possible set of SOCi(t) for which the optimal value.  𝐽 (t + 1, SOCi(t + 1)) is obtained 

at point SOCj(t + 1). This control strategy ensures the consideration of all possible transitions to 

future states to achieve cost minimization.  

 

Figure 2.2. Dynamic programming with SOC as a state. 

 

The solution process through DP in the context of research at hand can be visualized with 

the help of Figure 2.2 where a three-stage problem is considered for simplicity. Stage 1 defines the 

initial SOC where it is considered to be 0.7. While going from stage 1 to stage 2 with an increase 

in time, the corresponding costs are calculated for reaching different possible  SOC points. A 

certain limit is needed to be considered for the next SOC level range based on the previous SOC 

value. To go from stage 2 to stage 3, the cost of each different possible path is calculated. For 

example, at stage 3 when the SOC is 0.7, the optimal path to reach SOC 0.7 is obtained by 

calculating and comparing the cost of all possible paths leading to SOC value of 0.7. Similarly, the 
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costs for all other SOC points are also calculated in stage 3. Then after comparing the cost for all 

SOC points at stage 3, the point for which minimum value is obtained is determined as the most 

cost-effective path. 

2.2.2. NPV based PV-Panel and Storage Sizing 

NPV is a tool used for capital budgeting to analyze the profitability of an investment. 

Generally, an investment with a positive NPV will be a profitable one and one with a negative 

NPV will result in a net loss. For the calculation of NPV, the investment cost of PV panel and 

energy storage, 𝐼(𝑄𝑃𝑉, 𝑄𝑏), as well as the net annual saving from DP based control strategy, 

𝑆(𝑄𝑃𝑉, 𝑄𝑏), based on the size of PV panel, 𝑄𝑃𝑉, and storage capacity, 𝑄𝑏,are required to consider. 

DP based control strategy is applied to the load and PV profiles for four days of four different 

seasons and the obtained savings are considered as the net annual saving. From the maximum 

NPV, the optimal size of PV panel and storage capacity for the particular household can be found. 

The equation for obtaining the required optimal PV panel and energy storage can be expressed as 

𝑍 (𝑄𝑃𝑉
∗ , 𝑄𝑏

∗) =   𝑚𝑎𝑥
𝑄𝑃𝑉,𝑄𝑏

{
𝑆(𝑄𝑃𝑉, 𝑄𝑏) − 𝐼(𝑄𝑃𝑉, 𝑄𝑏)

(1 + 𝑟)𝑘
} 

(2.7) 

 

where k is the lifetime of the PV panels in years, and r is the discount rate. 𝑍 (𝑄𝑃𝑉
∗ , 𝑄𝑏

∗) is the the 

maximum NPV which is determined for the optimal size of PV panels, 𝑄𝑃𝑉
∗ , and storage capacity, 

𝑄𝑏
∗  . 

2.2.3. Impact of DP, Storage Cost, and ToU rate 

Simulation analysis is carried out for a typical household with a PV and storage installation 

to demonstrate the effectiveness of the DP technique on minimizing household cost. The 

parameters of the system are listed in Table 2.1. Solar irradiance and load profiles for different 

seasons vary, which is shown in Figure 2.3 and Figure 2.4 based on data obtained from [147] and 
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[148]. Day-Ahead scheduling is performed to determine the scheduling of the power flow of PV 

and storage.  

The forecasted PV and load demand data for a 24-hour period for 15-minute resolution are 

provided as the input to the optimization algorithm, which computes the optimal SOC path of the 

battery storage considering its constraints. Because of the variation of the load demands, PV 

profiles and ToU rate structure for different seasons, simulation results of four days of four 

different seasons are shown in Figure 2.5. These results are shown for a 3 kW solar panel with a 4 

kWh storage and ToU rate 1 [Appendix A: Table I]. For comparison, simulation results for 

heuristic control are also provided. In heuristic control, the available solar energy is used to charge 

the storage whenever there is excess generation than demand. The storage is discharged and grid 

delivers power during the period when there is more demand than the available solar energy [149]. 

Referring to Figure 2.5 (a) and (b), the results indicate that the DP based control strategy prefers 

to store generated PV energy during the partial-peak period which is until hour 13:00 to serve for 

the peak hour period. During peak period from hour 13:00 to hour 20:00 in summer and fall, the 

stored energy is utilized to serve the load demand. Due to this reason, the load demand from the 

grid for DP based control strategy is higher during the partial peak hour and lower during peak 

hour than the heuristic based control strategy. Similarly, according to the results of Figure 2.5 (c) 

and (d) for spring and winter, DP based control tries to utilize the available capacity of storage to 

store the solar energy during the off-peak period until hour 17:00 and use this energy to serve after 

hour 17:00 to hour 20:00 (peak period) to reduce the electricity bill of the household owner. As a 

result, the load demand from the grid becomes lower than the heuristic control during hours 17:00 

to 20:00 for DP based control due to comparatively higher ToU rate.  
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Figure 2.3. Solar profiles for different 

seasons. 

Figure 2.4. Household profiles for different 

seasons. 

 

Table 2.1. System parameters for residential PV-panel and energy storage. 

Parameter Value 

PV panel size range 1-4 kW 

Panel lifetime 20 years 

Battery capacity range, (Qb) 0-7 kWh 

Maximum operating power of the charger 

(PPV ) 
1 kW 

Efficiency, ηb
C 92% 

SOCmin 20% 

SOCmax 80% 

Battery type Li-ion 

Battery lifetime 10 years 

Battery cost range [150] $350- $150/kWh 

PV panel, inverter, installation & 

maintenance cost [151] 
$3.46/W 

Discount rate 10% 

 

For the next step of the proposed strategy, the overall cost saving based on PV panel life is 

calculated to get the NPV for the system since solar panel installment and maintenance cost, and 

battery lifetime are known from Table 2.1. Storage cost is considered as $350/kWh. Figure 2.6 

shows the comparison of NPVs between heuristic and DP based control for different storage sizes 

with a 3 kW solar panel. It is clear from this figure that storage with optimal control gives higher 

benefit than heuristic control for all sizes of storage options with fixed panel size.  
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(a) Summer. (b) Fall. 

  

(c) Spring. (d) Winter. 

Figure 2.5. Household power management with ToU rate. 

 

The analysis on NPV is done by varying the panel and storage sizes. For comparatively 

higher ToU rate 1 and $350/kWh storage unit cost, the optimal sizes of the PV panel and storage 

capacity for the given household load demand are calculated for the DP based controlled load 

profiles. The result of Figure 2.7 indicates that it is always beneficial to the customer to use a 3 

kW PV panel for the given household load profile irrespective of the storage size. It is also found 

that with an increase in the size of the PV panel, it is beneficial to add a specific size of storage to 

the system. However, for the lower size of PV panel, the inclusion of storage reduces NPV. Since 

an increase in storage size decreases the NPV, it is not beneficial to add storage when its cost 

remains as high as $350/kWh. Therefore, the cost of storage is also a critical factor. As per unit 

cost of storage is decreasing according to [150], the effect of storage costs ranging from $350/kWh 

to $150/kWh are considered for analysis. NPV is calculated considering the DP based 
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charge/discharge control for different storage capacity. Figure 2.8 shows that NPV increases and 

becomes higher than $3200 (which is the NPV without considering any energy storage) when the 

cost of storage decreases to $250/kWh or less. The results also show that the NPV starts decreasing 

after reaching a peak with an increase in storage capacity. For both $250/kWh and $150/kWh 

storage costs, 4 kWh is the optimal size for the considered household with ToU rate 1 and 3 kW 

panel. 

To analyze the effect of ToU on NPV, in addition to the typical higher ToU rate 1, a typical 

ToU rate 2 (Appendix A: Table II) is used that provides a comparatively lower rate and has a small 

deviation between off-peak and peak hour rate. The DP based control strategy is applied to 

different panel and storage sizes for the given household profiles and a lower storage cost of 

$150/kWh. The comparison among the NPVs for different panels of ToU rate 2 are given in Figure 

2.9. It can be seen that NPVs for ToU rate 2 cases are always negative which means that it is not 

always beneficial to use a PV panel, with or without energy storage, if there is less difference 

between peak and off-peak hours or no incentives are provided to the household owner for PV 

generation. 

 

Figure 2.6. Comparison of NPVs between DP and heuristically controlled PV-storage hybrid 

system for a 3 kW PV panel with $350/kWh storage cost. 
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Figure 2.7. Optimal size of storage for different storage per kWh costs. 

 

 

Figure 2.8. Optimal size of the PV-panel and storage system for the given household profile with 

compensation to the homeowner. 

 

 
 

Figure 2.9. Comparison of NPV of different panel and storage size for lower ToU rate. 
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2.3. Load Regulation with PV -Storage Hybrid Unit and PEV 

For load regulation, the similar household system is considered as shown in Figure 2.1. Only 

PEV is included in the system which is shown in Figure 2.10. When PEV is available, it can be 

connected to the system through a bidirectional charger so that it can either charge or discharge; 

therefore, the PEV power flow can either be positive or negative. The smart household system 

consists of sensor networks like the smart meter and the power management unit. The meter 

measures the electricity usage within the household microgrid and the power measurement unit 

helps to maintain the power-flow management within the microgrid according to the usage. In the 

first stage, the collection of forecasting data is required. It should be mentioned that both the PV 

power and load forecasting data is depended on the weather. A block diagram of the forecasted data 

based on which the system takes decisions is provided in Figure 2.11. As day-ahead scheduling is 

performed to determine the scheduling of the power flow of PEV and PV, the forecasting data is 

taken for 24 hours ahead. 

The forecasted PV data, load demand, and availability of the PEV in the grid are provided 

as the input to the dynamic programming successive approximation (DPSA). DPSA computes the 

optimal SOC strategy of the battery storage and the PEV storage considering their constraints.  

Grid

Household

Battery 

Storage

PV String

PEV

 

 

Figure 2.10. Household system with 

PEV. 

Figure. 2.11. Block diagram of forecasting data. 
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2.3.1. Deterministic Model Development 

Load variance minimization of a household microgrid can help achieve smooth operation 

of the system. It helps accomplish peak shaving and valley filling. As both the PEV and PV battery 

storage have the benefit of storing energy and discharging it when required, they can be controlled 

to reduce the load variance. For this study, a one-day cycle from 0hr to 24hr is considered.  A 24hr 

period is divided into T time periods and the length of each time period is considered as Δt. If Pt is 

considered as the day-ahead household demand, PPEV,t is the vehicle power, PPV,t is solar power, 

Pb,t is the solar battery storage at time period t and μ is the average household demand in one day. 

In this case, the objective function can be written as 

Minimize, J = ∑[ 
1

T
(Pt − μ + PPEV,t − PPV,t+ Pb,t)

2

]

T

k=1

 (2.8) 

Subject to 

−PPEV,min ≤ PPEV,t ≤ PPEV,max ;  (t = tPEV,start − tPEV,end)   (2.9) 

−Pb,min ≤ Pb,t ≤ Pb,max    (t = 1 − T)    (2.10) 

 

where J represents the objective function to be minimized.  PPEV,t and Pb,t  can be negative 

while the storages start charging and become positive when they discharge within some limits. 

For the calculation of state of charge (SOC) of PEV and PV storage components, it is 

required to know whether they are charging or discharging. If the battery draws a charge from the 

grid or solar power, the sign function sgnt is considered positive and is considered negative when 

discharging. In addition, PEV has constraints those are needed to consider. The PEV is connected 

to the grid for a certain period of time and needs to complete its charging within this time. So, the 

SOCPHEV,t and the SOCb,t of both the PEV and PV storage can be calculated based on charging and 

discharging condition of the system. 
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 sgnt = {
1   ( PPEV,t, Pb,t ≥ 0)

−1  (PPEV,t, Pb,t < 0)
} (2.11) 

 SOCb,t = 

{
 
 

 
 Wb,initial+Pb,t(ηb

C)
t

sgn
∆t

Qb

SOCb,t−1 + 
Pb,t (ηb

C)
t

sgn
∆t

Qb }
 
 

 
 

 (2.12) 

SOCPEV,t = 

{
 
 

 
 WPEV,initial +  PPEV,t (ηPEV

C )
t

sgn
∆t

QPEV
 ;      (t = tPEV,start)

SOCPHEV,t−1 +
PPEV,t (ηPEV

C )
t

sgn
∆t

QPEV
; (t = tPEV,start − tPEV,end)}

 
 

 
 

 (2.13) 

 SOCPEV,min ≤ SOCPEV,t ≤ SOCPEV,max (2.14) 

SOCb,min ≤ SOCb,t ≤ SOCb,max (2.15) 

 

where Wb,initial and WPEV,initial are the initial charge of the batteries, ηb
C and ηPEV

C  are the 

efficiency of the charger, Qb and QPEV are the total battery capacity of the  PV and PEV 

respectively. 

2.3.2. Dynamic Programming Successive Algorithm (DPSA) for Coordinated Control: 

It is hard to manage multidimensional problem through DP, because of the dimensional 

complexities. The DPSA decomposes the multidimensional problem in a sequence of one-

dimensional problems which are much easier to handle [70]. The optimizations work with one 

variable at a time while keeping the other variables at a constant value. All the variables are 

evaluated the same way. This technique converges to an optimum solution for convex problems. 

Figure 2.12 shows the flowchart of DPSA technique for the optimization problem discussed in this 

paper. Using this method, when DP is applied to solar storage, the charging profile of PEV storage 

is kept constant. After the completion of DP on the solar storage, DP is applied to the PEV storage 

while the solved charging profile for solar is kept unchanged.  
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Initial Value for PHEV Storage

DPSA: calculate the optimal 

charging profile for Solar 

Storage

DPSA: calculate the optimal 

charging profile for PHEV 

storage

Converge?

Optimal Charging Profile

Daily Load Profile, PV power 

output and PHEV arrival time

Yes

No

 

Figure 2.12. Algorithm of Control charging through DPSA. 

 

2.3.3. Improvement on Load Regulation 

Simulation analysis is carried out for a typical household with one PEV and PV installation 

to demonstrate the effectiveness of the DPSA technique on minimizing household load variance. 

The parameters of the system are listed in Table 2.2. For a working day, it is assumed that the 

PHEV connects to the grid at time 18:00 and leaves the grid at 8:00 the next day. The solar power 

for a sunny day is considered for this simulation. Both the household load profile obtained from 

[147] and solar power generation profile obtained from [148] for a typical household PV system 

are shown in Figures 2.13  and 2.14, respectively. 

The simulation results after the regulation are shown in Figure 2.15 which shows that if 

both the PV storage and PEV storage charging and discharging profile is controlled, then the load 

variance improves. It can be seen from Figure 2.16 that for this scenario, when the PEV connects 
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to the household power system, it is forced to discharge to contribute to the load leveling since the 

household load demand is high during this time. However, the results indicate that the PEV power 

flow is managed such that it starts charging when the demand is low to once again contribute to 

load leveling of the total household profile. Similarly, from Figure 2.17, it can be concluded that 

solar power generation is managed to charge the batteries when the demand is relatively low, while 

during peak load this energy is consumed to meet high load demand.  

In order to further outline the importance of coordinated control among different energy 

storage units available in a smart household, four different scenarios are considered and simulated.  

In scenario one – no PEV and PV storage are present in the system and variance is calculated. In 

scenario 2, both PEV and PV storage are considered but they are not controlled which results in 

an increase in variance compared to the previous case. In this case, PEV storage starts charging 

instantly when the owner comes back at home and the vehicle is plugged in. Since at that time load 

demand is also higher, the overall demand increases further. On the other hand, PV storage does 

not charge that much in this scenario, since most of the energy produced from solar at daytime is 

used to meet the energy demand. In scenario 3, only PEV storage is controlled but PV storage 

remains uncontrolled. In this case, the variance is also reduced compared to scenario 1. However, 

the best result is found in terms of minimizing the load variance is obtained when both the PEV 

and PV storage components are controlled in scenario 4.  

In Table 2.3, the load variance of the four discussed scenarios is given. From the results, it 

is concluded that load variance increases when the system faces uncontrolled PEV and PV energy. 

It is also clear from the results that controlled PEV and PV energy system with storage has the 

most influence in minimizing the household load variance.  
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Table 2.2. Parameters for PV- storage hybrid unit and PEV. 

Parameter Value 

PEV arrival time, tstart 18:00 

PEV leaving time, tend 8:00 

Initial SOC of PEV 40% 

Initial SOC of PV 20% 

SOCmin 0.2 

SOCmax 0.8 

Battery Capacity, (QEV) 14kWh 

Battery Capacity, (Qb) 5kWh 

Maximum operating power of the charger 

of PEV, (PEV ) 

1 kW 

Maximum operating power of the charger 

of PV battery, (PPV ) 

2 kW 

Efficiency, ηb
C 0.92 

Efficiency, ηPEV
C  1 

Time period, t 15 min 

 

 

 
 

Figure 2.13. Typical household load demand. Figure 2.14. Solar power output on a sunny day. 

 

 

Figure 2.15. Regulated profiles after control. 

 



 

43 

 

 
 

Figure 2.16. PEV charging and discharging 

profile. 

Figure 2.17. PV battery storage charging 

and discharging profile. 

 

Table 2.3. Comparison results of load variance for different cases. 

No PHEV and 

PV Energy 

(kW) 

PEV and PV Energy 

(Uncontrolled) 

(kW) 

Controlled PEV and 

Uncontrolled PV 

Energy 

(kW) 

Controlled PEV and 

PV Energy 

(kW) 

2.31 2.75 0.90 0.35 

 

2.4. Conclusion 

In this chapter, deterministic model-based energy management for PV panel and storage 

sizing and load regulation of a residential system are presented. Simulation analysis for PV panel 

and storage sizing can be summarized as: If DP based control strategy is performed for energy 

management between storage and PV panel, then the overall NPV increases for the same size of 

storage. Due to the increase of NPV, DP based control strategy finds higher optimal capacity for 

storage than the heuristic control method.  Though increasing the PV panel size means an increased 

amount of PV generation, it is not always beneficial. Optimal PV panel size is required to get the 

most economic benefit. With the change of storage cost, the NPV changes. A lower storage cost 

results in a higher NPV for the same size of storage and thus, the preferred optimal storage capacity 

will be higher. If the ToU rate structure is very low and no incentives are provided, then using PV 

panel along with storage is not cost effective even if DP based control strategy is performed and 
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the storage cost reduces to $150/kWh. The simulation results obtained from DPSA for load 

regulation show that by controlling each energy storage component in the system, it is possible to 

minimize household load variance that can help grid to alleviate the problem of the “duck-belly 

curve”.  
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CHAPTER 3 

Uncertainty Consideration in Energy Management at Residential and 

Community Levels 

 

3.1. Introduction 

The intermittency of PV power depends on the real-time weather conditions (such as cloud 

passing). Due to this uncertainty, it is necessary to represent PV generation with different 

stochastic scenarios in order to better represent the problem at hand and derive a more robust 

energy management method. A control strategy framework for a smart house that includes PV - 

storage hybrid unit while considering the uncertainty in solar PV production is developed in the 

first part of this chapter. The control strategy is based on the SDDP algorithm applied in the context 

of stochastic PV generation.  

In a real scenario, household load demand also experiences uncertainty due to the 

preference of the consumers. This uncertainty is considered to develop a control strategy to 

minimize the cost for charging/discharging a PEV. This strategy relies on some basic information 

such as charge duration, residual charge of the PEV while connected to the grid, electricity ToU 

rate and target charging level. The SDDP algorithm is applied to create a control strategy for 

charging/discharging the PEV under electricity demand uncertainty which is discussed in the 

second part of this chapter. 

When two storages are used in a household, they can be coordinated optimally to enhance 

the proper utilization of the system resources. A coordinated control strategy between PV - storage 

hybrid unit and PEV is developed on the third part of this chapter while considering the 

uncertainties in solar production and household electricity demand for a house. Since both the load 

demand and solar generation change due to the variation of weather and they are correlated with 
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each other, it is necessary to consider the stochasticity of PV generation and electricity demand 

and the correlation between them in order to have a better formulation of the problem. Thus, the 

scenario are generated considering the correlation between load and solar production with 

Cholesky factorization procedure. The problem is formulated for the coordinated system and the 

SDDP algorithm is applied to optimize the system in the context of stochastic PV generation and 

household electricity demand. The comparisons between uncoordinated and coordinated control 

schemes are also shown through case studies. 

Energy storage devices may not always be considered as the most economical solution for 

individual households due to their current costs. Shared utilization of energy storage may be 

viewed as a robust and attractive alternative to a community as a whole. On the last part of this 

chapter, a method is developed that achieves reductions in the overall electricity cost for a 

household, including electricity purchases from the grid and energy storage investments. The 

SDDP method is applied to solve the multi-stage stochastic models of the SEM. NPVs are also 

considered to obtain the optimal storage capacity.  

3.2. PV Uncertainty Consideration for Hybrid System  

A similar household system consisting of a PV-storage hybrid unit described in Figure 2.1 

is considered. The forecasted household load profile (single point forecast) gives the demand value 

that is used as the deterministic information in the decision-making model. For solar PV 

generation, a stochastic representation based on forecasted data for cloud covering and sudden 

weather changes is employed. To minimize the overall cost in a day, simulation of the proposed 

modeling framework is performed to determine the scheduling and usage of system components. 

The forecasted load demand information and the stochastic solar PV scenarios generated data for 
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a 24-hour period are given as input to the mathematical model of the system and the SDDP 

algorithm, which computes an optimal SOC strategy. 

3.2.1. Model Formulation 

Cost minimization of a household with optimal operation of the PV-storage hybrid unit can 

significantly benefit a customer. In this study, a one-day cycle from 0hr to 24hr with a 15-minute 

resolution is considered. The total 24hr is divided into T time periods based on a resolution Δt. 

Let Ct  be the ToU based electricity tariffs, Pload,t is the day-ahead forecasted household load 

demand, PPV,t
ωt  is the generated solar power, and Pgrid,tis the power demanded from the grid at time 

t; the objective function J and constraints can then be written as – 

min J =∑[Ct ∙ Pgrid,t ]

T

t=1

 

(3.1) 

with the following structural constraints and operational limits. 

A. Power balance constraint 

Pgrid,t − Pbch,t + Pbdisch,t − Pslack,t = Pload,t − PPV,t
ωt  (3.2) 

B. Charge balance constraint 

SOCb,t = SOCb,t−1 +
Pbch,tηb,ch,t 

Qb ∆t
− 

Pbdisch,t  

Qb  ηb,disch,t∆t
, ∀t ∈ T 

(3.3) 

C. Charge and discharge operational limits based on PV and load, respectively 

Pbch,t ≤ PPV,t
ωt  , ∀t ∈ T    (3.4) 

Pbdisch,t ≤ Pload,t , ∀t ∈ T (3.5) 

D. Nonnegativity requirement for purchases from the grid 

Pgrid,t   ≥ 0 , ∀t ∈ T (3.6) 

E. Upper and lower bounds of the decision variables 
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SoCb,min ≤ SoCb,t ≤ SoCb,max , ∀t ∈ T (3.7) 

Pbch
min  ≤ Pbch,t ≤ Pbch

max  , ∀t ∈ T (3.8) 

Pbdisch
min ≤ Pbdisch,t ≤ Pbdisch

max  , ∀t ∈ T (3.9) 

In the system under consideration, the PV unit does not provide power to the grid. 

Therefore, if there is more PV generation than the electricity demand at a specific time and the 

storage unit is fully charged, then Pslack,t will take care of the excess generation as deferred PV 

energy. Pbch,t and Pbdisch,t are the instantaneous charging and discharging power of the storage 

device. SOCb,t is the state of charge of the energy storage at time t. The lower and upper bounds 

of decision variables are provided in Table 3.1. The parameters Qb  is the total capacity of the 

storage unit and ηb,ch,t and ηb,disch,t are the efficiency of the charger for charge and discharge.  

If the household demand needs to be satisfied by both PV generation and battery discharged 

power, then according to (3.2) and (3.3) it is less efficient to charge the battery with PV power. In 

that case, PV generation will be used directly to satisfy the demand with the option to use energy 

that is already stored in the battery as well as purchase power from the grid. On the other hand, if 

PV generation is higher than the demand, the surplus will be stored in the battery (if there is storage 

capacity available) and there will be no discharge. Thus, charging and discharging the storage 

device simultaneously is not possible. The different scenario representations for solar PV based on 

the forecasted solar generation PPV,t is obtained using (3.10) [152]. 

PPV,t
ωt = PPV,t ± ρt

ωtPPV,t;  ωtϵ∀Ωt , ∀t ∈ T (3.10) 

where ωt is a scenario within Ωt that is the set of all scenarios that represent the PV power 

generation, and ρt
ωt is a normally distributed random parameter. 
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3.2.2. Multi-Stage Optimization for Uncertainty Consideration 

A general T-stage stochastic linear program for the problem at hand can be formulated as 

follows: 

min 
x1

c1 x1 + 𝔼b2|b1h2(x1, b2) (3.11) 

Subject to: 

 A1x1  =  B1x0 + b1: π1 (3.12) 

  x1 ≥ 0 (3.13) 

where for t = 2, . . . , T, 

ht(xt−1, bt) = min
  xt 

 ctxt  +  𝔼bt+1|btht+1(xt, bt+1) (3.14) 

    Subject to: 

 Atxt  =  Btxt−1 + bt: πt (3.15) 

  xt ≥ 0 (3.16) 

The decision variables of a particular stage t are considered as a vector xt, which includes 

electricity purchases from the grid, charge and discharge power of the battery and SoC of the 

battery for the problem. The parameter bt represents stochastic PV supply at stage t. Equations 

(3.11) and (3.16) represent the objective functions to minimize the total cost that includes first 

(present) and tth (expected future) stage costs, respectively. Equations (3.12) and (3.15) are the 

model’s structural constraints which include power balance and charge balance equations. Dual 

variables (denoted by πt) derived from the structural constraints (or from the dual optimization 

model) are used later to construct a piece-wise linear approximation of the future cost function 

following Benders’ decomposition scheme. Equations (3.13) and (3.16) are simple bounds on the 

decision variables. In the objective function defined in (3.11), 𝔼b2|b1h2(x1, b2) represents the 

expected cost function of stage 2 based on decisions x1 taken in stage 1. The realization of the 
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random parameter b2 affects the system condition at stage 2. Similarly, for equation (3.14), 

𝔼bt+1|btht+1(xt, bt+1) calculates the expected cost function of stage t + 1 given the decisions xt 

in stage t. The realization of the random parameter is bt+1. 

To solve our version of the general model, a version of SDDP is implemented which is 

originated from the work of Pereira and Pinto [140], [153]. The SDDP is, to date, the state-of-the-

art method for solving multi-stage stochastic linear programs. The SDDP algorithm avoids the 

well-known curse of dimensionality of DP by constructing an approximation of the future cost 

function with piecewise linear functions represented through Benders' cuts that are added 

iteratively. This process stops when a stopping criterion is reached.  

A visualization of how SDDP works to solve this problem is depicted in Figure 3.2 which 

shows the process for a simple three-stage problem; however, it is important to mention that the 

tree sizes of interest are quite large. For example, in our system, a tree with 10 scenarios per stage 

with 96 stages is considered. Once a sampled scenario tree like Figure 3.1 (a) is available for the 

SDDP, the process is started by sampling the forward paths in this tree as highlighted in Figure 

3.1 (b). These paths are considered for the problem to proceed for the forward pass. During the 

forward pass, a sequence of models like (3.14) - (3.16) is solved at each time stage using the 

simplex method. During the solution process, Benders’ cuts, which are accumulated from previous 

iterations for the certain stage, are used as additional constraints to create a better approximation 

of the future costs and improve the decision-making process. Then the sample mean of the costs 

associated with all the sampled forward paths provides an estimate of the expected future cost. At 

the final stage of the forward pass, the total expected cost is estimated which is considered as the 

upper bound of the problem. The lower bound for the sampled problem is calculated from solving 

the first stage problem.  After a finite number of iterations, the upper and lower bounds tend to 
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converge and the algorithm can be stopped. A stopping criterion based on the desired level of 

precision in the convergence process is used. If upper and lower bound costs do not reach the 

desired convergence level, then another SDDP iteration is needed. At each iteration, new forward 

paths are sampled independently. 

For reaching the desired convergence level, the algorithm proceeds to the backward pass 

shown in Figure 3.1(c). In the backward pass, the algorithm computes new Benders cuts for certain 

stage to better approximate the expected future cost function. As there is no future cost after the 

final stage T, cuts are not used in that stage. In Figure 3.1(c), the highlighted nodes are selected in 

this iteration's backward pass. Figure 3.1(d) depicts the sets of cuts corresponding to all the nodes 

on each stage for each iteration. If the future cost obtained from forward pass is θt for a sampled 

path ωt, and from the solved linear problem for stage (t + 1) the dual variables are represented by 

πt+1
ωt+1 and optimal cost by ht+1

ωt+1, then the Benders’ cut for the stage t is calculated using (3.17)-

(3.19). 

θt − Gtxt ≥ gt (3.17) 

Gt = ∑ πt+1
ωt+1Bt+1

ωt+1∈∆(ωt)

 
(3.18) 

gt = ∑ ht+1
ωt+1−Gt[xt

ωt]k

ωt+1∈∆(ωt)

 
(3.19) 
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(a) Scenario tree. (b) Forward paths selection. 

  

(c) Backward recursion. (d) Future cost function represented by 

Benders’ cut. 

Figure 3.1. Optimization solution process via SDDP. 

 

All the sampled forward paths solved in the forward pass do not have to be solved in the 

backward pass. The SDDP can select a subset of sampled forward paths in order to compute the 

Benders’ cuts. As the backward pass calculation takes more time than the forward pass calculation, 

the number of selected paths can be reduced to enhance the speed of convergence. After the 

completion of the backward pass for all the stages, a different set of forward paths are sampled 

from the scenario tree to imply the accumulated cuts, which are obtained from the backward pass 

of each iteration for each stage of the system. 
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3.2.3. Impact of PV Generation Uncertainty Consideration  

The parameters used to represent the system characteristics for simulation analysis are 

listed in Table 3.1. Forecasted solar power profile for a summer day and a typical household 

summer load profile are obtained from [147] and [148] and shown in Figure 3.2. The summer ToU 

rate for residential customer varies over the day based on off-peak, partial peak and peak hours 

which is represented in Figure 3.3. The solar energy production is considered to be a stochastic 

parameter since solar PV generation can often be considered as a random resource depending on 

climate and weather characteristics. Thus, the normally distributed random noise parameter ρt 
ωt in 

Equation (3.10) is sampled from the set 𝒩(0,1)[kW] to generate different solar PV energy 

profiles.  

Table 3.1. Parameters for hybrid system. 

Parameter Value 

PV panel installed power 3 kW 

Battery capacity, (Qb) 4 kWh 

Efficiency, ηb
C 0.92 

Initial SOC 20% 

SOCmin 20% 

SOCmax 80% 

Pbch
min 0 kW 

Pbch
max 3 kW 

Pbdisch
min  0 kW 

Pbdisch
max  3 kW 

Battery type Li-ion 

Time period, t 15 min 

 

In a heuristic control strategy, the storage device gets charged when there is an excess of 

solar generation and discharged with an increase in demand than the generated solar energy. The 

storage device will not be charged when there is no PV generation since it is not connected to the 

grid. The heuristic control strategy does not address the maximization of benefits to the 

homeowner. Our objective is to develop an improved storage energy control strategy to minimize 
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the overall cost of the customer for a particular day based on SDDP. SDDP solves the multi-stage 

stochastic program designed for the problem and provides an optimal policy to charge and 

discharge of the storage. 

  
Figure 3.2. Household and solar generation 

profiles. 

Figure 3.3. ToU rate. 

 

  
Figure 3.4. SOC profiles for heuristic and 

SDDP based control of a scenario. 

Figure 3.5. PV usage profiles for heuristic and 

SDDP based control policies of a scenario. 

 

The SOC profiles of the energy storage and PV energy usages by the load for a day with a 

solar generation scenario similar to the forecasted one for both strategies, SDDP based control, 

and heuristic control, are provided in Figure 3.4 and Figure 3.5, respectively. For the SDDP based 

control strategy, it can be seen that when the ToU rate is lower and there is enough solar energy 

production only then the storage system starts charging. But all the available PV generation during 

the off-peak hours are not used to charge the storage though the ToU rate is the lowest rate during 

that time. The storage needs to have enough capacity to store excess PV generation, which occurs 

during partial peak period to avoid the waste of solar energy. Thus, SOC keeps increasing during 



 

55 

 

off-peak and a little in the partial peak period. Due to the use of PV energy to charge the storage 

device, its usage for directly supplying the load sometimes becomes lower for SDDP based control 

when compared to the heuristic control strategy during off-peak and partial peak periods. In the 

SDDP based control, during peak hours the available generated PV and energy stored in the battery 

are used mostly to satisfy the household demand and reduce the overall costs for the customer. The 

SOC level decreases and PV energy usage (the combination of the available PV energy and the 

stored PV energy) by the load during peak period becomes higher than the heuristic control 

strategy for the same time interval. Therefore, ToU rate and PV generation will influence the SOC 

level of the storage device and PV usage by the load for SDDP based control strategy. The overall 

electricity purchases from the grid for both control strategies for this solar generation profile are 

given in Figure 3.6 and Figure 3.7.  

Heuristic control strategy and deterministic dual dynamic programming control (DDDP) 

are compared with SDDP based control in a policy evaluation procedure. The goal of such 

procedure is to assess how the different control policies perform using out-of-sample test cases 

representing the problem uncertainty; for further details, the reader should refer to [154]. For 

DDDP, only a deterministic solar generation scenario is used to create an instance of the model 

(3.1) - (3.8), instead of the stochastic scenario tree (Figure 3.1(a)) which is adopted when using 

the SDDP algorithm.  

In order to perform policy evaluation analysis, 100 solar profiles are generated using 

normal distributed random values sampled from an N(0,1) [kW] for 𝜌𝑡 
𝜔𝑡 at each time stage and 

used as data in equation (3.10). These randomly generated PV profiles are used to find out the 

average usages of PV energy, peak hour savings and electricity purchase costs for different control 

policies. Figure 3.8 shows that the average operational costs of 100 different solar profiles for a 
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summer day is lower for SDDP than other control policies. Table 3.2 gives the idea of improvement 

of average PV usage by load, average peak hour savings and reduction of average electricity 

purchase cost using the SDDP control policy. If the system is controlled by DDDP, the average 

cost saving is 3.6% per day compared to the average cost of heuristic control. The control strategy 

with SDDP algorithm reduces the total cost by 9.2% per day compared to 5.7% per day with the 

DDDP algorithm.  Therefore, using the SDDP control strategy for the PV-storage hybrid unit, an 

average of $25.8 per month can be saved. The peak hour saving is not only beneficial to the 

homeowner but also helps utility companies to reduce large load variations during peak periods. 

  
Figure 3.6. Electricity demands from the grid 

for heuristic and SDDP based control policy 

for a scenario. 

 

 

Figure 3.7. Policy evaluation of overall cost 

for heuristic control, DDDP and SDDP. 

 

Table 3.2. Comparison of different control strategies. 

Control Strategy PV Usage per day (%) 
Peak hour Saving 

per day (%) 

Electricity purchase 

cost per day ($) 

Heuristic Control 87.4 29.6 9.8 

DDDP 88.1 48.1 9.4 

SDDP 97.3 48.7 8.9 

 

 

3.3. Demand Uncertainty Consideration for PEV 

A method of minimizing costs associated with electricity purchases from the grid for a 

household with optimal operation of the integrated PEV system can provide significant benefits to 

a customer. Figure 3.8 shows that the power flow between the household and PEV is bidirectional. 
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PEV not only can get charged from the household but can also provide charge to the household 

with the aim of reducing the cost of the overall energy purchased from the grid. 

 

Figure 3.8. PEV charging system. 

 

3.3.1. Model Formulation  

In this study, a one-day cycle from 0hr to 24hr with 15-minute resolution is considered for 

the system. The total 24hr period is divided into T time periods based on time intervals Δt. We 

consider Ct as the electricity ToU price; Pload,t
ωt  is the day-ahead demand forecast for the household; 

tstart is the PEV charge/discharge time in the system; tleave is the time when the PEV leaves 

(disconnects from) the system. PEV can only deliver power to the household, not to the grid. A 

penalty factor k is applied to the objective function to ensure that the PEV storage can reach its 

target SOC level (SOCtarget )before leaving the system. SOCt,leaving is considered as the charge 

level when PEV leaves or is disconnected. It is important to note that it is not possible for the PEV 

battery to charge above its target level at the end of the charging process due to the effect of the 

penalty factor k in increasing the cost. The objective function J and model constraints can be 

written as: 

J = min [∑(Pgrid,t Ct)

T

t=1

 + (SOCtarget − SOCt,leaving)k] 
(3.20) 

Subject to. 

A. Power balance constraint: 
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Pgrid,t − Pbatch,t + Pbatdisch,t =  Pload,t
ωt  (3.21) 

B. Charge balance constraint: 

SOCt = SOCt−1 +
Pbatch,t ∙ ηb,ch,t 

Qb ∙ ∆t
− 

Pbatdisch,t  

Qb ∙ ∆t ∙ ηb,disch,t
 

(3.22) 

C. SOC upper and lower bounds: 

SOCmin ≤ SOCt ≤ SOCmax (3.23) 

Pbatdisch,t ≤ Pload,t (3.24) 

Pgrid,t   ≥ 0 (3.25) 

Pbatch,t, Pbatdisch,t, SOCt = 0; [t ≤ tstart ; t ≥ tleave] (3.26) 

where Pbatch,t and Pbatdisch,t are the instantaneous PEV storage device charging and discharging 

power. There are boundaries for the charging and discharging power that is provided in Table 3.3. 

ηb,ch,t and ηb,disch,t are the charging and discharging efficiencies of the storage device and Qb  is 

its total storage capacity. The different scenario representations for electricity demand based on 

the demand forecasts represented by Pload,t are obtained using (3.27). 

Pload,t
ωt = P load,t ± ρt ∗ P load,t;  ωtϵ∀Ωt (3.27) 

where ρt is drawn from a normal probability distribution and ωt is the considered scenario from 

the set of different scenarios Ωt.  
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Table 3.3. System parameters for PEV. 

Parameter Value 

Battery capacity range, (Qb) 85 kWh 

Maximum operating power of the charger (PPV ) 10 kW 

Efficiency, ηb
C 92% 

SOCmin 20% 

SOCmax 80% 

Battery type Li-ion 

Time period, t 15 min 

 

3.3.2. Impact of Demand Uncertainty Consideration 

 The parameters used to represent the system for simulation analysis are listed in Table 3.3. 

Typical forecasted household summer and winter load profiles are obtained from [147] which are 

shown in Figure 3.9 and Figure 3.13, respectively. The summer and winter time-of-use (ToU) rate 

for residential customers is given in Figure 3.10 and Figure 3.14, respectively which are provided 

in [155]. Since load demand profiles are considered as a stochastic parameter, a normally 

distributed random noise is applied to generate different scenarios based on the forecasted 

household demand profiles. For simulation, PEV is plugged into the system at 6:00 PM with 30% 

of SOC and it is assumed that it will leave at 7:00 AM with a desired SOC of 60% on the next day. 

Generally, when no control is applied to the system, PEV starts charging instantly when it is 

plugged into the grid. The model’s objective is to control the charging/discharging to minimize 

the overall cost to the customer for a particular day. SDDP solves the multi-stage stochastic 

program designed for this problem and provides a control policy which is used to calculate cost 

savings per day for two different seasons.  
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Figure 3.9. Forecasted summer household 

profile. 

 

Figure 3.10. Summer ToU rate. 

  

Figure 3.11. Comparison of SOC profiles of 

PEV storage when no control is applied and 

when control is applied to summer profile. 

 

Figure 3.12. Comparison of household profiles 

including PEV charging/discharging when no 

control is considered and when control is 

applied to summer profile. 

 

For the same level of initial charge and time period, SDDP is applied for PEV 

charging/discharging strategy for two days of different seasons as ToU rate and load profile change 

with the season. Figure 3.11 and Figure 3.15 represent the SOC level for cases with and without 

control during summer and winter periods, respectively. SOC is considered as zero when PEV is 

not present in the system. The controlled and uncontrolled electricity demand from the power grid 

is provided in Figure 3.12 and Figure 3.16. It can be seen that for both seasons in the controlled 

case when the ToU rate is higher, the available energy stored in the battery is mostly used to satisfy 

the household demand and reduce the overall electricity purchase cost for the customer. Thus both  

SOC and electricity purchases from grid reduce. But when the ToU rate becomes low, the storage 

system starts charging to avoid the penalty cost which is introduced in the objective function. As 
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a result, SOC increases and electricity demand becomes higher during that period. For the summer 

season, cost remains comparatively higher until 21:00 hr. Therefore PEV does not start charging 

until that period. Rather it discharges until it’s lower SOC threshold level to reduce the overall cost 

which is shown in Figure 3.11. According to Figure 3.12, demand increases as PEV starts charging 

after 21:00 hr. During winter peak hour which occurs between 17:00 hr – 20:00 hr, PEV discharges 

according to the load demand to minimize cost. During this period, SOC decreases and load 

demand with control goes down as it can be seen from Figure 3.11 and Figure 3.12. Since the load 

demand for winter was not as high as summer season, PEV did not reach the lower threshold level 

of SOC. Furthermore, it can be seen from Figure 3.15 and Figure 3.16, for winter off-peak period, 

PEV started charging just after 20:00 hr and thus the load demand started to increase significantly. 

 

 
Figure 3.13. Forecasted winter household 

profiles. 

Figure 3.14. Winter ToU rate. 

  
Figure 3.15. Comparison of SOC profiles of 

PEV storage when no control is considered 

and when control is applied to winter 

profile. 

Figure 3.16. Comparison of household profiles 

including PEV charging/discharging when no 

control is considered and when control is 

applied to winter profile. 
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Table 3.4. Comparison for different cases. 

Case 

Summer Winter 

Electricity purchase cost per 

day ($) 

Electricity purchase cost per 

day ($) 

Without Control 19.7 9.2 

DDDP 14.3 8.5 

SDDP 14.1 8.2 

 

Table 3.4 shows the cost savings per day comparison for the different cases. To get the 

impact of considering the stochastic and deterministic case, the deterministic forecasted profile is 

applied to the dual dynamic programming algorithm instead of the stochastic scenario tree of 

Figure 3.1 (a). This control algorithm is called deterministic dual dynamic programming (DDDP). 

For policy evaluation, Benders’ cuts determined from both the SDDP and DDDP algorithm are 

applied to 100 randomly independent scenarios to test the performance of the different control 

policies in out-of-sample cases. Then the average costs of the scenario are computed for each 

control strategy. According to the results presented in Table 3.4, for the instances used for this 

analysis, the control strategy obtained using the SDDP algorithm provides better results compared 

with other strategies. 

3.4. PEV with PV-Storage Hybrid Unit 

A household system consisting of a PV-storage hybrid unit and PEV is shown in Figure 

3.17. The PV panel delivers energy to the household and also to the energy storage through a DC 

bus and AC-DC converter. Energy storage is connected to the same DC bus through a bidirectional 

DC-DC converter. PEV is connected to the household with another DC bus through a bidirectional 

converter. From DC bus to household, DC-AC inverters are connected. In this configuration, the 

PV- storage hybrid unit and the PEV can only deliver power to the household. The PV panel and 

the energy storage devices do not deliver power to the grid; hence, there is no reverse power flow 



 

63 

 

to the grid. The household load and PEV can receive power from the grid, the PV panel, and the 

energy storage. PV panel, storage and PEV can communicate to a controller through modbus 

communication. The controller sends the charge/discharge command to control the energy storage.   

 

Figure 3.17. PV-Storage hybrid unit in a household system. 

 

3.4.1. Model Formulation for Coordinated Control 

Cost minimization of a household with optimal operation of energy storage devices 

integrated with PV and PEV in a system can significantly benefit a customer. In this study, a one-

day cycle from 0hr to 24hr with a 15-minute resolution is considered. The total 24hr is divided into 

T time periods based on a resolution Δt. Let 𝐶𝑡 be the ToU electricity tariffs, 𝑃𝐿,𝑡
𝜔𝐿,𝑡  and 𝑃𝑃𝑉,𝑡

𝜔𝑡  are the 

generated load and solar profiles from the sets of all generated load and solar profiles Ω𝐿,𝑡 and Ω𝑃𝑉,𝑡, 

correspondingly. 𝑃𝑔,𝑡is the power demanded from grid at time t; a penalty factor k is applied to the 

objective function to ensure that the PEV storage can reach the target SOC level 𝑆𝑜𝐶𝑡𝑎𝑟 before 

leaving the system. 𝑆𝑂𝐶𝑡,𝑙𝑒𝑎𝑣𝑒 is considered as the charge level when PEV will leave the household. 

It is important to notice that it is not possible for the PEV battery to charge above its target level at 

the end of the charging process due to the effect of the penalty factor k as it will significantly 
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increase the total cost. 𝐶𝑑 is another penalty factor which is assigned to avoid discharging of the 

PEV, 𝑃𝑑,𝑡
𝑃𝐸𝑉during off-peak hour. If this penalty term is not introduced in the objective function, 

then the PEV will discharge up to the threshold level to minimize the cost function. If the PEV 

discharges during off-peak hours to its threshold level, it will have to charge again to reach its target 

level for the next day. As charging during off-peak hours is economical, it will prefer to regain 

charge during the off-peak hours. So, charging and discharging during off-peak hours will not be 

economical, and will cause energy loss. To avoided discharging during off-peak hour, this penalty 

cost is introduced which is chosen between the value of partial peak and off peak ToU rates. The 

objective function J and model constraints are written as: 

min 𝐽 =∑[(𝑃𝑔,𝑡 𝐶𝑡)  + |𝑆𝑂𝐶𝑡𝑎𝑟 − 𝑆𝑂𝐶𝑡,𝑙𝑒𝑎𝑣𝑒|𝑘 + 𝐶𝑑𝑃𝑑,𝑡
𝑃𝐸𝑉]

𝑇

𝑡=1

 
(3.28) 

A. Power balance constraint: 

𝑃𝑔,𝑡 − 𝑃𝑐,𝑡
𝑃𝑉 + 𝑃𝑑,𝑡

𝑃𝑉  − 𝑃𝑐,𝑡
𝑃𝐸𝑉 + 𝑃𝑑,𝑡

𝑃𝐸𝑉 − 𝑃𝑑𝑒𝑓,𝑡 = 𝑃𝐿,𝑡
𝜔𝐿,𝑡 − 𝑃𝑃𝑉,𝑡

𝜔𝑃𝑉,𝑡  (3.29) 

B. Charge balance constraint: 

𝑆𝑂𝐶𝑡
𝑃𝐸𝑉 = 𝑆𝑂𝐶𝑡−1

𝑃𝐸𝑉 +
𝑃𝑐,𝑡
𝑃𝐸𝑉𝜂𝑃𝐸𝑉  

𝑄𝑃𝐸𝑉 ∆𝑡
− 

𝑃𝑑,𝑡
𝑃𝐸𝑉  

𝑄𝑃𝐸𝑉 𝜂𝑃𝐸𝑉∆𝑡
, ∀𝑡 ∈ 𝑇 

(3.30) 

𝑆𝑂𝐶𝑡
𝑃𝑉 = 𝑆𝑂𝐶𝑡−1

𝑃𝑉 +
𝑃𝑐,𝑡
𝑃𝑉𝜂𝑃𝑉  

𝑄𝑃𝑉 ∆𝑡
− 

𝑃𝑑,𝑡
𝑃𝑉  

𝑄𝑃𝑉  𝜂𝑃𝑉∆𝑡
, ∀𝑡 ∈ 𝑇 

(3.31) 

C. Charge and discharge operational limits based on PV and load respectively 

𝑃𝑐,𝑡
𝑃𝑉 ≤ 𝑃𝑃𝑉,𝑡

𝜔𝑃𝑉,𝑡  , ∀𝑡 ∈ 𝑇 (3.32) 

𝑃𝑑,𝑡
𝑃𝑉  − 𝑃𝑐,𝑡

𝑃𝐸𝑉 ≤ 𝑃𝐿,𝑡
𝜔𝐿,𝑡  , ∀𝑡 ∈ 𝑇 (3.33) 

𝑃𝑑,𝑡
𝑃𝑉 + 𝑃𝑑,𝑡

𝑃𝐸𝑉 ≤ 𝑃𝐿,𝑡
𝜔𝐿,𝑡  , ∀𝑡 ∈ 𝑇 (3.34) 

𝐶𝑡
𝑜𝑓𝑓_𝑝𝑒𝑎𝑘

≤ 𝐶𝑑 ≤ 𝐶𝑡
𝑝𝑎𝑟𝑡𝑖𝑎𝑙,𝑝𝑒𝑎𝑘

 (3.35) 

𝑘 > 0 (3.36) 

D. Non-negativity requirement for purchases from the grid 
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𝑃𝑔,𝑡   ≥ 0 , ∀𝑡 ∈ 𝑇 (3.37) 

E. Upper and lower bounds for the model decision variables 

𝑆𝑂𝐶𝑚𝑖𝑛
𝑃𝐸𝑉 ≤ 𝑆𝑂𝐶𝑡

𝑃𝐸𝑉 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥
𝑃𝐸𝑉  , ∀𝑡 ∈ 𝑇 (3.38) 

𝑆𝑂𝐶𝑚𝑖𝑛
𝑃𝑉 ≤ 𝑆𝑂𝐶𝑡

𝑃𝑉 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥
𝑃𝑉  , ∀𝑡 ∈ 𝑇 (3.39) 

𝑃𝑐
𝑃𝐸𝑉_𝑚𝑖𝑛  ≤ 𝑃𝑐,𝑡

𝑃𝐸𝑉 ≤ 𝑃𝑐
𝑃𝐸𝑉_𝑚𝑎𝑥   , ∀𝑡 ∈ 𝑇 (3.40) 

𝑃𝑑
𝑃𝐸𝑉_𝑚𝑖𝑛  ≤ 𝑃𝑑,𝑡

𝑃𝐸𝑉 ≤ 𝑃𝑑
𝑃𝐸𝑉_𝑚𝑎𝑥   , ∀𝑡 ∈ 𝑇 (3.41) 

𝑃𝑐
𝑃𝑉_𝑚𝑖𝑛  ≤ 𝑃𝑐,𝑡

𝑃𝑉 ≤ 𝑃𝑐
𝑃𝑉_𝑚𝑎𝑥   , ∀𝑡 ∈ 𝑇 (3.42) 

𝑃𝑑
𝑃𝑉_𝑚𝑖𝑛  ≤ 𝑃𝑑,𝑡

𝑃𝑉 ≤ 𝑃𝑑
𝑃𝑉_𝑚𝑎𝑥   , ∀𝑡 ∈ 𝑇 (3.43) 

where 𝜔𝐿,𝑡𝜖∀Ω𝐿,𝑡 , ∀𝑡 ∈ 𝑇  and 𝜔𝑃𝑉,𝑡𝜖∀Ω𝑃𝑉,𝑡 , ∀𝑡 ∈ 𝑇  

In the system under consideration, 𝑃𝑑𝑒𝑓,𝑡 is defined to be the deferred energy amount, 𝑃𝑐,𝑡
𝑃𝑉 

and 𝑃𝑑,𝑡
𝑃𝑉are the instantaneous charging and discharging power of the energy storage, 𝑃𝑐,𝑡

𝑃𝐸𝑉 and 𝑃𝑑,𝑡
𝑃𝐸𝑉 

are the instantaneous charging and discharging power of the PEV. 𝑆𝑂𝐶𝑡
𝑃𝑉and 𝑆𝑂𝐶𝑡

𝑃𝐸𝑉 are the state- 

of-charge of the energy storage and PEV at time t. The lower and upper bounds of decision variables 

are provided in Table 3.5. The parameters 𝑄𝑃𝑉 and 𝑄𝑃𝐸𝑉 are the total capacity, 𝜂𝑃𝑉  and 𝜂𝑃𝐸𝑉 are 

the storage charger efficiency and the PEV charger efficiency, respectively.  

This problem is based on two basic assumptions. First, the grid can only deliver power to 

the household; there is no net metering compensation provided. Second, the storage devices can 

only be charged by using solar PV generation and they discharge only to deliver power to the 

household. A multi-stage stochastic model is represented and then the SDDP algorithm is employed 

to solve it.  

3.4.2. Scenario Generation  

One important step to model and solve the energy management problem under uncertainty 

(or stochastic energy management) in a multi-stage context is to develop a scenario tree to represent 

possible events associated with the existent random parameters. Solar PV generation and electricity 
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demand are sampled from probability distributions, defined using information based on existent 

data, in order to construct a sampled scenario tree with different scenarios. A straightforward way 

to model random variables that represent solar PV generation and electricity demand in a scenario 

tree is to assume that vectors are interstage independent. Interstage independence from one period 

to the next means that the realization of the random variable at a future stage has no relationship 

with the realization of random variables from previous stages. As solar generation and electricity 

demand vary due to weather, temperature, cloud cover and other patterns it is reasonable to assume 

that this information can be treated as independent over time to forecast solar radiation. For 

example, one could imagine a forecasting model (e.g. a Multi-layer perceptron neural network 

model) for electricity demand based on temperature forecasts, i.e., once trained, this model would 

receive future temperature forecasts and come up with demand forecasts without relying on the 

previous information.  

In order to generate more realistic scenarios for demand and solar PV generation, it is 

important to represent the correlation between these two random variables. To accomplish that, past 

data are used to estimate the existing correlation between solar PV generation and electricity 

consumption. Once the correlation is computed, one way to represent this information and generate 

combined scenarios for solar PV generation and electricity demand is to perform independent draws 

from normal distributions 𝒩[𝜇, 𝜎2] (where 𝜇 is the average and 𝜎2 is the variance of the probability 

distribution) and then pass the correlation between the parameters using the Cholesky 

decomposition approach [156]. Suppose the number of stages is 𝑇 and number of uncertain 

parameters is 𝑛. Let X be a matrix (𝑇 × 𝑛) with independent identically distributed draws from a 

normal distribution 𝒩[0,1], and let R be the correlation matrix between electricity demand and 

solar PV generation. The Cholesky decomposition of R is a lower triangular matrix L such that: 



 

67 

 

𝑅 = 𝐿𝐿′ (3.44) 

𝑌 = 𝐿𝑋 (3.45) 

where Y will then be a matrix with correlated draws. Thus, Y will correspond to draws from 

𝒩[0, Σ ]. The original draws are from a 𝒩[0,1], and the covariance matrix Σ =  𝑅. If we want 

correlated draws for electricity demand and solar PV generation, for households 𝑖 = 1, 2, . . . , 𝑁 at 

some stage t given by 𝒩𝑗,𝑖[𝜇𝑖 , 𝜎𝑖
2], we can multiply the draws from column i of the Y matrix by 𝜎𝑖 

and add the mean 𝜇𝑖 associated with electricity demand (when generating values for demand) and 

solar PV generation (when generating values for solar PV) that were estimated using past data. For 

example, an element of the matrix Y, say 𝑦𝑗,𝑖 corresponding to the j-th draw, can be defined as 

(3.46): 

𝑦̂𝑗,𝑖 = 𝜇𝑖 + 𝑦𝑗,𝑖 ∙ 𝜎𝑖 (3.46) 

Thus (3.46) will be a draw from 𝒩[𝜇𝑖, 𝜎𝑖
2]. By following this procedure it is possible to 

generate scenarios for our random parameters taking into account the correlation structure among 

them. During night, the scenario realizations of solar PV generation are considered to be zero and 

the correlation between electricity demand and solar PV generation is not considered. In other 

words, during the night period, the generated solar PV generation values are zero and random for 

the electricity demand, which are generated considering only its own probability distribution. 

3.4.3. Impact of Coordinated Control with PV and Demand Uncertainties 

In this section, the computational results are illustrated to show the impact of coordinated 

control. The system parameters used for simulation analysis are listed in Table 3.5. Forecasted 

solar power profile for a summer day and a typical household summer load profile are obtained 

from [148] and [157], and shown in Figure 3.18. The correlation coefficient between them for this 

case study is -0.15. The ToU rate for residential customer varies during the day based on off-peak, 

partial peak and peak hours from PGE [155]. PEV is considered to be plugged into the system at 
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18:00 hr with 40% of SOC and it is assumed that it will leave at 07:00 hr on next day with the 

desired SOC of 80% on the next day. The model’s objective is to control the charging/discharging 

of the storage devices to minimize the overall cost to the customer on a particular day. SDDP 

solves the multi-stage stochastic program designed for this problem and provides control policies 

to the PV-based storage and PEV storage to increase cost savings per day. The degradation cost of 

the storage is not considered and have not changed the availability of PEV in the grid. The 

optimization problem is solved in MATLAB on an Intel Core i5-4600U with a 1-GH CPU, 4 GB 

of RAM, and 64-bit operating system PC.  The accurate degradation modeling of storage and 

variation in the availability of PEV will be studied further in future work.  

Table 3.5. System parameters for coordinated control. 

Parameter Value Parameter Value 

PV panel installed power capacity    3 kW 𝑆𝑂𝐶𝑚𝑖𝑛
𝑃𝐸𝑉 , 𝑆𝑂𝐶𝑚𝑖𝑛

𝑃𝑉  20% 

PV based battery capacity, (QPV)  4 kWh 𝑆𝑂𝐶𝑡𝑎𝑟𝑔𝑒𝑡
𝑃𝐸𝑉  80% 

PEV battery capacity, (𝑄𝑃𝐸𝑉)  85 kWh 𝑆𝑂𝐶𝑚𝑎𝑥
𝑃𝐸𝑉  , 𝑆𝑂𝐶𝑚𝑎𝑥

𝑃𝑉  80% 

𝜂𝑃𝐸𝑉, 𝜂𝑃𝑉 92% 𝑃𝐶
𝑃𝑉_𝑚𝑎𝑥, 𝑃𝐷

𝑃𝑉_𝑚𝑎𝑥  3 kW 

Initial 𝑆𝑂𝐶𝑡
𝑃𝑉 20% 

𝑃𝑐
𝑃𝐸𝑉_𝑚𝑖𝑛, 𝑃𝐶

𝑃𝑉_𝑚𝑖𝑛 

𝑃𝐷
𝑃𝐸𝑉_𝑚𝑖𝑛, 𝑃𝐷

𝑃𝑉_𝑚𝑖𝑛 
0 kW 

Initial 𝑆𝑂𝐶𝑡
𝑃𝐸𝑉 40% 𝑃𝑐

𝑃𝐸𝑉_𝑚𝑎𝑥, 𝑃𝐷
𝑃𝐸𝑉_𝑚𝑎𝑥 20 kW 

 

For comparison, heuristic control of PV is considered. In heuristic control strategy, PV 

based storage is charged when there is an excess of solar generation than demand and discharged 

when the load is higher than the solar generation. PEV starts charging up to its target level 

whenever it is present at the grid in heuristic control. Impact of standalone control of PV- storage 

hybrid unit control and PEV storage control is also shown in result analysis. 

A) Effect on Electricity Purchase Savings 

The SOC profiles of PV based storage and PEV storage for these two control strategies are 

shown in Figure 3.19 and Figure 3.20. From Figure 3.19, it can be seen that PV based storage 
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prefers to charge during off-peak and partial-peak hours and discharge during peak hours for 

coordinated control. It also started charging when PEV leaves from house in the morning. Before 

that, PV generation is utilized to charge the PEV which is shown in Figure 3.20. As PV generation 

is utilized to charge the PEV, there remains more capacity for PV based storage to store solar 

energy. As a result, it shows that PV - storage hybrid unit has reached its threshold level for 

heuristic control during higher generation. But as PV based storage has higher capacity, it can 

utilize solar generation more than the heuristic control.  

 
 

Figure. 3.18. Household and solar 

generation profiles. 

Figure 3.19. SOC profiles of PV-based 

storage. 

  

Figure 3.20. SOC profiles of PEV storage. Figure 3.21. Household load profile after 

control. 
 

From Figure 3.20, it is shown that PEV based storage starts to discharge during peak hours 

to meet the household demand if coordinated control is applied. Due to this reason, load profile in 

Figure 3.21 is lower for coordinated control during peak hours. But SOC of PEV increases for the 

heuristic control, as it starts charging whenever it is present in the house. So, load profile in Figure 

10 increases for heuristic control during peak hours. As for our case study, it is assumed that PEV 

will leave next day at 07:00 hr, PEV started charging during the off-peak period for coordinated 
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case to avoid the defined penalty in the objective function. If a customer wants to get rid of excess 

charging cost of PEV, he can define the target level of SOC. Thus, the load profiles in Figure 3.21 

increases during the off-peak hours to charge the PEV for the coordinated case.  

Simulations are performed for different seasons due to the variation of load demand, solar 

generation and ToU rate. The impact of standalone SDDP based control for PV storage with 

heuristic control of PEV and standalone SDDP based control for PEV storage with heuristic 

control of PV based storage to minimize cost are also considered. The comparison of the electricity 

purchase costs from the grid for different control strategies is shown in Figure 3.22. It is found that 

the proposed coordinated control strategy outperforms among all other control strategies. The 

results show that coordinated control saves about around 37% of cost during summer and 12.7% 

of cost during winter days than the heuristic control.  If the average of these savings is considered, 

it can be said that in the proposed control strategy can save almost 26% of the cost compared to 

the heuristic control annually. 

 

Figure 3.22. Comparison of daily electricity purchase cost for different methods on different 
seasons. 
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B) Effect on Peak-hour Savings 

Peak hour energy savings help the utility companies to avoid various grid problems such 

as load variation and congestion or higher local marginal pricing cost. For different methods, peak 

hour energy savings for different seasons are also calculated which is depicted in Table 3.6. As the 

heuristic method prefers to discharge PV based storage while load is higher than PV generation 

and does not consider cost savings, peak hour savings are comparatively lower during summer and 

fall for this method. There is no peak hour saving for winter and spring as energy storage 

discharges before peak hour period in this method. For our proposed method, the objective 

function is to reduce overall electricity purchase cost per day. It tries to reduce peak-hour electricity 

purchase from the grid by utilizing solar generation and stored energy from energy storage and 

PEV as much as possible. Thus, peak hour savings are always higher for the coordinated control 

method.  

Table 3.6. Comparison of peak hour energy savings for different methods on different seasons. 

Control Strategies Summer Fall Winter Spring 

Heuristic control  30% 21% 0.01% 0.30% 

SDDP based control on PV storage 
and heuristic control on PEV storage 

31% 22% 5.7% 5.7% 

Heuristic control on PV storage and 
SDDP based control on PEV 96% 99% 97.5% 97.4% 

SDDP based coordinated control 
93% 99.7% 99.9% 98% 

 

C) Effect on PV generation usage: 

The more solar PV generation will be utilized to mitigate demand, the less energy will be 

required to be purchased from grid, which is the objective function of our proposed method. As a 

result, it can be seen that PV generation usage is 100% on our proposed method in Table 3.7. The 

level of 100% utilization of solar generation gives the maximum return on the investment and the 
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largest cost savings for the user. When PV based storage is controlled through the SDDP based 

method, it also ensures 100% utilization of solar generation for all seasons. However, with 

heuristic control of energy storage, solar generation is deferred during summer and fall due to 

unavailable capacity of energy storage shown in Figure 3.19. PV generation usage becomes 

comparatively lower for this control strategy on energy storage presented in Table 3.7. During 

winter and spring season, solar generation is lower than the demand. Thus, all methods can utilize 

solar generation. 

Table 3.7. Solar generation usage when PEV is present from 18:00 hr for different seasons. 

Control Strategies Summer Fall Winter Spring 

Heuristic control  67.7% 59% 100% 100% 

SDDP based control on 

PV storage and heuristic 

control on PEV storage 

100% 100% 100% 100% 

Heuristic control on PV 

storage and SDDP based 

control on PEV 

68% 59% 100% 100% 

SDDP based coordinated 

control 
100% 100% 100% 100% 

 

D) Impact of Calculation Time 

Due to scenario generation, correlation consideration, and iteration process to reach the 

stopping criteria, the SDDP algorithm requires comparatively higher time than the heuristic control 

strategy. As the number of scenarios considered during forward and backward pass increases, the 

simulation time increases. Compared to the heuristic control strategy, the SDDP method requires 

more computation time. For 50 forward and 20 backward pass consideration, computation time 

requirement for different methods are shown in Table 3.8. The data in the table illustrates that due 

to the increase of the model size and the uncertainty representation in the SDDP control approach, 

the computation time increases. Higher computational time is the limitation of applying SDDP, 
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which can be improved with more computational resources and by choosing different strategies 

for the algorithm of SDDP convergence criteria. It is important to note that the energy management 

control periods are designed in the scale of minutes and the SDDP based approaches can meet the 

requirements in reasonable amounts of time.  

Table 3.8. Computation time when PEV is present at 18:00 hr on a summer day. 

Control Strategies Computation time 

Heuristic Control  4s 

Heuristic control on PV storage and SDDP based Control on PEV  63s 

SDDP based control on PV storage and heuristic control on PEV 
storage 

142s 

Coordinated Control 207s 

 

3.5. Uncertainty Consideration on Energy Management at Community Level 

An individual owned solar PV- storage hybrid unit and a community system composed of 

N houses are shown in Figure 3.23 (a) and (b) respectively. The hybrid PV-panel and battery 

system is considered to be connected on a DC bus. The individual energy management (IEM) 

strategy is designed considering the system depicted in Figure 3.23 (a) and it is used for energy 

management in each separate house that is part of the community system. To ensure a higher ratio 

of solar utilization, it is assumed that the storage devices are not allowed to store energy by 

charging from the grid.  

The shared energy management (SEM) strategy is designed considering together all the 

households that are part of the community along with their respective solar PV panels and storage 

devices as the system depicted in Figure 3.23 (b). In this scheme, energy produced by solar PV 

panels from all houses can flow between the storage devices and the households through a common 

dc bus [158]. The inverters of the storage devices are considered to have bidirectional capabilities; 

however, this is used only to satisfy the needs within the community. It is assumed that the storage 
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devices will only store energy generated from the solar PV panels and discharge to meet the 

different household demands, but as in the IEM strategy it is not allowed to store electricity from 

grid purchases and there is no back-feed power to the utility grid.  

 

 

(a) (b) 

 

Figure 3.23. (a) Hybrid community system and (b) central control system for storage. 

The shared community system can be managed by a communication system composed of 

smart meters and a charge control unit as described in [159]. The central controller communicates 

with each house to control the usage of the overall solar PV production between households and 

charge/discharge patterns of the storage devices through an energy management scheme, which is 

shown in Figure 3.24. Data from electricity demand forecasts as well as solar PV generation are 

required to use in an optimization model designed to create the control policies and use them to 

obtain the optimal energy management including handling storage devices’ charging/discharging 

and power flow among the houses in a given day. For solar PV generation and electricity demand 

information, a stochastic representation based on data from point forecasts is employed in the 

scenario generation procedure. It is assumed that each house will receive an equal amount of 
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credits that will be compensated by the other houses that will use their generated solar PV 

considering the utility ToU rate as a monetary metric. In this assumption, it is considered that the 

smart meter can measure the electricity usage from the grid and also can track the generated solar 

PV provided to the community from each household. 

  

Figure 3.24. Proposed framework for central control based on a shared community system with 

PV and storage. 

 

3.5.1. Model Formulation 

The forecasted household electricity demand and corresponding PV generation profiles for 

N houses are used as inputs for the community system model. For minimizing electricity purchase 

costs from the grid, one-day cycle from 0hr to 24hr with a 1-minute resolution is considered. The 

model formulation, under specific scenario realizations defined by 𝜔,  has the objective function 

J represented in (3.47) and constraints stated in (3.48) - (3.54).  

min 𝐽 = ∑ [𝐶𝑡 ∙ ∑ 𝑃𝑔,𝑡
𝑖𝑁

𝑖=1  ]𝑇
𝑡=1                                              (3.47) 

where 𝑃𝑔,𝑡
𝑖  Electricity purchases from the 𝑖th house at stage 𝑡    

Subject to: 

i. Power balance equation for the individual house i: 

𝑃𝑔,𝑡
𝑖 = 𝑃𝑑𝑒𝑚,𝑡

𝜔𝐿
𝑖

− 𝑃𝑃𝑉,𝑡
𝜔𝑃𝑉
𝑖

+ 𝑃𝐶,𝑡
𝑖 − 𝑃𝐷,𝑡

𝑖 +∑ 𝑃𝑖−𝑗,𝑡
𝑗𝑁

𝑗=1,𝑗≠𝑖  − ∑ 𝑃𝑗−𝑖,𝑡
𝑗𝑁

𝑗=1,𝑗≠𝑖  + 𝑃𝑑𝑒𝑓,𝑡
𝑖 , ∀𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝐼          (3.48) 

Electricity Demand data
Household 1,2,…,N

Time-of-use (ToU) rates for 
different periods

…

Solar PV Generation data
Household 1,2,…,N

…

Scenario Generation 
Procedure

Energy Management 
Strategy

SDDP based Optimal 
Control

Electricity Exchanges 
(sending and receiving) 

between households 1,2,…,N 
with themselves

Battery Storage Charge and 
Discharge actions for each 

household

Electricity Purchases from the 
grid for each household

Centralized Control Scheme
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ii. Charge balance constraint for the individual house i: 

𝑆𝑂𝐶𝑡
𝑖 = 𝑆𝑂𝐶𝑡−1

𝑖 +
𝑃𝐶,𝑡
𝑖 𝜂 

𝑄𝑖 ∆𝑡
− 

𝑃𝐷,𝑡
𝑖  

𝑄𝑖𝜂∆𝑡
∀𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝐼                                           (3.49) 

∑ 𝑃𝐶,𝑡
𝑖𝑛

𝑖=1 ≤ 𝑃𝑃𝑉,𝑡
𝜔  , ∀𝑡 ∈ 𝑇                                                                (3.50) 

∑ 𝑃𝑔,𝑡
𝑖𝑛

𝑖=1 ≥ 0 , ∀𝑡 ∈ 𝑇                                                                      (3.51) 

iii. Upper and lower bounds for decision variables for individual house i are: 

𝑆𝑂𝐶𝑚𝑖𝑛
𝑖 ≤ 𝑆𝑂𝐶𝑡

𝑖 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥
𝑖  , ∀𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝐼                                       (3.52) 

       𝑃𝐶,𝑚𝑎𝑥
𝑖 ≤ 𝑃𝐶,𝑡

𝑖 ≤ 𝑃𝐶,𝑚𝑖𝑛
𝑖 , ∀𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝐼                                               (3.53) 

𝑃𝐷,𝑚𝑎𝑥
𝑖 ≤ 𝑃𝐷,𝑡

𝑖 ≤ 𝑃𝐷,𝑚𝑖𝑛
𝑖  , ∀𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝐼                                            (3.54) 

For the above model, 𝑃𝑑𝑒𝑚,𝑡
𝜔𝐿
𝑖

 and 𝑃𝑃𝑉,𝑡
𝜔𝑃𝑉
𝑖

 are changed based on each individual household and 

scenario realization. This problem is solved through multi-stage dual dynamic programming 

approach. 

3.5.2. Energy Storage Capacity Sizing 

For the annual energy savings calculation, a variation of ToU rate during summer and 

winter are considered. Load shape of houses and PV profile also change with seasons and has an 

impact on NPV. For simplification, annual load profiles of a particular house can be divided into 

four seasonal load profiles: spring, summer, fall, and winter. Four average load profiles are 

calculated by considering all the load profiles during these seasons. The SDDP algorithm is then 

applied individually to the load profiles for each season considering corresponding ToU rate to 

minimize electricity purchases from the grid. The cumulative sum of energy savings for the 

seasons provides the net annual savings.  
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To calculate NPVs, a discount rate, r (Table 3.7) is used to bring the future cash flows to 

the current date. Based on the discount rate, NPVs are calculated by considering the replacement 

of batteries based on their life cycle. Expenditure of battery for the projected time period is 

calculated with the corresponding equation: 

𝐶𝑏 =
𝑄.𝛹.𝛾

(1+𝑟)𝑘
                                                      (3.55) 

where 𝐶𝑏 is the battery investment cost during solar PV panel life time, 𝛾 is storage device cost, 

𝛹 is number of replacements for storage devices, and k is the solar panel life time 

As the project span is based on the PV panel life, ToU rate will vary during this period. 

The variation of ToU rate for previous 10 years is provided in [155]. This deviation is averaged 

and implied on the calculation of net energy savings. NPV will be the difference between the 

saving and expenditure for the entire project. The equation for NPV is 

NPV = ∑
𝐹𝑠 (∆𝑇𝑜𝑈)

𝑘

(1+𝑟)𝑘
𝐾
𝑘=1 − 𝐶𝑏                                                      (3.56)     

Here, 𝐹𝑠 is the net annual savings calculated from energy management strategy,and ∆𝑇𝑜𝑈 

is the change of ToU rate for PV panel over years. The flowchart for the NPV based calculation 

and the determination of optimal energy storage capacity based on the IEM and SEM control 

strategies for each house and the community is provided in Figure 3.25.  

The results of the energy storage sizing discussed above are utilized for each individual 

house of the shared scenario. This procedure will help to avoid an exhaustive search process by 

varying the energy storage size of each individual house in the community one by one and find the 

optimal NPV for the whole community. Thus, the optimal storage size 𝑞𝑖
∗ for each house is 

calculated following the flow chart from Figure 3.25. These results help us to get the idea that if a 

house has lower electricity demand and higher solar PV generation, then its individual storage 
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capacity requirement is higher than the other houses of the community, which will be reflected 

between the ratio of the 𝑞𝑖
∗ and the total individually controlled optimal storage capacity of all 

houses. Thus, for each of the variation of total community storage, 𝑄𝑐 the storage size of each 

house, 𝑄𝑖 follows Equation (3.57). 

                                                 𝑄𝑖 = 𝑄𝑐
𝑞𝑖
∗

∑ 𝑞𝑖
∗𝑁

𝑖=1

 (3.57) 

After getting the storage size for each house, 𝑄𝑖 the SDDP is runs based on the SEM method 

to find out the net energy savings. The NPV is computed in a similar manner to the IEM control 

strategy case. The highest NPV value ensures the optimal storage size 𝑄𝑐
∗ for the whole 

community, where 𝑄𝑐
∗ is divided among the houses of the community by following Equation 

(3.57). From the power balance defined in (3.48), it is possible to calculate how much power is 

exchanged between houses. If a house is sending power to another house, it is assumed that it will 

get an equal amount of credit computed using the energy amount and the ToU rate from the utility 

company. This energy credit for the first house is a debt. The house that receives energy has to 

payoff to maintain fairness in the community in terms of exchanges.  
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Figure 3.25. Flowchart for optimal storage size calculation for the IEM and the SEM 

control strategies. The flowchart is applied to each house individually in the IEM 

control strategy case to obtain 𝑞∗ and then 𝑞𝑖
∗ = 𝑞∗ is set. In the SEM control strategy 

case 𝑞𝑖
∗ was previously defined from the results of the IEM analysis and 𝑞∗ is obtained 

for the community, and so 𝑄𝑐
∗ = 𝑞∗ is set. Note the dashed lines and blocks are only 

considered in the SEM control strategy case. 

 

3.5.3. Impact of Shared Energy Management 

In order to investigate the importance of the SEM strategy for a community system, it is 

considered the analysis of the two systems depicted in Figure 3.23. The goal is to evaluate the 

benefits for the community as a whole and each individual house that is part of that community 

when the energy management is performed at the system level. Although the analysis is performed 

considering four seasons of the year and their associated typical days representing different 

electricity demand and solar PV profiles, it is concentrated here in showing the results only for a 

typical summer day. The ToU rates considered to represent the price that the customer has to pay 

for electricity purchases from the grid on a summer day is obtained from [155]. The household 

electricity demand profiles of five houses along with their corresponding solar PV generation 
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profiles from the same spatial area are obtained from [157] and shown in Figure 3.26. It is to 

mention that, ToU rates (Appendix A) also change for different seasons, and this is considered 

when applying the SDDP algorithm to solve the model. It is noted that the ToU rate considered 

here does not include demand charges at the residential level, therefore, this ToU structure is 

simply composed of energy charges. However, if a different ToU structure was to be considered 

with the addition of demand charges, the control strategies presented here would again attempt to 

reduce the overall costs by reducing the peak energy utilization from the grid. Moreover, following 

the proposed control strategies would potentially help to reduce the community demand contracts 

with utilities, due to a smaller peak demand, which would potentially incur smaller demand 

charges and larger benefits to the community. 

Table 3.9. System parameters for hybrid houses in a community. 

Parameter Value 

PV panel lifetime 20 years 

Battery lifetime 7 years 

Battery capacity 0-7 kWh (Houses); 5-10 kWh (Community) 

Battery cost [23] $350/kWh 

Efficiency, 𝜂 0.92 

Initial SOC 20% 

𝑆𝑂𝐶𝑚𝑖𝑛 20% 

𝑆𝑂𝐶𝑚𝑎𝑥  80% 

𝑃𝐷,𝑚𝑖𝑛, 𝑃𝐶,𝑚𝑖𝑛 0 kW 

𝑃𝐶,𝑚𝑎𝑥, 𝑃𝐷,𝑚𝑎𝑥 5 kW 

 

A) Impact of Electricity Purchase Saving 

There is an impact of SDDP algorithm for the shared control scheme to minimize the 

electricity purchase cost for a summer day. In Figure 3.26, the aggregated solar generation for a 

day is provided. From Figure 3.27, it can be observed that when the ToU rate is lower and solar 

energy is available, then as the storages of all houses utilized the solar generation to be charged. 

Thus the load profile of the shared control scheme did not change though there was solar generation 
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during that time. They discharged during peak hour periods and maintained enough capacity to 

store solar energy when demand is lower than the PV generation to reduce the electricity purchase 

costs. As a result, the aggregated electricity demand during peak hours is comparatively lower. 

Similarly, SDDP is applied to the selected households individually with their corresponding solar 

profiles. The simulation results show the benefits of applying the SDDP algorithm to establish the 

IEM and SEM control strategies, with the goal to minimize electricity purchases from the grid on 

a typical summer day. A scenario tree with 100 scenarios per stage with 1441 stages is constructed 

using 𝒩[0,1]  to create inter-stage independent scenarios at each stage. The SDDP is applied to 

the scenario tree in order to obtain the policy (collection of Benders cuts at each stage) for both, 

the IEM and the SEM strategies. For comparison, a heuristic control policy is also considered. For 

the heuristic control strategy, solar PV based storage is charged when there is an excess of solar 

generation (more than the demand) and the device is discharged when the household demand is 

higher than the solar generation. 

From Figures 3.27 and 3.28, it can be observed that when the ToU rate is lower and solar 

energy is available, the household storages undergo charging. Thus, the load profile of the IEM 

and SEM does not change although there is solar generation during that time. The storage devices 

discharge during partial-peak and peak-hour periods and maintain enough capacity to store solar 

energy production when demand is lower than the electricity produced in order to reduce the 

purchase costs from the grid. As a result, the aggregated electricity demand during peak-hours is 

comparatively lower for IEM and SEM control strategies. But as it can be observed by following 

the SEM control strategy the system can store more solar generation (surplus) than in the IEM 

strategy case, therefore, the SEM strategy helps to alleviate demand during peak time more than 
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the IEM strategy. With closer observation during peak hours in Figure 3.27 and 3.28, one can 

notice peak demand reduction from adopting the SEM control strategy.      

House 1 

 
House 2 

 
House 3 

 
House 4 

 
House 5 

 
Aggregated profiles 

Figure 3.26. Electricity demand and solar generation of five houses on a summer day and their 

aggregated demand and solar generation profiles. 

 

  

Figure 3.27. Electricity purchases from the 

grid with and without the IEM control strategy. 

Figure 3.28. Electricity purchases from the 

grid with and without the SEM control 

strategy. 
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Table 3.10. Electricity purchase costs of each house ($/day) for a summer day when no storage is 

used and different control strategies are used. 

 

 Heuristic IEM SEM 

House 1 4.7 3.8 3.6 

House 2 12.2 11.5 11.3 

House 3 8.3 7 6.7 

House 4 6.5 6.2 5.8 

House 5 9.7 9.5 9.4 

Total 41.4 38 36.8 

 

Table 3.11. Comparison of different control strategies for a summer day using the aggregated 

profile of the community. 

 

 Heuristic IEM SEM 

Electricity purchase ($/day) 41.4 38 36.8 

Peak energy savings (%) 43.74 45.5 60.4 

PV usage (%) 74.9 93.3 97.8 

 

 
   

 

 

Figure 3.29. Comparison of daily electricity purchase savings (from electricity purchase without 

solar) for different seasons and different control strategies. 
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The SDDP is applied to the households with their corresponding solar and demand profiles 

for standalone IEM control. To compare the impact of different control strategies, a policy 

evaluation analysis is performed by generating 1,000 independent and random forward paths to 

represent future possible scenario realizations for the uncertainty parameters considering the 

summer season (when the demand and solar generation are at their peak). The policies obtained 

by running the SDDP in the original scenario tree are then separately applied to each individual 

forward path and the model (3.47) - (3.54) is simulated to minimize the cost at each stage of each 

forward path scenario. Then the average value of 1,000 profiles (each representing the sum of the 

costs of all the stages associated with one forward path scenario) for each house is considered as 

the point estimator for the total cost in our analysis. During our simulations, the optimal storage 

capacity is used for each house (more details are discussed in the next subsection). The comparison 

results of energy purchases from the grid for each house, overall peak shaving, and solar PV 

generation usage are presented in Table 3.10 and Table 3.11. Our results show that the suggested 

shared storage usage along with the SEM control strategy outperforms the individual ownership 

storage with heuristic or IEM control strategies in terms of minimization of net electricity purchase 

costs for the homeowners.  A similar analysis is conducted for demand and solar PV profiles of 

three other seasons considering the ToU rate for the corresponding seasons. The electricity 

purchase savings from grid for different methods are shown in Figure 3.29. It ensures the total 

electricity consumption reduces in the SEM control strategy for all seasons compared to other 

methods. 

B) Impact on Energy Storage Capacity Sizing 

The optimal capacity of storage sizes for the IEM and SEM control strategies for five 

houses are calculated based on the method discussed in Section 3.5.2. The results of NPV 
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calculation for five houses based on the IEM strategy are shown in Figure 3.30. Figure 3.31 

presents the NPV calculation results based on the SEM strategy applied to the aggregated profile. 

The optimal storage sizes are selected based on the maximum NPV values for both control 

strategies. For the SEM control strategy, following equation (3.57), the storage size for each house 

is calculated. The comparison of storage sizes for five houses based on the IEM and the SEM 

control strategies with the proposed sizing method is shown in Figure 3.32. To increase the surplus 

solar PV generation usage, a comparatively higher storage capacity is required for individually 

owned and controlled storage devices. On the other hand, the household with surplus solar PV 

generation receives equal credits valued by ToU rate to supply the excess energy to the other 

houses that participate in the community SEM control strategy. Therefore, the houses with higher 

solar PV generation will prefer to save the energy produced for meeting their peak demand first 

and then send the excess to the other houses in order to meet other community needs instead of 

storing in their batteries. This allows for the individual storage devices capacities to be reduced for 

each house when it is compared to the IEM control strategy case. Though the capacity of storage 

reduces for SEM control strategy, the overall solar PV energy usage increases. Thus, the storage 

sharing will provide benefits for individual houses with a reduction in their electricity purchase 

and investment costs.  

The comparative results between the IEM and the SEM control strategies are presented in 

Figure 3.33. The cost and the storage capacity size reductions improve the NPV in the SEM control 

strategy compared to the IEM control strategy. Due to the comparatively higher electricity 

purchase costs shown in Table 3.10, it is expected that the heuristic control strategy will show 

lower NPV than the IEM and the SEM control strategies for the same size of storage. Thus the 

comparison of storage size for heuristic control strategy is not shown. 
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Figure 3.30. NPVs of houses for different 

storage sizes for IEM control. 

 
Figure 3.31. NPVs of different storage sizes 

for SEM control. 

 
Figure 3.32. Comparison of optimal storage 

sizes for different houses for IEM and SEM 

control strategies. 

 
 

Figure 3.33. Comparison of NPVs for 

different houses for IEM and SEM control 

strategies. 

 

3.6. Conclusion 

In this chapter, four models are formulated to address the energy management of energy 

storages considering PV generation and electricity demand uncertainties at the residential and 

community levels. By modeling these problems as a multi-stage stochastic programming, a 

realistic representation is created where multiple uncertain scenarios are used with the goal to 

achieve reliable results in the control process than in the deterministic control representation. The 

results obtained from applying the SDDP for an optimal state of charge and control trajectories 

show that by controlling the charging schedule of the PV based storage and PEV storage device, 

it is possible to minimize the household cost of purchasing power from the grid. At community 
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level, it shows that optimal scheduling through SEM method helps to improve the economic 

benefit for the owners of PV- storage hybrid unit. 
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CHAPTER 4 

Distribution Service Restoration Utilizing Demand Response 

 

Indices 

𝑡 Index for time. 

𝑙 Index for Nodes. 

𝛾 Index for controllable loads. 

𝑖 House. 

𝑎, 𝑏, 𝑐 Phases. 

𝜔𝐿,𝑡 Generated scenario for load. 

𝜔𝑃𝑉,𝑡 Generated scenario for solar generation. 

 

Sets 

ℒ Set of all buses in the distribution system. 

𝐵 Set of households in a bus. 

𝜑 Set of phases. 

Ω𝑃𝑉,𝑡 Set of generated scenario for load. 

Ω𝐿,𝑡 Set of generated scenario for solar generation. 

  

Parameters 

𝜃𝑡
𝑜𝑢𝑡 Outside temperature at time t. 

𝜃𝑡
𝑖𝑛, 𝜃𝑡

𝑖𝑛̅̅ ̅̅  Minimum and maximum preferable temperature inside house. 

𝛼, 𝛽 Thermal parameters of the environment and the appliances in household. 

𝑃𝑎𝑐, 𝑃𝑎𝑐̅̅ ̅̅  Maximum and minimum AC power. 

∆𝑡 Time interval. 

𝐸, 𝐸̅ Maximum and minimum washer-dryer energy demand. 

𝑄𝑏 , 𝑄𝑃𝐸𝑉 Capacity of energy storage and PEV storage. 

𝜂 Efficiency of the charger. 

𝑃𝑃𝑉,𝑡 Solar generation at time period t. 

𝑃𝑙𝑜𝑎𝑑,𝑡 Load demand at time period t. 

𝑆𝑂𝐶𝑡
𝐵,

 𝑆𝑂𝐶𝑡
𝑃𝐸𝑉 

Minimum state of charge of energy storage and PEV. 

𝑆𝑂𝐶𝑡
𝐵̅̅ ̅̅ ̅̅ ̅, 

𝑆𝑂𝐶𝑡
𝑃𝐸𝑉̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

Maximum state of charge of energy storage and PEV. 

𝑃𝑏,𝑡
𝑐ℎ , 𝑃𝑃𝐸𝑉,𝑡

𝑐ℎ  Minimum charging power of energy storage and PEV. 

𝑃𝑏,𝑡
𝑐ℎ̅̅ ̅̅ ̅, 𝑃𝑃𝐸𝑉,𝑡

𝑐ℎ̅̅ ̅̅ ̅̅ ̅ Maximum charging power of energy storage and PEV. 
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𝑃𝑏,𝑡
𝑑𝑖𝑠𝑐ℎ , 𝑃𝑃𝐸𝑉,𝑡

𝑑𝑖𝑠𝑐ℎ Minimum discharging power of energy storage and PEV storage. 

 𝑃𝑏,𝑡
𝑑𝑖𝑠𝑐ℎ̅̅ ̅̅ ̅̅ ̅̅ ̅,

 𝑃𝑃𝐸𝑉,𝑡
𝑑𝑖𝑠𝑐ℎ̅̅ ̅̅ ̅̅ ̅̅  

Maximum discharging power of energy storage and PEV storage. 

𝑃𝑙,𝑡
𝜑̅̅ ̅̅ , 𝑃𝑙,𝑡

𝜑
 Maximum and minimum demand at each bus at time period t. 

𝑇 Total restoration time period. 

𝑤𝑙 Weight factor of each load. 

𝑃𝑏,𝑡, 𝑃𝑓,𝑡 Base and flexible load at time period t. 

𝑡𝑓𝑡 Temperature factor. 

 

Variables 

𝜃𝑡
𝑖𝑛 Inside temperature at time period t. 

𝑃𝑎𝑐,𝑡 AC load at time period t. 

𝑃𝑤,𝑡, 𝑃𝑑,𝑡 Washer- dryer load demand at time period t. 

𝐸𝑤, 𝐸𝑑 Washer-dryer energy at time period t. 

𝑆𝑂𝐶𝑡
𝐵, 𝑆𝑂𝐶𝑡

𝑃𝐸𝑉 State of charge of energy storage and PEV at time period t. 

𝑃𝑏,𝑡
𝑐ℎ, 𝑃𝑃𝐸𝑉,𝑡

𝑐ℎ  Charging power of energy storage and PEV at time period t. 

𝑃𝑏,𝑡
𝑑𝑖𝑠𝑐ℎ, 𝑃𝑃𝐸𝑉,𝑡

𝑑𝑖𝑠𝑐ℎ Discharging power of energy storage and PEV at time period t. 

𝑃𝑑𝑒𝑓,𝑡 Deferred solar energy at time period t. 

𝑃𝑔,𝑡 Load demand from grid at time period t. 

𝜇𝑡 Ratio of flexible and critical load. 

𝛤𝑖
𝑡 Local target load. 

𝑃𝑙,𝑡
𝜑

 Load demand in a bus at time period t. 

𝑥𝑙,𝑡 Determines whether bus is energized or not {0,1}. 

𝑦𝑙 Determines whether bus is controllable or not {0,1}. 
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4.1. Introduction 

Electric power utilities are paying more attention to grid resiliency and technologies that 

can reduce the duration of post-disaster outages. This chapter is concerned with utilizing demand 

response (DR) to restore loads on unbalanced distribution feeders using a multi time-step dynamic 

optimization model and a microgrid concept with the presence of distributed generators (DGs) 

after a major disaster. Because generation resources can be limited after a major disaster, DR can 

play an important role in increasing the number of customers served, and/or increasing the total 

amount of load restored. In this chapter, a framework to integrate demand response (DR) with the 

distributed service restoration (DSR) framework based on a multi-time-step dynamic optimization 

model is explained. 

4.2. Motivation and System Overview 

 The motivation of utilizing DR on a DSR process is shown in Figure 4.1 for a three-bus 

sample distribution system. Two DGs of 15kW and 10kW were supplying two loads, L1 and L2, 

which are assumed to be directly connected to the buses. This system can represent a microgrid 

that is temporarily formed during restoration by sequentially closing the switches and starting the 

DGs. From Figure 4.1 (a), it can be seen that DG1 and L2 are already energized, and DG2 must 

be started by external cranking power. If L1 and L2 are fixed-demand loads, L2 cannot be restored 

by closing the switch between bus 2 and bus 3, since DG1 will be overloaded and the protection 

may trip DG1 before starting DG2. However, if DR can be utilized to reduce 5kW load in L1 

temporarily, overloading of DG1 can be avoided while restoring L2, as shown in Figure 4.1 (b). 

After starting DG2 and having sufficient capacity to support L1 and L2, L1 demand can bounce 

back to normal demand. In this sense, DR can facilitate releasing capacity constraints and can help 

ride-through some moments when generation (solar, wind, etc.) is temporarily insufficient. DR 
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can also temporarily improve voltage profile until some components with voltage regulation 

capabilities are energized, such as voltage regulator, capacitor banks, and dispatchable DGs.  

 
(a) (b) 

Figure 4.1. Load restoration process of a sample distribution system for (a) fixed load and 

(b) reduced load. 

 

 

 
 

Figure 4.2. Two level direct load control-based architecture from household appliances to the 

distribution system during restoration process while microgrids are formed in the distribution 

level. 

 

To leverage the flexibility provided by DR on a particular bus, the feasible range of load 

variation should be known for each time period. The feasible range can be calculated considering 

different types of smart appliances in households, which are located in the region served by that 

particular bus. The two-level control architecture from household appliances to a distribution bus 

is shown in Figure 4.2. If the homeowners are willing to participate in DR program, they can 
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communicate with the utility regarding the minimum demand considering reduction of some 

flexible loads like air conditioners, heaters, washer-dryer, PV- storage hybrid unit, plug-in electric 

vehicles (PEV) etc. To quantify minimum load considering comfort level of the homeowners, an 

optimization method is proposed to be performed in the household. The forecasted load demand 

can be considered as the maximum load demand of the household. As load forecast is not the 

primary concern of this work, it is assumed that the forecasted load is known beforehand. The 

aggregated maximum and minimum load range for all the houses located on a particular bus can 

define its feasible range of load demand. This is step 1 in our proposed framework which is shown 

in Figure 4.3. 

On the second step of the proposed framework, whether a bus is energized or not, 

controllable or not and how much load demand will be restored in a particular bus of the 

distribution level to improve DSR, are required to be determined. To obtain answers to these 

questions, the entire DSR process can be performed through an optimization process. This 

optimization process can consider the load variation limit along with the constraints such as 

voltage limit, transformer and line capacity, DG connectivity, DG current unbalance, DG ramp 

rate, DG output power, load connectivity, sequencing topology similar to [121] to make a decision. 

If only a subset of nodes is selected to provide DR, the proposed optimization model should find 

out the optimal selection of the nodes and their corresponding target load profile over the time 

horizon. This step will define the target load for each bus in the system which is shown in step 2 

of Figure 4.3. 
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Figure 4.3. Proposed system overview. 

 

After obtaining the target load value from DSR for each bus of the corresponding 

distribution system, maintaining that load in buses is another issue. This issue can be resolved by 

scheduling different types of smart appliances at the household level, which is third step in our 

proposed framework. The target load obtained from step 2 for a particular bus can be divided 

among all the existing houses considering their flexible and fixed loads. The divided values can 

be considered as local target load for each house. Local target load can be maintained through 

home energy management (HEM) system by controlling all the flexible appliances. In HEM, an 

optimization algorithm can be performed to change the original demand of the flexible loads 

considering uncertainty while their operational constraints and customers’ comfort are maintained. 

As the control is performed considering the uncertainties at the household level to maintain the 

target level, the load demand can be considered as deterministic at the distribution level. Target 

load division among houses, and local target maintenance by controlling the smart house 

appliances in the house are depicted in step 3 of Figure 4.3. 

4.3. Problem Formulation 

In this section, three optimization models corresponding to the three steps introduced in Section 
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4.1 are described.  

4.3.1. Optimization Problem 1: Household Level Minimum and Maximum Load  

To evaluate the minimum loads for each distribution level node, optimization needs to be 

performed at the household level considering the duration of the restoration process. Day-ahead 

forecasted load, solar generation, and atmospheric temperature profiles for each household are 

considered. For direct load control (DLC), appliances are classified into critical, interruptible and 

deferrable loads [109]. Household thermal loads, solar generation, PEV, and energy storage are 

considered as an interruptible load or source. Washer and dryers are considered as deferrable loads.  

Other loads are considered as critical loads for the household. 

For thermostatically controlled loads, such as ACs and heaters, household owners prefer 

to have indoor temperature at a bearable range. The temperature control equations are set as [109]: 

𝜃𝑡
𝑖𝑛 = 𝜃𝑡−1

𝑖𝑛 + 𝛼(𝜃𝑡
𝑜𝑢𝑡 − 𝜃𝑡−1

𝑖𝑛 ) + 𝛽𝑃𝑎𝑐,𝑡 (4.1) 

𝜃𝑡
𝑖𝑛 ≤ 𝜃𝑡

𝑖𝑛 ≤ 𝜃𝑡
𝑖𝑛̅̅ ̅̅  (4.2) 

𝑃𝑎𝑐 ≤ 𝑃𝑎𝑐,𝑡 ≤ 𝑃𝑎𝑐̅̅ ̅̅  (4.3) 

Equation (4.1) evaluates the temperature change. Equation (4.2) and (4.3) define the 

comfortable temperature range for a house and AC load power range. 

Deferrable loads like washer and dryer depend on energy consumption. The total 

consumption can be represented as: 

𝐸𝑤 = 𝑃𝑤,𝑡. ∆𝑡 (4.4) 

 

 

 

𝐸𝑤 ≤ 𝐸𝑤 ≤ 𝐸𝑤̅̅ ̅̅  (4.5) 

𝐸𝑑 = 𝑃𝑑,𝑡. ∆𝑡 (4.6) 

𝐸𝑑 ≤ 𝐸𝑑 ≤ 𝐸𝑑̅̅ ̅ (4.7) 
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where Equation (4.4) and (4.6) state the energy consumption of washer and dryer. Equation 

(4.5) and (4.7) define maximum and minimum range of energy consumption of washer and dryer. 

If solar generation and energy storage are available in a house, energy storage control is 

considered using the following equations: 

 𝑆𝑂𝐶𝑡
𝐵 = 𝑆𝑂𝐶𝑡−1

𝐵 +
𝑃𝑏,𝑡
𝑐ℎ. ∆𝑡. 𝜂 

𝑄𝑏
−  
𝑃𝑏,𝑡
𝑑𝑖𝑠𝑐ℎ . ∆𝑡

𝑄𝑏 . 𝜂
 

(4.8) 

𝑃𝑏,𝑡
𝑐ℎ ≤ 𝑃𝑃𝑉,𝑡   (4.9) 

𝑆𝑂𝐶𝑡
𝐵 ≤ 𝑆𝑂𝐶𝑡

𝐵 ≤ 𝑆𝑂𝐶𝑡
𝐵̅̅ ̅̅ ̅̅ ̅ (4.10) 

𝑃𝑏,𝑡
𝑐ℎ̅̅ ̅̅ ̅ ≤ 𝑃𝑏,𝑡

𝑐ℎ ≤ 𝑃𝑏,𝑡
𝑐ℎ (4.11) 

𝑃𝑏,𝑡
𝑑𝑖𝑠𝑐ℎ ≤ 𝑃𝑏,𝑡

𝑑𝑖𝑠𝑐ℎ ≤  𝑃𝑏,𝑡
𝑑𝑖𝑠𝑐ℎ̅̅ ̅̅ ̅̅ ̅̅ ̅ (4.12) 

SOC of energy storage will change based on the charging and discharging power which is 

stated in Equation (4.8). Energy storage will be charged from the available PV generation based 

on Equation (4.9). Maximum and minimum level of SOC of energy storage, charging and 

discharging rate of the charger are defined in Equation (4.10) - (4.12).  

Similarly, if PEV is available in a house, the storage charging pattern can be controlled 

considering the upper and lower bound of the storage and charger rating which is shown below: 

𝑆𝑂𝐶𝑡
𝑃𝐸𝑉 = 𝑆𝑂𝐶𝑡−1

𝑃𝐸𝑉 +
𝑃𝑃𝐸𝑉,𝑡
𝑐ℎ . ∆𝑡. 𝜂 

𝑄𝑃𝐸𝑉
−  
𝑃𝑃𝐸𝑉,𝑡
𝑑𝑖𝑠𝑐ℎ ∗ ∆𝑡

𝑄𝑃𝐸𝑉. 𝜂
 (4.13) 

 𝑆𝑂𝐶𝑡
𝑃𝐸𝑉 ≤ 𝑆𝑂𝐶𝑡

𝐵 ≤ 𝑆𝑂𝐶𝑡
𝑃𝐸𝑉̅̅ ̅̅ ̅̅ ̅̅ ̅̅    (4.14) 

𝑃𝑃𝐸𝑉,𝑡
𝑐ℎ ≤ 𝑃𝑃𝐸𝑉,𝑡

𝑐ℎ ≤ 𝑃𝑃𝐸𝑉,𝑡
𝑐ℎ̅̅ ̅̅ ̅̅ ̅ (4.15) 

𝑃𝑃𝐸𝑉,𝑡
𝑑𝑖𝑠𝑐ℎ ≤ 𝑃𝑃𝐸𝑉,𝑡

𝑑𝑖𝑠𝑐ℎ ≤ 𝑃𝑃𝐸𝑉,𝑡
𝑑𝑖𝑠𝑐ℎ̅̅ ̅̅ ̅̅ ̅̅  (4.16) 

To include DR, an optimization problem is formulated to minimize the overall load. The 

mathematical model for the optimization problem for household i is described below:  
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𝐻𝑖 = 𝑚𝑖𝑛 {∑𝑃𝑔𝑟𝑖𝑑,𝑡
𝑖

𝑇

𝑡=0

} (4.17) 

Subject to: 

 Constraints (4.1) – (4.16) and 

𝑃𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙,𝑡 + 𝑃𝑓,𝑡 − 𝑃𝑃𝑉,𝑡 − 𝑃𝑏,𝑡
𝑑𝑖𝑠𝑐ℎ − 𝑃𝑃𝐸𝑉,𝑡

𝑑𝑖𝑠𝑐ℎ − 𝑃𝑑𝑒𝑓,𝑡 = 𝑃𝑔𝑟𝑖𝑑,𝑡
𝑖  (4.18) 

𝑃𝑔𝑟𝑖𝑑,𝑡
𝑖 ≤ 0 (4.19) 

where the flexible loads can be defined as: 

𝑃𝑓,𝑡 = 𝑃𝑎𝑐,𝑡 + 𝑃𝑤,𝑡 + 𝑃𝑑,𝑡 + 𝑃𝑏,𝑡
𝑐ℎ + 𝑃𝑃𝐸𝑉,𝑡

𝑐ℎ  (4.20) 

 

Equation (4.18) is the power balance constraint. As back feeding power to the grid may 

cause overvoltage and safety issues to the grid, it is avoided by maintaining the constraint defined 

in equation (4.19). After solving the above problem, the minimum requirement of load is calculated 

from the grid during the restoration process for each household. The maximum load demand is 

considered by subtracting the forecasted solar generation from the forecasted load demand of the 

house. To avoid back feeding power to the grid, negative loads are considered as zero and excess 

solar generation is considered as deferred energy. Thus, the minimum and maximum loads in bus 

l are: 

𝑃𝑙,𝑡
𝜑
=∑𝑃𝑔𝑟𝑖𝑑,𝑡

𝑖

𝑖∈𝐵

 (4.21) 

𝑃𝑙,𝑡
𝜑̅̅ ̅̅ = ∑(𝑃𝑙𝑜𝑎𝑑,𝑡

𝑖 − 𝑃𝑃𝑉,𝑡
𝑖 )

𝑖∈𝐵

 (4.22) 

 

4.3.2. Optimization Problem 2: Distribution Level Loads for Each Bus 

For the distribution level optimization problem during the restoration period, the procedure 

described in [121] is followed. The proposed sequential service restoration (SSR) method in [121] 
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coordinated all the controllable components (e.g. DGs, switchable lines, etc.) in a distribution 

system to restore as much load as possible across multiple steps ensuring that all the distribution 

level constraints were satisfied. But coordinated control between load and SSR were not 

considered. Thus, the optimization model of [121] is extended to pick up as much energy as 

possible during the restoration period by including the time-varying flexible load constraints. The 

objective functions and new load variation constraints are defined below. 

𝑍 = 𝑚𝑎𝑥 {∑∑ ∑ 𝑤𝑙. 𝑃𝑙,𝑡
𝜑
. ∆𝑡

𝜑𝜖{𝑎,𝑏,𝑐}𝑡∈𝑇𝑙∈ℒ

} (4.23) 

Subject to: 

𝑃𝑙,𝑡
𝜑
≤ 𝑃𝑙,𝑡

𝜑
≤ 𝑃𝑙,𝑡

𝜑̅̅ ̅̅  (4.24) 

𝑃𝑙,𝑡
𝜑̅̅ ̅̅ − 𝑀. 𝑦𝑙 ≤ 𝑃𝑙,𝑡

𝜑
≤ 𝑃𝑙,𝑡

𝜑̅̅ ̅̅ + 𝑀. 𝑦𝑙 (4.25) 

𝑥𝑙,𝑡𝑃𝑙,𝑡
𝜑
+ (𝑥𝑙,𝑡 − 𝑥𝑙,𝑡−1). 𝑡𝑓𝑡 . 𝑃𝑙,𝑡

𝜑
−𝑀. (1 − 𝑦𝑙) ≤ 𝑃𝑙,𝑡

𝜑

≤ 𝑥𝑙,𝑡. 𝑃𝑙,𝑡
𝜑
+ (𝑥𝑙,𝑡 − 𝑥𝑙,𝑡−1)𝑡𝑓𝑡 . 𝑃𝑙,𝑡

𝜑
+𝑀. (1 − 𝑦𝑙) 

(4.26) 

𝑡𝑓𝑡 =
(1−𝛼)

𝛽
  (4.27) 

𝑃𝑙,𝑡
𝜑̅̅ ̅̅ = 𝑥𝑙,𝑡𝑃𝑙,𝑡

𝜑̅̅ ̅̅ + (𝑥𝑙,𝑡 − 𝑥𝑙,𝑡−1). 𝑡𝑓𝑡 . 𝑃𝑙,𝑡
𝜑̅̅ ̅̅  (4.28) 

∑𝑦𝑙
𝑙𝜖𝐿

≤ ∁ (4.29) 

Other constraints, i.e., system model constraints, system operations constraints, DG 

operation constraints, connectivity constraints, topological and sequencing constraints; are 

considered from [121]. 

Equation (4.24) considers the time-varying flexible load range on each bus of the 

distribution system, as calculated in Section 3.1. The big-M method is used in equations (4.25)–
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(4.26) to ensure that the inequality constraints are applied for controllable buses. Here M is a large 

number that should be selected carefully. If the load is not controllable, then 𝑦𝑙 will become zero. 

The minimum and maximum loads will be equal to the defined maximum load based on equation 

(4.25); 𝑥𝑙,𝑡 ensures if a bus is energized or not in equation (4.26); and 𝑦𝑙 becomes 1 if a bus is 

controllable. For controllable buses, the minimum load requirement will change because the indoor 

temperature of houses will be equal to the outside temperature before energizing the bus. To 

include this temperature impact on minimum and maximum load demand just after energizing the 

bus, 𝑡𝑓𝑡 is considered in equation (4.27), which is calculated based on equation (4.1). Thus, 

equation (4.26) shows that if a bus is controllable and it is energized, then the minimum load 

demand will increase based on the temperature impact during energization. Maximum load 

demand of a bus will remain zero until it is not energized. Equation (4.28) ensures this constraint 

including the temperature impact on maximum load while bus is energized. Because maximum 

load demand is calculated based on the forecasted load demand, this parameter does not consider 

temperature impact. A controllable number of buses can be maintained through equation (4.29). 

4.3.3. Optimization Problem 3: Home Energy management 

 The target 𝑃𝑙,𝑡
𝜑

 which is calculated from subsection 4.3.2 optimization problem, is divided 

among the houses of each node following the strategy described in [107]. Based on [107], the load 

is divided among houses considering the aggregated flexible and fixed loads of each house. The 

following equation are considered for dividing the target 𝑃𝑙,𝑡
𝜑

 among the houses of each bus. 

 
𝜇𝑡 =  

𝑃𝑙,𝑡
𝜑
− ∑ 𝑃𝑏,𝑡

𝑖
𝑖∈𝐵

∑ 𝑃𝑓,𝑡
𝑖

𝑖∈𝐵

 (4.30) 

 𝛤𝑡
𝑖 = 𝑃𝑏𝑎𝑠𝑒𝑡

𝑖 + 𝜇𝑡. 𝑃𝑓,𝑡
𝑖  (4.31) 

Here, 𝛤𝑡
𝑖 is considered as the local target load for each house.  
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If 𝜇𝑡 ≤ 0, it be set as 𝜇𝑡 = 0. In this case, all flexible appliance will be not be turned on in 

house to maintain the target load. Only the available amount of supply will be provided to the 

houses to meet its demand. 

If 𝜇𝑡 ≥ 0, it can be set as 𝜇𝑡 = 1 In this case, all flexible appliance will be turned on to 

match with the target load in house.   

In household level, the optimization problem is formulated as to maximize the load to grid, 

𝑃𝑔,𝑡 by maintaining the target level electricity demand 𝛤𝑡
𝑖 from the grid.  

 

𝐻 = 𝑚𝑎𝑥 {∑[𝑃𝑔,𝑡
𝑖  ]

𝑇

𝑡=0

}  (4.32) 

Subject to:  

Constraints (4.1) – (4.16) and 

𝑃𝑔,𝑡
𝑖  − 𝑃𝑑𝑒𝑓,𝑡 = 𝑃𝑏𝑎𝑠𝑒,𝑡

𝜔𝐿,𝑡 + 𝑃𝑓,𝑡 − 𝑃𝑃𝑉,𝑡
𝜔𝑃𝑉,𝑡 − 𝑃𝑏,𝑡

𝑑𝑖𝑠𝑐ℎ − 𝑃𝑃𝐸𝑉,𝑡
𝑑𝑖𝑠𝑐ℎ; (4.33) 

𝑃𝑏,𝑡
𝑐ℎ ≤ 𝑃𝑃𝑉,𝑡

𝜔𝑃𝑉,𝑡  (4.34) 

𝑃𝑏,𝑡
𝑑𝑖𝑠𝑐ℎ + 𝑃𝑃𝐸𝑉,𝑡

𝑑𝑖𝑠𝑐ℎ ≤ 𝑃𝑙𝑜𝑎𝑑,𝑡
𝜔𝐿,𝑡  +𝑃𝑓,𝑡 (4.35) 

𝑃𝑔,𝑡
𝑖 ≤ 𝛤𝑡

𝑖; (4.36) 

As load demand and solar generation at household level are uncertain, the target load 

demand can be maintained considering the scenario generation procedure of these two parameters 

described in chapter 3. The power balance equality constraint considering the generated scenario 

is shown in Equation (4.33). Equation (4.34) ensures the charging of storage only from solar 

generation to reduce electricity purchase from grid. Equation (4.35) ensures avoiding back feeding 

power to the grid to avoid overvoltage issue. Equation (4.36) maintains the power demand to grid 

up to the target level. 
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To solve the above maximization problem considering uncertainties, SDDP is applied 

following the method described in chapter 3.  

4.4. Case Study and Analysis 

4.4.1. Simulation Set-up 

For simulation, IEEE 123 node test feeder is considered [160]. Four faults and seven DGs 

are introduced in this test feeder to validate the proposed restoration process. Figure 4.4 shows the 

one-line diagram of IEEE 123 node distribution feeder with faults. The three optimization 

problems are defined as LP, MILP and SDDP are solved in Gurobi optimization solvers by Python 

on an Intel Core i7-4600U with a 2-GH CPU, 8 GB of RAM, and 64-bit operating system PC. The 

restoration time is considered as 8 hours and 1-hour time interval is considered. The parameters of 

seven DGs are shown in Table 4.1. Status “1” indicates that a black start DG and “1/0” indicates 

a non-black start DG. 

Household load profiles and historical temperature were downloaded from Pecan Street 

[157] and historical climate data of U.S.A [160], respectively. From [157], the detail load profiles 

for each electrical appliances and solar generation profiles were imported. For a household, the 

AC load, washer-dryer, PV based storage, and PEVs are controlled optimally to restore the overall 

load of the grid for 8 hours restoration period. Residential appliance parameters considered for 

simulation are provided in Table 4.2. To maintain the spot load level of each bus defined in [160], 

the number of houses assigned in each bus in a way that the highest value in the maximum 

aggregated load profile did not go beyond that level. Suppose 40kW spot load at bus no. 16 was 

assigned. Ten houses were assigned in this bus so that highest value of the maximum aggregated 

load profile did not go beyond 40kW. For comparison with the proposed method, when DR is not 

applied for restoration defined as without DR method later. 
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Table 4.1. Parameters of DGs added to IEEE 123 test feeder. 

Parameters DG1 DG2 DG3 DG4 DG5 DG6 DG7 

Bus position 13 18 25 47 60 77 105 

Maximum power 

(MW) 
0.9 1.05 1.2 1.5 1.2 0.8 0.7 

Minimum power 

(MW) 
0 0 0 0 0 0 0 

Maximum 

reactive power 

(MVar) 

0.7 0.8 0.5 0.5 0.4 0.3 1.2 

Minimum 

reactive power 

(MVar) 

-0.5 -0.5 -0.5 -0.5 -0.6 -0.3 -0.9 

Status 1 1 1/0 1/0 1 1/0 1 

 

 

Figure 4.4. IEEE 123 node distribution feeder with faults. 
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Table 4.2. Residential appliances parameters. 

Parameters Value Parameters Value 

𝜃𝑡
𝑖𝑛, 𝜃𝑡

𝑖𝑛̅̅ ̅̅  72° F, 78° F 𝑃𝑏,𝑡
𝑑𝑖𝑠𝑐ℎ, 𝑃𝑏,𝑡

𝑑𝑖𝑠𝑐ℎ̅̅ ̅̅ ̅̅ ̅̅  0 kW, 2 kW 

𝛼 0.9 𝑃𝑃𝐸𝑉,𝑡
𝑐ℎ , 𝑃𝑃𝐸𝑉,𝑡

𝑐ℎ̅̅ ̅̅ ̅̅ ̅ 0 kW, 2 kW 

𝛽 -5 𝑃𝑃𝐸𝑉,𝑡
𝑑𝑖𝑠𝑐ℎ, 𝑃𝑃𝐸𝑉,𝑡

𝑑𝑖𝑠𝑐ℎ̅̅ ̅̅ ̅̅ ̅̅  0 kW, 20 kW 

𝑃𝑎𝑐 , 𝑃𝑎𝑐̅̅ ̅̅  0 kW, 5 kW 𝑄𝑏 , 𝑄𝑃𝐸𝑉 4 kWh, 85 kWh 

𝐸𝑤 , 𝐸𝑤̅̅ ̅̅  0 kW, 2kW. 𝑆𝑂𝐶𝑡
𝐵, 𝑆𝑂𝐶𝑡

𝐵̅̅ ̅̅ ̅̅ ̅ 20%, 80% 

𝐸𝑑 , 𝐸𝑑̅̅ ̅ 0 kW, 2kW. 𝑆𝑂𝐶𝑡
𝑃𝐸𝑉, 𝑆𝑂𝐶𝑡

𝑃𝐸𝑉̅̅ ̅̅ ̅̅ ̅̅ ̅̅  20%, 80% 

𝑃𝑏,𝑡
𝑐ℎ, 𝑃𝑏,𝑡

𝑐ℎ̅̅ ̅̅ ̅ 0 kW, 2 kW 𝜂 92% 

 

4.4.2. Effect of DR in System Resilience Improvement 

1) Without DR: If the load demands are not controlled with DR, it can be seen in Figure 

4.5 that some buses are not energized. It occurs due to the voltage violation with limited DG 

capacity compared to the requirement of loads. Voltage violation is considered as the constraint 

during the restoration of the optimization problem defined in Equation (4.20) in [121]. 

     2) With DR, energy storage and PEV control in the system: In our proposed approach, we 

consider the loads are changeable within certain ranges and this change will be implemented 

through DR. Based on our proposed method, number of preferable controllable buses can be 

defined. From simulation result, it is found that for 20 controllable buses, all the buses in the 

distribution are energized. It is as visible in Figure 4.6. Locations of the 20 preferred controllable 

buses are selected using our proposed optimization method. Other buses are picked up as 

unchangeable loads. Figure 4.7 shows that, overall, 20% more energy restoration is possible with 

20 controllable buses, compared to the without DR restoration method. Optimal load profiles for 
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all the buses were obtained from the solution of optimization model (4.23)-(4.28) which is 

maintained through the application of HEM which is described later. 

 

Figure 4.5.  Some buses are not energized if loads are not controllable. 

 

Figure 4.6. All buses are energized by controlling loads of 20 buses within the restoration time. 
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Figure 4.7. Comparison between load restoration at each hour interval without DR and DR 

based proposed method with 20 controllable buses. 

 

4.4.3. Effect of Optimal Selection of Buses with DR Participation 

Figure 4.8 shows the effects of random and optimal location selection of controllable buses. 

It illustrates that location selected using our proposed method ensures more energy restoration than 

random selection. It also reveals that with the increase in controllable buses, energy restoration 

increases. After a certain number of controllable buses, energy restoration becomes saturated. This 

saturation point can be considered as the ‘optimal controllable bus number’. According to Figure 

4.8, ‘optimal controllable bus number’ is 20 for the studied outage condition. 

 

Figure 4.8. Restored energy comparison for optimal selection and random selection for different 

number of controllable buses. 

13077

13077

13077

13077

13718

14683

13077

14683

15558

15558

15558

15558

11000 12000 13000 14000 15000 16000

0

10

20

30

40

50

kWh

N
u

m
b

er
 o

f 
C

o
n

tr
o

lla
b

le
 B

u
se

s

Optimal location selection of controllable buses(kWh)

Random selection of controllable buses (kWh)



 

105 

 

4.4.4. Effect of Reduction Capacity of DG 

If DG capacity decreases or some non-black start DGs are turned off, then the proposed 

method may need to enable DR on more buses through the optimal selection of controllable buses. 

In our case study, 2 non-black start DGs (DG3 and DG7) are turned off. According to the 

performed simulation for different numbers of controllable buses, as illustrated in Figure 4.9, the 

overall restored energy decreases due to the decrease in the amount of available generation, 

compared to Figure 4.8. To deal with this scenario where less generation is available, more flexible 

loads are needed to be controlled to reduce the load demand. Therefore, the optimal controllable 

bus number increases from 20 to 30 in comparison with Figure 4.8. 

 

Figure 4.9. Energy restoration for non-black start generators turned off with different number 

of controllable buses. 

4.4.5. Effect in Household Level Demand 

The optimal load profiles defined from optimization problem 4.3.2 in a bus are divided 

among the assigned houses considering their fixed and flexible load demand according to the 

equation (4.29) and (4.30). Suppose after performing the optimization problem II, the target load 

at bus 16 are divided as local targets among 10 houses considering their flexible and fixed loads 

for each time. One household load in bus 16 is shown in Figure 4.10. It illustrates that target load 
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is increased with time as shown in Figure 4.7. It is also observed that the household load is reduced 

compared to the maximum load demand which is considered as fixed load for without DR method. 

It happens due to pick up the overall load in the system.  To maintain this reduced load, the flexible 

appliances are controlled through HEM. Due to the space limitation, scheduled load profile of all 

appliances cannot be shown. Only indoor temperature control through HEM is shown in Figure 

4.11. It shows that indoor temperature is increased from 72° F compared to the without DR method 

for the proposed method to maintain the target level. HEM maintains the comfortable temperature 

range which is up to 78° F. 

Similarly, another household load of bus 87 can be considered. Based on Figure 4.5 and 

4.6, bus 87 is not energized for without DR based method and is energized for proposed method, 

respectively. Therefore, the household load is restored after 3 hours based on our proposed method 

while it does not have any restored load for without DR method which is shown in Figure 4.12. 

Considering Figure 4.10 – 4.12, it can be said that our proposed approach helps to restore energy 

in one house by reducing flexible load demand from another house ensuring comfort level. 

 
 

Figure 4.10. One household profile for 

without DR and proposed method at  

bus 16. 

Figure 4.11. Outside and indoor temperature in a 

house at bus 16 for different control methods. 
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Figure 4.12. One household restored load profile for without DR and proposed method at bus 

87. 

 

4.4.6. Effect in HEM in System Resiliency 

With the help of HEM, target loads in household to bus levels are maintained. Impact of 

changing preferable load demand in HEM will impact the DSR. For instance, if AC loads are 

preferred to be controlled between 72°F to 76°F instead of 72°F to 78°F, then load requirement 

will increase for each house. The minimum load requirement of the buses will also be changed. 

This impact can be observed in Table 4.3. If number of controllable buses are 10, then restored 

energy is only 13077 kWh for 72°F to 76°F preferable temperature range. It is 14683 kWh for 

72°F to 78°F preferable temperature range according to Figure 4.8. Restored energy also reduces 

from 15558 kWh for 72°F to 78°F to 13718 kWh 72°F to 76°F for optimal 20 controllable buses.  

Table 4.3. Restored energy comparison for different controllable buses with the change of loads. 

Number of controllable buses Restored energy (kWh) 

0 13077 

10 13077 

20 13718 

30 13718 

40 13718 

50 13718 

 

4.5. Conclusion 

In this work, an innovative DR based method is proposed for load restoration.  The idea is 
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to improve grid resiliency by utilization of DR. The proposed method contains three level 

hierarchical methods following three optimization problems. Numerical results show that the load 

restoration performance can be significantly improved with the utilization of demand response in 

a distribution system with limited generation resources and microgrids facing multiple outages 

caused by natural disasters. Optimal allocation of controllable bus can further improve the 

restoration performance of the proposed method. Consideration of uncertainties in HEM system 

ensures maintaining the load level of the controlled buses. Overall, with the proposed method it is 

demonstrated that controlling the flexible loads in one house can help the DSR to pick up other 

fixed loads. Furthermore, the methods used here, such as assign time-varying load instead of spot 

load, define feasible controllable range of load demand on a distribution bus, and maintain target 

load considering uncertainties in load demand and solar generation through HEM, can provide 

guidance on market design for DR when resilience is considered.  
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CHAPTER 5 

Real-time Energy Management in PV-Storage Hybrid Residential Unit 

 

5.1. Introduction 

Energy management for a PV-storage hybrid unit is typically formulated as an offline 

optimization problem for day-ahead scheduling, which is difficult to achieve in practice. On the 

other hand, existing online algorithms cannot ensure the maximum benefit to the homeowners. In 

this chapter, an integrated architecture is described where load and solar generation forecasting is 

performed in rolling horizon to predict the day-ahead profiles, use them to optimize the electricity 

purchase cost per day through SDDP algorithm in receding horizon, and utilize the optimal 

decision with rule-based control to implement a realistic control.  

5.2. Motivation and System Overview 

 

Figure 5.1. Overview of the PV-storage hybrid system. 

 

 The overview of the system is shown in Figure 5.1. A solar PV panel provides energy to 

a BESS and also delivers power to satisfy the household load demand through a DC bus. The 

energy storage is also connected to the DC bus and can store energy only from the PV panel or 
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discharge only to satisfy the household demand. The household load is mitigated through the grid, 

solar panels and/or BESS.  

In the proposed integrated framework, three hierarchical steps are followed. In the first 

step, forecast of solar generation and load demand for next 24 hours with 15-minute resolution is 

performed. These updated forecasted profiles are utilized to calculate expected future costs in 

receding horizon to obtain optimal decision for next 15 minutes in second stage. Because of 

stochastic nature of cloud patterns, weather, user preference etc., solar generation and load demand 

do not remain exact to the forecasted profiles. Optimization is performed considering these 

uncertainties of load and solar generation in future. Utilizing the optimal decision from second 

stage, rule-based control is performed in the third step of the framework. Since the proposed rule-

based control takes less time to take the decision, it is preferable to employ in real-time system. It 

also ensures proper utilization of solar generation by the owners.  

In Figure 5.2, a protocol about how the proposed integrated system works is illustrated. At 

each 15 minute interval, forecast of solar generation and load demand is performed for next 24 

hours that takes 𝜏1 time to calculate. These updated forecasted profiles are leveraged to perform 

SDDP optimization process considering the uncertainties in load and solar generation in receding 

horizon. Optimization requires 𝜏2 time period to update optimal decision. This optimal decision is 

updated on 15 minutes interval. The updated optimal decision is provided to the rule-based method 

to perform real-time dynamic control for BESS. For each 𝜏3 time interval, rule-based control is 

performed for the system. Details of these three steps are provided in the next section.  
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Figure 5.2. Three step protocol for the integrated proposed method. 

5.3. Proposed Method 

In this section, the proposed three-step method is described in three subsections. The load 

and solar generation forecast includes feature selection and forecasting algorithm. Second 

subsection consists of scenario generation, model formulation, and multi-stage stochastic 

programming methods. Finally, the rule-based control algorithm is demonstrated. 

5.3.1. Load and Solar Forecasting 

Inclusion of updated forecasted load and PV generation profiles improve the efficiency of 

energy management. In our proposed method, forecast is performed in each 15-minute interval 

considering previous stage historical values. To predict day-ahead profiles, our method forecasts 

next 96 values. The considered features and forecasted algorithm are described below. 

A) Features Selection: 

Feature selection reduces overfitting and increases accuracy of the predicted value. For 

household load prediction, characteristic features such as holiday versus working day, month of 
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the year, and day of the week are considered as features. These features are considered to help 

better understand the residents’ habits and life patterns. Feature-extraction from household data at 

a very high resolution such as 1-minute interval, may lead to errors like over-fitting. Therefore, we 

choose a 15-minute interval for forecast update. 

B) Forecasting Algorithm: 

LSTM is one of the recurrent neural network (RNN) structures. In contrast to the standard 

RNN which has a series of repeating modules with relatively simple structure, the hidden layers 

of LSTM have a more complicated structure. Although a conventional feedforward neural network 

can learn sequences, LSTM is more powerful because it constrains a memory cell in its structure 

to remember important states in the past and has a forget-gate to learn to reset the memory cell 

from insignificant features during the learning process [161].  

The simplest method to build up an LSTM model is to provide an input vector to the model 

for predicting the output. In this paper, the LSTM network models are trained with input vector of 

17 (weekday stamp, month stamp and last 15 values of the time series) and output window size is 

96 (next 96 values represent 24 hours at 15-minute interval). A way of training the LSTM models 

is to implement window-based learning. This method allows the LSTM model to directly deal with 

previous timestamp values (lagged values). After each prediction timestamp, LSTM window-

based network model shifts both input and output windows by one step. In this way, the forecast 

method provides support for dynamic learning which is important for our proposed method. 

5.3.2. Optimization Problem Formulation 

A) Scenario Generation: 

Similar scenario generation procedure considering the correlation between load and solar 

generation described in section 3.4.2 is followed. 
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B) Problem Formulation 

Electricity purchase cost minimization of a household with optimal operation of the energy 

storage integrated PV system to benefit a customer is our objective. In this work, optimization 

cycle occurs from 0hr to 24hr period of a day with each 15-minute interval in receding horizon. 

The total left time for a day after each cycle is divided into T time periods based on resolution Δt, 

which is 15-minute in this work. Let 𝐶𝑡  be the time-of-use (ToU) cost of electricity, 𝑃𝐿,𝑡
𝜔𝐿,𝑡  and 𝑃𝑃𝑉,𝑡

𝜔𝑡  

are the generated load and solar profiles from the sets of all generated load and solar profiles Ω𝐿,𝑡 

and Ω𝑃𝑉,𝑡, correspondingly, and 𝑃𝑔𝑟𝑖𝑑,𝑡is the power demanded from grid at time t; the objective 

function J and constraints can then be written as - 

min 𝐽 = ∑ [𝐶𝑡 ∙ 𝑃𝑔𝑟𝑖𝑑,𝑡 ]
𝑇
𝑡=1      (5.1) 

Subject to: 

Power balance constraint: 

𝑃𝑔𝑟𝑖𝑑,𝑡 − 𝑃𝑏,𝑡
𝑐ℎ + 𝑃𝑏,𝑡

𝑑𝑖𝑠𝑐ℎ − 𝑃𝑑𝑒𝑓,𝑡 = 𝑃𝐿,𝑡
𝜔𝐿,𝑡 − 𝑃𝑃𝑉,𝑡

𝜔𝑡  (5.2) 

Charge balance constraint: 

𝑆𝑂𝐶𝑏,𝑡 = 𝑆𝑂𝐶𝑏,𝑡−1 +
𝑃𝑏,𝑡
𝑐ℎ∆𝑡 𝜂𝑏,𝑐ℎ,𝑡 

𝑄𝑏 
− 

𝑃𝑏,𝑡
𝑑𝑖𝑠𝑐ℎ ∆𝑡

𝑄𝑏  𝜂𝑏,𝑑𝑖𝑠𝑐ℎ,𝑡
, ∀𝑡 ∈ 𝑇      

(5.3) 

Inequality constraints: 

𝑃𝑏,𝑡
𝑐ℎ ≤ 𝑃𝑃𝑉,𝑡

𝜔𝑡  , ∀𝑡 ∈ 𝑇 (5.4) 

𝑃𝑏,𝑡
𝑑𝑖𝑠𝑐ℎ ≤ 𝑃𝐿,𝑡

𝜔𝐿,𝑡  , ∀𝑡 ∈ 𝑇 (5.5) 

𝑃𝑔𝑟𝑖𝑑,𝑡   ≥ 0 , ∀𝑡 ∈ 𝑇 (5.6) 

Upper and lower bounds of the decision variables: 

𝑆𝑂𝐶𝑏 ≤ 𝑆𝑂𝐶𝑏,𝑡 ≤ 𝑆𝑂𝐶𝑏̅̅ ̅̅ ̅̅ ̅ , ∀𝑡 ∈ 𝑇 (5.7) 

               𝑃𝑏
𝑐ℎ ≤ 𝑃𝑏,𝑡

𝑐ℎ ≤ 𝑃𝑏
𝑐ℎ̅̅ ̅̅ ̅, ∀𝑡 ∈ 𝑇   (5.8) 



   

114 

 

𝑃𝑏
𝑑𝑖𝑠𝑐ℎ ≤ 𝑃𝑏,𝑡

𝑑𝑖𝑠𝑐ℎ ≤  𝑃𝑏
𝑑𝑖𝑠𝑐ℎ̅̅ ̅̅ ̅̅ ̅̅ ̅ , ∀𝑡 ∈ 𝑇 (5.9) 

In this system according to figure 1, the PV generation does not provide power to the grid. 

During higher PV generation than the load demand if the storage is charged, then 𝑃𝑑𝑒𝑓,𝑡  will take 

care of the excess generation as deferred energy. Equation (5.2) ensures the power balance of the 

whole system. Equation (5.3) calculates the SOC of storage, 𝑆𝑂𝐶𝑏,𝑡 based on the instantaneous 

charging, 𝑃𝑏,𝑡
𝑐ℎ and discharging power, 𝑃𝑏,𝑡

𝑑𝑖𝑠𝑐ℎof the storage device. Inequality constrains (5.4) 

maintains the condition that the storage will be charged only from the available PV generation, 

(5.5) maintains the condition of discharging of storage will only occur to mitigate the load demand. 

As back-feeding power to the grid is discouraged, we consider electricity purchase from grid will 

not be negative in (5.6). The lower and upper bounds of decision variables of the storage are 

defined in equation (5.7) – (5.9). If the household demand needs to be satisfied by both PV 

generation and battery discharge, then according to (5.1) and (5.3) it is less efficient to charge the 

battery with PV power, simultaneously. PV generation will satisfy the demand instead of storing 

energy into the battery. On the other hand, if PV generation is higher than the demand, the surplus 

will be stored in the battery based on available storage capacity and discharge of energy storage 

will not occur. Therefore, charging and discharging of the storage device simultaneously will not 

occur in this system. 

C) Multi-stage Stochastic Optimization 

The above-described optimization problem is solved with the method following section 

3.2.2.  

5.3.3. Rule-based Control 

The optimization strategy for charging/discharging of the energy storage might not be 

always feasible for real application at a high time-resolution. For instance, we consider a 
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discharging command for the energy storage at an average rate of 𝑃0 for the next 15-minute till the 

next update instant. However, in an event of a decrease in load demand, a constant discharge by 

the energy storage at the rate 𝑃0 may lead to power injection into the grid incurring an effective 

loss to the customer. To prevent such scenarios, a rule-based control is integrated in our proposed 

method. The optimization decision, 𝑃𝑐𝑜𝑚,𝑡 is calculated as follows in 15-minute interval-  

𝑃𝑐𝑜𝑚,𝑡 = 𝑃𝑏,𝑡
𝑐ℎ − 𝑃𝑏,𝑡

𝑑𝑖𝑠𝑐ℎ (5.10) 

 

Table 5.1. Rule-based algorithm. 

Inputs 𝑆𝑂𝐶𝑟𝑒𝑎𝑙,𝑡  at time  t 

1 𝑃𝑐𝑜𝑚,𝑡 = 𝑃𝑏,𝑡
𝑐ℎ − 𝑃𝑏,𝑡

𝑑𝑖𝑠𝑐ℎ  

2 if (𝑃𝑐𝑜𝑚,𝑡 <  0) and (𝑃𝑙𝑜𝑎𝑑,𝑡 − 𝑃𝑃𝑉,𝑡 > 0) 

3      if (𝑃𝑐𝑜𝑚,𝑡  ≥ 𝑃𝑃𝑉,𝑡 − 𝑃𝑙𝑜𝑎𝑑,𝑡):   𝑃𝑔𝑒𝑡 = 𝑃𝑐𝑜𝑚,𝑡 

4     else: 𝑃𝑔𝑒𝑡 = 𝑃𝑃𝑉,𝑡 − 𝑃𝑙𝑜𝑎𝑑,𝑡 

5 elseif (𝑃𝑐𝑜𝑚,𝑡  < 0) and (𝑃𝑙𝑜𝑎𝑑,𝑡 − 𝑃𝑃𝑉,𝑡 < 0): 

6       𝑃𝑔𝑒𝑡 = 𝑃𝑃𝑉,𝑡 − 𝑃𝑙𝑜𝑎𝑑,𝑡 

7 elseif (𝑃𝑐𝑜𝑚,𝑡  > 0) and (𝑃𝑙𝑜𝑎𝑑,𝑡 − 𝑃𝑃𝑉,𝑡 ≥ 0) 

8       if (𝑃𝑐𝑜𝑚,𝑡  ≤ 𝑃𝑃𝑉,𝑡):   𝑃𝑔𝑒𝑡 = 𝑃𝑐𝑜𝑚,𝑡 

9       else: 𝑃𝑔𝑒𝑡 = 𝑃𝑃𝑉,𝑡 

10 elseif (𝑃𝑐𝑜𝑚,𝑡  > 0) and (𝑃𝑙𝑜𝑎𝑑,𝑡 − 𝑃𝑃𝑉,𝑡 < 0) 

11       𝑃𝑔𝑒𝑡 = 𝑃𝑃𝑉,𝑡 − 𝑃𝑙𝑜𝑎𝑑,𝑡 

12 elseif (𝑃𝑐𝑜𝑚,𝑡 ==  0) and (𝑃𝑙𝑜𝑎𝑑,𝑡 − 𝑃𝑃𝑉,𝑡 < 0) 

13       𝑃𝑔𝑒𝑡 = 𝑃𝑃𝑉,𝑡 − 𝑃𝑙𝑜𝑎𝑑,𝑡 

14      if (𝑃𝑐𝑜𝑚,𝑡  ≤ 𝑃𝑏,𝑡
𝑐ℎ̅̅ ̅̅ ̅):   𝑃𝑔𝑒𝑡 = 𝑃𝑏,𝑡

𝑐ℎ̅̅ ̅̅ ̅ 

15 else: 𝑃𝑔𝑒𝑡 = 𝑃𝑐𝑜𝑚,𝑡 

16 if (𝑆𝑂𝐶𝑟𝑒𝑎𝑙,𝑡  ≤ 𝑆𝑂𝐶𝑏):   

17      if 𝑃𝑔𝑒𝑡 > 0: 𝑃𝑟𝑏,𝑡 = 𝑃𝑔𝑒𝑡  

18         else   𝑃𝑟𝑏,𝑡 =  0 

19 elseif (𝑆𝑂𝐶𝑟𝑒𝑎𝑙,𝑡  ≥ 𝑆𝑂𝐶𝑏̅̅ ̅̅ ̅̅ ̅ ):   

20        if 𝑃𝑔𝑒𝑡 < 0: 𝑃𝑟𝑏,𝑡 = 𝑃𝑔𝑒𝑡  

21       else   𝑃𝑟𝑏,𝑡 =  0 

22 Else: 𝑃𝑟𝑏,𝑡 = 𝑃𝑔𝑒𝑡      
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If 𝑃𝑐𝑜𝑚,𝑡 is negative, then energy storage is supposed to be discharged. But if the difference 

between the load demand, 𝑃𝑙𝑜𝑎𝑑,𝑡  and PV generation, 𝑃𝑃𝑉,𝑡 in real-time is not higher as discharge 

power, 𝑃𝑏,𝑡
𝑑𝑖𝑠𝑐ℎ ; then battery should discharge only the difference. This rule is shown in Table 5.1, 

step 2-4.  Here 𝑃𝑔𝑒𝑡is the energy storage charge/discharge command at a much higher time 

resolution. On the other hand, if there is a situation in real-time that solar generation is higher than 

load, but the optimization decision is giving the command to discharge the energy storage, then 

instead of discharging the energy storage, storing the excess solar generation will help to reduce 

deferral energy if there is available energy storage capacity. This rule is illustrated in step 5-6. 

If 𝑃𝑐𝑜𝑚,𝑡 is positive, then energy storage is supposed to be charged. But if there is not 

enough PV generation, 𝑃𝑃𝑉,𝑡 to charge the energy storage in real scenario, then according to the 

rule-based control  𝑃𝑏,𝑡
𝑐ℎ should be equal to available 𝑃𝑃𝑉,𝑡. If there is higher 𝑃𝑃𝑉,𝑡 than 𝑃𝑙𝑜𝑎𝑑,𝑡 and  

𝑃𝑏,𝑡
𝑐ℎ; then excess generation is used to charge the energy storage to avoid deferral energy. The total 

charging energy should not go beyond the charger capacity. These rules are shown in Table 5.1, 

steps 7-11.  

If 𝑃𝑐𝑜𝑚,𝑡 becomes zero, but still there is excess PV generation than load, then the storage 

should store the excess generation till it is in the charger capacity and energy storage capacity 

bound. This is defined in state 12-14. After getting the command for energy storage 

charge/discharge, it is checked in real-time whether the storage goes beyond its upper and lower 

threshold or not. If lower threshold value is reached, then no discharge will occur. If upper 

threshold value is reached, then no charge will occur. These rules are maintained through step 16-

22 in Table I. 𝑃𝑟𝑏,𝑡 will be sent to the energy storage from the controller. 
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Figure 5.3. Integrated system overview. 

 

The overall proposed system overview is shown in Figure 5.3. It is to be noted that in real-

time operation 𝑆𝑂𝐶𝑟𝑒𝑎𝑙,𝑡 is measured every 20µs and rule-based operation is performed within 

20µs interval. But SDDP based optimization and forecasts are performed in 15-minute interval. 

5.4. Simulation Set-up 

The proposed method is validated using a real-time simulation platform based on Opal-

RT. The simulation set-up is shown in Figure 5.4. The PV source, battery storage system, 

household load, and the power converters are modeled in real-time by Opal-RT system with a 

simulation time step of 20𝜇s. Household load and corresponding solar generation profiles are 

obtained from PECAN Street data [157]. In Table 5.2, the test system parameters are shown. ToU 

rate is collected from [155] provided in Appendix A Table I. Forecast and optimization are 

performed in MATLAB in an Intel Core i5-4600U with a 1-GH CPU, 4 GB of RAM, and 64-bit 

operating system PC. Through a MODBUS communication interface, SOC feedback form the 

energy storage system is sent to the PC. Using the SOC feedback, forecast and optimization is 

performed and new power reference for the energy storage system is dispatched at a 15-minute 

interval. The rule-based controller is incorporated as a part of the local power electronic converter 
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controllers and therefore, is implemented in the real-time simulator. The following subsection 

describes the power converter models and the controllers used for voltage and current tracking.   

Table 5.2. System parameters for hybrid residential unit. 

Parameters Values Parameters Values 

𝑄𝑏 4 kWh 𝑆𝑂𝐶𝑡
𝐵, 𝑆𝑂𝐶𝑡

𝐵̅̅ ̅̅ ̅̅ ̅ 20%, 80% 

𝜂 92% 𝜂 92% 

𝑃𝑏,𝑡
𝑐ℎ, 𝑃𝑏,𝑡

𝑐ℎ̅̅ ̅̅ ̅ 0 kW, 3 kW Forecast and 

optimization time 

interval, t 

15 min 

𝑃𝑏,𝑡
𝑑𝑖𝑠𝑐ℎ, 𝑃𝑏,𝑡

𝑑𝑖𝑠𝑐ℎ̅̅ ̅̅ ̅̅ ̅̅  0 kW, 3 kW Real-time simulation 

interval, τ 
20 µsec 

Initial SOC 20% 𝑆𝑂𝐶𝑡
𝐵, 𝑆𝑂𝐶𝑡

𝐵̅̅ ̅̅ ̅̅ ̅ 20%, 80% 

 

 
Figure 5.4. Simulation set-up. 
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(a) (b) 

Figure 5.5. (a) DC-DC converter model used for interfacing PV and battery and (b) Current 

controller for DC-DC converters. 

 

 
 

(a) (b) 

Figure 5.6. (a) Rectifier model and (b) DC bus voltage and grid current controller used for the 

rectifier. 

 

5.4.1. Power Electronic Converter Model:  

To reduce simulation overhead, average models of the power converters are used. Figure 

5.5 (a) shows the average model used for the DC-DC converters. Identical models have been used 

for the converters that interface the PV and the battery storage system. PV generation profile 

obtained from PECAN Street data was used to model the PV variation. Current reference tracking 

was achieved by a PI compensator, shown in Figure 5.5 (b). It is worth noting that the current 

reference 𝑖𝐷𝐶
∗ = 𝑖𝑏𝑎𝑡

∗  for the DC-DC converter that interfaces the battery, is updated by the rule-

based controller. For the PV converter, the current reference 𝑖𝐷𝐶
∗ = 𝑖𝑃𝑉

∗  is updated by the rule-based 

controller; however, the reference is tracked when allowable by the PV generation profile and the 

extracted current is clamped at the maximum power point when 𝑖𝑃𝑉
∗ > 𝑖𝑀𝑃𝑃, where 𝑖𝑀𝑃𝑃 refers to 

the current at maximum power point.  
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A rectifier connects the household system with the grid. The average model is shown in 

Figure 5.6 (a). A cascaded control structure is used to maintain the desired voltage 𝑣𝐷𝐶
∗  at the DC 

bus, shown in Figure 5.6 (b). An inner proportional-resonant (PR) compensator is used for current 

control and the current reference is dynamically generated by a PI compensator that tracks the DC 

bus voltage.  

 

Figure 5.7. Real-time simulation of CHIL showing SDDP optimization command  that updates in 

each 15 min interval and battery dispatch output following the proposed method with 1s interval. 

 

5.4.2. Requirement of Real-time CHIL Simulation:  

To evaluate the performance of any energy optimization algorithm, real-time control 

hardware in the loop (CHIL) simulation can facilitate a high fidelity emulation of the real system 

compared to an offline numerical simulation. This can be illustrated by a simple test case shown 

in Figure 5.7, where a snapshot of the real-time CHIL experiment result is considered. The red 

dashed curve denotes the load. the stochastic nature of the load is evident from the irregular 

variation of demand. Using our proposed SDDP optimization method, the battery power dispatch 

command is represented by the blue-dashed curve which is held constant between two update 

instants, i.e., 15 mins. It is worth noting that the load demand changes intermittently within that 
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15 min interval. The proposed rule based controller limits the battery output to the load demand 

when load demand falls below the commanded power reference for the battery by the energy 

optimization algorithm and ensures undesired discharge of the battery. The necessity of the rule-

based controller thus becomes evident in this test case. Moreover, in an offline numerical 

simulator, energy consumption and net energy output are typically computed considering the 

average power flow over one optimization-update period, which obscures the effect of the 

intermittent mismatches between the commanded power reference and the varying loading 

conditions leading to inaccuracies in the estimation of net cost. 

5.5. Results and Analysis 

 The simulation results for different steps and comparison analysis are illustrated below. 

5.5.1. Load and Solar Generation Forecast 

For residential load and solar generation forecasts, we use load and PV generation data of 

the previous one year period to train the model. The prediction is updated at 15-minute intervals 

in rolling horizon. Using the feedback of load and PV profiles in the current interval, prediction 

for the next 24 hours, i.e., 96 sets of values, are updated. We evaluate different machine learning 

algorithms in terms of forecast accuracy. In Figure 5.8, the forecasted solar profiles with different 

algorithms along with the real profiles are shown. It is to be noted that PV generation profile is 

subject to less variability compared to load profile over a 15-minute interval, which is reflected in 

the root mean square error (RMSE) shown in Table 5.3. Greater variability in household load 

demand is also evident in Figure 5.9. Regardless, RMSE is lower for LSTM compared to the other 

machine learning algorithms for both load demand and solar generation forecasts. Consequently, 

we chose LSTM as the preferred forecast algorithm for our proposed integrated energy 

management system. It was observed that for time resolutions less than 15-min, RMSE increases.  
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Therefore, to avoid higher RMSE 15-min- interval is chosen for forecast and optimization update. 

  

Figure 5.8. Forecasted solar generation with 

different methods and real solar generation. 

Figure 5.9. Forecasted load with different 

methods and real load. 

 

Table 5.3. RMSE for load and solar forecasts. 

Forecasting methods 
Solar forecast Load forecast 

Summer Winter Summer Winter 

k-Nearest Neighbor 3% 5.8% 21% 12% 

Random forest algorithm 3.3% 6.4% 20% 15% 

LSTM 2% 5.6% 17% 11% 

 

5.5.2. Reduction on Electricity Purchase from Grid 

The load and PV models in Opal-RT real-time simulator are programmed to follow the 

profiles of a summer day (obtained from PECAN street data), shown in Figure 5.10. It is worth 

noting that the dataset used to train the forecast model does not include these profiles. The 

simulation results are recorded at one-minute interval for 24 hours. The BESS SOC for different 

control strategies are shown in Figure 5.11 and it can be seen that our proposed method prefers to 

charge during off-peak and partial-peak hours and discharge mostly at peak hours to reduce the 

electricity purchase cost. As a result, SOC of the storage increases during off-peak and partial-

peak hour and it goes down during peak hours. On the other hand, for heuristic method, BESS is 

charged during excess generation and discharge occurs during higher load than generation which 

leads to underutilization of energy storage and higher electricity purchase cost.  
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Next, we evaluate the impact of the proposed rule-based with SDDP method. The BESS 

charging or discharging commands are updated at 15 min intervals. However, load and PV 

generation are subject to intermediate variability. For instance, we consider two specific 

operational cases- higher solar generation than the BESS charging command and lower load 

demand than the BESS discharging command. In the first case, solar energy is fed back to the grid 

which could be utilized to charge the BESS at a higher rate. In the later case, the BESS is 

discharged unnecessarily. Without the rule-based method, the mismatch at finer time resolution is 

not possible to correct; therefore, the waste of energy may persist as long as 15 minutes, in the 

worst case for SDDP application. The proposed inclusion of rule-based control with SDDP method 

resolves such intermittent mismatches at a finer time-resolution. The rule-based method is 

effectively actuated at the same time scale as the power electronics converter control. From Table 

5.4, it is evident that our proposed method ensures greater reduction in electricity purchase cost in 

both summer and winter days compared to that of other methods. Due to the lower solar generation 

and lower difference between the peak and off-peak hour rates during winter days, electricity 

purchase cost saving is lower compared to summer days. Considering these electricity purchase 

costs ($/day), it can be expected that with our proposed method 8.4% savings annually. 

 

Figure 5.10. Real-time household and solar generation profiles. 
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Figure 5.11. SOC of the energy storage in real-time for different control strategies for a 

summer day. 

 

Table 5.4. Electricity purchase cost ($/day) comparison. 

Methods Summer  Winter  

Electricity purchase cost without storage 8.9 3.2 

Heuristic method 8.4 3 

SDDP method  8.5 3 

Proposed method 7.9 2.9 

 

 

5.5.3. Improvement on Peak Hour Saving and Solar Energy Usage: 

Peak hour saving not only helps the homeowners but also helps the utility companies. In 

our proposed method, peak hour saving is higher compared to the other methods for both in 

summer and winter days which is shown in the bar chart in Figure 5.12. Since SDDP method has 

proper estimation of expected future cost, it ensures higher peak saving compared to heuristic 

control method. But SDDP suffers from inefficient usage of solar energy due to the variability in 

real systems which is depicted in Figure 5.13 for both summer and winter days. Since we integrate 

SDDP for proper estimation of the expected future cost along with rule-based control for efficient 

use of energy, our proposed method outperforms both heuristic and SDDP based methods in terms 

of peak hour saving and solar energy usage.  
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Figure 5.12. Comparison of peak hour saving in (%) for different control strategies. 

 

 
 

Figure 5.13. Comparison of solar generation usage in (%) for different control 

strategies. 

 

5.6. Conclusion 

In this work, a real-time residential BESS energy management method is proposed for daily 

electricity purchase cost minimization which is the primary concern of the users. Updated load and 

solar generation profiles through forecasting in rolling horizon, helps to improve the optimal 

decision-making process in the energy management algorithm. During optimization, consideration 
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of uncertain parameters and correlation between them increases the efficiency of the optimization. 

For application in real systems, integration of rule-based control reduces deferred solar energy as 

well as ensures proper utilization of the energy storage. Real-time control hardware-in-the-loop 

experiments validate the superior performance of the proposed method in comparison with existing 

energy management algorithms in terms of electricity purchase cost, peak hour savings and solar 

energy usage. 
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CHAPTER 6 

Contributions and Future Works 
 

6.1. Contributions 

This dissertation presented and discussed a new method for PV-panel and energy storage 

sizing. It showed that the consideration of deterministic model-based energy management and 

NPV analysis ensures economic benefit to obtain the optimal PV-panel and storage capacity sizes 

to the owner. Another unique contribution of this dissertation is to integrate solar generation with 

storage and PEV on a residential system to control their charge/discharge profile to achieve 

minimum load variance. Load variance control from residential level helps electric service 

providers to get rid of the problem like “duck-belly” curve or over voltage. Since the control is 

performed in residential level, electricity service providers do not require to control each individual 

house through a centralized control system that requires a lot of computation and effective 

communication system.  

The models formulated in consideration of uncertainties in solar generation and load 

demand in this dissertation, showed the importance of considering proper models and algorithms. 

The results obtained from applying the SDDP for optimal state of charge and control trajectories 

analyze that by controlling the charging/discharging schedule of the PV-based storage/PEV 

storage, it is possible to minimize the household cost of purchasing power from the grid. The 

importance of coordinated control between PV based storage and the PEV storage illustrated in 

this dissertation for a household system to minimize the overall electricity purchase costs from the 

grid. The correlation consideration between load demand and solar generation helps to avoid 

unrealistic scenario generation (e. g. lower load demand with higher solar generation during hot 

summer days). The simulation results validated that the coordinated control scheme achieved 
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higher economic benefit to the owner with respect to heuristic control, standalone application of 

SDDP to PV based storage and standalone application of SDDP to PEV storage. Performed 

simulations for these models, show that the electricity purchase cost reduces for the stochastic 

optimization compared to the deterministic optimization method. 

A novel framework for energy management in a system composed by renewable energy 

and storage devices for a community was presented in the later part of chapter 3. The proposed 

approach can be an enabler for the future shared community generation- storage designs in the 

smart grid environment providing a technical decision-making framework for storage addition, 

and capacity sizing of storage devices, that allows planners to perform comparisons between the 

optimal capacity sizing of shared versus individually controlled and owned devices based on NPV 

calculations. The results obtained from the SEM control strategy suggested that by controlling the 

energy storage devices and the solar PV generation power flow, it is possible not only to improve 

critical parameters such as electricity purchase costs, electricity peak shaving and solar PV usage 

on a daily basis, but also to reduce the storage capacity requirement. As a result, this tool is 

beneficial to the homeowners in terms of reducing the electricity purchases from the grid and the 

energy storage installation costs. 

An innovative DR-based method for load restoration service was proposed in chapter 4. 

The idea is to improve grid resiliency using DR. Numerical results showed notable improvement 

on load restoration in a distribution system with limited generation resources and microgrids. This 

proposed framework can be employed for various operations, such as voltage violation control and 

frequency regulation in distribution systems. Furthermore, the methods used to assign time-

varying load instead of spot load in a distribution test system, define feasible controllable range of 

load demand in a distribution bus, and maintain target load considering uncertainties in load 
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demand and solar generation through HEM can provide guidance on market design for DR when 

resilience is considered. 

To advance the SDDP based energy management strategy one step further, a real-time 

based residential PV-storage control method was developed for daily electricity purchase cost 

minimization in chapter 5. A real-time residential energy storage control method is proposed for 

electricity purchase minimization which is the primary concern of the users. Updated load and 

solar generation profiles in rolling horizon helps to improve the optimal decision-making process 

in the energy management algorithm. During optimization, consideration of uncertain parameters 

and correlation between them increases the efficiency of the optimization. For application in real 

systems, integration of rule-based control ensures the reduction of deferral solar energy and proper 

utilization of the energy storage. Real-time simulation results validate the superior performance of 

the proposed method over existing methods. The proposed methodology can be extended for 

distribution, transmission and generation level energy storage management.  

6.2. Future Works 

 The following future works are suggested for further improvement of the dissertation: 

➢ For PV-panel and storage sizing, the impact of storage cost and ToU rate are 

considered. Other parameters like the presence of DR, PEV, energy storage 

degradation model can be considered for sensitivity analysis.  

➢ For community level, inclusion of PEVs can be considered for energy management 

and capacity sizing of energy storages. 

➢ Impact of deterministic and stochastic methods for capacity sizing method can be 

analyzed for capacity sizing of storage. 
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➢ DR based method for DSR can be utilized to control other parameters like voltage and 

frequency regulation.  
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Appendix A 

 

TABLE I 

TOU RATE 1 

 

 
 

TABLE II 

TOU RATE 2 

 

Season Load Type Period ToU Rate 

($/kWh) 

Summer 

(June-September) 

Off-Peak 10:00PM-11:00 AM 0.009 

Peak 11:00 AM-10:00 PM 0.0927 

Winter (October-May) Off-Peak 11:00 AM-5:00 PM & 

10:00 PM-7:00AM 

0.009 

Peak 7:00 AM–11:00 AM 

& 

5:00 PM – 9:00 PM 

0.0927 

 

 

 

Season Load Type Period ToU Rate 

($/kWh) 

Summer 

(June-September) 

Off-Peak 9:00 PM-9:00 AM 0.15 

Partial Peak 10:00 AM-1:00 PM & 

7:00 PM-9:00PM 

0.226 

Peak 1:00 PM- 7:00 PM 0.342 

Winter (October-May) Off-Peak 8:00 PM-5:00 PM 0.15 

Peak 5:00 PM – 8:00 PM 0.171 

 


