~ On the Bias in Flexible Functional
-Forms and an:Essentially Unbiased

Form: The Fourier Functional Form

by

A. Ronald Gallant*

Departments of Statistics and Economics, North Carolina State University.
Much of this work was done, while visiting the Institut National de la
Statistique et des Ftudes uconomlques and while on leave at the Department
of Economics, Duke University. I wish to thank Robert Wolpert, Guy Laroque,
Alain Monfort, Grace Wahba, and John Monahan for helpful discussions on
approximation methods when derivatives are incorporated in the notion of
distance. The many helpful comments of the participants in the Research
Triangle Econometrics Seminar Series are gratefully acknowledged.



Abstract

Aﬁ expenditure system is derived from a Fourier series expanéion éf
thé indirect utility function. This system has the property that the pre-
diction bias averaged over the values of the independent variables may be
ﬁade as small és—desired by increasing the nﬁmber'of terms of the Fourier
series expansion. Two consequences of this fact are that the theofy of
demand may be tested essentially independently of the choiée of functional
form and that the asymptotiC'disfribution of other flexible form parameter
estimates and fest statistics méy be obtained in terms of the parameters of
the Fourier expenditure system. Some aspects of tﬁe bias in Translog

expenditure systems are examined using these results.



1. Introdqction

- Much recent work on the specifieation of empirical-expendituie systems
has focused on anrattempt te find an-(indireet) atility function whose
derived expenditure system will adequately approximate gystems resulting
fromea broad class. of utility functions. More precisely, one seeks an
(indirect) utility function which yields an expenditure system whose
parameters may be adjusted so that the discrepancy between the true expendi-
ture and the approx1matlng expenditure system is small relative to the n01se
in the data. Examples of this approach are in Diewert (1974), Chrlstensen,
Jorgehsen and Lau (1975), and Simmons and Weiserbs (1979). |

AThere are two methods for approximatihg a function that are used
'frequently in applications. These are Taylor's series approximatione and
the general class of Fourier-serieseapproximations. As examples: of the
latter, there is the familiar sine/cosine expansion and the possibly less
familiar Jacobi, Laguerre, and Hermite expansion_s. The work in flexibie
" functional forms appearing to date has used a Taylor's expansionAas the
: approx1mat1ng mechanlsm 7

Taylor s theorem only applies locally It applies on a neighborhood
of unspe01fled size contaznlng a specified value of the argument of the
function being approxunated the commodlty vector of a dlrect ubtility
function or lncomernormallzed prices of an indirect utlllty,functlon. The
localrapplicability of the approximation suffices to tfanslate propositions
from the theory of demand into restrietiens on the parameters of the
‘ approximating expenditure system; see especially Christensen, Jorgenson, and
Lau (1975) and Simﬁons and Weiserbs (1979) in this connection. However,
Tayler's theorem fails rather miserably as a means of understanding the

statistical behavior cf parameter estimates and test statistics; see



especially Section IV of Simmons and Weiserbs (1979) .
Tne reason for this failure is that statistical'regression methods
~essentially expand thertrue function in a (general) Fourierrsenies -not
in a Taylor's series. As the sample size tends to infinity, a regression
estimator %'of the typical sort converges to that parameter value e* which

minimizesra measure of average distance B(Q) of the form
8(9) = [ ol (x), £(x,0)] wlx) ax
X

where: p(y,y) is a measure of the dlstance between the true and predlcted
‘1values of dependent variable determlned by the estimation procedure X

is a set contalning all possible values of the independent va:iable, and
w(x) is a density function defined onVI giving therrelative frequency with

| which values of tne independent tariable‘occnr,as samplersiZe tends to
infinity'(Souza:and,Gallant, 1979). This is’preciseiy the defining property

of a (general) Fourief approximation‘of f(x) vy £(x,8) . A Foufier approxi-

': matlon attempts to minimize the average prediction bias B(g) .

Due to this fact, Fourier series methods permit a natural: tran51tlon
‘:from demand theony to statlstlcal theory. The classical multlvarlate 51ne/
~cosine expansion of the indirect utility functionvleads.directly to an
expenditure system ﬁith'the property that the average prediction bias may.
be made arbitrarily smali by inoreasing the number of terms in the expansion.
The'key fact which permits this transition is that the classical Fourier
sine/cosine series expansion approximates not only the indirect utility

: fgnotion to within afbitrary accuraoy in terms of the &2 norm but a}so its
first derivatives. Interestingly, a restrietion-that therHessian of the
approximating indirect utility function be positive definite is easy to

impose on the Fourier flekible»form;'positive definiteness is not easy to



iﬁpose on mqst other'flexfble:forms.
" The Fourier_ex@enditure system is used as a vehicle to étudy potential

biages resulting froﬁ the use of the Trénslog eXpendituré systeﬁ.i_The
»TranSlqgrtest of the theory of deménd based on the,équality and symmetry of
cOefficienté as repbrﬁedjin'Christensén, Jorgenéon, and Lau (1975) is’
irepeated using the Foufier expenditure syétem.'rTheir result is confirmed.i
Thé asymptoficrpower curve of the Trans;og teét of additivity is derived in
ﬁerﬂs of Féuriervparémetérsfr Parameter éettihgs compatible with the data of

Christensen, Jorgenson, and Lau- are used to obtain tabular values for the

Lo . power curve of the Translog additivity test; Substantigl bias is fouhd.r

rThevpowervcurve exceeds the nominal significance level—ofrthe test when
the null'hypothesis i$-true and is relatively flat with respect to departures

from the null case.



2. Thé Fourier Flexible Form: An—Expenditure
 Bystem with Anbitiarily Small‘Average Prediction Bies

nInrfhisﬂsection;a Fourier series expansion of the indirect ntility
' funetion~is used tofaerine an'expenditure system with a featnre which dis-
--tinguishes it from bther flexible form expenditure systems. When~es£imated,
it Will éppronimate'the true,exﬁenditure system to within an average prediction
-bias Which ma& be made~arbitrarily small by increasing the number of terms in
the Fourier expans1on. -

Let Q denote an N-dlmen31onal vector of commodities, let x = -/t berﬁhe,
vecnor Qf normalized priees, and let g*(x) denote the,COnsumer's,true‘indirect‘
utiliﬁy function. 'Thefeonsumers utility i1s maximized when expenditures are

'allocated aceording to the expenditure system
, N *7 . : :
plql/Y EZN x (3/0x,)&¥(x)17 %, (3/0%, )" () 1=1,2,...,8

prov1ded certain- regularlty condltlons are satlsfled (Diewert, 1974). No
Aformal use ‘is made here of these regularity condltlons but it is requlred that
,'the_formula for the expendlture system_make sense. Therefore, 1t ‘is assumed
_that g*(x) has continuous partial aerivatives and that =
(3/3x;)g" (x;) < 0
- for ali;x ¢ X where L is’the negion of approximation; fhe overbar denotes
ciosure»of a set.

The region;of approximation;is an open,éube X construcfed asﬁfollows; Let
‘{(Yz,Y )rwith YL > 0 be the}interval of incomes overrwhieh an approximation isn

de51red and let (pzl,p ) with pz > O be the price intervals. Having made

these ch01ces, rescale the units of the commodltles and-the prices per unlt



such that the rescaled prices satisfy
0< Pzi/Yu < pui/Yz < om
‘The region of approximation is, then,

RS LW NS WA

=1
‘Let A 2'(*1’x7’ ive, XN)' and k = (kl,k s eees kN)' be multi-indexes,
i.e. N-vectors with integral components, the components of A being non-

,negatiVe; Define

, ,‘kl* - z:lj\;ll.kil
Partlal dlfferentlatlon is denoted by
DMre — a £(x)
- d3x bz 2 s ¥
Ul

Differentiation is taken in the generalized sense (Rudin, 1973, §6.13) in

‘_the‘literature cited in this_section; However, ﬁhere is nojneed for such
compleXity-hefe. If,f—has continuous partial derivatives of all orders,upv
to ‘Xl* in thevciassicai senee then the classical notion of differentiation
and the generalized notion are essentially coincident. The classical notion

A

is therefore lmposed on the symbol D f here.

Let WP (x) denote the collectlon of all complex valued functions f with

|Dxf|p 1ntegrable over-I,for all A w1th |x| <nm, a Scbolov space. Let
, | .
el o [P

W lkl:sin X

_the Scbolov norm. The result which motivates the Fourier expenditure system
fOllows directly from Corollary 1 of Edmonds and Moscatelli (1977).
Theorem 1. Let m 2 2, and for each multi-index k set

' ik’x
@k(x)_— e o
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where i denotes the imaginary unit. If f ¢ W P(1) then there is a sequence

of coefficients.ak such that

"zimKhm“f B ZlklisKakngm-l,p,I =0.

Observe. that when £ is ieal valued the restriction ék = é;krwill cause
:|k*‘s$?kék(x)§o‘be real valued without affecting thé‘validity of Theorem 1;
the overbar denotes the complex conjugate of ay

A moré convenient formrfér empirical work results when the sum_,A

z . 5 olE'x
it

is reexpressed as a double sum

Aol

ijk'x
i - a e %
o=1%j=~d ja

The requisite sequence of multi-indexes
‘{k T = 1,‘2, ..m,’A}‘

‘may be constructed from the set

k= (ks lx|"< k)
- ag follows,. Firsﬁ; deleté from X the zefo vector and any k whoserfirst non—r
Zero element'iS'pegative;'i.e. (O,;l,l) would be deleted but (0,1,-1) wouid»
remain.’ Sebond,rdélété any k»Whose'components have a common iﬁtegral diyisor;r
i.e. (0,2,k4) wéuld be deleted but (0,2,3) Wouid remain. Third, arrange the k;
which remain into a séquence | | |

{ka: a=1,2, «u; A}

o , N v
such.that’]kd\ is non-decreasing in ¢ and such that ki, kK, ..., kg are the

. elementary vectors.



Assume that the observed expenditures and normalized prices are

'generated according to the stochastic specification

Vi ="‘f*(xt) tey ' t=1,2, ..., n
where a/ax )g*(x)
£ (x) = csN x, (3/2x, ) & xn‘l (B/ax * ()
xN_l<a'/axN_l>g*<x> L
and
Pyay/¥
Pydo/Y

y =

PN-.-qu-l/Y

Note that vy and f* are (N-l) - dimengional; the eXpenditures on the ].\T:G--kl

commodity are obtained f‘rom 1.~ ZIL_;‘_' v for the cbserved expendiﬁure and from
lv-lzf;ifi(x) for the predicted expenditure. Let the errors e be independent'
and identieally distributed each with zero mean vector and variance-eovafiance
matrix Z; Assume_that,, as n becomes large, the empirical distribution function

of the normalized prices x corivei'ges to the uniform distribution over the

cube X . , ' ‘ .
Consider as an approximation of,g* the Fourier indirect utility function
L ' ‘ ijko'[x '
=g + b'x + 3x'Cx + '
g(x) a + b x. | ix 0k —lZJ—-J ja®

where

(O]

a. .
Jjo ~-Jjo

R

loo:ozoz

and ag» aOo{, and b are real valu.ed.-/The derivatives of g(x) are

1Jko’!x
e k

(a/bX);g(X) b +Cx + 1:'A 2 —og 3 %y -



P A 2 1yk x
= - + i . 4
(2%/3xdx " )g(x) el (Bog ¥ g3 2y, @ kK
The: Fourier expenditure system is
'+ - 7 . . .
xb, * L gl-a @'k iny Jage Tl x oy o0 w

£;(2,8) = 1K'

il s o
) + - / + I
b'x 2:!:1[ 8% K, le=_JJ 830° ]kax
The system is homogeneous of degree zero in its parameters and is therefore
not identified without normalization; setting bN;~l'iSWawconvenient normaliza-
tion rule.  Let

- . ) N ’ -
3, (aOa, ala, ""'aJo:) ) o

~The parazpeters of the system are

/

8 = (bl’bZ’ seey bN-l" Q']I_ s 012 9 eeey QA’)’ >

a vector of length N-1+ A(l;l-J) There are N-1 + A(L1+2J) free parameters
~in the vector since the cpmplex parametei's have both a real and an imaginary
- part. _ -
Let § be a random metrix v_of order (-Vl\T - 1) x (W-1) with J&(8 -5*) bounded
rinxprobability foi' sqzﬁe positive »definit'e natrix S* . The nonlinear
seemingly unrelated»regression»s estimator of § (Gallant, 1975) is @ which
maximizes | T | |
52(8) = (1/n)Zy s(ry,x,.8,0)
where : .
s(y»x,8,8) = -y - f(X,e)]'S'lEy - £(x,8)] .
Subjec‘t’: to rregularii.'ty_ conditions stated in Souza and Gallant (1979), é convergeé

almost surely to that value e* which minimizes the average prediction bias

(o) = [ [£(x) - £(x,0)1' (M) (%) - £(x,0)] ax

Theorem 1 kand' Theorem 2, below, taken together imply that the average
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-prediction bias ﬁ(e*) of the nonlinear' , seemingly un:elated regressions .
estimator of ﬁ‘qe Fourier expenditure system may be made.as small as desired
by tak:.ng A and J sufficiently large.

Theorem 2. Let g¥e We? 2 (x) with contlnu.ous (a/ax )g (x) < 0 for all
xeX and let f (x) be, the c’orrespond;.ng- expend:.ture system. Let

gK(x 615855 ,eK) be a seq_u.ence of functions with continuous partial
derivatives in x and let £ (x 61’62"' ,eK) be the corresponding expendlture

system. Let the trlangular array

* -
el,‘.l

* N
81,2 2 82

'9* 9* S* .
71,3 7 2,3 7 73,3

minimize

| . . * ;oK =l, *
By(87585) -+ 56;) =;j‘ (- £)'(87) He "fK,) dx

for XK= 1,2,...  ; note need not equ.al e . If there exists a

*

A 8 .k 1,K+1

triangular array {él g i=‘l,2.,v. .,k K=1,2,.. .} such that
b

- - - = 7 2,2
SK(X)V— gK(x’el,”K’ez,K”' ) eK K) satisfles gK e W (X) and»

N
then

zﬁn a?,»(e:L s 92 - e eE,K) =0
Proof. First it is shown ‘Ehat
'ziﬁ:K_gb@(él’K, 52,1{}’ ,eK’K) - 0.
'By hypothesis, (a/axi)g*(ﬁ) < §5<O0 for all x ¢ X . Continuity on ¥,

. * - '
f'lmng "g'Knl,g X = ,o , and
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L
2

imply (a/axi)éK(x)<s N< 0 for all x ¢ ¥ and for all K sufficiently large.

, . B _ o ,
Then for large K,,|fi(x) - £ K(x)‘:s 2 for all x ¢ L . Further,
’ 3

.&imv‘fxlxi(a/axi)g*(x) - x, (3/3x, )E(x)| ax

s s (] |x, PPan jxua/axi)g*'- (3/2 | a0)2

< 4im (2m) |le*- &ll, 5 x
= 0

- Now (I,dx):is a finite measure space so that convergence in £l(1,dx) implies
convergence in measdre.r Thus , xi(a/axi)éK(x) convergesrin”measure to

' xi(a/axi)g (x) as Kw for i =1, 2, ..., N. It follows immediately that the
By R [ : . * \ * = |2
expenditure shares fiK(x) converge in measure to fi(x) . -Since {fi«-fiKl

is dominated by 4, the‘dominated convergence theorem for convergence in

measure implies
S R S
vim 1 j'xlfi - B lPx= 0.
‘Let w be the largest eigenvalue of (S*)'l . Then

J = = . N-1 o 1% s 424
- 0 4im BBy oo sBy ) < 4im o TTY jxlfi - FiplTax = 0 .

The theorem follows from the fact that (el K> .y eK K) minimizes
. . 3 >

V@K(el,..:,eK)’whenée

' , * ¥ . - B
0< £im Be(8) o «oos B ) < 21m By(By po oo e =0 [
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3. A Test of the Theory of Demand

There have been many studies that have tested ﬁhe theory of demand

statistically. A consice account of these studies is found in the

~ introduction of Christensen, Jorgenson, and Lau (1975). Setting aside

the well known problems with the use of aggfegate data for such tests, there
remains the problem of bias induced by the choice of a functional form for

‘the expenditure system. Rejection of the null hypothesis implies rejection

‘of either the choice of a functional form or rejection of the theory of

* demand. oxr both. The implicétioh of a significant test statistic is unclear;

rejection of thé theory of demand is not necessarily implied.
Tests based on the Fourier expenditﬁre'system permit clearer implications
by virtue of the foregoing. Following along the same lines as Christensen,

Jorgensen, and Lau (1975), a test of the theory of demand may be constructed

as fol;ows. Let

fy(x,6,)
£,(%,8,)

.

f(x) 91,629’ . " )BN-l) =1

where fi(x,e) is the Fourier expenditure share of the P commodity as defined
in the preceding section. Note that if

8=0,=8;= -+ =81
then

'f(X,BJ_,Gg,---,GN_l) = f(X,Q)

Following previous usage, the restriction

L A S

is termed the hypothesis of equality and symmetry here.



A test §tatistic for the hypothesis -
8= 8= oo T By
may be constructed from the seemingly unrelated estimator. Let é be the

rendom matrix of the preceding section. The unconstrained estimator is

(61, 32"';’§N-l) which maximizes

Sn(elirezj e :GN_l) = (l/n)i=l S(Yt ,x't )é 361362: e :GN_J_)

where

5(75%,5,875855 ¢+ 458 1)

= -_%EY = f(Xse_laegw4-,61\1'_1)]'5_1[5’ - f(X,B'l,GQV,-,--,GN_l)] .

The constrained estimator is é which maximizes sn(e) as defined in the

preceding section. The test statistic for equality and symmétry is
L= -2n[sn(9) - Sn(el’QQ""’el\T-l)]

Oné fejects the null hypotheéis-when L exceeds the upper o X lOOvpercentage
point of a chi-square random variable with (N-2)(N-1 + A(L +2J)) degrees of
freédom.,, '

The Fourier expendituré system was fitted to the data of Christenseﬁ,
Jorgenson, and Lau (1975).' These data were obtained from Tibibian (1980)

and are given in the Appendix. ~The multi-indices employed were

1 0 0 1\ [1 0 1
k ={o| (1} ,lo] {1} lo)s{1)s|L]
¢ 1o 0 1/ \o 1/ \1 1

A=T and J=1. These choices result in.an estimate of 2 which is oné
half‘the magnitude of T estimated from Translog nonlinear least squares

residuals; equality and symmetry constraints having beenrimpoéed in both cases.'
Foufier scaling as discussed»in the previous section is used to estimate T

with the Fburier expenditure system; with the Translog, prices are scaled so
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that each series Xy ='pi/Y has a mean of one. ~There is a singularity with
these data which is accommodated by fixing ao7 at zero throughouﬁ the
. computations; the degrees of freedom of the test statistic are 22 .

.~ The computed value of the test statistic for equality,ahd symmetry is-

L= -2(44)(-.89053 + .12783) = 67.117

: _which‘is significant at a level of 1% . After a correction for serial

correlation the statistic is.

L - ~2(4k)(-.91160 + .18207)

6l.198

Wﬁich,is significant at a level of 1% .

’One éoﬁcludes that the rejection of the theory of demand reported in
Christensaﬁ,'Jorgenson aﬁd Lau cannot be‘shoﬁn to result from a bias in favor
- of rejection induéed by a choice of the Translog functional form. One is
vnot permitted to conclude that the Translog expenditure system is free of
bias from ﬁhese tests, only that é bias has not been demonstrated in this
instance with these data. In fact, a test of the theory of demand against
aﬁ unspecified alternative is not a convenient setting in which to deal with
the qqestion of bias.b The number of parameteré is lafge, coﬁputétions are
therefore extremely costly, and there is no COnvincing means to parameterizé
theAélternative. The Traﬁslog test for an additive indirect utiiity function
is a mﬁch more tfactablersetting for aﬁ examination of bias. In the next

section, a substantial bias 1s discovered.
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4. The Power Curve of the Translog Additivity Test

. If the true indirect utility function is additive then additivity may
be imposed on the Fourler flexible form without affecting the ability of the

Fourier expenditure system to approximate the true expenditure system. This

- fact allows the determination of an analytic expression for the power curve

- R *

of the Translog test of additivity in terms of the parameter §  of the Fourier
expenditure system. This power curve turns out to be shallow and bilased in
favor of rejection. The details follow..

Suppose that the indirect utility funetion is additive,
* ‘ , *
) = L )]

The same expenditure system will result regardless of the choice of strictly

‘increasing function F so it is impossible to distinguish between additivity,

and explicit additivity
*, o *
g (x) = Zl;r:l g,(x)

ffom expenditure data. Therefore, only the stronger hypothesis'of eiplicit
additivity is considered heré. (The same is, of coqrse,rtrue of-homotheticify
and thogeneity ; the same expenditure system resﬁlts in either case.)

An explicitly additive form of the Foufier indireCt utility function
results when A is set to A = N; recall that the first N multi-indixes Kd are
the elementary vectors. With A =N £he Fourier indirect utility function may

be rewritten as

ijx
, 2 J o
= + " ,l 4+ .
g(x‘) ZN_l{ad by BoXy b i %56t }
= Zg:lga(x)

Theorem 1 may be applied successively to conclude that there are coefficients

such that
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: * '
LmJ—)@Hg_Cl-gQ/Hl,Z,I =0, . ' a=1,2,...,N.

By the triangle inequality,
: , ‘ . *

Thus, the hypotheses of Theorem 2 are satisfied and the Fourier system is
seen to retain the ability to approximate the true utility systém with arbi-
trarily small average prediction bias.

The Translog indi‘r_ect utility function yields expenditure shares

SR ozi+ ZI\.LJ_B]._.,enx. : .
fi(X:)‘-) = JZN : . ’ 1= 132:---;71\]"]-
, -1+ %, lEMj,(’.nxj :

J=
There are N-1 + N(I*1)/2 free parameters
)\- = (al)azﬁ e )%_1)5113512152226133323)933’ .- "’glN’EEN’ .,. ¢ :BNN) M

‘The dependent parameters are

V-1

= "l - J.=l aa. y

%y

Bji= Byy Tori<d

By = Figfyg
The hypothesis of e;ﬁplicit additivity for fhe Translog exp}ernditurer éystem
takés th‘erforz'n, Bijr = O for i # j. This hypotheses may be representedras
a(r) = HA =0
where H is of order [N(N-1)/2] x [N-1 + N(¥1)/2] and is cbtained from the
identity of order N-1 '-i_-. N(N+l)/2 by deleting the N-1+N rdws corresponding to

815 eer 8y and 511’,""91\11\T'°f A

—— %
As before, let A/n-(S -8") be ‘bounded ‘in probability. The nonlinear
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seemingly unrelated regressions estimator of A is \ which maximizes

s, (M) = (1/n)2_; sy, %850

where 7
s(7,x,850) = Ky - 2,015y - 20T
Then, as‘fof é Y cénvergesalmos#sgrelyto that value A° which minimizes
BV - J‘I[f*(x) - M1 @) 2N ] ax
To épproximafé ﬁ(x), ohe may use ﬁ(k,e*) where

BO8) = [ [2(6,0) - (6,11 (87 L 20) - £x,)] ex

The argument runs as follows. Restrict attention to those values of A

that yield reasonable expenditure shares fi(x,k) over L} say
A={lhe<%@ﬂ)<l+e,xei,i=L&”qm

for some fixed ¢ > O . ~Note that

|8y - 8(h, 89| < 8o ) + 2 82(s") @%m

and‘@(X) is bounded over A by u(N-l)(2+e)2 where p is the largeét eigenvalue
of (S*)-l . As seen in the previqus section, @(e*) may be made arbitrarily
small>by taking A and J sufficiently large independently of the value of
Ae A. Thus, A° éan bé computed as that valde of h which ﬁinﬁnizes @(h,e*)
and fhe-error of approximation may be made arbitrarily small by taking A and
J»suffiéiehtly 1afgé.

' The Wald test and the Légrange multiplier test for fhe hypothesis

h(x) = 0

are distributed asymptotically as non-central chi squared'randomrvariables
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each;with N(N-1)/2 degrees of freedom (Souza and Gallant, 1979), the

non-centrality parameter is

e =n X°'H’(HV°H')'1HA?/2
where

VO

()" ()t

-1

“
[}

(/m)E LR/ Ve, 42D T (8F) LT + 8l »3°,87 )8 (0,87 )1(ST)
| [R/aA")2(x,,3)]

P = (L) L (/a0 )£, 20D T (%) (3/aM )2, ,3°)]
- /)R T BT 6y (e hue) 8N ) (a0

« |
8(xgsA75n0) = £lx,87) - £lxg W)

"L The asymptotic non-null distribution

and S*ij denétes the elements of S*
of ﬁhe,analog of the likelihood ratio test is also given in Souza and Gallant
(1979) but it does not have a tabled null distribution in this case. - Thus, it
is of no practical importance.‘ The érguments supporting the substitution of
f(x,e*) for'f*(X) in these férmulas are similar to those suppbrting fhe uge of
2(\,8°) for &()\) . |

The cholce of S* for use in these foimulas presents somewhat of a
problem. The simplest choice is to take s* = T which is eguivalent to
assuming that either ¢ is known or that it may be estimated with
negligible bias. ‘It 1s, of course, ?lways possible to obtain ¥ with/
ﬁegligible bias, one need only fit a polynomial in X of suitably nigh
degree to éach expenditure share vy and computevé from the residuals
(Gallant, 1979). The alternative approach is to assume that S was

computed from translog residuals and account for the resulting tias. For
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example, one might compute § from nonlinear least squares residuals subject v
to the equality and symmetry across equation constraint. This is
equivalent to taking S = I in the nonlinear seemingly unrelated regressions

method Whence
s =g+ j"I_é(x,x“.;e*) 5/(x,0°%,8") dx
where A\°° minimizes
J. a"<x,>;,e*> 5(xoh,0") dx

Another poséibility is to compute § from unconstrained'translog’reSiduals.

In view of the variety of éhoices available for S and the additional
cqmpiéxity entéiled, it seems that fhe simplest choice S* = 7 ccntzibutes
more to understanding. From the data of the Appendix, a variance=-covariance
matrix © was computed from Fourier expenditure system residuals with equality
and. symmetry imposed on the fit; A = 7 and J = 1. This variance-covariance
:matrix was,rescalédrupward by a factor of two.

A sﬁooth transition between the extremes of -additivity and its absence
waé obtained asrfollows.— The parameter 9* was computed by fitting the
Ffourier éxpenditure system to the data of the Appendix by nonlinear seemingly
unrelated regressions with this choice of £, with equality and symmetry

imposed, and with the constraint

W o~

Ll

L{. Z"—'-:-l laja

z

o=

%= x

impoéed. The chdice X =VO yields the naull case. The remaining liﬁes of
Table 1 correspond to increasingly larger'values of K and the last line
corresponds to an unconstrained fit. These paraﬁeter choices are realistic
in that they yield expenditure shares in accord with the expenditure shares
in the data of the Appendix és revealed by visual inspection of plots of

observed and predicted shares against time.
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. The Translog test of explicit additivity’(with equality and symmetry as
a2 maintained hypothesis) is seriously flawed as seen in Table 1. The actual
size of the test is much-largervthan the nominal significance level of .010
anq‘the power curve ‘is relétively flat compare@ to'the power of a test based
~-on the Fourier-expendituie-systém. The Translbg powér curve does increase
locally, as one might expect, but it falls offvégain‘as departures from the

null case become more extreme.



Table 1. Tests for an Additive Indirect Utility Function
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Fourier
K Noncentraiity  Power
.0 .0 .010
.000L6 .0011935 .010
.0021 .029616 .011
.0091 63795 .023
.033 4.6689 .260
.059 7.8947 552
.08k 82.875 1.000
unconstrained  328.61 ~ 1.000

Translog
Noncentrality Power
8.9439 872
8.9919 874
9.2014 .884
10.287 924
14.268 987
15.710 -933
13.875 .98k
10.230

.922
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5. ~Parameter Reduction

_A'l . As with other flexible functional forms; the:ndmber of parameters in a

. Fourier expenditure system becomes unreasonably:large -as the number of '
commodities increases. This problem can be partially alleviated by imposing
a convexity restriction and by deleting selected multi-indexes.

Convexity is imposed on the Fourier indirect utility functlion rewritten

as
L ijk’x
- + hlv + 7 i 7 2+ 2J I}
g(x)r a *+b'x 22=l; §aoa(kdx) Zj=-2J 2548 ]
by setting
é . I = 1,2,...,A
o “s=-J so su o 2=t
2y J - el '
= (-1/3%)% e @=1,2,..0,4; §=1,2,...,27

a, LLoC .
Jo s=~J s S=-J,¢

where the free parameters satisfy

Cja-'—' a‘jd 7 Y = 1,2,.--,A;’- J‘ = O,l,z,,..,J
COO{»Z 0 N ) o= 1,2,...,A5
=0 » : a=1,2,...,4; |3l>a .

Cjar

The restriction is sufficient for g(x) to be a convex function; it is not

neceséary save: in the case when A< N. Also; the unblasedness property ofv

the Fourier systeﬁ is lost when the_restriction is imposed. Howevér, since

the restriction can be tested in an application, the lack of necessity and the
" loss of unbiasedness are not serious problems.  One would think that any'serious
distortion of the fit caused by the convexity restriction would be detected by
“testing the restriétion. It reduces the number of parameters by roughly one’

half, -holding the length of 8 cbnstant. |

-‘ | “ Further parameter' reduction may be achieved as follows. Rewrite the
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Pourier indirect.utility function as
= + Dbix + !
g(x) a8, * b'x zﬁ:l“a(kax)

where

. S iz
'U-a(z) - T2 aOO! z§=-2J JO’

Written thus, the Fouriér indireét utility function is seen to be additive
not in each of the normalized prices xa'but rather in pricefindexes ké:c .
The components of the multi-indexes kd are the weights which mage up the
7 price index. Thus, either an upward or downward testing sequence may be
employed to determine optimal set 6f multi-indexes in a given application.

The convexity claim is verified as follows. The Hessian of g(x) is
2 y 4 — 2 2 I3 7
(3 /axax Jg(x) = Z§=1(d /az )pa(kdx)kdka

and a sufficient condition for a positive semi-definite Hessian is that for

each o

(®/azfu(z) 20 oszsem.
But, under the restrictions,

2,,2 23 2 ijz
(a%/az" ) _(2) = 2oy Timprje? ©

- ijz
J ZJ )e J

'=-2J( s=-Jcsacs-j »Q¢

_J J -3 = ipz+igz
= T gPp=-27-s %sa®-m°

_J isz g - ipz
=z =J che zb=_J c_pae

- (:J 1sz)( ' -1pz)
= V= 7%0° z"p= -J¢ pa

I iszy, J isz

= (2 )(zs=—J sa )

s=-J S&

0

A
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- Footnote

1 v
, */ Experience -in other contexts indicates that the number.of terms in

a Fourier approximation of,arfunction cén be reduced considerably if a
linear term b’x is included. . The term x'Cx is included so that the
expression for#the Hessian has the form of a weighted sum of rank one
positive semi-definite matrices with scalar Fourier series expansions
of kd'x as weights. This facilitates the approximation of a convex

function; see Section 5.



Appendix.

Table 2. Data of Christensen, Jorgenson, and Lau (1975)
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Source:

- Year Quantity Price Quantity Price Quantity Price
1929 . 28.98645 33.9 98.1 38.4 96.1 ~31.6
1930 - 29.8184 32.2 93.5 36.4 " 89.5 - 32.1
1931 28.9645 31.4 93.1 31.1 84.3 30.9
1932 26.8821 23.9 85.9 26.5 77.1 28.8
1933 25.3676 31.3 82.9 26.8 76.8 261
1933 24,6108 27.7 88.5 30.2 76.3 26.8

1935 22.3387 28.8 93.2 31.5 79.5 26.8

" 19386 24,1371 32.9 103. 8 31.6 83.8 272
1937 28,1371 29.0 107.7 32.7 86.5 28.3
1938 26..6928 28.4 109. 3 311 v 83.7 29.1
1939 26.4088 30.5 1151 30.5 86. 1 29.2
1940 27.0714 29.4 119.9 30.9 88.7 29.5
1941 28.4912 28.9 127.6 33.6 31.8 30.8
1942 29,5325 31.7 129.9 39.1 95.5 32.48
1943 28.6806 38.0 134.0 43.7 100. 1 348.2
1944 28.8699 37.7 139.38 46.2 - 102.7 361
1945 28.3966 39.0 150.3 , 47.8 106.3 37.3
1946 26.6928 44.0 158.9 C 52.1 1167 38.9
1947 28.3966 65.3 154.8 58«7 120. 8 4147
1948 31.6149 60.4 155.0 62«3 124.6 44,4
1949 35.8744 50.48 157.4 6043 126.4 46.1
1950 38.9980  59.2 161.8 60.7 132.8 - 47.8
1951 43,5414 60.0 165.3 65.8 137.1- 49.9

- 1952 48.0889 64,2 171.2 666 140.8 52.6
1953 49.8833 57.5 175.7 66.3 145.5 55.4
1954 53.10186 58.3 177.0 66.6 150. 48 57.2
19585 55. 4680 63.5 185.4 66.3 157.5 58.5"
1956 58.8756 622 191.5 67.3 164.8 0.2
1957 61.6206 5645 194.8 69.4 170.3 62.2
1958 65. 3122 6647 196.8 71.0 175.8 64.2
1959 §5.7854 63.3 205.0 T1. 8 184, 7 6640
1960 68.6251 73.1 208. 2 72.6 192.3 68«0
196 1 70.6129 72.1 211.9 73.3 200.0 6%9.1
1962 71.5594 T72. 4 218.5 73.9 208.7 70,4
1963 73.5472 72.5 223.0 74.9 217.86 717
19864 77.2387 76.3 233.3 758 229.7 72«8
1965 81.9715 82.3 244 .0 773 24047 74,3
1966 87.4615 84.3 255.5 80.1 ‘251-6 - 76e5
1967 93.8981 81.0 259.5 81.9 264.0 - 78.8
1968 99,5774 81.0 270.2 85.3 2750 82.0
1969 106.7710 . 94.4 276.4 89.4 . 287.2 861
1970 - 109.1380 85.0 282.7 . 93.6 297.3 90.5
1971 115.2900 835 287.5 96.6 306.3 35.8
1972 -..122. 20600 100.0 299.3 100.0 -322.4 100.0

Tibibian (1980)



