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Abstract

Spatial processes for air pollutants defined over large geographic
areas rarely exhibit stationary behavior. We propose a non-stationary
spatial covariance model that is a mixture of stationary processes. The
number of stationary processes and their parameters are estimated
using a Reversible Jump MCMC approach in a hierarchical Bayesian
framework. We also introduce methods for an efficient implementa-
tion and fast computation. We apply this method to the modeling,
prediction of ambient ozone in the Eastern US.

1 Introduction

Atmospheric pollutants have significant impact on health. The same chemi-
cal properties that allow high concentrations of ozone to react with organic
material outside the body give it the ability to react with similar organic ma-
terial that makes up the body, and potentially cause harmful health conse-
quences. When inhaled, ozone can damage the lungs. Relatively low amounts
can cause chest pain, coughing, shortness of breath, and, throat irritation.
Ozone may also worsen chronic respiratory diseases such as asthma and com-
promise the ability of the body to fight respiratory infections. To study
the the impact of various atmospheric pollutants health and terrestrial and
aquatic aqua-systems the Clean Air Act Amendments (CAAA) established a
monitoring network to to assess improvements in air quality throughout the
United States. To meet the objective Clean Air status and trends Network
(CASTNet) was established by the United States Environment Protection
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Agency (EPA) to monitor rural areas. CASTNet is made up of 51 sites
mostly in eastern United States. CASTNet monitors various pollutants in-
cluding Ozone (O3), sulfur dioxide (SO2), Nitric Acid (HNO3). The CAAA
also established ambient air quality standards for carbon monoxide (CO),
lead (Pb), nitrogen dioxide (NO2), particulate matter and Ozone. State and
Local Air Monitoring Network Stations(SLAMS) and National Air Monitor-
ing Stations(NAMS) were set up to monitor compliance with the air quality
standards, these monitors are predominantly in the urban areas. In this
paper we study the distribution Ozone from the SLAMS/NAMS/CASTNet
networks. The distribution of Ozone is known to exhibit non-stationary be-
havior, i.e., the spatial distribution of Ozone depends on where it is being
measure, taking this into consideration we fit a hierarchical Bayesian model
arising out of the convolution of stationary processes centered at various lo-
cations. We do not assume the number of local stationary process required to
fit the data adequately to be known in advance and hence our model consists
of a variable number of parameters and we use the methods of RJMCMC
to determine the number of the processes and to estimate their parameters.
The next section is a literature review of the work done in non-stationary
modeling so far.

2 Literature Review

In recent years, probably the most extensively studied method for non-
stationary spatial processes is the deformation approach due to Sampson
and Guttorp [11], In a series of papers best represented by Haas [5] , T.
Haas has proposed an approach to non-stationary spatial kriging based on
moving windows. Higdon, Swall and Kern [6] give a model for accounting
for heterogeneity in the spatial covariance function of a spatial process, us-
ing a moving average specification of a Gaussian process. Another approach
has been developed by Nychka and Saltzman [8] and Holland et al. [7],
that extends the “empirical orthogonal functions” (EOF) approach that is
popular among atmospheric scientists. We describe below these approaches
to modeling non-stationarity in the spatial context.
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2.1 Deformation Approach of Sampson and Guttrop

The Sampson-Guttrop [11] approach does not assume the underlying process
to be either stationary or isotropic. The approach involves the following
steps:

• Using multidimensional-scaling a two dimensional coordinate represen-
tation of the sampling stations is obtained with the distances represent-
ing the dispersion 1 between sites, i.e., given locations x1, . . . xn ∈ R2

and a spatial process Z which has been observed at locations x1, . . . xn

they construct the transformed coordinates y1, . . . yn ∈ R2 such that

‖yi − yj‖ = E(Z(xi)− Z(xj))
2

The deformed space is called the D-space and the original space is called
the G-space. The points are obtained by minimizing the stress criterion

min
δ

∑
i<j {δ(dij)− hij}2∑

i<j hij
2

Where δ varies over all positive monotonically increasing functions.

• Next using thin plate splines they estimate a function smooth function
f which satisfies yi = f(xi) for i=1, . . ., n over the whole domain.

• The dispersion between points at x1 and x2 is estimated as ‖f(x1) −
f(x2)‖

In the approach of Sampson and Guttrop [11] the function f might be a
mapping from R2 to Rd where might be greater than two, but they assume
d=2 in their applications. . Damian, Sampson and Guttrop [10] have also
approached the problem in a bayesian framework in which they estimate the
deformed coordinates and the parameters of the correlation function and the
variance parameters. In the Bayesian case they parametrize the dispersion
between two points, i.e, they consider the following form

ρθ(|f(x1)− f(x2)|)

where ρθ is a known parametric family.

1Sampson and Guttrop define dispersion between the spatial variables Z(x) and Z(y)
as E(Z(x)− Z(y))2
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2.2 Models based on EOF

The EOF (empirical orthogonal functions) approach is similar to the method
of Principal Components. Here it is assumed that the variable of interest is
obtained by smoothing a random field X(s) and adding an uncorrelated error
term to it. The model is given by

yi =
∫

D
Xi(s)B(s)ds+ εi i = 1, . . . , n

Where yi is the variable of interest and εi’s are orthogonal to the Xi(.)’s.
Solving for B() involves solving a functional system of equations

gi(t) =
∫

D
Ci(s, t)B(s)ds (1)

Where gi(t) = cov(yi, Xi(t)) and Ci(s, t) = cov(Xi(s), Xi(t)
Assuming that the Karhunen-Lóeve expansion holds, we are led to the fol-
lowing form for Ci(s, t)

Ci(s, t) =
∑
k

λkiψki(s)ψki(t)

Where λ’s are the eigenvalues and ψ’s are the eigenvectors of the functional
hi defined by :

hi : f →
∫

D
f(s)Ci(s, t)ds

The conditions for the number of eigenvectors being countable and of the
eigenvectors being complete are usually satisfied. The spectral decomposition
of the covariance also suggests the following representation of the process

Yi =
∑
k

Zkλ
1
2
kiψki(s) (2)

Where {Zk} is a collection of uncorrelated random variables. In fact we can
start with a collection of orthogonal functions and construct a process by the
formula given in (2) and obtain a non-stationary process.

Nychka and Saltzmann [8] extend this idea and suggest the following
form of non-stationary covariance

C(s1, s2) = σ(s1)σ(s2)

{
ρ exp(−‖s1 − s2‖

θ
) +

M∑
k=1

λkψk(s1)ψk(s2)

}
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The above model departs in stationarity from the exponential family of co-
variances, the value of M determines the extent of the non-stationarity.

Taking the idea of orthogonal expansions further Nychka,Wilke and Royle
[9] have proposed a wavelet basis expansion :

Z(s) =
MN∑
k=1

akψk(s)

Where the wavelets are centered around a M × N grid , and that ak’s
are distributed as MVN(0,Σa ). Let s1, . . . sn be any arbitrary collections of
points, and let λi,j = ψi(sj). Then the covariance of Z = (Z(s1), . . . Z(sn))
is ΛΣaΛ The computations get complicated since Σa need not be diagonal,
Nychka et al. approximate it by a near diagonal matrix in applications.

2.3 Kernel based approaches

Higdon, Swall and Kern [6] have proposed an approach based on spatially
evolving kernels. The model proposed by them is of the form :

Z(s) =
∫

D
Ks(u)X(u)du (3)

Where {Ks() : s ∈ D} is a family of of kernels and X(u) is white noise. The
correlation between points at x1 and x2 is proportional to

∫
D Kx1(u)Kx2(u)du

which is not a function of the difference x1 − x2 between the locations. The
kernels are chosen to vary smoothly with space, Hidgon et al. choose a family
of normal kernels whose parameters are continuous functions of the location.
The covariance model depends solely on the choice of the kernel functions.

Fuentes [2] considers non-stationary processes which arise as a weighted
average of the stationary processes with the weights depending on the loca-
tion. The model is :

Z(x) =
k∑

i=1

Zi(x)wi(x) (4)

Where Zi()’s are mutually orthogonal stationary processes with covariances
Ci() . Under the assumptions it is easily seen that

cov(Z(x), Z(y)) =
k∑

i=1

wi(x)wi(y)Ci(x− y)

.
Some special cases :
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• By choosing wi(x) to be constants for all i we obtain a stationary model.

• Let S1, . . . SM be a partition of the domain into disjoint subregions and
let wi(x) = I(x ∈ Si) for i = 1, . . . ,M then the covariance structure
given by (4) is :

C(x, y) =

{
Ci(x− y) if x,y ∈ Si

0 otherwise
(5)

A non-stationary model obtained by the restriction of different station-
ary models in disjoint regions.

Fuentes and Smith [3] have proposed a model obtained by assuming a
family of mutually orthogonal stationary process and convoluting them to
obtain the final non-stationary process. In the particular case where the
number of stationary processes is finite the model is given by :

Z(x) =
k∑

i=1

K(x− si)Zsi
(x) (6)

Here K(.) is the kernel function and Zsi
(.)’s are mutually orthogonal station-

ary process with covariance Csi
(., .). The covariance function of the above

process in this case is easily seen to be

C(x1, x2) =
k∑

j=1

K(x1 − sj)K(x2 − sj)Csi
(x1 − x2)

The natural extension of such a covariance to the continuous case leads to
the Fuentes-Smith model

C(x1, x2) =
∫

D
K(x1 − s)K(x2 − s)Cs(‖x1 − x2‖)ds (7)

Here {Cs(., .) : s ∈ D} is a family of stationary covariances. The above co-
variance is clearly non-stationary in general. In this approach, the family of
covariances are smoothed by a kernel to obtain the final covariance structure,
with the contribution of the covariance at s diminishing at distances far away
from s.

Note that the above model is a special case of [2] with

wi(x) = K(x− si)

We propose a model that is based on a generalization of (7) and has both
continuous and discrete models as special cases.
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3 Our Model

We will discuss about various forms of the covariance structure conditional
on the number of components k and the spatial process S = (s1, . . . sk).

A problem with the model with covariance structure given by

c(x, y) =
k∑

i=1

K(x− si)K(y − si)Csi
(x− y) (8)

is that it does not give a stationary model unless the kernel K is a constant.
Since we will not choose a trivial Kernel it makes sense to add a stationary
component to the above model. So, we suggest the following model condi-
tional on k and s1, . . . sk

c(x, y) = C0(x− y) + α
k∑

i=1

K(x− si)K(y − si)Csi
(x− y) (9)

Here C0( ) is a stationary covariance, and α ≥ 0 is a parameter that measures
the deviation from stationarity. A covariance of the above form arises from
processes of the following nature,

z(x) = Z0(x) +
√
α

k∑
i=1

K(x− si)Zi(x) (10)

Here, Z0( ), Z1( ) . . . are mutually orthogonal stationary processes with covari-
ance functions C0( ), C1( ) . . . and α ≥ 0 and k are parameters that determine
the extent of non-stationarity in the process. We also assume that s1, . . . sk

are distributed as per a possion process with rate λ
The covariance in 10 conditional on the poisson process s1, . . . sk is given

by

[C(x, y)|k, s1, . . . sk] = C0(x, y) + α
k∑

i=1

K(x− si)K(y − si)Csi
(x− y)

Averaging out s1, . . . sk we get

C(x, y) = C0(x, y)+E([α
k∑

i=1

K(x−si)K(y−si)Csi
(x−y)|k, s1, . . . sk]) (11)

In the special case that the poissoin process is uniform with rate λ we
have

C(x, y) = C0(x, y) + λ

∫
D K(x− s)K(y − s)Cs(x− y)

|D|
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4 Reverse Jump Markov Chain Monte Carlo

In a large class of statistical problems, the dimensionality of the parameters
is not fixed but has to be determined from the data. One such example
would be in the problem of mixture devconvolution with unknown number
of components.

So, the problem is to choose from a family of countable models {Mk : k ∈
K}, here Mk has nk parameters, say θ(k) The joint distribution of (k, θ(k), y)
can be modeled as

p(k, θ(k), y) = p(k)p(θ(k)|k)p(y|k, θ(k))

Let Ck denote the subspace {k} × θ(k). Green [4] devises a MCMC scheme
under which at each step transitions are made from the current subspace
C1 = {n1}×Rn1 (say) to a possibly different subspace C2 = {n2}×θ(n2) say is
proposed with probability j(x) where x = (n1, θ

(n1)) is our current state. The
transition is made to a point in C2 as follows, generate a continuous random
variable of length m1 say u(1),and set θ(2) to be deterministic function of θ(1)

and u(1), similarly to switch back, generate a continuous random variable of
length m2 say u(2),and set θ(1) to be deterministic function of θ(2) and u(2),
m1 and m2 should be chosen such that

m1 + n1 = m2 + n2 (12)

and the mapping
(θ(1), u(1)) ↔ (θ(2), u(2)) (13)

is a diffeomorphism. Conditions (12) and (13) are called the dimension balancing
conditions.

The transition probability is given by

min

{
1,

p(2, θ(2)|y)j(2, θ(2))q2(u
(2)|(2, θ2))

p(1, θ(1)|y)j(1, θ(1))q1(u
(1)|(1, θ1))

∣∣∣∣∣ ∂(θ(2), u(2))

∂(θ(1), u(1))

∣∣∣∣∣
}

(14)

Here q1() and q2() are densities of u(1) and u(2) respectively and
∂(θ(2), u(2))

∂(θ(1), u(1))

is the Jacobian of the transformation between (θ(1), u(1)) and (θ(2), u(2))
To illustrate this approach with an example let us consider the following

problem: let our target distribution be triangular on [−1
2
, 1

2
] with probability

p1 and uniform on [−1
2
, 1

2
] × [−1

2
, 1

2
] with probability p2. We propose only
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one kind of move, that which switches dimensions. Consider the following
diffeomorphism on R3

(x1, x2, x3) −→ (2x1 + x2, x1 + x3, x3)

Using this we set up the following transition rule:
If we have a point in R1 say x we generate two N(0, 1) random variables

u1, u2 and jump to the point (2x+ u1, x+ u2) with probability r1. If we are
currently at point in R2 say (x1, x2) we generate a N(0, 1) random variable u
the inverse of the mapping above determines the point to jump back to i.e.,
x2 − u with probability r2. Note, that the dimension matching condition is
trivially satisfied (1+2=2+1) and that the jacobian of the transformation is
2. The transition probability for jumping from dimension 1 to 2, i.e., from
x −→ (2x+ u1, x+ u2) is given by

min

1,
p2I(|2x+ u1| < 0.5)I(|x+ u2| < 0.5)

√
2π exp(−u2

2

2
)r2

4p1(1− |2x|) exp(−(
u2
1+u2

2

2
))r1


and probability of the reverse jump from (x1, x2) to x2 − u is given by

min

{
1,

4p1(1− |2(x− u)|)I(|2(x− u)| < 1) exp(− (2u−x2)2+u2

2
)r1

p2

√
2π exp(−u2/2)r2

}

5 Setting up the hierarchical Bayesian model

We consider a hierarchichal Bayesian approach with the following steps

• (Z(x1), Z(x2) . . . Z(xn)) ∼ N(0,Σ(θ)) where Σ(θ)[i, j] = C0(x − y) +∑k
l=1K(xi − sl)K(xj − sl)Cl(xi − xj)

• (s1, s2, . . . sk) is distributed as a poisson process with rate λ

• Conditional on (s1, s2, . . . sk) the range, sill and nuggets of Ci() are
distributed as U [0, δ],Γ(α1, 1) and Γ(α2, 1) for all i
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5.1 RJMCMC moves

We implement the RJMCMC algorithm by choosing one among a choice of
transition functions q1(. , . ), . . . qm(. , . ). If our markov chain is currently at
state t the jk(t) denotes the probability of choosing the transition method
qk(. , . ) .

We propose the following kind of RJMCMC moves

• Insert a new center and update the value of θ

In this move we propose a parameter with an additional center compared to
the current state of the markov chain. This leads to a jump in dimensionality.
We also have to simulate additional parameters for the stationary process
associated with the additional center. To implement this move we partition
the who domain into zones and depending on which zone the center falls we
choose the distribution of the parameters of the stationary process.

• Delete a cluster point and update the value of θ

This move leads to a drop in dimensionality. Suppose the the current state
of the markov chain we has l centers, we choose one of the centers at random
and delete the center and the associated stationary distribution from the
model. This move and the and previous move have to be coordinated in a
way so that the RJMCMC condition is met.

• No new cluster point added or deleted, value of θ updated

In this step there is no change in dimensionality and the form of the transition
probability is same as that of an usual MCMC transition probability.

The parameterization of our process can be represented as θ = (k, θ(k)),
where θ(k) = (l1, . . . lk) and lk = (sk, c

(k)) where sk denotes a position and
c(k) represents the parameters of the Matern process centered around sk.

Let y = (z(x1) . . . z(xn)) be the locations where the process is observed,
then the distribution of the process conditional on the parameters is given
by

f(z|(k, θ(k)) =
1√

(2π)|Σ(k, θ(k))|
k exp(

−yT Σ(k, θ(k))−1y
2

)

To implement the RJMCMC process we have to specify the probability
of choosing each of the moves and method of generating the extra parame-
ters when the dimension is increased and chopping off parameters when the
dimension is decreased. We do this as follows
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1. Each of the above moves is chosen with the same probability 1
3

2. In the case we decide to increase the dimension by 1 we do as follows:

We partition the domain D into {D1, . . . DP}. When we increase the
dimension from k to k+1 we have to generate an extra point lk+1 =
(sk+1, c

(k+1)). To do this we first generate sk+1 uniformly over D and
then conditional on sk+1 we generate ck+1 as

f(c(k+1)|sk+1) =
P∑

i=1

gi(c
(k+1))I(sk+1∈Di)

that is with each block of the partition Di we have an density of the
parameters of the matern process associated gi( ) and depending on
where the new location falls we generate the parameters of the process
with the appropriate density.

3. When we decide to drop a dimension from k to k-1 we do as follows:

We random choose one of l1, . . . lk and delete it to get the reduced
dimension

4. When we decide not to change dimensions and we only update θ(k)

we first choose on of l1 . . . lk randomly say the point chosen is lk′ =
(sk′ , c(k

′)), we shift the sk′ in an ε neighborhood and conditional on the
new value of sk′ we adjust the value c(k

′) as per step 2.

5.2 Estimation

We propose estimation of the parameters by first estimating the value of k
and then conditional on this estimated value of k we estimate the value θ(nk).
So, suppose, given a sample from RJMCMC, say (k1, θ

(nk1
)) . . . (kN , θ

(nkN
))

We estimate k by k̂ = mode{k1, . . . kN}
Now using the fact that [k, θ(k)|y] = [k|y] × [θ(k)|k, y] we can infer about

the appropriate value of k. Within sample MCMC would help us infer about
both k and θ(k)|k

5.3 Prediction

We want to predict the value of the process at a particular point, say at
x0. The prediction is done in following stages: we first construct a grid on
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the real line, say X = {xi ∈ R}, next we calculate the posterior predictive
distribution of z(x0) at each and every point of the grid and estimate the
posterior predictive distribution of the process at x0 at each point in X and
we finally estimate the mean of posterior predictive distribution using the
values of the posterior predictive density at points of X for an estimate of
z(x0).

The implement the second step we simulate from the posterior distribu-
tion of parameters, say a sample is (θ1, k1), . . . (θm, km). Let f(|k, θ) denote
the density of z(x0), then the posterior predictive density of z(x0) at xi ∈ X
can be calculated as

f̂pos(xi) =
1

m

m∑
i=1

f(xi|(ki, θi))

The expected value of the posterior predictive density, i.e.,
∫
xfpos(x)dx can

be estimated by among other ways

1. Estimating the density from its values in X using kernel smoothing and
calculating the area under the curve of the estimate

2. Simply estimate it as

m∑
i=2

xif̂pos(xi)(xi − xi−1)

provided the xi’s lie sufficiently close to each other.

One can also consider using the mode, rather than the mean to get our
prediction, that can be easily estimated by choosing the xi that maximizes
f̂pos(x1), f̂pos(x2), . . .

6 Application

The data for the application consists of 236 sites from the SLAMS/NAMS/CastNET
netowrk. The observations consist of Ozone standard values observed at these
236 sites. For the purposes of computation we restricted the number of sites
to be at least 3 and to be 5 at the maximum. Conditional on k, all the
ranges and the partial sills were given gamma priors Γ(70,1) and Γ(50,1) re-
spectively, the nuggets were uniformly distributed in the interval [0,6]. The
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prior on k was uniform between its maximum and minimum values. 50,000
iterations of the simulation were run and the first 10,000 were disregarded
as burn-off values, because of the large magnitude of the numbers involved
some calculations were done in extended precision arithmetic.

The number of parameters in different iterations is variable so to get an
idea of the posterior distribution of certain parameters we restricted ourselves
to those observations which had the number of centers finally selected. The
predicted and standard error surfaces where obtained by breaking up the
whole region into a grid of size 800× 800. For ease of computation we used
the mode of the posterior predictive distribution as our estimate.

The number of centers chosen is 3. The centers of the process seem to
be well separated and lie in the different regions of the US, the nuggets take
small values close to each other. The partial sills seem to vary significantly
across the three centers with values and centers labeled 1 and 3 significantly
higher than the others, the ranges in the three regions also vary sharply
as can be seen in the figure. The credible intervals at the locations where
estimated centers lie.
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Figure 1: Location of the the sites, the centers are marked 1,2 and 314
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Figure 2: Posterior Distribution at the range sill and nugget parameters

15



Figure 3: Predicted Surface
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Figure 4: Standard Error Surface
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